
Atmos. Meas. Tech., 18, 6093–6123, 2025
https://doi.org/10.5194/amt-18-6093-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Five years of GOSAT-2 retrievals with RemoTeC: XCO2 and XCH4
data products with quality filtering by machine learning
Andrew Gerald Barr1, Jochen Landgraf1, Mari Martinez-Velarte1, Mihalis Vrekoussis2,3, Ralf Sussmann4,
Isamu Morino5, Kimberly Strong6, Minqiang Zhou7, Voltaire A. Velazco8, Hirofumi Ohyama9, Thorsten Warneke3,
Frank Hase10, and Tobias Borsdorff1

1Earth Science Group, SRON Space Research Organisation Netherlands, Niels Bohrweg 4, 2333 CA Leiden, the Netherlands
2Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
3Institute of Environmental Physics, University of Bremen, Bremen, Germany
4Karlsruhe Institute of Technology (KIT), IMK-IFU, Garmisch-Partenkirchen, Germany
5Satellite Remote Sensing Section and Satellite Observation Center, Earth system Division, National Institute for
Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
6Department of Physics, University of Toronto MP710A, 60 St. George Street, Toronto, ON, M5S 1A7, Canada
7Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
8Deutscher Wetterdienst (DWD), Meteorological Observatory Hohenpeissenberg, 82383 Hohenpeissenberg, Germany
9Earth System Division, National Institute for Environmental Studies, Tsukuba, Japan
10Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Correspondence: Andrew Gerald Barr (a.g.barr@sron.nl)

Received: 18 December 2024 – Discussion started: 24 April 2025
Revised: 4 September 2025 – Accepted: 22 September 2025 – Published: 4 November 2025

Abstract. Accurately measuring greenhouse gas concentra-
tions to identify regional sources and sinks is essential for
effectively monitoring and mitigating their impact on the
Earth’s changing climate. In this article we present the sci-
entific data products of XCO2 and XCH4, retrieved with Re-
moTeC, from the Greenhouse Gases Observing Satellite-2
(GOSAT-2), which span a time range of 5 years. GOSAT-
2 has the capability to measure total columns of CO2 and
CH4 to the necessary requirements set by the Global Climate
Observing System (GCOS), who define said requirements as
accuracy< 10ppb and < 0.5ppm for XCH4 and XCO2 re-
spectively, and stability of < 3ppbyr−1 and < 0.5ppmyr−1

for XCH4 and XCO2 respectively.
Central to the quality of the XCO2 and XCH4 datasets

is the post-retrieval quality flagging step. Previous versions
of RemoTeC products have relied on threshold filtering,
flagging data using boundary conditions from a list of re-
trieval parameters. We present a novel quality filtering ap-
proach utilising a machine learning technique known as Ran-
dom Forest Classifier (RFC) models. This method is devel-
oped under the European Space Agency’s (ESA) Climate

Change Initiative+ (CCI+) program and applied to data from
GOSAT-2. Data from the Total Carbon Column Observing
Network (TCCON) are employed to train the RFC models,
where retrievals are categorized as good or bad quality based
on the bias between GOSAT-2 and TCCON measurements.
TCCON is a global network of Fourier transform spectrome-
ters that measure telluric absorption spectra at infrared wave-
lengths. It serves as the scientific community’s standard for
validating satellite-derived XCO2 and XCH4 data. Our re-
sults demonstrate that the machine learning-based quality fil-
tering achieves a significant improvement, with data yield
increasing by up to 85 % and RMSE improving by up to
30 %, compared to traditional threshold-based filtering. Fur-
thermore, inter-comparison with the TROPOspheric Moni-
toring Instrument (TROPOMI) indicates that the quality fil-
tering RFC models generalise well to the full dataset, as the
expected behaviour is reproduced on a global scale.

Low systematic biases are essential for extracting mean-
ingful fluxes from satellite data products. Through TC-
CON validation we find that all data products are within
the breakthrough bias requirements set, with RMSE for
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XCH4< 15 ppb and XCO2< 2 ppm. We derive station-to-
station biases of 4.2 ppb and 0.5 ppm for XCH4 and XCO2
respectively, and linear drift of 0.6 ppbyr−1 and 0.2 ppmyr−1

for XCH4 and XCO2 respectively.
For XCH4, GOSAT-2 and TROPOMI are highly correlated

with standard deviations less than 18 ppb and globally aver-
aged biases close to 0 ppb. The inter-satellite bias between
GOSAT and GOSAT-2 is significant, with an average global
bias of −15 ppb. This is comparable to that seen between
GOSAT and TROPOMI, consistent with our findings that
GOSAT-2 and TROPOMI are in close agreement.

1 Introduction

Anthropogenic emissions of greenhouse gases (GHGs) such
as carbon dioxide (CO2) and methane (CH4) over the last
century have led to the rapid rise of concentrations of GHGs
in the atmosphere (Fig. 1.4, IPCC AR6 2021, Tans and Keel-
ing, 2020, Cross-Chapter Box 5.2 IPCC AR6 2021). The
effect of such changes in atmospheric composition has a
clear correlation with the change of climate variables – such
as global sea surface temperature anomaly or sea level –
with CO2 increase over preindustrial levels directly propor-
tional to global mean surface temperature anomaly, rela-
tive to 1850–1900 (Fig. 1.6, IPCC AR6 2021). Indeed, the
emergence of trend in climate variables above the natural
year-to-year variability has been firmly established (Banks
and Wood, 2002; Giorgi and Bi, 2009; Lyu et al., 2014;
Hawkins and Sutton, 2012; IPCC AR5, 2014; Tebaldi and
Friedlingstein, 2013), on a global scale as well as regional
ones (Mahlstein et al., 2011; Hawkins et al., 2020; Rohde
and Hausfather, 2020). The ramifications of a warming cli-
mate are serious with significant negative implications affect-
ing the entire globe.

Satellite retrievals of concentrations of CO2 and CH4,
or rather column-averaged dry air mole fractions, denoted
XCH4 and XCO2, play an essential role in monitoring the
changing climate, as these variables can be used alongside
inverse modelling of surface fluxes to estimate uptake and
emission of GHG surface fluxes (Bergamaschi et al., 2009;
Chevallier et al., 2007, 2005; Meirink et al., 2006; Metz et al.,
2023). In particular satellite measurements that are sensitive
to near-surface variations in GHG concentrations are essen-
tial, and tight requirements are necessary to accurately calcu-
late fluxes and so quantify emissions. The Global Carbon Ob-
serving System (GCOS) has classified measurements of CO2
and CH4 columns as Essential Climate Variables (ECVs),
and defines requirements as being accurate enough to be able
to determine sources and sinks on regional scales (GCOS,
2016). To this end, ESA’s Climate Change Initiative (CCI)
seeks to achieve this with the GHG-CCI+ project in which
ECVs of CO2 and CH4 columns are delivered globally.

Particular emphasis is placed on systematic biases in satel-
lite data, such as the change in bias over time, of which the
requirements on XCO2 and XCH4 are less than 0.5 ppmyr−1

and 3 ppbyr−1 respectively (GCOS, 2016). Furthermore, the
station-to-station bias of sites, or accuracy, from the The
Total Carbon Column Observing Network (TCCON), de-
fined as the standard deviation of all station biases, should
be less than 0.5 ppm for XCO2 and less than 10 ppb for
XCH4 (GCOS, 2016).

The Japan Aerospace Exploration Agency (JAXA) op-
erated satellite GOSAT-2 (Greenhouse Gases Observing
Satellite-2) has onboard the TANSO-FTS-2 instrument
(Thermal And Near infrared Sensor for carbon Observation-
Fourier Transform Spectrometer-2), which operates in the
near-infrared (NIR), short-wave infrared (SWIR) bands, as
well as the thermal infrared. TANSO-FTS-2 has sufficient
sensitivity to measure regional sources and sinks of GHGs,
and provides calibrated and geolocated Earthshine radi-
ance spectra (level-1B data) in the aforementioned wave-
length regimes, with 10 km circular ground pixels covering
the globe every 6 d in sun-synchronous orbit (Suto et al.,
2021; Imasu et al., 2023). TANSO-FTS-2 has an intelligent
pointing system, allowing better coverage than its predeces-
sor GOSAT. Also onboard is the dedicated cloud imager
TANSO-CAI-2 (Thermal And Near infrared Sensor for car-
bon Observation-Cloud and Aerosol Imager-2) (Kuze et al.,
2009, 2016; Yoshida et al., 2012).

GOSAT was the first dedicated GHG observing satellite,
and has been used in a wide variety of scientific studies rele-
vant to CO2 and CH4 since 2009 (Butz et al., 2011; Schepers
et al., 2012; Parker et al., 2020; Taylor et al., 2022). Trace
gas column-averaged dry air mole fractions, also referred to
as the level 2 product, can be extracted from the level 1B
data through a retrieval (see Sect. 3). Crucial for the carbon
cycle, fluxes of CO2 have been inferred from level 2 data on
regional scale (Chevallier et al., 2009; Basu et al., 2013; Det-
mers et al., 2015) as well as global scales (Turner et al., 2015;
Jiang et al., 2021; Kou et al., 2023). Also for CH4, global
flux estimates and emissions (Maasakkers et al., 2019; Zhang
et al., 2021) have been derived from GOSAT measurements,
and also compared to the TROPOspheric Monitoring Instru-
ment (TROPOMI) (Liang et al., 2023) and airborne in-situ
measurements (Tadić et al., 2012).

In addition to the data we present in this article, two other
XCO2 and XCH4 data products are available from GOSAT-
2 (Noël et al., 2021, 2022; Yoshida et al., 2023). Noël et al.
(2022) also present results for XH2O, as well as XCO and
XN2O from GOSAT-2. Zadvornykh et al. (2023) investi-
gated the retrieval of HDO/H2O ratio combining the NIR
and thermal infrared bands, and Malina et al. (2018) pre-
sented a proof of concept study on retrieving 13CH4 from
GOSAT-2. Ohyama et al. (2024) calculated emissions esti-
mates from enhancement ratios of CO2, CH4 and CO using
inverse modelling and compared to emission inventories. Ja-
nardanan et al. (2025) compared flux inversions of CH4 from
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GOSAT and GOSAT-2 across 2019–2022, finding regional
differences in the emission estimates related to differences in
the level 2 products, however assimilated GOSAT-2 XCH4
data were not bias-corrected.

TCCON provides the most robust measure of the accuracy
of total columns of GHGs measured by satellites (Wunch
et al., 2010, 2011, 2015), and is widely used as the conven-
tional validation for XCH4 and XCO2 retrievals (e.g. Dils
et al., 2014; Malina et al., 2022). It is a global network of
Fourier transform spectrometers that observe, among others,
XCO2 and XCH4 with a root mean square error (RMSE)
on mole fractions of 0.15 % and 0.2 % respectively (Toon
et al., 2009), for the GGG2014 release. Depending on the
site, these measurements are scaled to aircraft or balloon-
borne measurements for calibration (Washenfelder et al.,
2006; Deutscher et al., 2010; Karion et al., 2010; Messer-
schmidt et al., 2011; Geibel et al., 2012) and measurements
of vertical profiles can vary per site. TCCON measures direct
sunlight and can therefore only be performed under clear-sky
conditions hampering coverage of the time-series.

2 Data products and Input Data

In this article we present the novel level 2 GOSAT-2 scientific
data products developed by SRON Space Research Organi-
sation Netherlands. XCO2 and XCH4 are retrieved deploying
the RemoTeC retrieval algorithm, and are processed within
the GHG-CCI+ project (Dils et al., 2014; Buchwitz et al.,
2015). RemoTeC uses two different retrieval approaches
which we discuss further in Sect. 3. From the two configu-
rations available to RemoTeC, three column-averaged dry air
mole fractions products are produced. GOSAT-2 has been op-
erational since February 2019. The data products discussed
here cover the time range of the first observations until the
end of 2023. Data products are available from the ESA Cli-
mate Office, under version v2.0.3 in Climate Data Research
Package 9 (CDRP9) (https://catalogue.ceda.ac.uk/, last ac-
cess: 28 October 2025) More information about the three
SRON GOSAT-2 data products can be found in the Algo-
rithm Theoretical Basis Documents (ATBDs) (Barr et al.,
2024a, b) and Product User Guides (PUGs) (Barr et al.,
2024c, d).

The SRON GOSAT-2 data products are generated from
calibrated TANSO-FTS-2 L1B data from v210.210 for 2019
until June 2023, made available by the National Institute for
Environmental Studies (NIES). For the second half of 2023
we used L1B from v220.220. Instrument line shape (ILS) in-
formation is taken from Suto et al. (2021).

A pre-processing step brings meteorological data, surface
data and satellite data together before the retrieval is run. Me-
teorological input data are taken from the ECMWF ERA5
reanalysis product on 137 altitude layers and a 0.75°×0.75°
latitude/longitude grid (Hersbach et al., 2020). Surface infor-
mation was taken from the extended Shuttle Radar Teleme-

try Mission (SRTM) digital elevation map. The model used,
DEM3, has global coverage at 90 m spatial resolution (http:
//www.viewfinderpanoramas.org/dem3.html, last access: 28
October 2025), extending the original SRTM which is lim-
ited to latitudes of 56° S–60° N. The solar reference spec-
tra used for the retrieval is compiled from the full resolution
spectrum of Kurucz (1994).

Absorption cross sections come from the HITRAN 2008
database for spectroscopic parameters (Rothman et al.,
2009). Apriori column density profiles for CO2 and CH4
we take from TM5 (Huijnen et al., 2010) and TM4
(Meirink et al., 2006) model simulations respectively. For the
XCH4 Proxy product, XCO2 data is used from the CAMS
global inversion-optimised greenhouse gas concentrations of
Chevallier (2010). These are surface air-sample instanta-
neous 3 hourly mean columns on 1.9°× 3.75° grids.

3 Retrieval

RemoTeC is a retrieval algorithm developed for the re-
trieval of trace gas column-averaged dry air mole fractions
from measured level 1B radiance spectra in the NIR and
SWIR bands. It has been used extensively for the retrieval of
trace gases from GOSAT observations to produce the SRON
XCH4 and XCO2 data products (Butz et al., 2009, 2010),
as well as the operational products of TROPOMI (Hu et al.,
2016, 2018; Lorente et al., 2021) and SCHIAMACHY
(Frankenberg et al., 2005, 2011; Dils et al., 2006, 2014) .
Below we outline the retrieval approach. The same approach
is also used to generate the GOSAT-2 data products (Krisna
et al., 2021).

An XCH4 Full Physics product is obtained using the scat-
tering forward model, and an XCO2 Full Physics product
is extracted from the same retrieval. Furthermore another
XCH4 product (the Proxy product) is obtained with the non-
scattering forward model. For the Full Physics approach,
light scattering by cirrus and aerosol particles is accounted
for in the forward model. For the Proxy retrieval, scattering
is neglected and hence atmospheric scattering properties do
not need to be calculated (Butz et al., 2009).

An example of a single, typical GOSAT-2 measurement is
shown in Fig. 1 in which the spectral fits per band are pre-
sented for a high quality, cloud free scene in the Full Physics
retrieval setup. The SWIR-1 window is split into two to re-
trieve total columns of CO2 and CH4 separately from band
2a and band 2b, respectively.

3.1 Forward Model

Both the scattering and non-scattering forward models have
the same general concept in common which we outline here.
The atmospheric state vector, x, is related to the measure-
ment vector, y, through a forward model, F , which in the
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Figure 1. Left panels: a single GOSAT-2 measurement for the near-infrared (band 1), SWIR-1 (band 2) and SWIR-3 (band 3) spectral
windows (blue), along with the converged model (orange). Right panels: the difference between the measurement and model shown on the
left panels. The noise level is indicated by the black dashed lines.

following equation:

y = F (x,b)+ εy + εF , (1)

where εy and εF are the error contributions from the mea-
surement noise and forward model respectively, and b is the
ancillary vector containing parameters that are not retrieved.
In order that the retrieval can be solved iteratively, the for-
ward model must be linearised. For iteration step n the lin-

earised forward model is approximated by:

F (x,b)= F (xn,b)+K(x− xn), (2)

where xn is the state vector for the nth iteration step and K
is the Jacobian matrix at position xn defined by:

K=
∂F

∂x
(3)
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The inversion method optimises the state vector x with re-
spect to the measurement y after applying the forward model
F to x. The inversion method is based on the Tikhonov regu-
larization scheme (Philips, 1962; Tikhonov, 1963; Hasekamp
and Landgraf, 2005). Regularisation is required because the
inverse problem is ill-posed (the measurements y typically
contains insufficient information to retrieve all state vector
elements independently). The inverse algorithm finds x by
minimising the cost function that is the sum of the least-
squares cost function and a side constraint weighted by the
regularisation parameter γ according to

x̂ = x
min

(∥∥∥Sy
1/2(F (x)− y)

∥∥∥2
+ γ ‖W(x− xa)|

2
)
, (4)

where Sy is the diagonal measurement error covariance ma-
trix, which contains the noise estimate, xa is an a priori state
vector, and W is a diagonal weighting matrix.

3.2 Proxy Approach

The Proxy approach is based on a non-scattering retrieval,
thus the runtime of processing is around a factor of 4 faster
than the Full Physics retrieval. Furthermore, many of the er-
rors in the retrieval, including those due to aerosol, cancel
out (Butz et al., 2009; Schepers et al., 2012) following the
equation:

XCH4 =
[CH4]

[CO2]
XCO2,model (5)

which determines XCH4 from the retrieved total columns
[CH4] and [CO2]. Here, the assumption is that the light path
modification by scattering particles such as aerosols is the
same for CH4 and CO2 (Schepers et al., 2012). [CH4] and
[CO2] are total columns retrieved from SWIR-1 at 1.6 µm,
and XCO2,model is the total column dry air mixing ratio
of CO2 from an atmospheric model, on the same grid as
GOSAT-2 observations. The main source of uncertainty in
this approach is therefore XCO2,model, thus the accuracy of
the XCH4 Proxy product is limited by the accuracy of the
XCO2 model.

The state vector of the Proxy retrieval contains CO2 and
CH4 sub-columns in 12 vertical layers, H2O total column,
Lambertian surface albedo, first order spectral dependence
of surface albedo, an intensity offset and first order spectral
shifts of Earth and Sun radiancies (Barr et al., 2024b). We
do not retrieve any information about the ILS such as shift or
stretch parameters.

3.3 Full Physics Approach

The Full Physics retrieval uses a three-window approach re-
trieving information from the NIR, SWIR-1 and SWIR-3
bands. The treatment of aerosol in the Full Physics approach
leads to more accurate retrieved total columns of trace gases,

however the radiative transfer calculations are computation-
ally expensive. The state vector of the Full Physics retrieval
is the same as for the Proxy retrieval with additional parame-
ters related to aerosol properties. For a full description of the
state vector and the priors see Sect. 3.3 of Barr et al. (2024a).

Aerosols are characterised by three parameters which re-
late to the aerosol column and size distribution of particles.
The height distribution is approximated as a Gaussian func-
tion of centre height, zaer and width ω0:

h(zk)=N · exp
[
−

4ln(zk − zaer)
2

(2ω0)2

]
(6)

Here, N is the total amount of particles and zk is the layer
height. The size distribution is parameterised by a power law
function following:

n(r)=


A for r ≤ r1
A(r/r1)

−α for r1 < r ≤ r2
0 for r > r2

(7)

where r1 = 0.1µm, r2 = 10µm and the constant A is deter-
mined from normalisation of the size distribution. N , α and
zaer are included in the Full Physics state vector.

3.4 Bias Correction

A bias correction is applied post-retrieval to XCO2 and
XCH4 using TCCON as a truth, for which we use the
GGG2020 release (Laughner et al., 2023). For land retrievals,
the bias correction of RemoTeC is a simple empirical relation
between XCH4 and the retrieved albedo at 1600 nm, defined
by:

Xcorr =Xret(a+ bα) (8)

whereXret andXcorr are the bias corrected and retrieved con-
centrations respectively, α is the retrieved albedo at 1600 nm
and a and b are determined such that the difference with TC-
CON is minimised.

For the retrieval with the Proxy approach, the bias cor-
rection is all contained in the a variable of the fit (Eq. 8),
therefore it is purely a constant bias correction, whereas the
Full Physics approach has more contribution from the linear
part of the fit, captured by the b parameter. This can be un-
derstood as confusion between albedo and aerosol effects in
the retrieval, both of which lead to large scale wavelength
features in the spectrum.

4 Quality Filtering

A key step in the retrieval process is the post-processing qual-
ity flagging. Data from GOSAT are flagged using a selec-
tion of retrieval parameters, such as signal-to-noise ratio or
chi-squared, and any data that do not lie within a specified
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range of these parameters are flagged as bad quality. This
method offers a binary quality flag and is described further
in Sect. 4.1.

Given the rapidly growing capabilities of machine learn-
ing techniques, algorithms such as random forest classifiers
(RFCs) provide a much more promising way of filtering
satellite global data products. We have applied such a flag-
ging technique to the GOSAT-2 data (see Sect. 4.2). The
quality flag of GOSAT-2 takes the form of a quality assurance
(QA) value that ranges between 0 and 1, with 0 correspond-
ing to the best quality data. Therefore, users should quality
filter their data by taking QA values less than, or equal to, the
desired value.

4.1 Threshold Criteria Approach

Extensive investigations have been conducted to identify ef-
fective retrieval parameters, or combinations of parameters,
that are correlated with the quality of XCH4 or XCO2 and
that can be used to flag bad data, while at the same time
maximising the amount of good quality retrievals (Butz et al.,
2010; Schepers et al., 2012). Such a set of criteria have been
established also for GOSAT-2 and are listed in Table 1.

Criteria 6–9 are excluded for the Proxy product, since
these are not in the state vector of the retrieval. Butz et al.
(2010) defined the aerosol parameter as ω = τaer× 1/reff×

zaer (Schepers et al., 2012). The blended albedo in criterion
10 is defined as Abld = 2.4 ·A(0.76µm)− 1.13 ·A(2.0µm)
with the retrieved albedos A(0.76µm) and A(2.0µm) at the
indicated wavelengths (Wunch et al., 2011). Guerlet et al.
(2013) investigated the use of the cirrus radiance for data fil-
tering, which is defined as the mean radiance in the spectral
range 5154.8–5157.8 cm−1 (1.9388–1.9399 µm). The use of
the column ratios for data filtering was first proposed by Tay-
lor et al. (2016) based on the difference in the non-scattering
retrieved column from a weak and strong absorption band.
For this purpose, in criteria 12 and 13, we use the CO2 and
H2O ratios inferred from the 1.6 and 2.0 µm spectral range.
Finally, O2 ratio is the retrieved O2 column divided by the
prior derived from the ECMWF surface pressure estimate.

4.2 Machine Learning Approach

An alternative approach to quality flagging with threshold
criteria, as applied on GOSAT, is to use machine learn-
ing in the form of a random forest classifier (RFC). To
this purpose, we use the RandomForestClassifier tool within
Python’s SciKit Learn package (Pedregosa et al., 2011).

A random forest model utilises an ensemble of N deci-
sion trees, which take a random subset of the available fea-
tures and each make a decision on the target classification
(Breiman, 2001). The final result of the model is taken as
the majority chosen class. This is ultimately applied to each
ground pixel of GOSAT-2 data using a set of features consist-
ing of RemoTeC retrieval parameters, to predict the quality

of the retrieval. We use separately trained models for each
of the three data products, which will be described in more
detail in Sect. 4.2.1.

4.2.1 RFC training using TCCON data

For the quality classification of our data product, we use a
trained RFC. The supervised form of learning requires a la-
beled training dataset. To this end, we need knowledge of
a “ground truth” and the best estimate of the true value of
XCH4 and XCO2 comes from TCCON. Therefore, in or-
der to determine the true label for the quality flag, we use
GOSAT-2 level 2 data from measurements that are colocated
in space and time with TCCON sites, and classify the train-
ing sample via the bias:

|1X|<XT : label LXT = 0 (good) (9)
|1X|>XT : label LXT = 1 (bad) (10)

with the biases 1XCH4 = XCH4,GOSAT-2−XCH4,TCCON,
and 1XCO2 = XCO2,GOSAT-2−XCO2,TCCON. XT we name
the training threshold and takes the form of e.g. ±18ppb for
1XCH4. A label L of 0 corresponds to a good-quality re-
trieval, and a label of 1 means a bad-quality retrieval. For all
training and validation, we use the TCCON GGG2020 re-
lease (Laughner et al., 2023).

A consequence of training the random forest model on
GOSAT-2 colocations with TCCON is that retrievals with
surface albedo ' 0.4 were underrepresented in the training
sample, due to the lack of TCCON stations in high albedo
areas. This would lead to albedo-related biases when using
such models to filter the global dataset. To avoid this, we de-
fined a subsample of retrievals with albedo> 0.4 to include
in the training set, using the threshold filtering criteria in Ta-
ble 1.

Example ranges of albedo, along with several other geo-
physical parameters, covered in the combined training set
are illustrated in Fig. 2 for LXT = 0. A pre-flagging step is
also applied which labels training data based on nonphysi-
cal values of albedo. The presence of retrievals with nega-
tive aerosol central height, or high optical depth (Fig. 2), in
the training set for high quality retrievals suggests that the
training process may be improved by an stricter pre-flagging
which includes aerosol related properties.

In this study, we limit the quality filtering of GOSAT-2
data using the machine learning approach to retrievals over
land only, due to the lack of available training data over
ocean. We note that this limiting factor would not apply to
satellite data from push-broom spectrometers that have better
spatial coverage, such as TROPOMI (Hu et al., 2016, 2018).
Instead, we filter retrievals performed in glint mode over the
ocean also following Table 1. Retrievals over ocean are dis-
cussed further in Sect. A in the Appendix.

TCCON XCH4 and XCO2 data are also used to validate
the final product (see Sect. 5.1). Due to the supervised learn-
ing approach, utilising TCCON data in training the filter-
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Table 1. List of threshold conditions to quality filter GOSAT-2 data. The filters marked with an asterisk do not apply to the Proxy product.

Filter Description Criteria

1 χ2 of spectral fit χ2 < 12.0
2 number of iterations Niter Niter < 31
3 signal-to-noise ratio (SNR) at band continuum SNR> 50
4 variance σsurf of surface elevation σsurf < 100m
5 solar zenith angle (SZA) SZA< 75°
6∗ aerosol optical thickness (τaer) in NIR window τaer < 1.0
7∗ aerosol size parameter reff 3< reff < 6
8∗ aerosol layer height zaer 0< zaer < 10000m
9∗ aerosol parameter ω 0< ω < 3× 104

10 blended albedo Abld 0<Abld < 1.4
11 cirrus radiance signal Icir 0< Icir < 2.0× 10−9 [Wcm (m2 s str)−1]
12 CO2 column ratio rCO2 0.99<RCO2 < 1.018
13 H2O column ratio rH2O 0.95<RH2O < 1.08
14 O2 column ratio rO2 0.96<RO2 < 1.04

ing models means that these data can no longer be quality
filtered without receiving what was defined during training.
Since the training data also comprise the validation data, this
would lead to artificially choosing validation results, there-
fore compromising any independent validation with TCCON
using the assigned quality flags. To avoid this, we train dif-
ferent filtering models, 1 year at a time, where the data from
the year to be predicted are excluded from training. This re-
sults in one filtering model per year of data. Here we assume
that the relationship between retrieval quality and features is
temporally independent. The robustness of this assumption is
reflected in Fig. 2 which shows a feature importance analysis
of the different models for the XCH4 Full Physics product.
We see that there is, in general, little variation in the order of
features over the different years, with the top four features al-
ways being the most important, showing that the models are
all very similar.

4.2.2 RFC Prediction Performance

To evaluate our classification for the three products, we con-
sider the performance of the RFCs by comparing its pre-
dicted labels to the true labels given by the elements of
the confusion matrix (Liang, 2022): the False-Positive (FP),
the False-Negative (FN), the True-Positive (TP), and True-
Negative (TN). Here the terms “true” and “false” refer to
a correct or wrong prediction, “positive” and “negative” to
the bad and good label of the predicted data. From these, we
evaluate the classification using the following metrics:

1. The true-positive-rate TPR is defined as

TPR=
TP

TP+FN
. (11)

and measures the number of correctly identified positive
instances out of all true positive instances.

2. The False-Positive rate (FPR) is the corresponding rate
of False Positive with respect to all true negative in-
stances,

FPR=
FP

FP+TN
. (12)

A binary classification model predicts the probability of
an instance belonging to one of the two classes depending on
the classification threshold, which we name pt. Varying pt,
leads to the Receiver-Operating Characteristic curve (ROC)
(Bradley, 1997), which is a parametric curve of FPR(pt) ver-
sus TPR(pt). For a large threshold (pt→ 1), TPR goes to
one, but so does the FPR. In the other extreme for pt→ 0,
both TPR and FPR go to zero. Therefore, the more the ROC
curve goes through the top-left quadrant of the diagram, the
better the classifier. This is characterized by the area under
the ROC curve (AUC). We assume a value of 0.5 for pt for
all classification models.

Figure 2 compares the ROC curves of the XCH4 Full
Physics classification models to the XCH4 Proxy ones. There
is no clear differentiation between the ROC curves of each
product, implying that the models for each year perform
comparably to each other. Average metrics over all models
per product are given in Table 2. From this we see that the
performance of the RFC models for the two Full Physics
products are similar – which is intuitive given that these come
from the same retrieval – whereas the diagnostics for the
Proxy product are slightly worse.

Such an effect can be understood by the nature of the
Proxy approach and as a consequence of Eq. (5), where most
of the systematic error is divided out by dividing the two
columns of CH4 and CO2. Consequently, the distinction be-
tween high quality and low quality retrievals is much more
obvious in the Full Physics case. Quantitatively, the ratio of
good to bad retrievals in the training data is about 0.3 for
the Full Physics products, whereas for the Proxy it is 1.6. It
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Figure 2. (a) Histograms from the XCH4 Full Physics filtering model for 2019, showing the ranges covered for various geophysical param-
eters in the training dataset, for good quality examples. Cirrus signal is given in units of molm−2 s−1 nm−1 sr−1. Note that the albedo at
1629 nm is not used as a feature for training. (b) ROC curves for the different filtering models of the Full Physics XCH4 product and Proxy
XCH4 product, in solid and dotted lines respectively. The solid grey line indicates the performance of a randomly guessed prediction, with a
50 % chance of being correct. (c) Feature importance of the XCH4 Full Physics quality filtering models. The window numbers 1, 2, 3 and 4
correspond to the spectral bands 1, 2a, 2b and 3 of Fig. 1, respectively. For the definitions of other features see Sect. 4.1.

Table 2. Summary of classification metrics averaged over all years
for pt = 0.5.

Product TPR FPR AUC

XCO2 Full Physics 0.90 0.42 0.89
XCH4 Full Physics 0.89 0.44 0.89
XCH4 Proxy 0.64 0.14 0.83

is therefore easier to accurately label the training sample in
the Full Physics RFC models, leading to better performance
metrics.

4.2.3 The QA value

In the random forest models, the strictness of the training
threshold, XT, defined when labelling the training dataset
(Eqs. 9 and 10) has a directly proportional effect to the num-
ber of retrievals ultimately classed as good quality, as well

as the scatter of the total column mixing ratio with respect
to TCCON. Figure 3 shows the number of good retrievals as
a function of the RMSE with TCCON derived for different
training thresholdsXT and the depicted positive trend is intu-
itively expected. This allows us to define a non-binary quality
flag that is grounded in TCCON validation. XT is chosen to
probe the steepest part of the curves in Fig. 3, thus maximis-
ing the improvement that can be extracted from the machine
learning filtering approach.

Starting with a set of n threshold values XT1 , · · ·,XTn we
can assign the label vector L= (L1, · · ·,Ln) with Li = LXTi
as defined in Eq. (9). We define the QA value of a data point
by the mean value of the components of the corresponding
label vector L,

QA= 〈L〉 (13)

QA can have n+ 1 discrete values in the range [0,1] de-
pending on the number n of used threshold values XT. For
GOSAT-2, we use n= 5 with QA ∈ [0,1/5,2/5, . . .,1].
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Figure 3. Number of retrievals flagged as good for five different
thresholds, as a function of the RMSE derived by the TCCON vali-
dation. The mean QA value per data ensemble is given by the color
code. Results for XCH4 are shown on the top panel, where the RFC
filtering models for the Proxy and Full Physics product are repre-
sented by the dashed and solid lines respectively. On the bottom
panel are the results for the XCO2 filtering models. The red squares
and triangles mark the parameter space for the statistics of filtering
the data product according to Table 1.

For reference, Fig. 3 also shows the results of filtering
GOSAT-2 data using the thresholding defined in Table 1. For
the Full Physics products, the new filtering can achieve an
increase in data yield of ∼ 48% and 85 % for XCH4 and
XCO2 respectively, for equivalent RMSE. Alternatively, an
improvement in RMSE of 2.2 ppb and 0.7 ppm for XCH4 and
XCO2 respectively can be achieved for equivalent data yield.
The larger improvement for XCH4 compared to XCO2 is a
reflection of the less optimal choice of the arbitrary thresh-
old criteria for XCO2 (Table 1). For the Proxy product this
can be 1.6 ppb for the same amount of data, or conversely,
an increase of 29 % in data yield for the same RMSE. Thus
user can therefore choose the option of more data, which may
be advantageous to plume detection where better coverage
is desirable, or better quality data, where as small as possi-
ble systematic biases are required by atmospheric modellers.

Furthermore, with Fig. 3, the user may choose the QA value
which corresponds to their acceptable RMSE with TCCON.

5 Validation and Satellite Inter-comparison

5.1 TCCON Validation

TCCON is central to the work presented here as it provides
both the ground truth in labeling training data, as well as one
of the main validation sources. In this article, all references
to TCCON are for the GGG2020 TCCON release (Laughner
et al., 2023). The TCCON stations used in the analysis are
summarised in the Appendix in Table B1.

In this section, we present the validation of our GOSAT-
2 data products with respect to TCCON. TCCON sites are
considered only if there are more than 50 spatio-temporal
colocations with GOSAT-2 over the whole time-series, de-
fined as overlying within a radius of 300 km and time range
of ±2.5h. We evaluate the data products for the QA value of
0 (strictest filtering with RFC models; see Sect. 4.2.3).

Figure 4 shows the correlation between colocated GOSAT-
2 and TCCON data for XCO2 and both XCH4 products.
These are single soundings of GOSAT-2 over land compared
to an average of the TCCON measurements that coincide
spatially and temporally. For XCH4 we derive a RMSE of
15.2 and 15.7 ppb for the Full Physics and Proxy products re-
spectively, and Pearson’s correlation coefficient of 0.89 and
0.88 for the Full Physics and Proxy products respectively.
For XCO2 these are 2.1 ppm and 0.88 respectively. For some
stations, lines of data points in the x axis direction are ob-
served in Fig. 4, which arise from comparing daily averaged
TCCON measurements to single soundings from GOSAT-2,
indicative of bias with geolocation around a given site.

Time-series of GOSAT-2 colocations with TCCON for
each product are shown in the Appendix Sect. B. Following
Noël et al. (2022), we further parameterise the bias over time
as:

1X = a0+ a1t + a2 sin(2πt + a3)+ ε, (14)

where Eq. (14) is fit to the time-series of the bias with each
station individually. a0 is a constant bias term, a1 represents
a linear term, a2 measures the amplitude of the seasonal vari-
ation of the bias, a3 measures the temporal shift of the sea-
sonal term, and ε is an error term.

The parameters in Table 3 are extracted from fits of
Eq. (14) to the time-series of the bias for all TCCON sta-
tions. We illustrate an overview of the per station statistics
in terms of site and seasonal bias, as well as linear drift in
the bias, in Figs. 5–7. 1site is the site bias and defined as the
mean of1X from Eq. (14) and1seas is the seasonal bias and
defined as the standard deviation of the seasonal (sine) term
in Eq. (14). Finally, 1dri is the linear drift and is calculated
as a1 from Eq. (14).

https://doi.org/10.5194/amt-18-6093-2025 Atmos. Meas. Tech., 18, 6093–6123, 2025



6102 A. G. Barr et al.: GOSAT-2 RemoTeC L2 products

Table 3. Summary of the main statistics of GOSAT-2 product validation with TCCON. RMSE is the root mean square error,1dri is the linear
drift and 1seas is the seasonal bias, averaged over all stations. σsite is the station-to-station bias.

XCH4 Full Physics XCO2 Full Physics XCH4 Proxy

RMSE 1seas 1dri σsite RMSE 1seas 1dri σsite RMSE 1seas 1dri σsite
(ppb) (ppb) (ppbyr−1) (ppb) (ppm) (ppm) (ppmyr−1) (ppm) (ppb) (ppb) (ppbyr−1) (ppb)

13.1 4.0 0.6 4.2 2.0 0.6 0.2 0.5 14.7 3.1 1.2 3.7

For the Full Physics products, we derive average values of
the site bias of −0.1 ppb and −0.2ppm for XCH4 and XCO2
respectively, after bias correction. The seasonal bias term is
higher for both products with 4.0 ppb and 0.6 ppm for XCH4
and XCO2 respectively. For the Proxy product, the average
site bias and seasonal bias are 0.2 and 3.1 ppb respectively.
We exclude the station-averaged1site from Table 3 as it is by
definition close to zero due to the bias correction. Before bias
correction, the mean bias over all stations is 7.2 and 13.3 ppb
for the XCH4 Full Physics and Proxy products, respectively.
Thus, averagely speaking, the Full Physics retrieval approach
is closer to the truth than the Proxy apporoach, before bias
correction.

From Table 3 we also report a linear drift of 0.6 ppbyr−1

and 0.2 ppmyr−1 for XCH4 and XCO2 respectively, for the
Full Physics products. For the Proxy product the average lin-
ear drift is 1.2 ppb yr−1. Another important metric of the sys-
tematic error is the station-to-station bias. This is defined as
the standard deviation of the individual site biases, in contrast
to the RMSE which is the standard deviation of all the differ-
ences together. We report station-to-station bias of 0.5 ppm,
4.2 and 3.7 ppb for XCO2, XCH4 Full Physics and XCH4
Proxy, respectively. The site-to-site biases and linear drift
terms are low, and below the breakthrough systematic error
threshold requirements (GCOS, 2016), which is an essential
characteristic of the data product for determining regional
scale sources and sinks through flux inversion modelling.

We find that the difference between the average station
RMSE and that calculated from the sample of GOSAT-
2/TCCON differences as a whole can be significant. The
RMSE for XCH4 Full Physics taking all data as one sam-
ple is 15.2 ppb, however the average of the individual sta-
tion RMSE is 13.1 ppb. From Fig. 5, Caltech and Edwards
have RMSE over 15 ppb, however the disproportionately
high number of collocations (together constituting 40 % of
the data points) skew significantly the statistics towards these
stations. The location of these two stations in the Califor-
nian desert means more clear sky conditions, therefore a
better coverage in the TCCON timeseries. Furthermore, the
mid-latitude in the Northern hemisphere is favourable to
our GOSAT-2 products from RemoTeC. The combination of
these two factors leads to much higher colocations than other
stations, however they are know to be difficult for measur-
ing GHG concentrations (Hedelius et al., 2017; Schneising
et al., 2019). Taking this into consideration, we consider the

values for XCH4 in Fig. 4 an upper limit. For the Proxy
product the effect on RMSE is less although still notable,
with 15.7 ppb compared to 14.7 ppb when taking the station-
averaged RMSE.

Despite the lower performance of filtering models for
the Proxy product compared to the Full Physics ones
(Sect. 4.2.2), the level 2 quality of the Proxy XCH4 product
presented in Table 3 is effectively as good as the Full Physics
XCH4 product, with the advantage of better data coverage.
This can be understood by the ratio of FP/FN, for which in
the case of Full Physics is 1 : 1, is 2 : 1 for the Proxy. The
higher number of FPs lead to a poorer ROC curve, however
in terms of the problem of quality filtering, FNs are more
detrimental to the level 2 quality, since they correspond to
ground truth bad data flagged as good.

For the operational GOSAT-2 products, Yoshida et al.
(2023) report RMSE with respect to TCCON of 1.8 ppm
and 8.9 ppb for XCO2 and XCH4 respectively, across a time
range of March 2019 to December 2020. Also, they derive
station-to-station bias of 0.71 ppm and 2 ppb for XCO2 and
XCH4 respectively. We note the short time-series these val-
ues are derived from. Noël et al. (2021) find RMSE and
station-to-station bias of 1.86 and 1.14 ppm respectively,
for XCO2. For XCH4, station-to-station biases of 4–6 ppb
and RMSE of around 12 ppb are reported, for the and Full
Physics and Proxy products Noël et al. (2022). The authors
note that, due to the short time-series, these results are drawn
from only seven TCCON stations, some of which span only
a few months.

5.2 GOSAT Inter-comparison

The similarity in the setup of GOSAT and GOSAT-2, along
with the wide use of GOSAT in the scientific literature,
make them ideal candidates for satellite inter-comparison.
We compare our GOSAT-2 Full Physics products with the
corresponding GOSAT products from RemoTeC, version
2.3.8, over time frame of 2019–2023. For the Proxy product
comparison, we compare our GOSAT-2 XCH4 Proxy product
to that of GOSAT version 2.3.9.

The data from the two satellites are matched by re-
gridding XCH4 to 2°× 2° lat/long boxes, per day. A coloca-
tion is considered when there are data from each satellite in
the same grid cell for a given day. GOSAT data are quality fil-
tered using the filters listed in Table 1 with slightly different
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Figure 4. GOSAT-2 XCO2 (top), XCH4 Full Physics (middle) and
XCH4 Proxy (bottom) plotted against TCCON, for retrievals over
land. Data are compared only if they are fully colocated in space
and time. The standard deviation of the population, Pearson’s cor-
relation coefficient and number of retrievals are given in the inset.
The legend plots the different TCCON stations where markers are as
follows. Stations that are along the coast and also sensitive to glint
mode (ocean) measurements are indicated as circles. Those that
have high latitudes in the northern and southern hemispheres are
upward triangles and crosses, respectively. Stations in Asia, North
America and Europe are indicated by squares, pluses and downward
triangles respectively.

values, thus RFC filtering is applied only to GOSAT-2. We
present comparisons only for the GOSAT-2 QA value of 0.

From the global maps of the XCH4 Full Physics prod-
uct in Fig. 8, the superior coverage of GOSAT-2 is strik-
ing; a consequence of the intelligent pointing system to avoid
cloudy scenes. Maps for the other two products are shown in
Fig. C1 in the Appendix. We further analyse how the GHG
concentrations compare, illustrated as kernel density estima-
tion (KDE) plots, analysing data over land only, displayed in
Fig. 9. The scatter of satellite differences is 14.5 ppb, sim-
ilar to the RMSE of the bias with TCCON (13.1 ppb; see
Sect. 5.1). We find a large average global bias of −15.2ppb,
which we discuss further in Sect. 5.3.

For the Proxy XCH4 product, the comparison between
GOSAT and GOSAT-2 is better than the Full Physics prod-
uct. The average global bias is only −5.3ppb, and the stan-
dard deviation and correlation coefficients are 13.5 ppb and
0.9 respectively.

For XCO2, the correlation between GOSAT and GOSAT-
2 is weaker, with a coefficient of 0.64 compared to 0.88
for XCH4. This difference is expected, as CO2’s longer at-
mospheric lifetime leads to greater large-scale diffusion, re-
ducing correlation strength. The scatter of the differences is
2.9 ppm, slightly higher than the GOSAT-2 RMSE with re-
spect to TCCON of 2.0 ppm, and we find a bias of 0.9 ppm.

Furthermore, we plot time-series of GOSAT and GOSAT-2
globally, and for the three latitude bands of Northern/South-
ern Hemispheres (NH and SH) and the Tropics in Fig. 10.
These are defined as 0 to 60° N for NH, −25 to 25° N for the
Tropics, and −60 to 0° N for SH.

The globally averaged seasonal cycles of XCH4 Full
Physics follow each other well between April and August,
but from September to March, the GOSAT one peaks at
higher values. This characteristic is representative of the
Tropics and SH time-series, however for the NH time-series,
the GOSAT time-series is consistently higher by approxi-
mately 15 ppb.

For the time-series of the Proxy products, we find that the
satellite time-series correlate well with each other. The sea-
sonal cycles follow each other closely in all latitude bands,
however the bias begins positive but then switches around the
halfway point of the time-series.

For XCO2, the time-series in the NH follow each other
closely until mid-2020 after which the GOSAT time-series
in consistently higher than GOSAT-2. The SH time-series
agree well over the whole time-series, but that of the Tropics
is less pronounced in GOSAT-2 with larger seasonal fluctua-
tions exhibited for GOSAT.

Comparing the TCCON validation for the GOSAT-2 data
products to those of GOSAT (Figs. 5–7), we find that gener-
ally the RMSE is lower for GOSAT-2 than GOSAT across all
stations, while the number of retrievals is higher for GOSAT-
2. We observe that the site bias is smaller for GOSAT-2, with
GOSAT showing some significant biases with respect to TC-
CON, whereas the linear drift is more variable between the
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Figure 5. Overview of the bias parametrisation for the Full Physics XCH4 product, per station. Shown in blue is the RMSE, red the site bias
1site, green the linear drift 1dri, yellow the seasonal bias 1seas and in purple the number of retrievals. Values for GOSAT-2 are shown in
bold bars, and those of GOSAT are in light bars. Stations are listed in order of decreasing latitude. Missing bars correspond to less than 50
colocations for that station, therefore we do not calculate the values there. We note that the site bias for GOSAT-2 at Bremen is close to zero.

two satellites. We note here that we compare data products
from GOSAT and GOSAT-2. We do not comment on the per-
formance of one satellite over another as the data products
use different quality filtering methods. A more concrete com-
parison could be made by applying RFC quality filtering to
GOSAT, however this is out of the scope of this paper.

5.3 TROPOMI Intercomparision

The fact that the RFC quality filtering models are trained on
the spatially limited dataset of TCCON implies that under-
standing how well the models - and thus also the filtering -
generalise to the global GOSAT-2 dataset, is of high priority.
This is reinforced when considering that the validation data
and the training data constitute essentially the same repre-
sentation of data, which may lead to biases that would not
be picked up by validation with TCCON only. Central to
the performance of the models is the behaviour exhibited in
Fig. 3. Therefore if such behaviour is exhibited also on global

scales, this is good confirmation that the quality filtering per-
forms equivalently on the global dataset as it does on data
colocated with TCCON.

Here we inter-compare our GOSAT-2 product against the
TROPOMI operational product, version 2.4.0, and evaluate
the performance of the quality filtering on global scales. The
TROPOMI product was pre-filtered with VIIRS cloud prod-
uct using the strictest filter of cloud fraction < 0.001, and
quality filtered using nominal quality flags. The same colo-
cation criteria are used as for the GOSAT inter-comparison.
We note that since no XCO2 product exists for TROPOMI,
the inter-comparison here is limited to the XCH4 products.

Figures 11 and 12 illustrate results for the whole of the
year 2020, taking GOSAT-2 QA value equal to 0, for the
Full Physics and Proxy XCH4 products respectively. To eval-
uate the generalisation of the RFC quality filtering to global
scales, we give results for the other QA values of the GOSAT-
2 product in Table 4. Furthermore, because the RFC filtering
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Figure 6. Overview of the bias parametrisation for the Full Physics XCO2 product, per station. Shown in blue is the RMSE, red the site bias
1site, green the linear drift 1dri, yellow the seasonal bias 1seas and in purple the number of retrievals. Values for GOSAT-2 are shown in
bold bars, and those of GOSAT are in light bars. Stations are listed in order of decreasing latitude. Missing bars correspond to less than 50
colocations for that station, therefore we do not calculate the values there.

in GOSAT-2 is only applied to soundings over land, we re-
strict the analysis to satellite data over land.

We find that, when considering GOSAT-2 data with QA
value of 0, the global systematic bias between GOSAT-
2 and TROPOMI, which we define as XCH4,GOSAT-2–
XCH4,TROPOMI, is very low. We derive a global average of
the bias of −4.6 and 1.7 ppb for the Full Physics and Proxy
products respectively. The satellite products are highly cor-
related with correlation coefficients above 0.88 and 0.87,
and standard deviations of 15.0 and 16.6 ppb of XCH4 Full-
Physics and Proxy data. Here we note that the TROPOMI op-
erational product uses a different bias correction to GOSAT-
2. The TROPOMI bias correction is based on the small area
approximation (Lorente et al., 2021; O’Dell et al., 2018) tak-
ing a uniform XCH4 distribution as a function of albedo in
multiple regions, whereas the GOSAT-2 bias correction is
based on TCCON data (Eq. 8).

A key result shown in Table 4 is that the QA value
increases proportional to the scatter of the GOSAT2-

TROPOMI differences and number of data points. This is a
good reflection of the behaviour represented in Fig. 3, mean-
ing that, despite the fact that the quality filtering models are
trained on the spatially limited dataset of TCCON, they gen-
eralise well to the global ensemble. For reference, the statis-
tics of the TCCON validation of every GOSAT-2/TCCON
colocation are also given in Table 4, for each QA value.
σTCCON is calculated as the average RMSE over all stations.
The bias for the GOSAT-2 Full Physics product systemat-
ically increases with QA value. That of the Proxy product
looks to decrease, however the change of 0.7 ppb can be
treated as negligible.

From the global maps, significant differences between
TROPOMI and GOSAT-2 are obvious over Northern/Cen-
tral Africa, and we speculate that these differences may be
attributed to dust and burning events that lead to high aerosol
load, thus making the retrieval more difficult. This conclu-
sion would be consistent with the fact that the biases are
larger for the Proxy GOSAT-2 product than the Full Physics
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Figure 7. Overview of the bias parametrisation for the Proxy XCH4 product, per station. Shown in blue is the RMSE, red the site bias 1site,
green the linear drift1dri, yellow the seasonal bias1seas and in purple the number of retrievals. Values for GOSAT-2 are shown in bold bars,
and those of GOSAT are in light bars. Stations are listed in order of decreasing latitude. Missing bars correspond to less than 50 colocations
for that station, therefore we do not calculate the values there.

Figure 8. GOSAT-GOSAT-2 comparison for the GOSAT-2 XCH4 Full Physics product. Maps are shown of XCH4 over the year 2020
averaged onto 2°× 2° boxes for GOSAT and GOSAT-2 on the left and right respectively.
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Figure 9. Correlation between GOSAT and GOSAT-2 shown as a kernel density estimation (KDE) plots for each data product. Plots for
XCH4 Full Physics, XCO2 Full Physics and XCH4 Proxy are shown from left to right, respectively. The mean bias, standard deviation,
number of points and correlation coefficient of the population are also quoted. Histograms of the number of counts are shown around the
margin, along with the linear regression and the 1-to-1 lines in black and grey respectively. Results are for soundings over land.

Figure 10. Time-series of the GOSAT and GOSAT-2 RemoTeC products. The XCH4 Full Physics, XCO2 Full Physics and XCH4 Proxy
products are shown from left to right. GOSAT-2 data are shown as solid lines, whereas GOSAT data are shown as dashed lines. The upper
panels give the globally averaged monthly time-series. The lower panels give the same but split into the different latitude bands of NH, SH
and Tropics. For XCH4, the time-series of the Tropics are shifted up by a constant factor of +50ppb for better visualisation. For XCO2, the
time-series of the Tropics is shifted by +20ppm and the SH by −10ppm.

product, in which aerosols are better characterised. The rea-
son for low coverage and high bias over the Amazon can be
a result of low surface albedo and observations that are con-
taminated by high water vapour.

To ascertain whether the different labelling of training data
in the RFC filtering models introduces a differently biased
data product depending on the albedo, we also looked at
soundings with albedo greater than 0.4 only. Here we exclude
North Africa due to the large apparent biases. We find aver-
age differences of −2.6 and −2.1ppb for the Full Physics
and Proxy and products, respectively. These results are very
similar to those in Table 4, implying that the quality filtering
is consistent throughout the entire albedo range.

The aggregate global difference between TROPOMI and
GOSAT-2 is close to zero, in contrast to what we observe
for GOSAT. Systematic biases of−13ppb are found between
TROPOMI and GOSAT for a global average (Hu et al., 2018;

Lorente et al., 2021). A similar bias is found, in both sign
and magnitude, between GOSAT and GOSAT-2 (Sect. 5.2).
We propose therefore that the bias observed between GOSAT
and GOSAT-2 comes from systematic biases in the GOSAT
XCH4 products, consistent with the results of TCCON vali-
dation presented in Figs. 5 and 7.

6 Conclusions

In this article, we have presented total column mixing ratio
data products from GOSAT-2, retrieved with the RemoTeC
algorithm. From the two retrieval approaches of RemoTeC,
three products are extracted; XCH4 and XCO2 from the Full
Physics retrieval and XCH4 from the Proxy retrieval. The
time-series of these products span five years, from 2019–
2023. All three products are validated with TCCON and
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Figure 11. GOSAT2-TROPOMI comparison with QA value equal to 0 for the GOSAT-2 Full Physics product. upper left: Map of TROPOMI
XCH4 daily averages colocated with GOSAT-2, over the year 2020, sampled on 2°× 2° boxes. upper right: Map of GOSAT-2 XCH4 daily
averages colocated with TROPOMI, over the year 2020, sampled on 2°× 2° boxes. lower left: Map of the difference between satellite data
defined as XCH4,GOSAT-2–XCH4,TROPOMI. lower right: Correlation between all colocated XCH4 measurements over 2020, shown as a
kernel density estimation (KDE) plot. The mean bias, standard deviation, number of points and correlation coefficient of the population are
also quoted. Histograms of the number of counts are shown around the margins, along with the linear regression and the 1-to-1 lines in black
and grey respectively.

inter-compared to GOSAT and TROPOMI and the long time-
series ensures robust results from each.

The RMSE between GOSAT-2 and TCCON of both the
XCH4 products is below 15 ppb, with the Proxy product hav-
ing more data by a factor of 3, and the RMSE of XCO2
is 2 ppm. We derive station-to-station biases of 4.2 ppb and
0.5 ppm for the XCH4 and XCO2 Full Physics products re-
spectively, and 3.7 ppb for the Proxy product. Finally we
quantify the linear drift as 0.6 ppbyr−1, 0.2 ppmyr−1 and
1.2 ppbyr−1 for the XCH4 Full Physics, XCO2 Full Physics
and XCH4 Proxy products respectively.

In comparison to GOSAT, the GOSAT-2 XCH4 Full
Physics product shows large differences, with a global aver-
age bias of−15ppb. This is less so for the Proxy product and
on the order of −5 ppb. Compared to TROPOMI, GOSAT-
2 is in excellent agreement, with average global biases of
−4.6 and 1.7 ppb for the Full Physics and Proxy GOSAT-
2 products respectively. High correlation coefficients above

0.85, and standard deviations less than 17 ppb are derived for
GOSAT-2 compared to TROPOMI.

Finally, we present a new quality filtering based on a ma-
chine learning approach. Training data for the random for-
est classifier models are taken from TCCON colocations
with GOSAT-2, where we classify good/bad quality retrievals
through the bias with TCCON. Since TCCON data are also
used to validate the products, we train separate models to
quality filter each year of data, to avoid compromising any
independent validation.

Multiple QA values are implemented by training models
with different training thresholds. Increasing the QA value
leads to more data at the cost of worsening the RMSE with
TCCON. In this way, users can choose between higher data
yield or better quality data, which may have different advan-
tages depending on the use of the data product.
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Figure 12. The same as Fig. 11 but for the GOSAT-2 Proxy product.

Table 4. Overview of inter-comparison of XCH4 between GOSAT-2 and TROPOMI. Information for all QA values available to GOSAT-2 are
given.1XCH4 is the mean bias with TROPOMI, σTROPOMI andNTROPOMI are the scatter and number of TROPOMI-GOSAT-2 colocations
respectively, and NTCCON is the number of TCCON-GOSAT-2 colocations, with σTCCON the RMSE of the bias between GOSAT-2 and
TCCON.

XCH4 Full Physics

QA value 1XCH4 (ppb) σTROPOMI (ppb) NTROPOMI NTCCON σTCCON (ppb)

0 −4.6 15.0 22 863 17 250 13.1
0.2 −4.8 15.4 29 539 22 635 13.7
0.4 −5.3 16.5 38 049 28 943 15.3
0.6 −5.7 17.4 43 059 32 309 16.6
0.8 −6.3 18.5 47 896 34 578 17.7

XCH4 Proxy

QA value 1XCH4 (ppb) σTROPOMI (ppb) NTROPOMI NTCCON σTCCON (ppb)

0 1.7 16.6 76 353 55 915 14.7
0.2 1.8 17.3 77 540 63 248 15.3
0.4 1.5 18.2 88 983 67 607 15.8
0.6 1.2 19.0 93 385 70 198 16.1
0.8 1.0 19.7 97 451 71 884 16.4
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Appendix A: GOSAT-2 data over Ocean

Despite the low surface albedo, satellite measurements over
ocean are possible when operating the satellite in sunglint
mode. Sunglint observations take advantage of specific view-
ing angles where the radiance of back-scattered sunlight
is higher due to reflection from waves. This amplifies the
albedo, allowing retrievals over ocean to be carried out,
where the albedo is generally too low to retrieve accurate
concentrations.

Figure A1 shows XCH4 single soundings over land and
ocean spatially averaged in latitude/longitude to 2°×2°. Data
are for 6 consecutive days, which is the GOSAT-2 revisit
time, thus no temporal averaging occurs. We apply a differ-
ent bias correction to retrievals over ocean, although it is very
similar to the correction for land retrievals (Sect. 3.4). Again
we use a simple empirical relation:

Xcorr =Xret(a+ bθ) (A1)

whereXret andXcorr are the bias corrected and retrieved con-
centrations respectively, θ is the ratio of the retrieved O2 col-
umn to the prior, and a and b are determined such that the dif-
ference with TCCON is minimised. Visually, from Fig. A1,
there are no obvious differences between land and ocean with
the latitudinal gradient captured in both.

TCCON stations are located only on land, therefore vali-
dation of sunglint observations are only possible using sta-
tions that are close to shorelines, or on islands. In this sec-
tion, the results of the TCCON validation for sunglint mode,
for all three RemoTeC GOSAT-2 products, are presented and
shown in Figs. A2–A5.

The RMSE for ocean measurements is higher than over
land, although correlation coefficients are comparable. For
XCH4, this is more obvious for the Full Physics product,
compared to the Proxy product, with 3 ppb difference in
RMSE between ocean and land. We note that such statistics
are drawn only from a handful of TCCON stations due to
the limited availability of TCCON data close to the ocean.
As mentioned in Sect. 4.2.1, GOSAT-2 measurements in
sunglint mode are quality filtered using the threshold crite-
ria described in Sect. 4.1.

In Table A1 we show the bias per product for TCCON sta-
tions that have measurements over both land and ocean. We
note that, due to the limited number of colocations in glint
mode, we calculate bias as the median of all colocations per
station, unlike Figs. 5–7 which fit Eq. (14) to the bias time-
series. The Full Physics XCH4 product shows the best agree-
ment between land and ocean with maximum differences of
around 3 ppb, excluding Rikubetsu and Saga which have 1
data point each over ocean. The XCO2 Full Physics product
also has good agreement between land and ocean with dif-
ferences of at most 0.35 % of CO2. The Proxy XCH4 prod-
uct however shows large differences between land and ocean,
with even the sign of the bias changing for most stations, and
differences on average to 0.5 % of CH4, pointing to land/o-

cean biases potentially caused by the different quality filter-
ing applied over land and ocean.

Figure A1. Map of XCH4 from the Proxy retrieval for 6 consecutive
days (GOSAT-2 revisit time) in Spring on a 2°×2° coordinate grid.
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Figure A2. GOSAT-2 plotted against TCCON for the Full Physics XCH4, Full Physics XCO2 and Proxy XCH4 products from left to right
respectively. Data are compared only if they are fully colocated in space and time. The standard deviation of the population, Pearson’s
correlation coefficient and number of retrievals are given in the inset. The legend plots the different TCCON stations.

Figure A3. Time-series of GOSAT-2 colocated measurements over ocean with TCCON stations for the XCH4 Full Physics retrievals. All
GOSAT-2 observations are taken in sunglint mode. Pink circles correspond to the daily average of TCCON soundings that are spatio-
temporally colocated with GOSAT-2. All individual GOSAT-2 sounding coloated with TCCON are plotted as blue circles, and the daily
average of these are given as black triangles.

Figure A4. Same as Fig. A3 but for the XCO2 Full Physics product.

Table A1. TCCON validation of GOSAT-2 data products for stations with measurements over both land and ocean. Stations marked with an
asterisk have fewer than 5 colocations in glint mode, so should be treated with caution.

XCH4 Full Physics XCH4 Proxy XCO2 Full Physics

Station Ocean Bias (ppb) Land Bias (ppb) Ocean Bias (ppb) Land Bias (ppb) Ocean Bias (ppm) Land Bias (ppm)

Burgos −2.4 0.1 −5.7 3.1 1.0 −0.3
Darwin −10.1 −7.6 −3.3 −1.8 −1.5 −1.3
Lauder −0.8 1.4 −4.6 3.5 −0.1 0.3
Rikubetsu∗ −7.1 3.8 −10.6 9.8 3.3 0.1
Saga∗ −6.9 0.4 −1.8 3.5 2.9 0.4
Wollongong −4.1 −3.1 −10.7 1.7 0.9 −0.3
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Figure A5. Same as Fig. A3 but for the XCH4 Proxy product.
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Appendix B: Supplementary Material of TCCON
Validation

Here we provide additional information on the validation of
GOSAT-2 products with TCCON. Table B1 lists all the TC-
CON stations used in the analysis. Data from all stations are
also used as input to train the RFC quality filtering networks.
Figures B1–B3 present time-series of GOSAT-2 compared to
TCCON for all stations for the XCH4 Full Physics, XCO2
Full Physics and XCH4 Proxy products respectively. When
enough TCCON data is available, time-series span the full
5-year period from 2019–2023.

Table B1. List of TCCON stations used in training the quality filtering model and/or validation.

Site (Country) Coordinates (lat, long °) Temporal Extent Reference

Bremen (Germany) [53,8.85] January 2009–May 2021 Notholt et al. (2022)
Burgos (Phillipines) [18.53,120.65] February 2017–November 2022 Morino et al. (2022c)
Caltech (USA) [34.14,−118.13] August 2012–August 2023 Wennberg et al. (2022a)
Darwin (Australia) [−12.42,130.89] January 2013–December 2022 Deutscher et al. (2023b)
East Trout Lake (Canada) [54.35,−104.99] September 2016–September 2023 Wunch et al. (2022)
Edwards (USA) [34.96,−117.88] June 2013–August 2023 Iraci et al. (2022)
Eureka (Canada) [80.05,−86.42] June 2010–June 2020 Strong et al. (2022)
Garmisch (Germany) [47.48,11.06] June 2007–April 2023 Sussmann and Rettinger (2023)
Harwell (UK) [51.57,−1.32] April 2021–August 2023 Weidmann et al. (2023)
Hefei (China) [31.9,119.17] Oct 2015–November 2022 Liu et al. (2023)
Izana (Spain) [28.30,16.50] January 2014–July 2023 García et al. (2022)
Karlsruhe (Germany) [49.10,8.44] January 2014–May 2023 Hase et al. (2023)
Lamont (USA) [36.60,−97.49] Mar 2011–July 2023 Wennberg et al. (2022c)
Lauder (New Zealand) [−45.04,169.68] September 2018–February 2023 Pollard et al. (2022)
Nicosia (Cyprus) [35.14,33.38] August 2019–May 2021 Petri et al. (2024)
Ny Ålesund (Norway) [78.92,11.92] February 2005–August 2022 Buschmann et al. (2022)
Orleans (France) [47.97,2.11] August 2009–November 2022 Warneke et al. (2022)
Paris (France) [48.49,2.36] August 2014–May 2023 Té et al. (2022)
Park Falls (USA) [45.95,−90.27] May 2004–July 2023 Wennberg et al. (2022b)
Reunion Island (France) [−20.9,55.48] February 2015–June 2020 De Mazière et al. (2022)
Rikubetsu (Japan) [43.46,143.77] May 2014–May 2021 Morino et al. (2022a)
Saga (Japan) [33.24,130.29] June 2011–September 2022 Shiomi et al. (2022)
Sodankylå (Finland) [67.37,26.63] April 2009–April 2023 Kivi et al. (2022)
Tsukuba (Japan) [36.05,140.12] February 2014–February 2021 Morino et al. (2022b)
Wollongong (Australia) [−34.41,150.88] January 2013–February 2023 Deutscher et al. (2023a)
Xianghe (China) [39.80,116.96] May 2018–April 2022 Zhou et al. (2022)
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Figure B1. Time-series of GOSAT-2 colocated measurements with TCCON stations for the XCH4 Full Physics retrievals. Pink squares
correspond to the daily average of TCCON soundings that are spatio-temporally colocated with GOSAT-2. All individual GOSAT-2 sounding
coloated with TCCON are plotted as blue circles, and the daily average of these are given as black triangles.
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Figure B2. Same as Fig. B1 but for the XCO2 Full Physics product.
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Figure B3. Same as Fig. B1 but for the XCH4 Proxy product.
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Appendix C: Supplementary Material GOSAT
Intercomparison

Figure C1 shows the comparison between global maps of
GOSAT and GOSAT-2, for the XCH4 Proxy and XCO2 prod-
ucts, highlighting the much improved spatial coverage of the
GOSAT-2 products. Visually, the distribution of XCO2 and
XCH4 are very similar between GOSAT and GOSAT-2, with
hot-spots, at least for XCH4, in all the same places.

Figure C1. GOSAT-GOSAT-2 comparison for the GOSAT-2 XCO2 Full Physics (top) and XCH4 Proxy (bottom) products. Maps are shown
over the year 2020 averaged onto 2°× 2° boxes for GOSAT and GOSAT-2 on the left and right respectively.

Data availability. All three GOSAT-2 products are operationally
provided as part of the Copernicus Climate Change Service
(C3S) and can be downloaded from https://zenodo.org/records/
12180512 (last access: 28 October 2025) under version 2.1.0
(https://doi.org/10.5281/zenodo.12180512, SRON Netherlands In-
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