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Abstract. Vertically pointing millimeter-wavelength radars
provide a wealth of information about cloud and precipitation
particle properties. Doppler spectral data can inform on how
particles of varying vertical velocities contribute to the to-
tal backscattered power observed. It is more computationally
cost effective to process moment data instead of spectra data,
but doing so leaves valuable information on the cutting room
floor. To confidently identify a multi-modal spectra event, in
which two or more modes are present within a layer, Doppler
spectral data are essential. This means long-term identifica-
tion of layers featuring multi-modal spectra can be cost pro-
hibitive. To address this, we explore three multi-modal spec-
tra cases from winter precipitation events to determine char-
acteristic signatures of these layers in the moment data aver-
aged over short time periods (∼ 145 s) and explore how these
layers differ from the rest of the vertical profiles. We find
that the mean spectrum width and the standard deviation of
mean Doppler velocity can be used to determine whether or
not a layer is multi-modal. In particular, multi-modal layers
in mixed-phase and ice clouds feature larger mean spectrum
width (exceeding 0.17 m s−1) and smaller standard deviation
of the mean Doppler velocity (below 0.1 m s−1). In Part 1
of this study, the identification criteria and methods are de-
scribed. In Part 2 (Wugofski and Kumjian, 2025), we per-
form a verification of the method for three years of vertically
pointing radar data, and explore the meteorological condi-
tions associated with identified multi-modal spectral events.

1 Introduction and background

Radar sampling volumes typically contain millions of hy-
drometeors, each of which may move according to the local
wind speed, turbulence, updrafts/downdrafts, etc. Hydrom-
eteor motion, when projected along the radar wave’s prop-
agation direction, may vary, leading to a dispersion of ra-
dial velocities within the sampling volume. Further, waves
backscattered from each hydrometeor in the sampling vol-
ume interfere, resulting in a combined received signal whose
amplitude and phase may fluctuate from pulse to pulse. Be-
cause the hydrometeors’ locations and sizes within the radar
sampling volume (which spans many wavelengths in range)
are random, these received signals can be considered ran-
dom signals (Doviak and Zrnić, 1993). Assuming ergodic-
ity, statistical properties of the sampled hydrometeors can
be obtained from sufficient time averages (i.e., averaging
multiple pulses). The frequency distribution of the random
signals may be obtained by taking the Fourier transform of
the signal’s autocorrelation function; this frequency distribu-
tion is known as the power spectrum. When converted from
frequency to radial velocity, one obtains the Doppler spec-
trum: the power- (or reflectivity-) weighted distribution of ra-
dial velocities within in sampling volume (Doviak and Zrnić,
1993).

The Doppler spectrum shows the contribution to the over-
all received signal power from hydrometeors as a function
of their radial velocity. The examples in Fig. 1 are spectro-
grams (i.e., graphical representations of the Doppler spec-
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Figure 1. Example of a co-polar power spectrum from the KAZR
at the ARM Southern Great Plains (SGP) site near Lamont, Ok-
lahoma, taken on 13 December 2020 at 12:51 UTC during a snow
event. The black curve represents a spectrogram taken at 3 km above
radar level; the green at 2.2 km above radar level. Note that negative
velocities correspond to descending hydrometeors.

trum) taken from the U.S. Department of Energy (DOE) At-
mospheric Radiation Measurement (ARM) program’s Ka-
band ARM Zenith-pointing Radar (KAZR) at the Southern
Great Plains (SGP) site. Herein, we make use of the con-
vention that negative velocities are towards the radar, mean-
ing hydrometeors are descending for these vertically pointing
radars. The black curve shows an approximately Gaussian-
shaped peak in co-polar spectral power centered on veloci-
ties between 0 and −2 m s−1; the radar’s noise floor is at ap-
proximately −40 dBm (m s−1)−1 in this example. From such
a Doppler spectrum, one can visualize how particles of dif-
fering velocities contribute to the total backscattered power
observed. Two radar moments obtained by integration over
the Doppler spectrum are mean Doppler velocity (MDV) and
spectrum width (SW). The bi-modal spectrogram (shown in
green) is broader than the one with a single mode; this trans-
lates to a larger SW. When a secondary peak is offset to
slower velocities (as shown in Fig. 1), it may noticeably af-
fect the MDV by shifting it towards smaller velocities. The
magnitude of this shift depends on the total power of the sec-
ondary mode relative to the rest of the spectrum. Thus, in
situations featuring bi-modal spectra, it can be expected that
these spectral signals may affect those radar moment vari-
ables, as well.

Although hydrometeors in a radar sample volume may ex-
hibit different Doppler velocities when viewed at low eleva-
tion angles, particularly in highly sheared environments (e.g.,
Wang et al., 2019; Hernandez and Chandrasekar, 2023), most
often Doppler spectral analysis is used for high antenna el-
evation angles, including 45° (e.g., Moisseev et al., 2004;
Spek et al., 2008; Mak and Unal, 2025) and 90° (i.e., ver-
tically pointing radars; e.g., Kollias et al., 2002; Moisseev
et al., 2006; Li and Moisseev, 2019; Kumjian et al., 2020).
For vertically pointing radars, the measured Doppler veloci-
ties are closely related to the hydrometeor fall speeds. Differ-
ent sizes and types of precipitation tend to have different fall

speeds (e.g., Lamb and Verlinde, 2011). Larger and denser
hydrometeors, such as hail, will fall very fast (e.g., up to 50–
60 m s−1; Heymsfield et al., 2018), whereas smaller hydrom-
eteors, such as pristine ice crystals, will fall much slower. In
the snowstorm example shown in Fig. 1, the fall speeds were
all < 2 m s−1 (assuming negligible vertical air motion).

Given the information about hydrometeors contained in
spectrograms constructed from data collected with verti-
cally pointing radars, analysis of these data can provide im-
portant microphysical insights. For example, spectra have
been integral to past research studies on processes includ-
ing secondary ice generation (e.g., Luke et al., 2021) and
drizzle formation (e.g., Luke and Kollias, 2013). Similar
to the polarimetric radar fingerprints of microphysical pro-
cesses (Kumjian, 2012; Kumjian et al., 2022) (and references
therein), studies on Doppler spectra (e.g., Luke et al., 2010;
Luke and Kollias, 2013; Kalesse et al., 2016; Luke et al.,
2021) showed that there are Doppler spectral fingerprints of
drizzle, riming, and secondary ice generation using spectral
reflectivity, spectral linear depolarization ratio, and MDV.
In particular, multi-modal radar spectra indicate that multi-
ple particle types and/or sizes with distinct fall speeds are
present, which can be particularly informative when trying
to deduce active microphysical processes (e.g., Kalesse et al.,
2016; Billault-Roux et al., 2023).

Because signals from clouds and precipitation can be dis-
tinguished from noise through their statistical characteristics,
different spectral modes can be distinguished and peaks re-
sulting from different hydrometeor types identified (Hilde-
brand and Sekhon, 1974; Wilfong et al., 1999). Many tech-
niques exist for peak detection to identify when radar spectra
are multimodal. Simple options include the identification of
noise-floor-separated peaks (Shupe et al., 2004), identifying
local minima in the spectral reflectivity (Rambukkange et al.,
2011), and skewness signatures (Luke and Kollias, 2013).
The MicroARCSL product was developed by Kollias et al.
(2007) as a value-added-product for DOE-ARM datasets and
was available for the ARM NSA site from 2007–2014. The
modality was derived from the spectral data by first identify-
ing Doppler spectral points separated by the noise-floor. Fur-
ther processing of those spectral points includes identifying
local maxima and minima using a 3 dB difference between
the relative peaks and valleys. Tools rooted in machine-
learning are also useful; Peako (Kalesse et al., 2019) is a su-
pervised algorithm that is first trained on human-identified
peaks to then identify peaks in the Doppler spectra. Peak-
tree (Radenz et al., 2019) is an algorithm that transforms the
Doppler spectrum into a binary tree structure, which repre-
sents each mode as a node within the tree. These two tools
were combined into a single Peako-Peaktree toolset (Vogl
et al., 2024) which facilitates the use of both to identify
modes and compute the moments from each mode.

Analyses of cases featuring multi-modal Doppler spectra
are useful in understanding when multiple types of hydrome-
teors are present within a layer and how those scatterers differ
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from each other. Such cases can facilitate the identification of
mixed-phase processes, such as riming indicated by coinci-
dent detection of supercooled liquid droplets and snow/ice
crystals (Kalesse et al., 2016). In such cases, the cloud liq-
uid droplets and ice particles typically feature different ver-
tical velocities, resulting in distinct peaks in the spectrum
(separated by local minima) (cf. the green curve in Fig. 1).
Secondary spectral modes can be indicative of secondary ice
generation processes, such as Hallett-Mossop rime splinter-
ing (Hallett and Mossop, 1974), ice-ice collisional fragmen-
tation (Vardiman, 1978; Takahashi et al., 1995), or droplet
shattering upon freezing (Rangno, 2008; Lawson et al., 2017;
Korolev and Leisner, 2020). In these cases, the newly gen-
erated ice can appear as a slow-falling mode. However, at-
tempts at identification of potentially active processes re-
quires additional information, including polarimetry, temper-
ature profiles, and/or in situ data to understand if there are
favorable conditions or necessary ingredients for processes
(e.g., riming or rime splintering). Unfortunately, despite the
wealth of information they contain, Doppler spectra data are
stored in files that many would find prohibitively large to pro-
cess en masse (e.g., Fabry, 2015) because they contain ad-
ditional data dimensions compared to the moment data: for
example, each gate includes reflectivity, velocity, etc., val-
ues in vectors whose lengths corresponds to the number of
FFT points (generally 256 or 512). Because of the larger di-
mensionality, spectra files are much larger than radar mo-
ment datasets (approximately 100 MB h−1, ∼ 2.4 GB d−1).
Because of this, recording Doppler spectra often was lim-
ited to specific cases or field campaigns. However, more re-
cent computing and storage systems enable recording and
storing Doppler spectra together with the integrated mo-
ments for long-term datasets. For example, the DOE/ARM
Research Facility (Mather and Voyles, 2013) has collected
Doppler spectra for > 10 years at the North Slope Alaska
and Southern Great Plains sites. Such long-term datasets
could allow researchers to better understand detailed micro-
physical processes like those described above. However, how
does one find the metaphorical “needle in a haystack” – the
likely small subset of data that are of interest? An objective
methodology to efficiently identify these needles amongst
the haystacks and effectively extract the microphysical infor-
mation from the spectra is needed. Further, identifying po-
tential cases of interest using the much smaller moment data
files could be advantageous for efficient processing and stor-
age, removing the needs for researchers to download/store
enormous amounts of data.

In this study, we propose a methodology for processing
vertically pointing radar moment data to identify events with
multi-modal Doppler spectra. Relying on radar moment data
is advantageous over case-study approaches (e.g., Oue et al.,
2018) or by first constraining the dataset temporally to be co-
incident with thermodynamic observations (e.g., Luke et al.,
2021) because of the efficiency by which large numbers
of cases may be found. In addition, the method developed

here may be applied to multiple sites, whereas most previ-
ous studies have only considered single locations. More nu-
merous cases of multi-modal spectra events from different
climatic regions may be useful for improving microphysical
process identification, and, perhaps, quantification. Further,
case studies featuring multi-modal spectra are more acces-
sible to identify without the need for manual searching of
datasets. As such, this novel approach facilitates the study of
processes that often lead to multi-modal spectra.

2 Data sources

This study examines data from three cases of cold clouds at
three different locations across the United States: (i) Long Is-
land, New York, (ii) Lamont, Oklahoma, and (iii) Utqiaġvik,
Alaska. Each of the sites, outlined below, has a vertically
pointing Ka-band polarimetric Doppler radar and routine
proximal upper-air observations. Thermodynamic informa-
tion from these soundings is used to supplement our under-
standing of each case. Choosing cases from a variety of loca-
tions ensures that any signatures associated with multi-modal
spectra are robust and occur in both the arctic and in midlat-
itudes.

2.1 Stony Brook (Long Island), New York

The Stony Brook University – Brookhaven National Labora-
tory Radar Observatory (SBRO), located in Stony Brook, NY
(on Long Island), owns and operates the Ka-band Scanning
Polarimetric Radar, or KASPR. KASPR is a fully polarimet-
ric radar with high sensitivity and high resolution (Kollias
et al., 2014; Kumjian et al., 2020; Oue et al., 2021). The
KASPR specifications are available in Table 1. KASPR op-
erations include three scanning strategies: vertically pointing
(VPT), plan position indicator (PPI) or surveillance scans,
and range height indicator (RHI) scans. Vertically point-
ing moments and spectra are available approximately every
6 min due to the radar cycling between scan types. The verti-
cal resolution of KASPR is 15 m in vertically pointing mode.

Thermodynamic information for this site is obtained
through radiosonde launches. Several special launches were
made at SBRO to coincide with the Investigation of Mi-
crophysics and Precipitation for Atlantic Coast-Threatening
Snowstorms (IMPACTS; McMurdie et al., 2022) field cam-
paign IOPs. Additionally, the SBRO site is located 21.4 km
away from the National Weather Service in Upton, NY
(OKX), which launches operational radiosondes at 11:00
and 23:00 UTC daily (valid at 12:00 and 00:00 UTC, respec-
tively).

2.2 North Slope of Alaska (Utqiavik, Alaska)

The North Slope of Alaska (NSA) research observatory in
Utqiaġvik, Alaska, is operated by the U.S. Department of En-
ergy (DOE). This site has been operational for over 20 years,
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Table 1. Specifications for the radars used to observe the cases used in this study. Note that for the event studied (18 January 2020), KASPR
only transmitted in the horizontal (in the same manner as the KAZRs).

Specification SBRO KASPR NSA KAZR SGP KAZR

Frequency 35.29 GHz 34.86 GHz 34.86 GHz
Wavelength 8.5 mm 8.6 mm 8.6 mm
Peak transmit power 2.2 kW 0.2 kW 0.2 kW
Pulse repetition frequency 9.92 kHz 2.77 kHz 2.77 kHz
Transit polarization H H H
Receiver polarization Simultaneous H, V H, V H, V
Antenna diameter 1.2 m 2.0 m 3.0 m
Antenna Beamwidth 0.32° 0.31° 0.19°
Antenna Gain 53.3 dB 53.4 dB 53.5 dB
Cross-polarization isolation −27 dB −27 dB −27 dB
Gate spacing 15 m 30 m 30 m
Maximum Range 13.5 km 15–20 km 15–20 km
Sensitivity at 1 km −40 dB −44 dB −48 dB
Integration Time 1.0 s 3.7 s 3.7 s
Number of FFT Points 1024 256 256
Nyquist velocity 21.06 m s−1 5.87 m s−1 5.96 m s−1

Velocity Bin Width 0.0412 m s−1 0.0468 m s−1 0.0466 m s−1

collecting data with a wide range of instruments ranging
from remote-sensing platforms including radars and lidars,
to surface meteorological instrumentation and a multi-angle
snowflake camera (MASC) (Mather and Voyles, 2013; Stue-
fer and Bailey, 2016; Kollias et al., 2020; Kyrouac and
Tuftedal, 2024). In 2011, the DOE Atmospheric Radiation
Measurement (ARM) program installed the Ka-band ARM
Zenith-pointing Radar (KAZR), a vertically pointing polari-
metric Doppler radar at the NSA site (Kollias et al., 2007;
Widener et al., 2012; Bharadwaj et al., 2013; Kollias et al.,
2021; Feng et al., 2023). KAZR transmits horizontally po-
larized waves and receives both horizontal and vertically po-
larized signals, thereby allowing it to record the spectra of
both the co- and cross-polar signals. The NSA KAZR speci-
fications are in Table 1. KAZR has coarser vertical resolution
than KASPR (30 m compared to 15 m; see Table 1). KAZR
is collocated with radiosonde stations capable of upper-air
observations at the NSA observatory. These soundings are
taken twice daily, at 05:30 and 17:30 UTC.

2.3 Southern Great Plains (Lamont, Oklahoma)

The Southern Great Plains (SGP) atmospheric observatory is
located in central Oklahoma, near Lamont, and also is oper-
ated by the U.S. DOE ARM program, similar to the NSA site
discussed above. Because this site is owned and operated by
the same team as the NSA site, the details of the KAZR radar
and upper-air observations are similar to those outlined above
for the NSA site; the specifications are located in Table 1.
Soundings are taken twice daily, at 05:30 and 17:30 UTC.

3 Signatures of multi-modal spectra

3.1 Identifying foundational multi-modal cases

Case selection can affect an algorithm’s success in detect-
ing secondary modes. There is natural variability in sec-
ondary mode events depending on the active microphysical
processes, environment, and radar sensitivity. To address this,
we select cases from three different vertically pointing Ka-
band radars across the United States described in the previ-
ous section. We focus our preliminary study on cold clouds,
but our methods can be extended to warm-cloud regimes, as
well. For each of these “foundational” snow cases, we in-
corporate three analysis times separated by > 2 min. In total,
we incorporate nine analysis times across three regions to
determine if the multi-modal layers have consistent, identi-
fiable signals. The SBRO case comes from the first IOP of
the 2020 IMPACTS field campaign on 18 January 2020. A
manual analysis of this case indicated there were bi-modal
spectra near 5 km ARL from 18:55–19:08 UTC. The NSA
case comes from 7 December 2013, and was selected be-
cause it has been explored in detail by Oue et al. (2015).
Their study confirmed that bi-modal spectra were present in
spectragraphs from 15:21 to 15:37 UTC. Further, they ana-
lyzed the spectral linear depolarization ratio and determined
that the secondary mode was likely attributable to columnar
ice crystals originating from secondary ice processes (i.e.,
rime splintering). The SGP case was chosen by manually
searching for and evaluating spectra collected during win-
ter months. A case with bi-modal spectra was identified on
13 December 2020 from 12:45–12:52 UTC. We evaluated
these cases for liquid present to provide context into the po-
tential sources of multi-modality (not shown). Using the mi-
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crowave radiometer at the DOE-ARM sites, both the NSA
and SGP cases were noted to have liquid water present in the
observed clouds. The NSA case had a liquid water path just
under 200 g m−2 and the SGP case had a much larger liquid
water path of over 2000 g m−2.

3.2 Doppler spectral signatures

The key radar presentation of multi-modal spectra is a broad-
ening of the spectrum across a range of velocities with sec-
ondary modes distinctly separated from the primary mode.
As such, spectral power or spectral reflectivity in velocity
bins between the two modes should decrease to a relative
minimum by a measurable threshold (i.e., at least 5 dB). Sec-
ondary modes are often observed on the slow-fall-speed side
of the primary mode. As such, these secondary modes may
result from microphysical processes including primary ice
generation, secondary ice production, or the formation of
small liquid droplets (cloud or drizzle). The velocity of the
secondary mode may change independently from the primary
mode; often, the secondary mode’s characteristic velocity be-
comes more negative towards the ground as the fall speed of
the growing hydrometeors increases. In many situations, the
secondary mode eventually merges with the primary mode.
Figure 2 depicts the spectrograms at three times from each
of the three multimodal spectra foundational cases described
above. The selected times show the same secondary mode
evolving over time periods ranging from 12–16 min. We ex-
amine the secondary mode at different times such that we
can capture its natural variations and evolution. Using mul-
tiple examples and stages of secondary modes help develop
our understanding of how to detect such modes. The selected
times shown for each case are separated by at least two min-
utes and contain multi-modal spectra in layers at least 0.5 km
deep, with the secondary mode remaining distinct from the
primary mode in that layer.

Across the three cases, the spectrograms reveal broad sim-
ilarities. The makeup of the primary modes in Fig. 2 can
be inferred from their downward velocities, which are re-
lated to the particles’ fall speeds. The primary modes from
the SBRO case in Fig. 2ai–iii are suspected to be snow
aggregates, given temperatures < 0 °C for the depth of the
profile (shown in Fig. 3), dendritic growth zone tempera-
tures from 3.8 to 5.5 km, and downward velocities of about
1.5 m s−1 (e.g., Locatelli and Hobbs, 1974; Dunnavan, 2021).
The hydrometeor type(s) responsible secondary modes, how-
ever, are more ambiguous and require further information.
However, we do see that, generally, they are associated with
slower fall speeds (ranging from 0 to 1 m s−1), and thus are
inferred to be smaller particles. All secondary modes shown
in Fig. 2 display an increase in downward velocity magni-
tude as they approach the surface, suggesting particle growth.
Further, most secondary modes reconnect with the primary
mode before reaching the lowest radar sampling altitude. A
secondary mode in the NSA case at 15:21 UTC at 2.5 km

(Fig. 2bi) is disconnected from both the primary mode, and
the lower-altitude secondary mode and the primary mode. At
later times (not shown), this layer exhibits signs of turbu-
lence, which may contribute to the mode’s formation and/or
disappearance.

Although each case features broad similarities, each of the
cases reveals some subtle differences when examined in de-
tail and across multiple scan times. The SBRO case (Fig. 2ai–
iii) reveals a secondary mode (centered at about 4.5–5 km
ARL) evolving from a less distinct state characterized by
smaller spectral reflectivity and less separation between the
primary and secondary modes, to a more distinct state with
greater spectral reflectivity values and a greater gap in reflec-
tivity between the primary and secondary modes. In other
words, over the 13 min shown, the spectral reflectivity of the
secondary mode increases by ∼ 10 dB as the mode matures.
At all analysis times, the secondary mode connects to the pri-
mary mode near 4.5 km.

The NSA case (Fig. 2bi–iii) reveals the greatest tempo-
ral variation in its secondary mode. At 15:21 UTC (Fig. 2bi),
the spectral modes above and below 2.2 km are disconnected,
and a small layer of tri-modal spectra occurs near 2.2 km
with otherwise bi-modal spectra above 2.25 km and below
2.1 km. At 15:31 UTC (Fig. 2bii), the secondary mode cen-
tered on 2.5 km has a much smaller spectral reflectivity, and
is less distinct from the primary mode. At this same time,
the primary and secondary modes extending 1.5–2 km expe-
rience a greater separation in the velocity bins of each mode;
the slower-falling mode has a velocity near 0 m s−1 at 2 km,
which grows to −0.5 m s−1 at 1.5 km ARL. By 15:37 UTC
(Fig. 2biii), the spectra are affected by turbulence as inferred
from the narrow layers of significantly enhanced spectral
widths at 1.5 and 2.5 km. This turbulence cuts through the
secondary mode present from 1–2 km ARL, though the mode
is distinct above and below this turbulent layer.

The secondary mode in the SGP case (Fig. 2ci–iii) is rel-
atively consistent with time, maintaining a similar spectral
reflectivity values >−10 dB centered on velocity bins rang-
ing from −0.1 to −0.8 m s−1, and retains a similar shape
and height throughout the three scans. The secondary mode
shifts towards greater fall speeds as it approaches the sur-
face, and merges with the primary mode near 1.5 km. The
primary mode sits along the −1.1 to −1.2 m s−1 velocity bin
at 2 km ARL, becoming −1.5 m s−1 near 0.5 km ARL. The
consistency of these features through the time period shown
indicates that their governing physical processes are also per-
sistent throughout this time.

In addition to the similar secondary mode characteristics,
all cases presented have another feature in common: turbu-
lent layers. These layers are visibly marked by approximately
symmetric, shallow horizontal spike-like features in the spec-
trograms, extending across a large range of velocities. The
turbulent layers in these cases differ in strength, however.
Examples of stronger, more well-defined turbulent layers in-
clude the NSA case at 15:21 UTC (Fig. 2bi) near 3.5 km and
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Figure 2. Instantaneous Doppler spectrographs of spectral reflectivity (Z, in dBZ per velocity bin) for three times for each of the three cases.
Spectra from SBRO on 18 January 2020 (a) at (i) 18:55 UTC, (ii) 19:02 UTC, and (iii) 19:08 UTC. Spectra from NSA on 7 December 2013
(b) at (i) 15:21 UTC, (ii) 15:31 UTC, and (iii) 15:37 UTC. Spectra from SGP on 13 December 2020 (c) at (i) 1245 UTC, (ii) 12:50 UTC, and
(iii) 12:52 UTC.

at 15:37 UTC (Fig. 2biii) near 2.5 km. The SBRO and SGP
cases are riddled with frequent turbulence signatures, includ-
ing the SBRO case at 19:02 UTC (Fig. 2a–i) at 2.4 km, and in
the SGP case ranging from 2.5–3 km at all three times shown
(Fig. 2ci–iii).

Given that both the multi-modal spectra and these turbu-
lent layers feature wider spectra spanning a broad range of
velocity bins, we seek additional information from the inte-
grated moments to help distinguish between these two types
of layers.

3.3 Moment signatures

How do these multi-modal spectra appear in the integrated
radar moments? For each of the cases, we examine the mo-

ments, of spectrum width (SW) and mean Doppler veloc-
ity (MDV). In principle, these two variables should be help-
ful in classifying and identifying these layers. As mentioned
above, SW increases when the Doppler spectrum broadens,
either through turbulence or by having multiple, separated
modes. The appearance (or disappearance) of a secondary
spectral mode could also cause a shift in the MDV. For ex-
ample, the sudden appearance of smaller, slower-falling par-
ticles amongst a background of larger, faster-falling particles
could lead to a decrease in the magnitude of the observed
MDV (e.g., Schrom and Kumjian, 2016), or that the faster-
falling particles have been advected out of the radar sampling
volume, etc. Thus, we hypothesize that use of both measure-
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ments could prove helpful in identifying multi-modal spec-
tra.

Figure 3ai–iv shows the temperature profile and radar
moments from the SBRO case. The secondary mode layer
from 4–5 km ARL has temperatures ranging from −114 to
−14 °C, within the dendritic growth zone (e.g., Bailey and
Hallett, 2009). The increase in equivalent radar reflectivity
factor (hereafter Z; Fig. 3b) towards the ground is consis-
tent with snow particle aggregation, and the MDV (Fig. 3c)
near −1.5 m s−1 is consistent with snow aggregates (e.g., Lo-
catelli and Hobbs, 1974; Dunnavan, 2021). In Fig. 3aiv, there
are three layers of SW greater than the background values
(> 0.2 m s−1) that coincide with the secondary mode layer
and turbulent layers (Fig. 2a–c) discussed above.

Similar to the SBRO case, the NSA case (Fig. 3bi–iv) in-
cludes numerous layers of SW > 0.2 m s−1, some of which
can clearly be attributed to turbulence (cf. Fig. 2bi–ii: at
15:21 UTC near 3.5 km and at 15:37 UTC near 2.5 km). The
SGP case is the warmest of the three, with temperatures
near −3 to −5 °C (Fig. 3i). Again, there are numerous re-
gions of SW up to 0.4 m s−1, consistent with layers of turbu-
lence identified in the spectrograms, in addition to a broader
swath of enhanced SW (∼ 0.25 m s−1) at 12:30–13:10 UTC
at the same height (2 km) as the observed secondary mode
(Fig. 3cii–iv).

Complementary data are valuable in elucidating the under-
lying processes explaining e features observed on radar. The
NSA case has been previously well examined in Oue et al.
(2015). That study indicated multiple embedded liquid layers
within the cloud at the time immediately prior to our analysis.
Both ARM sites (NSA and SGP) have a microwave radiome-
ter (MWR) collocated with the KAZR radars (Cadeddu et al.,
2013). From the MWR, the total liquid water and water va-
por in the column can be observed (Fig. 4). Both cases have
signals indicative of the presence of liquid water within the
system that may contribute to either multi-modal signals.

Knowing the times and heights of the multi-modal layers
identified from the spectra (Fig. 2), the impacts on the mo-
ments in Fig. 3 are apparent. To determine and quantify the
relevant signatures that may be used to identify multi-modal
layers through radar moments, we manually classify layers
in the spectrograms (Fig. 2) as containing multi-modal spec-
tra, turbulence-induced broadening, and neither (“control”).
By categorizing the layers, we can quantitatively examine the
differences between them as observed in the moment data.

3.4 Layer classification

The three layer classifications (multi-modal, turbulent, and
control) serve to provide a sample of how these features ap-
pear in the SW and MDV parameter space and to determine
if there is a region in the parameter space specific to one type
of layer. Each layer must have a minimum depth of 0.2 km to
ensure a sufficient number of data points. When possible, the
bounds of the layers are chosen to remain constant across a

test case to capture the continuity of the potential processes
in that layer, though in some instances they may vary slightly
between scans.

3.4.1 Multi-modal classification

To identify multi-modal layers, we utilize a Bayesian Gaus-
sian Mixture model (GMM) to first detect the number of
peaks at every height in the three foundational cases at the
nine specified times, using SciKit-learn (Pedregosa et al.,
2011). This is done to temporally averaged spectra over ∼

12 s (11.08 s or 3 time steps for both cases using KAZR and
12.39 s or 12 time steps for KASPR) because of the noisy na-
ture of the instantaneous spectra. Additionally, these results
are smoothed across a 300 m window (20 gates for SBRO,
10 gates for NSA and SGP) to select the most frequently oc-
curring value for the number of modes within that window.
This is done because some gates were outliers in the number
of modes detected. This averaging reduces superfluous peaks
detected by the automatic peak detection algorithm and mit-
igates noise caused by rapid switching between two, three,
or more peaks when examining the detected peak count with
height. The results are shown in Fig. 5.

3.4.2 Manual layer classification

Informed by the results above, we consider manually clas-
sified layers in each of the foundational cases to compare
the signals that are associated with multi-modal layers and
those that are associated with turbulence-induced broadening
and control layers. Multi-modal layers are defined to align
with the points detected through the Bayesian GMM fitting
in Sect. 3.4.1 as well as being confirmed to contain more
than one mode by visually examining the spectra. A turbu-
lent layer is defined as encompassing the heights that con-
tain turbulence, visible in the spectra as horizontal spikes in
the spectra spanning a large range of velocities (Fig. 2), as
well as in the moment MDV as oscillations in relative min-
imum and maximum MDV values and local maxima of SW
(Fig. 3). A control layer is defined as an unambiguously sim-
ple layer, containing only a single mode and not containing
turbulence. The control layers coincide with unimodal layers
from the Bayesian GMM analysis.

As a caveat to these classifications, nature is not always
going to cleanly fit into strictly defined boxes, and there
are transitions between layer types that are less clearly de-
fined (evident from the Bayesian GMM analysis which often
showed individual heights with different amounts of modes
than the surrounding layer). Turbulent and control layers
are defined by visual inspection of spectragraphs and mo-
ment data rather than automatically with pre-defined explicit
thresholds because of the large variability for what may be
turbulent or “simple” at each date, time, and location. Those
quantities are examined after layer definition to determine
what patterns exist and how those may aid in the classifica-
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Figure 3. Upper-air soundings and vertically pointing radar moment data for each of the three cases. One hour of data for each case is shown.
For each case, panel (i) is sounding data with temperature in black and dewpoint in blue; panel (ii) is reflectivity; panel (iii) is mean Doppler
velocity; panel (iv) is spectrum width. Note that in (a) the radar plots have data gaps because KASPR switches between scanning strategies
and vertically pointing scans are not continuous across the analysis period.

tion and detection of these layers. Across the three times of
each case, we can identify a total of 9 layers of turbulence, 16
layers of secondary modes, and 7 control layers (Fig. 6). To
examine the differences between these classified layers, we
consider vertical profiles averaged across a 145 s period from
each of the cases, centered on the times listed. This length
of time is chosen because it is the duration of KASPR VPT
scans before RHI and PPI scans in the employed scanning

sequence. Thus, the data from the NSA and SGP KAZRs is
partitioned into 145 s periods to yield a fair comparison.

Layers highlighted in purple in Fig. 6 represent multi-
modal spectra. One of the common characteristics of such
a multi-modal layer is spectral broadening. Spectrum width
alone cannot identify a secondary mode, because turbulent
layers see a similar, sharper spike in spectrum width. How-
ever, as seen by the cyan error bars in Fig. 6, the standard
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Figure 4. Liquid water and water vapor contents of the two cases
located at DOE-ARM sites with a microwave radiometer (MWR)
that measures both the liquid water and water vapor along the line
of sight path. (a) 7 December 2013 at the NSA site, (b) 13 Decem-
ber 2020 at the SGP site.

deviation of mean Doppler velocity, hereafter σ (MDV), in
a turbulent layer is quite different from that in a secondary
mode. Turbulent layers feature large σ (MDV) associated
with the variable vertical fall speeds induced by turbulence,
whereas the secondary modes have low σ (MDV). A large
variance in mean Doppler velocity over the 145 s period can
be used to detect highly turbulent layers and eliminate them
from being marked as potential secondary modes.

4 Establishing the criteria and detection methodology

In aggregate, we use 781 data points to determine the typi-
cal values associated with each layer. The contributions from
each site to each layer type are shown in Table 2. The SBRO
case has disproportionally more points due to KASPR’s finer
vertical resolution. We examine the average value for each
layer type by case in addition to an overall average (Ta-
ble 3) to ensure that the uneven number of samples from each
radar/site does not bias the statistics. The results of this anal-
ysis reveal that individual variables are not distinct between
the three categories: both the multi-modal and turbulent lay-
ers have a near identical SW, whereas both the multi-modal
and control layers have a near identical average σ (MDV).
The joint distribution of these variables, however, makes
clear the distinctions between these three types of layers and

Table 2. Total number of data points contained in each layer type
and each case.

Condition Total Data SBRO NSA SGP
Points Layer Layer Layer

Control 101 62 21 18
Mode 542 407 84 51
Turbulence 138 94 21 23

Total Points 781 563 126 92

allow us to separate the three categories into distinct por-
tions of the parameter space (Fig. 7). Layers containing a sec-
ondary mode (purple) occupy the bottom right of the param-
eter space in Fig. 7, marked by large SW (> 0.17 m s−1) but
small σ (MDV) (< 0.1 m s−1). Although some overlap ex-
ists with the control (green) and turbulence (yellow) points,
these make up a small portion of the total points. Other-
wise, there is little overlap with the other layer classifica-
tions. Turbulence-containing layers (yellow) only present in
the upper region of the parameter space, where σ(MDV) >
0.1 m s−1. Control layers (purple) are confined to the bot-
tom left portion of the parameter space, with σ(MDV) <
0.1 m s−1 and SW< 0.17 m s−1. Given this observed sepa-
ration in the SW − σ (MDV) parameter space from known
cases in different regions observed with different radars, we
hypothesize that these variables generally can be used to de-
termine the presence of a secondary spectral mode in the mo-
ment data. To proceed with testing our hypothesis, we will
use SW> 0.17 m s−1 and σ(MDV) < 0.1 m s−1 as the crite-
ria to detect multi-modal layers observed in snow cases with
vertically pointing Ka-band Doppler radar.

The method for applying these criteria is shown schemat-
ically in Fig. 8. The first step is to create time-averaged ver-
tical profiles of MDV and SW in the same manner described
in section 3.4 (i.e., 145 s segments). Next, specific height
levels with time-averaged SW> 0.17 m s−1 and σ(MDV) <
0.1 m s−1 are flagged, herein considered “flagged points”.

Two additional filters are needed to avoid detecting non-
events: a noise filter and a rain filter. If there is low signal-
to-noise ratio (SNR), data may be unreliable. Any flagged
points with SNR<−5 dB are excluded. Liquid precipitation
such as rain causes the Doppler spectra to broaden, as the
wide variety of sizes of droplets will have a wide range of
associated fall speeds. To maintain a focus on drizzle and
ice processes, we use the rate of change of LDR with height
to identify the melting layer and exclude data between the
melting layer and the surface at that time. Points with a rate
of change of LDR exceeding −0.02 dB m−1 are identified
as the top of the melting layer and determined to be coinci-
dent with a SNR > 1 dB and downward velocity of at least
1 m s−1 to avoid detecting cloud ice, which was a potential
concern. This filter reduces the impact of spectral broaden-
ing due to rain (the wider distribution of droplet sizes leads
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Figure 5. (a) Bayesian GMM fit mode count for the foundational cases. Plotted is the average mode count over a 300 m window in height to
reduce noise. (b) As in (a), but with the manual layer classification overlaid. Multi-modal layers are designated with purple and uni-modal
layers with green. Additionally, turbulent layers are indicated with yellow.

to an enhancement of spectrum width that impairs the ability
to detect a secondary mode) and is advantageous over us-
ing larger fall speeds alone to detect rain because that may
also exclude situations where large (> 2 mm diameter) grau-
pel (e.g., Lamb and Verlinde, 2011; Heymsfield et al., 2018)
dominates the backscattering.

To mitigate noise associated with false detections and to
focus on spatiotemporally consistent features that are likely
of more microphysical relevance, we examine how many
points are flagged in specified time periods (e.g., 1 h). Periods
with large counts of flagged points (“flag counts”) can then
be considered for further analysis, such as microphysical pro-
cess determination. Because the flag count is determined by

the number of points meeting the multi-modal spectral detec-
tion criteria in a one-hour period, large flag counts could arise
from thick layers and/or persistent signals. When examining
the foundational cases at the SBRO, NSA, and SGP sites,
there are 33–143 flags per 145 s segment during segments
with known multi-modal layers1 excluding the 18:55 UTC
SBRO scan. To get an idea of the expected flag counts in

1This choice is made due to the specific manner KASPR is run,
the VPT scans run for only 145 s. The standard deviation values are
dependent on the durations used. Generally, if one wishes to repeat
this on other datasets, we recommend using time segments close to
2–2.5 min.
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Figure 6. Radar moment MDV and SW for three times for each of the three cases: (a) SBRO at (i–ii) 18:55 UTC, (iii–iv) 19:02 UTC, and
(v–vi) 19:08 UTC; (b) NSA at (i–ii) 15:21 UTC, (iii–iv) 15:31 UTC, and (v–vi) 15:37 UTC; (c) SGP at (i–ii) 12:45 UTC, (iii–iv) 12:48 UTC,
and (v–vi) 12:52 UTC. Purple shading indicates multi-modal layers, yellow is turbulence, and cool green are control layers, unaffected by
spectrum-broadening processes. Pink and cyan error bars along each black line is the standard deviation of each moment variable, taken in
time over 145 s periods.

one-hour periods, we applied the flagging algorithm to a full
hour of continuous VPT data from the KAZR cases (contain-
ing the known multi-modal spectra), and found 1201 flags
from 12:00–13:00 UTC in the SGP case, and 1541 flags from
15:00–16:00 UTC in the NSA case. Based on these counts,
we set the threshold for a large hourly flag count at 100 flags
per hour. A 100-flag hr-1 criterion should be sufficient to
capture thinner, sustained layers in addition to deeper lay-
ers. Note that, depending on one’s application (i.e., studying
drizzle formation, secondary ice production, etc.), the period

over which flagged data points are counted and/or the flag
count threshold may be adjusted, as needed, to address the
timescale on which those processes are observed.

As an example of how this detection algorithm can be
used, it was run on the cases used to build it. While this
clearly is not an independent test, it serves to demonstrate
the results of the algorithm and explore how well the test
cases meet their own criteria. For the times and heights that
were identified as containing multi-modal spectra, all three
cases display gates that are flagged for meeting the crite-
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Table 3. Average values of mean spectrum width (SW) and the standard deviation of mean Doppler velocity (σ(MDV)) for control, mode,
and turbulence layer types. Averages are taken across each case and across all cases combined. All values shown are in units of m s−1.
Note that the individual case values represent that there is variability associated with the unique aspects of individual cases in different
environments, and that the total values that average the cases together are more representative of the general values associated with each
layer type.

Parameter Total Avg Total SD SBRO NSA SGP

Control
SW 0.164 0.027 0.180 0.124 0.165
σMDV 0.112 0.042 0.131 0.105 0.058

Mode
SW 0.198 0.049 0.191 0.244 0.184
σMDV 0.061 0.025 0.063 0.061 0.049

Turbulence
SW 0.207 0.049 0.198 0.242 0.205
σMDV 0.178 0.077 0.205 0.150 0.086

ria (Fig. 9). However, there are times for which the criteria
are not met. For example, the 1855 scan at the SBRO site
(Fig. 9a) features no points that meet the multi-modal layer
criteria, despite the appearance of the spectra (see Fig. 2ai)
and the Bayesian GMM mode detection. The 18:55 UTC
scan is the first to appear multi-modal; Bayesian GMM is
sensitive enough to detect this multimodality, whereas our
methodology using radar moment data does not because the
spectra did not have σ(MDV) < 0.1 m s−1 and is excluded.
The two later times both have many flags coincident with the
multi-modal layer, while having some flags outside of that
identified region, as well. At 19:02 UTC, of the 124 vertical
points considered, 63 were flagged (50.8 %). The detected
mode continues at heights lower than those used to build the
criteria. At 19:08 UTC, 93 of 124 (75.0 %) points used to
build the criteria were flagged as a detected secondary mode.
The modes detected at these times both speaks to the diffi-
culty in manually determining the bounds of a multi-modal
layer and the inherent variability with multi-modal features
that may be near the limits of the criteria defined above.

The NSA case exhibits the most flags across both the
shown time-space domain and the within the tested multi-
modal domain (Fig. 9b). Across the boxed domains, 53.8 %
of the points were flagged by the detection criteria. The mode
also notably extends beyond the defined upper and lower lim-
its of the multi-modal layers when testing. The GMM analy-
sis indicated a 0.2–0.6 km deep uni-modal layer (extending at
its largest from 1.6 to 2.4) that varied across the three anal-
ysis times, which is why the layer between the two multi-
modal layers was not used and is not indicated on Fig. 9 in
the red boxes. However, when examining Fig. 2 and the spec-
tragrams for this case, there is a visually distinct secondary
mode that the Bayesian GMM technique missed. Both the
NSA and SGP cases exhibit flags beyond the times examined
in this study. In particular, the NSA case exhibits 1474 flags
occurring in a deep layer between 15:00 to 16:00 UTC. The
SGP case has fewer flags observed, but those are concen-
trated into streak-like features that decreases in height over

time. Across the boxed domains in the SGP case, 44.0 % of
the points were flagged by the detection criteria. The 12:00
to 13:00 UTC period contains a total of 935 flagged points.
Within this analysis, the regions detected as multi-modal ex-
tend (in height and time) outside of the small domains used to
determine the detection criteria. These detected modes, while
not truly independent evidence, demonstrate that the crite-
ria can track these features beyond the initial foundational
case studies. A more comprehensive evaluation with an in-
dependent dataset will be presented in Part 2 (Wugofski and
Kumjian, 2025).

Observing the flags in a time-height space can facilitate
interpretation of potential processes that may be associated
with these events. In the NSA case, there is a process above
2–2.5 km AGL that is initiating the mode, whereas in the
SGP case it may be a shorter-lived mechanism causing the
mode as it forms, evolves, and potentially mixes into the
primary mode at lower heights. There are two large clus-
ters of flags shown in Fig. 9c: one starting near 1.75 km at
12:25 UTC and descending over time until 13:00 UTC, and
a second starting near 2.4 km at 12:50 UTC and descending
over time beyond 13:25 UTC.

5 Outcomes and conclusions

Through examining three case studies, consistent features in
radar moment data were found to be characteristic of multi-
modal spectra. When examining vertically pointing data for
145 s periods, we find that multi-modal layers have a rela-
tively large mean spectrum width SW (> 0.17 m s−1) and
relatively low standard deviation of mean Doppler velocity
σ(MDV) (< 0.1 m s−1), occupying a distinct section of the
SW–σ(MDV) parameter space different than that of turbu-
lent and control layers. These features were quantified such
that they can be used in an event detection algorithm. By
identifying similar layers consistent with the multi-modal
signals, we can identify likely multi-modal spectra through
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Figure 7. (a) Comparison of uni-modal and multi-modal layers by two methods – uni- and multimodal parameters by case plotted with error
bars, with their aggregate average plotted by stars. The markers at the center of the cross-hairs represent the average SW and σ(MDV) for
the set of points in each category. The extent of the cross-hairs in each direction represents the standard deviation SW and σ(MDV) of for the
set of points in each category. Similarly (b) contains the same results with values restricted to σ(MDV) < 0.1 m s−1, below the turbulence
threshold. The site the datapoints are from is denoted by symbol, and modality and method are denoted by color, as described in the key. The
averages for all multi and uni-modal points by each method are denoted with stars.

moment data alone, without having to process the complete
radar spectra files.

For this reason, we hypothesize that SW and σ(MDV) can
be used to determine the presence of a secondary mode in
radar moment data. Although the preliminary testing done
here is encouraging, to robustly test this hypothesis re-
quires evaluating these criteria for a much larger, indepen-
dent dataset. This requires a long-term radar dataset, such as
that available from the NSA site. The success of the criteria
in detecting multi-modal layers using the moment data exclu-
sively will be evaluated, with verification by manual analysis
of the Doppler spectra, in Part 2 (Wugofski and Kumjian,
2025).

Development of these criteria into an algorithm for event
detection will also allow for efficient processing of long-term
radar datasets, which opens the possibilities of creating a cli-
matology of multi-modal spectra events. Additional analysis
on detected cases may open the doors to process identifica-
tion and determining if modes are composed of ice or liquid
droplets, using additional observations.

The design of the criteria and methodology is targeted at
reducing false positives; it is likely that the use of these crite-
ria may miss the detection of some multi-modal spectra (cf.
Fig. 7). This may be due to modes having weak power re-
turns or little separation in velocity bins from the primary
mode. The criteria we determined herein can be adjusted
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Figure 8. Flow chart explaining the procedures followed when applying the multi-modal detection algorithm. Input VPT moment data are
averaged into vertical profiles and points meeting the specified thresholds are identified and flagged. Points with too low of signal or suspected
to be associated with rain are then eliminated. Flagged points are then further processed to determine the number occurring per hour, and
the LDR associated with each flagged point is saved in association with the event. Finally, if the hourly flag total exceeds the threshold of
100 flags per hour, a case is identified.

Figure 9. Results of the detection algorithm applied onto the foundational cases for (a) SBRO (b) NSA (c) SGP. In (a) the flags are indicated
by thin horizontal lines because the VPT data is only available in the short time periods used to compute the flags. (b) and (c) are shaded
and continuous in time because KAZR operates continuously in VPT mode. Pink indicates presence of only the flag with SW> 0.17 m s−1

and σ(MDV) > 0.1 m s−1, blue indicates presence of only the flag with σ(MDV) < 0.1 m s−1 and SW< 0.17 m s−1, and black indicates
all necessary criteria for a flag being met. Red dotted lines indicate the maximum bounds in time and height used to define the multi-modal
layers used to obtain the criteria.
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by those applying this detection algorithm to other datasets.
However, relaxing the criteria will have trade-offs. By de-
creasing the SW threshold, one will identify more secondary
modes that may be less separated from the primary mode,
but may also begin to falsely identify single-mode layers that
would need to be manually identified from spectra files and
removed from the results. Similarly, relaxing the criteria to
include larger values of σ(MDV) may result in turbulence
being mistaken for a secondary mode. Applying these crite-
ria to datasets with significantly different radar systems may
require additional adjustments. Nonetheless, the classifica-
tion technique using objective criteria can help to analyze
characteristics of turbulent layers and their role in micro-
physics and snow intensification using more than case stud-
ies (e.g., Oue et al., 2024). We propose that this approach
can be applied for efficient detection of multi-modal Doppler
spectra in large datasets, as we show in Part 2 (Wugofski and
Kumjian, 2025).
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