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Abstract. High Spectral Resolution Lidars (HSRLs) have
been successfully deployed from a variety of platforms:
ground based, airborne, and now satellite. These lidars are
uniquely valuable for characterizing atmospheric aerosol and
clouds, benefiting from the ability to characterize vertical
variability in more detail than any passive instruments, and,
compared to elastic backscatter lidars, provide additional
channels of measurements that permit the direct retrieval of
particulate extinction. Although analytic solutions exist for
deriving particulate backscatter, extinction, and linear depo-
larization ratio, in the case of extinction, the analytic tech-
nique greatly magnifies measurement noise. Low signal-to-
noise measurements stress the traditional inversion methods.
Accordingly, algorithms for the retrieval of HSRL backscat-
ter and extinction are re-examined and optimized to reduce
the noise propagation. Here we explore an Optimal Estima-
tion methodology and compare it with an implementation of
the direct differentiation method like that historically used
for the processing of airborne HSRL data from NASA Lang-
ley Research Center.

1 Introduction

Lidar instruments are routinely used for the study of aerosols
in the atmosphere from the ground (e.g. Grund and Eloranta,
1991; Welton et al., 2001; Pappalardo et al., 2014; Jin et
al., 2022), airborne platforms (e.g. Hair et al., 2008; Wirth
et al., 2009; Carroll et al., 2022), and from space (Winker
et al., 2009; Yorks et al., 2016; Flament et al., 2021; do
Carmo et al., 2021; Ke et al., 2022), because of their ability

to vertically profile atmospheric components. Lidars for the
measurement of atmospheric aerosol are frequently polariza-
tion sensitive, and may be elastic backscatter lidar, Raman
lidar or High Spectral Resolution Lidar (HSRL). The HSRL
(Shipley et al., 1983) and Raman techniques (Ansmann et
al., 1990) have the advantage over elastic backscatter in that
one or more additional detector channels are employed to
separate the backscattered light into components originating
from aerosols or cloud particles versus air molecules, which
in turn enables the retrieval of particulate (aerosol or cloud)
extinction via an exact analytic solution of the lidar equa-
tion. This is a great advantage over elastic backscatter lidar,
which requires added information from other instruments,
climatology, or assumptions about the lidar ratio (that is, the
extinction-to-backscatter ratio) to solve the lidar equation.
Here we will focus on HSRL and, specifically, on the HSRL
technique that has been implemented for airborne lidar oper-
ated by NASA Langley Research Center (Hair et al., 2008;
Burton et al., 2018). We limit the discussion to aerosol re-
trievals.

While purely analytic solutions for particulate backscat-
ter and extinction coefficients and particulate linear depo-
larization ratio exist for HSRL and Raman lidar, these re-
trievals, as with all retrievals, are subject to measurement
noise. For these systems, noise magnification is not an issue
for the retrieval of particulate backscatter and linear depo-
larization ratio; however, the retrieval of extinction greatly
magnifies the noise, because it involves the derivative of the
log of the measurements. Therefore, the solutions of partic-
ulate extinction in circumstances with lower signal-to-noise
levels can be challenging and sometimes unsatisfying. These
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circumstances can include relatively pristine aerosol envi-
ronments with low signal, or situations where measurement
noise is large; the retrieval of aerosol extinction from space,
for instance, presents a significant challenge even with an
HSRL instrument (Donovan et al., 2020, 2024). This study
discusses a retrieval from the HSRL measurement technique
that is better suited to dealing with lower signal-to-noise, and
which therefore can extend the usefulness of HSRL measure-
ments into regimes where the traditional retrieval struggles.

In a theoretical noise-free retrieval of a number of un-
knowns from the same number of measurements, the ana-
lytic solution is the correct solution. However, if any noise is
added, there is still only one exact solution but, in that case,
it fits the signal plus the noise (i.e. overfitting) and therefore
does not match the true noise-free signal. In cases like the
extinction retrieval, the noise magnification potentially can
significantly mask the true signal. Of course, the true sig-
nal is not known in general, except in the case of simula-
tions. A common way to deal with noisy retrievals is to intro-
duce regularization. The core idea of behind these strategies
(Twomey, 1977; Tikhonov and Arsenin, 1977) is that a fam-
ily of valid solutions exist that, when input into the forward
model, can reproduce measurements, not exactly, but within
measurement uncertainty. Regularization chooses among this
family of solutions by introducing an additional requirement
that the solution must be smooth in a particular defined way
that depends on the type of regularization. The two require-
ments are represented in a cost function to be minimized.

Regularization has been used for Raman and HSRL re-
trievals in various ways (Shcherbakov, 2007; Pornsawad et
al., 2008; Povey et al., 2014; Denevi et al., 2017; Garbarino
et al., 2016; Marais et al., 2016; Donovan et al., 2020; Ehlers
et al., 2022; Donovan et al., 2024). Shcherbakov (2007) first
introduces regularization for a Raman lidar retrieval using
a Tikhonov regularization with a second-difference smooth-
ing matrix as the constraint, plus smoothing of the measure-
ment inputs. The variable to be solved for is the lidar ratio,
rather than the extinction, because it is easier to constrain
due to its more limited range of variability, a strategy we
will continue to use in this study. Shcherbakov concludes
that the Tikhonov regularization reduces the error over the
conventional algorithm (the analytic solution with no regu-
larization), but that the lidar ratio appears to be oversmoothed
in his example. Pornsawad et al. (2012) follows up with
a Levenberg–Marquardt method with a tunable regulariza-
tion parameter, which does not require smoothing of the in-
put measurements. Others (Garbarino et al., 2016; Ehlers et
al., 2022) use Maximum Likelihood, which does not explic-
itly represent a constraint in a cost function, but instead they
use more ad hoc methods of constraint, either by ending the
iterations early (Garbarino et al., 2016) or with a box con-
straint on the lidar ratio that forces it to stay within the de-
fined bounds on each iteration (Ehlers et al., 2022). These
are practical methods but do not easily support an under-
standing of the impact of the constraint on the errors, or the

quantification of uncertainty in general. Marais et al. (2016)
adapt a Maximum Likelihood estimator from medical im-
age processing called Total Variation Penalized Maximum
Likelihood Estimator (TV-PMLE), which enforces piecewise
smoothness both vertically and temporally. This method pro-
duces images with excellent noise reduction but again does
not lend itself easily to the quantification of uncertainty.

This study focuses on a retrieval for particulate backscat-
ter coefficient, linear depolarization ratio and lidar ratio from
noisy HSRL signals, focusing specifically on aerosol. We use
Optimal Estimation (OE) (Rodgers, 2000), following other
work using OE for Raman and HSRL (Povey et al., 2014;
Donovan et al., 2024). Optimal estimation has the advantage
of providing a framework that allows for propagation of all
the error sources, not just random, but also calibration uncer-
tainties and most importantly the uncertainty due to the con-
straint itself, which takes the form of a prior solution with
specified uncertainty. Donovan et al. (2024) describe a com-
bination retrieval for the spaceborne HSRL ATLID, where
aerosol extinction, lidar ratio, and effective radius are repre-
sented in the state vector using logarithms to enforce posi-
tivity. In that work, the outputs of the analytic retrieval op-
erating on coarse resolution are used as the “prior” informa-
tion for the Optimal Estimation for defined atmospheric lay-
ers on a finer horizontal resolution. More usually, the prior
is defined without using the measurements, as information
that is available before the measurements are made. Povey et
al. (2014) uses OE retrievals for Raman lidar using two dif-
ferent sets of state vectors, either extinction and backscatter,
or the lidar ratio and the logarithm of the backscatter. In their
setup, the prior is rather detailed and includes assumptions of
the distribution of the aerosol concentration with height and
an assumed correlation with height, as well as rather tight
constraints on the lidar ratio, which are then loosened in a
subsequent case study. With Optimal Estimation, whether us-
ing the standard Bayesian definition of a prior independent of
measurements, or the more empirical approach of Donovan
et al. (2024), the definition of uncertainties for the prior is
crucial. If prior uncertainty truly reflects the degree of cer-
tainty in the prior, then there will be solutions that match
both the prior and the measurements, within the respective
uncertainties. However, if the prior and prior uncertainty are
unrealistically restrictive, then there may not be any solutions
that match the measurements.

Accordingly, this study uses a more conservative prior that
represents minimal knowledge of the aerosol before the mea-
surements are made. The HSRL technique, given the exis-
tence of the analytical solution, provides a strong constraint
already and does not necessarily need much regularization.
In this study, we achieve reasonable smoothing using a very
loose and conservative prior uncertainty that does not im-
ply foreknowledge of the aerosol type or lidar ratio, thereby
minimizing required assumptions and potential biases asso-
ciated with them. In addition, unlike several of the retrievals
discussed above, except Povey et al. (2014), we formally in-
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clude multiple potential sources of systematic measurement
uncertainty and explore characteristics of the a posteriori un-
certainty (that is, the solution uncertainty) including correla-
tions in the solution vectors and the effective vertical reso-
lution of the results. Section 2 is dedicated to explaining the
retrieval methodology, including the retrieval forward model,
inputs and outputs, and uncertainty propagation. Section 3
discusses a simulated case, where knowledge of the exact
truth allows for extensive validation of the retrieval and un-
certainties, and the freedom to vary parameters enables quan-
titative discussion of the trade-off between uncertainty and
resolution. Section 4 follows up with the application of the
retrieval to a case of actual airborne measurements made by
the HSRL-2 instrument. Section 5 concludes the discussion.

2 Retrieval methodology

2.1 The forward model lidar equations

Light transmitted from the lidar is backscattered by particles
and molecules in the atmosphere and is attenuated by the par-
ticles and molecules along the path between the lidar and the
scattering volume, as in the following single-channel lidar
equation.

P (r)=
k

r2β(r)T (r)
2, (1)

where P (r) represents the lidar signal as a function of range
r; the variable β is the 180° backscatter coefficient, the scalar
k is a collection of range-independent instrument constants,
and T (r)2 is a transmittance factor representing the reduction
of light on the two-way journey between the lidar and the
scattering volume at range r .

T (r)2 = exp
{
−2
∫ r

0

[
αgas(r

′)+αm(r
′)+Sp(r

′)βp(r
′)
]

dr ′
}

(2)

In Eq. (2), α(r) indicates a profile of extinction. The sub-
script gas refers to absorption from gaseous species, (e.g.
ozone for the 532 nm lidar wavelength). The subscript m in
these quantities refers to scattering from air molecules in the
Rayleigh scattering regime, and p refers to particle scattering
and absorption by aerosols and cloud particles. The particu-
late extinction is represented as the particulate 180° backscat-
ter coefficient, βp, multiplied by Sp, the lidar ratio (i.e., ratio
of extinction to backscatter), following customary practice
begun by Fernald et al. (1972). The two-way transmittance
factor, when multiplied by particulate backscatter, gives the
attenuated particulate backscatter, or when multiplied by the
sum of the particulate and molecular backscatter gives the
total attenuated backscatter.

While this retrieval is adaptable, we focus on the instru-
ment configurations for NASA Langley airborne HSRL in-
struments: HSRL (Hair et al., 2008), HSRL-2 (Burton et
al., 2018), HSRL-DIAL, and HALO (Carroll et al., 2022).

See prior papers for discussions of direct retrievals, calibra-
tions, and uncertainties (Hair et al., 2008; Burton et al., 2015,
2018). The particulate backscatter, extinction, and linear de-
polarization ratio retrievals are enabled by three main detec-
tor channels at a given wavelength. These signals are func-
tions of the particulate and molecular attenuated backscat-
ter. In the detector, the incoming light is split with a po-
larizing beam splitter into components that are parallel and
perpendicular to the outgoing laser transmission. The par-
allel portion is further split to facilitate separating the par-
ticulate backscatter from the molecular backscatter. (Hair et
al., 2008, mentions a fourth channel, a parallel total (partic-
ulate+molecular) channel, which simplifies some calcula-
tions, but since it is not present in all versions of the instru-
ments, we leave it out of this study). The signals are written
in the following general form.

Pm(r)=
Kgm

gpr2

[
Aβm(r)

{
1
2
−χ

(
δm

δm+ 1
−

1
2

)}
+Bβp(r)

{
1
2
−χ

(
δ(r)

δ(r)+ 1
−

1
2

)}]
T (r)2 (3)

P p(r)=
K

r2

[
Cβm(r)

{
1
2
−χ

(
δm

δm+ 1
−

1
2

)}
+Dβp(r)

{
1
2
−χ

(
δ(r)

δ(r)+ 1
−

1
2

)}]
T (r)2 (4)

P⊥(r)=
Kg⊥

gpr2

[
βm(r)

{
1
2
+χ

(
δm

δm+ 1
−

1
2

)}
+βp(r)

{
1
2
+χ

(
δ(r)

δ(r)+ 1
−

1
2

)}]
T (r)2 (5)

where P⊥(r) indicates the range-dependent signal in the
channel that receives the perpendicularly polarized portion,
and Pm(r) and P p(r) indicate the molecular-dominated
and particulate-dominated signals split from the parallel-
polarized portion, respectively. The scalar ratios gm/gp and
g⊥/gp are relative calibration factors for the measurement
signals (henceforth called gain ratios), and the scalar K is
an arbitrary scaling factor common to all three signals. Note
that the subscripts m and p are used for convenience in the
channel signals and channel gain calibration constants, even
though the split between molecules and particulates is im-
perfect. The range-dependent particulate linear depolariza-
tion ratio is δ(r) while δm represents molecular linear de-
polarization ratio, well approximated by the constant value
0.0036 (Behrendt and Nakamura, 2002). The scalar param-
eter χ allows for the potential for a small amount of cross-
talk between polarization channels due to polarization angle
or ellipticity (Burton et al., 2015) and is unity in the case
of no cross-talk. The scalar parameters A, B, C, D indi-
cate the split between molecular and particulate components,
which can be achieved in a few ways. For instance, for NASA
Langley airborne HSRL instruments, the HSRL technique at
532 nm is implemented by tuning the laser to an absorption
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feature of an iodine vapor filter in the receiver. Doing so ef-
fectively removes the particulate backscattered light from the
m channel, whereas there is no filtering for the p channel. In
that case B = 0 and C=D= 1 whileA is the transmission of
molecular scattering through the iodine filter measured sepa-
rately as in Hair et al. (2008) where it is called F . Alternately,
an interferometer is used for 355 nm for airborne HSRL and
has been studied for potential use at 532 nm in a space-based
instrument. In that case, the molecular contribution is split
evenly between the two channels by design of the interferom-
eter, and the particulate contribution is largely, but not com-
pletely, directed to the p channel. Therefore A=C= 0.5,
and B +D= 1 with B small and D large. The ratio D/B
is a performance metric that we call the contrast ratio (Bur-
ton et al., 2018). Multiple scattering is not included in these
forward model equations. The current study focuses only on
aerosol scattering where multiple scattering is insignificant.

The numerical forward model is a discretized version
of the lidar equations. Here we assume a grid of discrete
slabs having a uniform backscatter coefficient and lidar ra-
tio throughout each slab. The range to the midpoint of slab
i is r(i) and the height is 1H (i). This formulation has the
flexibility that the state vectors can be discretized at a coarser
resolution than the measurements, which aids in noise reduc-
tion. Povey et al. (2014) also solves for the state vector at a
coarser resolution than the measurements, but in that case by
using cubic spline interpolation to translate between grids.
Since a splined state vector will not necessarily exactly re-
produce the measurements even in a noise-free case, we dis-
cretize the lidar equations as follows, with the transmittance
due to passage of the light between the upper boundary of
slab i and its midpoint notated separately from the transmit-
tance through all the overlying layers. This separation makes
explicit the dependencies on the current layer and on the
overlying layers, enabling the computation of the derivatives
with respect to range-resolved quantities that are required for
the OE retrieval.

Pm(i)=
gmK

′

gpr(i)2

[
Aβm(i)

{
1
2
−χ

(
δm

δm+ 1
−

1
2

)}
+Bβp(i)

{
1
2
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(
δ(i)
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1
2

)}]
T (i)2T (j > i)2 (6)

P p(i)=
K ′
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where

T (i)2 = exp
{
−
[(
αgas(i)+αm(i)+Sp(i)βp(i)

)
1H (i)

]}
(9)

T (j > i)2

= exp

{
−2

TOA∑
j=i+1

[(
αgas(j)+αm(j)+Sp(j)βp(j)

)
1H (j)

]}
(10)

The pre-multiplier K ′ accounts for molecular and gas trans-
mittance between the laser and the top of the aerosol solution
grid (denoted TOA), as well as absolute scaling common to
all channels.

Analytical solutions for aerosol backscatter, extinction and
linear depolarization ratio are discussed by Hair et al. (2008)
and Burton et al. (2018). While we will not repeat the equa-
tions for the analytic solution here, it is worth pointing out
that none of the solutions for aerosol extinction, backscatter,
or linear depolarization ratio depend on the overall scaling
factorK ′, provided the channels are relatively calibrated (i.e.
the gain ratios, contrast ratio and depolarization cross-talk
parameter are known). The backscatter and linear depolar-
ization ratio are each found from the ratio of channels (thus
K ′ ratios out), while extinction is found from the derivative
(with respect to range) of the logarithm of the molecular-
dominated channel (after correcting for particulate cross-
talk), and the derivative of a log also does not vary with any
overall multiplier. In the OE retrieval, K ′ is solved as part of
the state vector as a nuisance parameter, since it is required
to reconstruct the measurement vector that is used in the cost
function, but is expected to have little impact on the aerosol
backscatter, extinction, or linear depolarization ratio. In our
retrieval, we also solve for the depolarization cross-talk pa-
rameter χ , while in the analytic method, this must be deter-
mined independently in a separate workflow by examination
of any apparent depolarization in aerosol-free space (Burton
et al., 2015).

The primary benefit of the retrieval in the current study
is the reduced errors in the solutions for the lidar ratio and
extinction profiles compared to the analytic retrieval, rather
than the backscatter profile, which is already well behaved
in the analytic solution even for relatively noisy situations.
It is still a valid strategy to retrieve the particulate backscat-
ter and depolarization ratio using the analytic solution on a
fine grid spacing, and the lidar ratio (and thereby particulate
extinction) at a coarser resolution using a regulated method
(Shcherbakov, 2007). However, we present the full regular-
ized retrieval of all parameters at the same grid spacing for
completeness of the analysis.

2.2 Optimal estimation

Optimal estimation finds the state vector which (when in-
serted into the forward model) optimally matches both the
measurements and an a priori estimate of the state vector,
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both weighted by appropriate uncertainties. The quantity to
be minimized includes the difference between the state vec-
tor and the prior, weighted by prior uncertainty, and the dif-
ference between the measurements and reconstructed mea-
surements, weighted by measurement uncertainty, shown in
the expression that follows:[
y−F (x)

]T S−1
y

[
y−F (x)

]
+ [x− xa]T S−1

a [x− xa]

N
. (11)

Here y represents the measurement vector and Sy the mea-
surement uncertainty covariance matrix. The retrieval vec-
tor is represented as x, and F (x) is the output of the lidar
equations operating on x. The prior profile xa is the best es-
timate of the state before measurements are taken, and Sa is
the prior covariance uncertainty matrix. The cost function is
normalized by the total number of binned measurements in
the three channels, N . The first term of this cost function,
the measurement residual, is a quality indicator for the re-
trieval. Note that the actual error in each element, y−F (x),
is balanced by the uncertainties Sy . Therefore, if the residual
term is approximately one or less, that indicates the solution
agrees well with the measurements, within the measurement
uncertainty.

The measurement vector y comprises the signals in
the three lidar detector channels, as a function of height
in the atmosphere, after correcting the relative calibration
and the range-squared dependence, i.e., Pm(r)∗ r2∗gp/gm,
P p(r)

∗ r2 and P⊥(r)∗r2∗gp/g⊥. The three signal profiles
are concatenated in the measurement vector y. The mea-
surements are cloud-screened and aggregated both horizon-
tally and vertically. Horizontal aggregation can be relatively
coarse and can be chosen to optimize the tradeoff between
noise reduction and capturing true atmospheric variability.
On the other hand, vertical aggregation of the measurements
is limited to 15 m. Further noise reduction is achieved by
making the solution’s vertical grid coarser than the measure-
ment grid, so that the number of inputs exceed the number of
outputs. By using fine resolution measurements and coarsen-
ing the retrieval grid, the attenuation within each coarse grid
box is correctly calculated using the forward model during
each updating step. This strategy avoids bias that would be
caused by vertical averaging ignoring attenuation within the
thickness of the bin.

The state vector to be retrieved contains profiles of the
aerosol backscatter coefficient βp(i), the aerosol lidar ra-
tio Sp(i), and the aerosol linear depolarization ratio δ(i), at
all altitude levels on the coarser solution grid. The use of
“aerosol” hereafter instead of “particulate” is meant as a re-
minder that we focus only on aerosol and have not included
multiple scattering as would be required for solving for cloud
properties. The overall scaling factor K ′ is also included in
the state vector, although it is of no interest, since it is needed
for mapping the state vector to the measurements. The depo-
larization cross-talk parameter is also included.

More familiar to a larger portion of the scientific com-
munity than lidar ratio or aerosol backscatter is aerosol ex-
tinction. The aerosol extinction profile is calculated from the
state parameters by multiplying the aerosol backscatter and
lidar ratio at each altitude. Aerosol extinction, like aerosol
backscatter, scales with the amount of aerosol in an air par-
cel. The ratio of extinction to backscatter (lidar ratio), there-
fore, does not depend on the amount of aerosol present, but
rather only on the properties of the aerosol particles including
shape, size, composition, and humidification. Its values are
generally between about 10 and 120 for all studied aerosol
types at typical lidar wavelengths, whereas the extinction and
backscatter can vary over orders of magnitude. For this rea-
son, lidar ratio is easier to capture with a realistic prior than
aerosol extinction is, which is the primary reason why lidar
ratio, rather than extinction, is chosen for the retrieval state
vector (Shcherbakov, 2007).

The numerical forward model is the discretized version of
the lidar equations given in Eqs. (6)–(10). Other inputs to
the forward model are the molecular number density profile
and calibration parameters from Eqs. (3)–(5). The molecu-
lar number density profile is interpolated from the Modern-
Era Retrospective Analysis for Research and Applications,
version 2 (MERRA-2) (Buchard et al., 2017). The relative
calibration gain ratios are not solved for in this retrieval
but rather acquired in special calibration operations (Hair et
al., 2008) and assumed to be known to within 5 %. This gain
ratio uncertainty is included as a potential systematic uncer-
tainty in the error budget. In addition, for the case we show
here with an interferometer in the instrumentation, the con-
trast ratio must be determined using data from highly scat-
tering targets such as clouds and is determined on a much
coarser scale than the scale for the current retrieval (Burton
et al., 2018). It is not included in the state vector but rather
included as a known quantity with uncertainty of 5 %. The
cross-talk parameter χ is relatively easy to retrieve even on a
profile-by-profile basis and is therefore included in the state
vector, where it is also easier to calculate its uncertainty.

Uncertainties are a critical input of the OE procedure.
They are included for the calibration parameters and the mea-
surement signals as a function of range. The OE framework
handles uncertainties as full covariance matrices, which de-
scribe both the random and systematic features. An advan-
tage of the framework is that the measurement and parameter
errors can be easily written as uncorrelated errors in measure-
ment space, and then straightforwardly propagated into state
space where they are more complex with both random and
correlated (i.e. systematic) components.

From Rodgers (2000, Eq. 2.27), we have an expression
for the uncertainty covariance matrix for the retrieved state,
Ŝ, given the uncertainty covariance matrix for the measure-
ments and the prior.

Ŝ=
(

JT S−1
y J+S−1

a

)−1
(12)
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Here, J is the Jacobian matrix of partial derivatives of the
signals with respect to the state parameters, ∂y

/
∂x . These

derivatives are calculated analytically from Eqs. (6)–(10). Sa
is the variance-covariance matrix of prior uncertainties. Sy
is the variance-covariance matrix constructed from both the
random measurement uncertainty and systematic uncertain-
ties from the calibration parameters, using

Sy = Sr+ JbSbJTb , (13)

where Sr is the diagonal matrix of random variances for the
signals. Sb includes the uncertainties in the gain ratios and
contrast ratio, and Jb is the matrix of derivatives of the signals
with respect to these calibration parameters, derived from
Eqs. (6)–(10).

The measurement uncertainties are shown in the sections
describing the simulated case and real data case below. Cal-
ibration uncertainties are taken to be 5 % for the gain ratios
and for the contrast ratio (D/B), consistent with discussions
in HSRL-2 instrument papers (Burton et al., 2015, 2018).
While the measurement errors are assumed to be entirely
random and the calibration uncertainties reflect a (potential)
constant bias error, the propagated errors (in the state vec-
tor) might take more complex forms. For instance, an error
in the relative calibration between the particulate and molec-
ular channels will directly correspond to a bias in the derived
aerosol backscatter, but an error in the contrast ratio (cross-
talk parameters) has a very non-linear systematic effect in the
lidar ratio, producing errors primarily at the edges of layers
(Burton et al., 2018).

A prior is included for regularization, but we choose to
specify large prior uncertainties with no correlation and fur-
thermore we make sure that the resulting OE solution agrees
with the measurements within the stated uncertainties. Ac-
cordingly, the prior uncertainty covariance matrix represents
no assumed knowledge of the aerosol type, only of the over-
all range of values that lidar ratio can take. Specifically, the
prior profile of lidar ratio is taken to be 50 sr with a 1σ stan-
dard deviation of 35 sr, (i.e. 95 % confidence the lidar ra-
tio falls between −20 and 120 sr for a normal distribution).
For aerosol backscatter, the prior is taken to be zero with a
one-sigma standard deviation of 0.015 km−1 sr−1. Aerosol
backscatter can vary over many orders of magnitude. This
standard deviation covers a large portion of the range of val-
ues seen in many years of airborne HSRL-2 data. Of course,
lidar ratio and aerosol backscatter are not distributed nor-
mally, but this setting for prior uncertainty is large enough
that the shape of the distribution is unimportant. Although
there can be no negative aerosol backscatter values, choos-
ing zero as the prior is helpful since the prior will come into
play primarily when the measurement signal is insufficient
to constrain the results; that is, when aerosol backscatter is
near zero. Since the standard deviation is large and the prior
is therefore relatively weak, it does not bias results when the
measurement signal-to-noise ratio is larger. Finally, the prior

covariance matrix has zeros on the off-diagonals (i.e. no cor-
relation between levels at the coarse resolution of the solu-
tion).

The cost function is minimized using the stepper equation
given by Rodgers (2000) as Eq. (5.8). For the cases presented
here, the cost function is minimized in about 4 steps.

A further calculation produces the uncertainty covariance
matrix for aerosol extinction via propagation of uncertainty
for derived quantities (see also Knobelspiesse et al., 2012;
Burton et al., 2015),

Sext =

((
∂α

∂x

)T
Ŝ
∂α

∂x

)−1

, (14)

where the partial derivative of extinction with respect to
backscatter at the same altitude is the lidar ratio, and the
partial derivative of extinction with respect to lidar ratio at
the same altitude is the backscatter. Derivatives of extinction
with respect to state quantities at other levels are zero.

3 Simulated spaceborne HSRL case

3.1 Construction of simulated case

The first test case consists of simulated profiles of known
aerosol backscatter coefficient, lidar ratio and linear depo-
larization ratio profiles and known error characteristics. This
test is carried out to assess errors due to the retrieval method-
ology itself, along with the measurement and instrument er-
rors consistent with a notional spaceborne HSRL with as-
sumptions given in Table 1. This simulation does not assess
additional errors due to sub-grid atmospheric variability. Fig-
ure 1 illustrates simulated test profiles of aerosol backscat-
ter, lidar ratio, linear depolarization ratio, and extinction.
The shape and magnitude of the profiles are based on data
products from airborne HSRL-2 measurements made during
the ORACLES field mission (Redemann et al., 2021; Burton
et al., 2018; Harshvardhan et al., 2022; ORACLES Science
Team, 2017) with some additional variability added to the
aerosol properties for testing. The aerosol backscatter coeffi-
cients, lidar ratios, and aerosol linear depolarization ratios are
defined on a vertical coarse grid of 285 m spacing, which is
the grid that will be used for retrieving these profiles. Since
the grids are the same, it is theoretically possible for a re-
trieval to exactly reproduce the truth profile; therefore, any
differences with the truth profile are indicative of retrieval
error and propagated measurement and instrument error, as
distinct from sub-grid atmospheric variability.

The simulated truth state parameters are then placed on a
15 m grid ranging up to 12 km. Equations (6)–(10) are ap-
plied to generate the noise-free signals on that finer grid.
A realistic molecular density profile is selected (not shown)
and used to compute molecular backscatter and extinction at
355 nm. The contrast ratio is set to 35, and the relative cal-
ibration ratios are set to unity. To complete the simulation,
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Table 1. Instrument parameters for a notional space based HSRL
used for generating realistic simulated uncertainties.

Lidar parameter Value

Laser pulse energy 100 mJ
Laser repetition rate 70 Hz
Receiver transmittance 50 %
Telescope diameter 100 cm
Lidar (orbit) altitude 450 km
Photon detection efficiency 13 %
Excess noise factor 1.4

Figure 1. Simulation of smoke over marine aerosol, with a small
amount of dust in between.

Gaussian noise is added to the signals using assumed instru-
ment parameters from Table 1 for a notional space-based in-
strument with signal averaging of 15 m vertically and 50 km
horizontally. The simulated noisy signals are illustrated in
Fig. 2. (The perpendicular channel measurements are multi-
plied by a factor of 10 to be seen on the same scale.) Un-
certainties of 5 % for the gain ratios and contrast ratio are
included in the retrieval framework and propagated into the
retrieval uncertainty covariance matrix, although no actual
error is added to these parameters in the simulation. The
molecular profile from MERRA-2 is assumed to be known
with no uncertainty.

3.2 Retrieval results

Figure 3 shows the primary output of the retrieval, the pro-
files of the aerosol backscatter coefficient, lidar ratio and
aerosol linear depolarization ratio. The retrieval grid is 285 m
compared to 15 m for the simulated measurements. Both the
results from Optimal Estimation and the results from the an-
alytic method applied at the same 285 m vertical grid spac-
ing are illustrated. The aerosol extinction is also shown for
convenience, calculated as the product of aerosol backscat-
ter and lidar ratio. Profiles of the propagated standard devi-

Figure 2. Symbols show the simulated range-square-corrected rel-
atively calibrated lidar signals in three detector channels, using the
assumed instrument parameters for a notional space-based instru-
ment given in Table 1, with signal averaging of 15 m vertically
and 50 km horizontally. From left to right, blue diamonds indi-
cate the perpendicular channel multiplied by a factor of 10; or-
ange circles show the molecular-dominated backscatter channel,
and black squares show the particle-dominated channel. All chan-
nels are range-square corrected and relatively calibrated. The over-
all calibration factor is set to 1.

Figure 3. Retrieval results are shown for the simulated case intro-
duced in Fig. 1. Blue is used for the Optimal Estimation results
and orange is used for the analytical inversion. Error bars repre-
sent the propagated standard deviation uncertainty, including ran-
dom and systematic uncertainty for OE and random measurement
uncertainty only for the analytic solution.

ation uncertainty (from the diagonal of the a posteriori co-
variance matrix) are also shown as error bars. For the ana-
lytic retrieval uncertainties in these plots, only random mea-
surement uncertainty is propagated, making these somewhat
underestimated. In contrast, the illustrated OE uncertainties
include systematic uncertainties as discussed above. The re-
trieved calibration constant is 0.99± 0.01 and the retrieved
value of χ is 1.001± 0.002 (compared to a true simulated
value of 1.0 for each).
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Figure 4. The differences between the simulation and retrieval re-
sults for (a) aerosol backscatter as a percentage, (b) lidar ratio as
a percentage, (c) aerosol linear depolarization ratio as an absolute
difference, and (d) aerosol extinction as a percentage are shown as
thick blue lines with symbols (orange for the analytical inversion),
while the thin lines show the envelope defined by the a posteriori
uncertainty.

For the lidar ratio and extinction, the OE solution is
smoother than the analytical solution and has a smaller un-
certainty. This is the benefit of the optimization and shows
that the method addresses our primary concern with the ana-
lytic method, the unruly propagation of error in the extinction
retrieval. For aerosol backscatter and aerosol linear depolar-
ization ratio, the analytic method is well behaved and has
never given any concern. The good agreement between the
two methods for those quantities is a good check on both
methods.

Figure 4 shows the propagated uncertainty as thin lines on
the negative and positive side of zero, along with the actual
error (retrieval minus truth) shown as thick lines with sym-
bols. For aerosol backscatter, extinction and lidar ratio, these
are given as percent differences (with truth as the denomina-
tor), and as absolute differences for aerosol linear depolar-
ization ratio. The solutions are unbiased, varying around 0,
within the theoretical propagated uncertainty envelopes.

Inserting the retrieved profiles of aerosol backscatter, lidar
ratio, and linear depolarization ratio into the forward model
produces reconstructed measurement vectors, which provide
another check on the OE solution. Figure 5 shows the profiles
of residuals: the differences between the forward-modeled
retrieval results and the simulated measurements. Since the
OE retrieval reproduces the state vector very well, the pro-
files of measurements reconstructed from the OE solution
agree very well with the noise-free simulated truth measure-
ments. The differences with the noisy simulated measure-
ments are therefore very similar to the simulated noise itself
and are consistent with the measurement uncertainty shown.
The normalized residual for this case is 0.95, distributed

evenly among the three channels, and the total cost func-
tion (including the penalty for disagreement with the prior)
is 0.96.

We note that the analytic method does not reproduce the
shape of the measurement profiles with as much skill, al-
though it too produces variability very similar in magnitude
to the simulated noise. This difference is because the OE
solution involves a global minimization, while the analytic
method is purely local, solving for a state vector at a given
altitude considering only the measurements close to the same
altitude. Attenuated backscatter, which is proportional to the
measurement vector, is not local, since it depends on the ex-
tinction at every altitude above it. Therefore, even though the
residual is small at the highest altitude, random errors in the
derived state contribute to accumulating errors in the atten-
uated backscatter at lower altitudes. These do not call into
question the solutions for backscatter and extinction, which
were already shown to be unbiased in Fig. 4.

Error bars and uncertainty envelopes in Figs. 3 and 4 re-
flect only the diagonal elements of the state error covariance
matrix. It is useful to check potential cross-correlation of er-
ror by looking at off-diagonal elements. Specific blocks of
the correlation matrix are illustrated in Fig. 6. The top pan-
els in Fig. 6 show the uncertainty correlations for state vari-
ables of the same type at different altitudes, with, of course,
100 % correlation on the diagonal. We see that the uncer-
tainty in the aerosol backscatter has significant correlation
throughout the profile. This cross-correlation is related to the
uncertainties in the relative calibration (gain ratios) and con-
trast ratio which were included as potential systematic er-
ror sources. Recall that the uncertainty in retrieved aerosol
backscatter is small; this correlation shows that much of that
small uncertainty is due to the systematic uncertainty. Like-
wise, off-diagonal correlation in the aerosol linear depolar-
ization ratio uncertainty is primarily related to depolariza-
tion cross-talk parameter χ , but again the overall uncertainty
is low, and that indicates that the small uncertainty is domi-
nated by systematic uncertainty. The pattern in the lidar ra-
tio uncertainty covariance, with some negative correlations
on the off-diagonals nearest to the diagonal, reflect the fact
that the lidar ratio is related to the difference between nearby
measurement bins, and also reflects the impact of the con-
trast ratio. There is little or no correlation between uncertain-
ties in the lidar ratio at distant altitudes, since the lidar ratio
depends only on these nearby differences and has no depen-
dence on absolute scaling. The bottom panels of Fig. 6 show
cross-correlations between uncertainties for state parameters
of different types. There is some cross-correlation between
the aerosol backscatter and lidar ratio uncertainties at the
same level (i.e. along the diagonal) which is related to the
cross-talk between the particulate-dominated and molecular-
dominated channels, reflecting that an error in the contrast
ratio causes a bias in retrieved aerosol backscatter and oscil-
lation in the lidar ratio (Burton et al., 2018). There is little
cross-correlation in uncertainty between aerosol linear de-
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Figure 5. These figures show measurement residual profiles in blue for OE and in orange for the analytic retrieval for (a) the molecular
dominated attenuated backscatter channel, (b) the particulate dominated attenuated backscatter channel, and (c) the perpendicular attenu-
ated backscatter channel. The residuals are the difference between the simulated measurements and the reconstructed measurements. The
measurement uncertainty envelopes are represented in black.

polarization ratio and either of the other profile quantities,
except in isolated strips at high altitude where there is no
aerosol and so very little signal.

Figure 6 shows correlation between profile quantities, but
the covariance matrix also includes rows that indicate corre-
lation between the uncertainty in the profile quantities and
the scalar quantities, K ′ and χ . There is significant nega-
tive correlation (not shown) between the uncertainty in over-
all scaling factor, K ′, and the backscatter uncertainty profile,
as expected. Correlations of the overall scaling factor uncer-
tainty with lidar ratio and aerosol depolarization ratio uncer-
tainties are near zero. Likewise, there is predictably signif-
icant correlation between the uncertainty in the depolariza-
tion cross-talk parameter, χ , and the aerosol depolarization
ratio uncertainties, whereas correlations between uncertain-
ties in this parameter and the aerosol backscatter and lidar
ratio are near zero. All of these patterns are expected and re-
flect that errors (although small) in the backscatter profile are
partially systematic and correlated with the calibration con-
stant and likewise that the errors in the depolarization ratio
profile are partially systematic and correlated with the depo-
larization cross-talk parameter.

3.3 Degrees of Freedom and Effective Resolution

The averaging kernel matrix is given by

A=
(

JT S−1
y J+S−1

a

)−1
JT S−1

y J (15)

and is closely related to the propagated variance-covariance
matrix Ŝ (compare Eq. 12).

The trace of the averaging kernel matrix is the degrees of
freedom (DOF) of the signal (Rodgers, 2000), a measure of
how much information the signal (that is, the measurements)
contributes to the retrieval of each quantity. Profiles of the de-
grees of freedom of the signal are shown in Fig. 7a. The cal-
culation for extinction uses a similar transform as in Eq. (14)

and relates to the variance-covariance matrix Sext instead of
Ŝ. For aerosol backscatter coefficient and linear depolariza-
tion ratio, the DOF is near unity for the whole profile, since
even in the presence of noise, the analytic solution is hardly
improved by the additional consideration of the prior. For
the lidar ratio (and by extension, for the extinction which is
formed from the lidar ratio and backscatter), the DOF varies
with altitude, being largest in regions with the largest signals.
The inverse of the DOF gives an estimator of the effective
vertical resolution of the retrieval, since it shows the scale
over which elements of the solution vector are independent.
The effective resolution varies between quantities and with
altitude, as shown in Fig. 7b.

In this study we distinguish between the “grid spacing”
and the “effective resolution”, where effective resolution
refers to the inverse of the DOF. The effective resolution can
be quantitatively interpreted as an estimate of the distance
over which elements of the retrieved state vector can be con-
sidered independent and uncorrelated. For instance, in a re-
gion of the profile with high signal-to-noise ratio, it may be
possible to retrieve the same or nearly the same number of in-
dependent state vector elements as measurements, whereas in
regions with lower signal, more neighboring measurements
must be considered to produce a single independent estima-
tor of a state vector element. For aerosol backscatter and
linear depolarization ratio, the effective resolution is essen-
tially constant and very close to the grid spacing, reflecting
the nearly perfect information content of the measurements.
For aerosol lidar ratio and extinction, the effective resolu-
tion is coarser than the solution grid, especially in regions of
the profile where the signal is smaller and the measurement
uncertainty is correspondingly greater. In this case, there is
some active regularization of the profile due to the use of the
prior, and this coarsens the effective resolution beyond the
grid scale.
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Figure 6. Portions of the a posteriori error covariance matrix are shown which illustrate the correlation in propagated uncertainty between
the aerosol backscatter at all altitudes (a), the lidar ratio at all altitudes (b), and the aerosol linear depolarization ratio at all altitudes (c), as
well as cross correlations between aerosol lidar ratio and backscatter (d), aerosol linear depolarization ratio and backscatter coefficient (e),
and aerosol linear depolarization ratio and lidar ratio (f).

Figure 7. (a) Profiles of the degrees of freedom of the signal for
each retrieved quantity (plus aerosol extinction) as a function of
altitude, for the simulated case discussed above. (b) The inverse
of the DOF is a measure of the effective vertical resolution of the
retrieval.

3.4 Trade-off between uncertainty and effective
resolution

The solution grid being coarser than the measurement grid
is important for noise reduction. Multiple measurements fall
within a single vertical bin, reducing the impact of measure-
ment noise. For the solution of aerosol backscatter coeffi-
cient, the propagated uncertainty drops roughly proportional
to the square root of either the grid spacing or the effective

vertical resolution, as more measurement points are incor-
porated into each vertical bin. This is illustrated in Fig. 8a
which shows the propagation of random uncertainties for the
OE and analytic retrievals of backscatter in the altitude range
from approximately 2.5 to 5 km as the retrieval was repeated
multiple times at different grid scales. (For this figure, sys-
tematic errors in calibration parameters were ignored in the
error propagation for both retrieval methods).

Figure 8b illustrates the effective vertical resolution and
uncertainty for the aerosol extinction coefficient, at around
2.5–5 km altitude, from both retrievals. The y axis of this fig-
ure again represents the propagated random uncertainty, ne-
glecting systematic uncertainty in calibration and cross-talk
parameters. Since the analytic solution uses no information
other than the signals (i.e. no prior), the effective vertical res-
olution is simply the grid scale; that is, the retrieval errors at
each grid point are independent of those at other grid points.
However, for the Optimal Estimation retrieval, the effective
vertical resolution is coarser than the vertical grid. The x-
axis location of the black dots indicates the effective verti-
cal resolution, as defined in the previous section. Thin black
lines connecting to the axis also indicate the grid scale used
for each retrieval; for example, using a vertical grid scale of
405 m led to an effective vertical resolution of 473 m. The
propagated uncertainty from the analytic solution of extinc-
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Figure 8. As the spacing of the vertical solution grid is varied in the
simulated data case, the propagated uncertainty and effective verti-
cal resolution of the aerosol backscatter coefficient retrieved in the
2.5–5 km altitude range are shown in panel (a). Panel (b) shows the
aerosol extinction uncertainty and the vertical resolution of the ex-
tinction and lidar ratio. In both panels, black indicates the results for
Optimal Estimation and blue-green indicates the analytical retrieval.
The x coordinate of each data point is the effective vertical resolu-
tion, while thin black lines connect back to the numerical value of
the grid scale on the same axis. In the case of aerosol backscatter
coefficient in panel (a), the grid and resolution are very similar, so
the lines are mostly vertical.

tion falls off rapidly as the grid is coarsened, more rapidly
than the backscatter curve seen above, and the effective ver-
tical resolution for the analytic solution is the same as the
grid scale.

For OE, there is a minimum achievable effective resolution
for extinction. This reflects the balance between the measure-
ment uncertainty term and the prior uncertainty term in the
cost function. Retrievals at finer grid scales do not achieve
finer effective vertical resolution because the prior has a
greater impact; the measurement uncertainty at these fine
grid scales asymptotes to the prior uncertainty, and the reso-
lution is coarse because solutions in neighboring grid points
are not independent of the prior solution or of each other. At
grid scales coarser than the one that leads to the minimum ef-
fective resolution, the usual trade-off between propagated un-
certainty and vertical resolution prevails, with coarser reso-
lutions associated with smaller propagated uncertainties. The
grid scale used for the solutions shown in Sect. 3 was 285 m,
very close to the scale that produces the minimum effective
vertical resolution. To achieve a similar uncertainty, the ana-
lytic retrieval would have to be performed at a grid scale or
resolution coarser than 500 m. For any grid scale, the extinc-
tion uncertainty from the OE solution is smaller than that in
the analytic retrieval.

4 Real data case

Finally, we apply the retrieval to a real measurement case, us-
ing observations at 355 nm from the airborne HSRL-2 (OR-
ACLES Science Team, 2017). These observations were made
near the end of a transit flight to the ORACLES field mission,
26 August 2016. This measurement was located approxi-
mately 460 km west of Walvis Bay, Namibia. The relatively

Figure 9. Symbols show measured range-square-corrected rela-
tively calibrated lidar signals in three detector channels for the real
data case. From left to right, blue diamonds indicate the perpendic-
ular channel multiplied by a factor of 10; orange circles show the
molecular-dominated backscatter channel, and black squares show
the particulate-dominated channel.

calibrated measurement signals are shown in Fig. 9. The rea-
son for selecting this case rather than one from the core OR-
ACLES science mission is the presence of dust, which exer-
cises the ability to solve for aerosol linear depolarization ra-
tio. The specific profile was also selected because it is cloud
free. Further development of the optimal estimation retrieval
is required to work with cloudy profiles, but that is beyond
the scope of this initial study.

The two gain ratios required for Eqs. (3)–(5) as well as the
filter function are determined as in Hair et al. (2008). These
quantities are already applied to the input of the algorithm;
these are therefore relatively calibrated signals. The uncer-
tainties in the gain ratios for this retrieval are taken to be
5 %. No absolute calibration is given or assessed for HSRL-
2 data, since the analytic solution does not require it. Within
the optimal estimation algorithm, it is included as a nuisance
parameter to be retrieved, merely to match the overall scaling
within the cost function.

At 355 nm, the HSRL-2 instrument makes use of an in-
terferometer with very good but not perfect separation be-
tween the two HSRL channels. For this study, data from three
355 nm channels were used: total (particulate plus molecu-
lar) perpendicular signal, molecular dominated parallel sig-
nal and particulate dominated parallel signal.

Details of the NASA Langley HSRL-2 measurement strat-
egy at 355 nm as well as the algorithm used to determine
the contrast ratio (sometimes called cross-talk) between the
two HSRL channels are given by Burton et al. (2018). The
molecular signal is split between the two channels evenly by
design, so A=C= 0.5 in Eqs. (3)–(4), and there is negli-
gible light lost within the interferometer so B +D= 1. In
the selected case, the estimated contrast ratio (D/B) is 57.35
with an uncertainty of 5 %. Thus, B = 0.017 and D= 0.983
in Eqs. (3)–(4).

Standard archival products from HSRL-2 for the ORA-
CLES field mission use a 60 s average for the retrieval of

https://doi.org/10.5194/amt-18-6527-2025 Atmos. Meas. Tech., 18, 6527–6543, 2025



6538 S. P. Burton et al.: Optimal Estimation retrieval for HSRL

Figure 10. The extinction uncertainty and effective vertical resolu-
tion from an Optimal Estimation retrieval on the real data case are
shown for the altitude range 1.5–2 km, as the vertical grid for the
retrieval is varied. Thin lines connect each point to the value of the
grid spacing for that run on the x axis scale.

extinction, and a 10 s average for backscatter. Here for this
example, a 10 s averaged signal profile was used to test the
retrievals in the presence of more noise. The vertical range
of the data is from the ocean surface to 12 km. The data were
binned onto a 15 m vertical grid, after screening data near
and below the ocean surface.

Random uncertainties estimated from instrument parame-
ters are provided in some but not all archived HSRL-2 files.
Instead of these, we estimate the measurement uncertainties
using the local vertical standard deviation over a running
150 m window for use in Eq. (11). This may artificially in-
flate uncertainties near the edges of aerosol features but is
sufficient for the tests presented in this paper.

Results

Even with horizontal averaging minimized, there is less noise
than the simulated case, so we are able to solve with a finer
vertical grid spacing of 165 m. Figure 10 shows the anal-
ysis of the behavior of the uncertainty and effective verti-
cal resolution for the extinction profile as the grid spacing
is changed, similar to Fig. 8b. This analysis is performed
between 1.5 and 2 km, which is near the maximum in the
retrieved aerosol backscatter profile (Fig. 14). This figure
shows that for this case, the finest effective vertical resolution
for the extinction (and lidar ratio) profile that can be achieved
is about 220 m, which occurs for the retrieval with 165 m grid
spacing.

Figure 11 shows the results for the OE and analytic re-
trievals of the real data case, for the altitude range where
there is measurable aerosol. As in the simulated case, the re-
trieval results for aerosol backscatter and linear depolariza-
tion ratio are very similar between the two retrievals, while
the retrieved lidar ratio and extinction are less noisy from OE
than from the analytic retrieval and likewise have smaller de-
rived uncertainties. We note that the displayed analytic re-
trieval of aerosol extinction is noisier than the publicly avail-

able HSRL-2 archived product because the 10 s average is
less horizontal smoothing than used in standard processing.

The overall scaling factor is solved with an uncertainty of
0.13 %, which is a much smaller uncertainty than the simu-
lated case, due to the smaller measurement noise and finer
vertical grid spacing, leading to, in effect, more indepen-
dent measurements of the aerosol-free part of the profile.
The solution for the depolarization cross-talk parameter is
0.9917± 0.0007.

The correlations for the uncertainties for the profiles of
aerosol backscatter, lidar ratio and depolarization ratio from
the Optimal Estimation retrieval are illustrated in blocks as
before in Fig. 12, for the entire altitude range of the retrieval.
As before, large correlations indicate that the uncertainties
are dominated by systematic uncertainty, and frequently oc-
cur where the total uncertainty is relatively small. The cor-
relation matrix for the aerosol backscatter is strongly diago-
nal, with some enhanced correlation at higher altitudes where
there is little aerosol, due to the increasing influence of the
prior. There is less correlation otherwise since the uncertainty
in the overall scaling is very low. Some off-diagonal corre-
lation in the aerosol linear depolarization ratio throughout
the profile is again also related to uncertainty in the depolar-
ization cross-talk parameter. There is some cross-correlation
between the aerosol backscatter and lidar ratio uncertain-
ties close to the diagonal which is related to the cross-talk
between the particulate and molecular channels, reflecting
that an error in the contrast ratio causes a bias in retrieved
aerosol backscatter and oscillation in the lidar ratio (Burton
et al., 2018). Again, there is very little cross-correlation in
uncertainty between aerosol linear depolarization ratio and
either of the other profile quantities. The rows of the correla-
tion matrix corresponding to the scalar quantities are similar
to the simulated case, again reflecting the expected sources
for the systematic uncertainties. Specifically, large correla-
tions exist between uncertainties for the overall scaling fac-
tor with the backscatter profile uncertainties, and between the
depolarization cross-talk parameter with the aerosol depo-
larization ratio profile, with near zero correlations for other
combinations.

The profiles of residuals illustrated in Fig. 13 demonstrate
that the retrieval is of good quality and reproduces the mea-
surements within the measurement uncertainty, and therefore
did not suffer undue influence from the prior profile. The
cost function is 1.02 with a total normalized residual of 0.99.
Separated by channel, the normalized residuals are 0.84 for
the molecular-dominated channel, 1.10 for the particulate-
dominated channel, and 1.05 for the perpendicular channel.

The effective resolution derived from the degrees of free-
dom of the measurements is shown in Fig. 14. As in the sim-
ulated case, the vertical grid scale (here 165 m) is the mini-
mum possible value of the effective resolution derived from
the degrees of freedom. The aerosol backscatter coefficient
profile meets this minimum throughout the profile, and the
aerosol linear depolarization ratio profile meets the minimum
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Figure 11. A real data case from measurements made by airborne HSRL-2 near the end of a transit flight to the ORACLES field mission,
26 August 2016. This measurement was located approximately 460 km west of Walvis Bay, Namibia. The profile was selected because it is
cloud free and because the enhanced depolarization due to the presence of some dust in a layer below 1 km altitude tests the ability to solve
for aerosol depolarization ratio. Panels (a)–(d) show the retrieved state variable profiles from the optimal estimation (blue) and the traditional
analytic method (orange). Panels (e)–(h) show the a posteriori uncertainty of the OE retrieval and the propagated random uncertainty for the
analytic retrieval; these are also represented as error bars on the top panels. The relative uncertainties are calculated using the retrieved value
in the denominator.

Figure 12. Like Fig. 6 but for the real data case, these panels illustrate the correlation in propagated uncertainty between the aerosol
backscatter at all altitudes (a), the lidar ratio at all altitudes (b), and the aerosol linear depolarization ratio at all altitudes (c), as well as cross
correlations between aerosol lidar ratio and backscatter (d), aerosol linear depolarization ratio and backscatter coefficient (e), and aerosol
linear depolarization ratio and lidar ratio (f).
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Figure 13. Measurement residual profiles in blue for OE and in orange for the analytic retrieval for (a) the molecular dominated attenuated
backscatter channel, (b) the particle dominated attenuated backscatter channel, and (c) the perpendicular attenuated backscatter channel.

Figure 14. Profiles of effective vertical resolution of the OE re-
trieval of aerosol backscatter (blue circles), lidar ratio (orange
squares), aerosol linear depolarization ratio (pink triangles), and ex-
tinction (black plusses). The vertical grid scale is 165 m.

through a large portion of the profile. The lidar ratio (and
extinction, which is derived from it) have coarser effective
resolution, which varies with altitude. Their minimum val-
ues occur where the signals are strongest and therefore the
information content is the greatest, but then above 4 km, the
effective resolution becomes very large as aerosol loading
approaches zero and the prior profile comes into effect. The
effective vertical resolution of lidar ratio and extinction are
also large at 0.5 km, where aerosol loading is also small and
the prior has significant impact.

5 Conclusion

An Optimal Estimation procedure has been constructed for
the retrieval of aerosol backscatter, lidar ratio and linear de-
polarization ratio from noisy High Spectral Resolution Lidar
measurements. Simulated data is retrieved, matching both the
simulated true state and the simulated measurements with
high accuracy. The retrievals of lidar ratio and extinction
have smaller errors and smaller uncertainties than analytic
retrievals with the same data set. Residuals are examined

and are in excellent agreement with the measurements within
measurement uncertainty.

The particular strengths of the OE regularization technique
are that it adapts to the effective amount of information at
each level, avoiding over-smoothing when the SNR is large
while at the same time limiting unruly propagation of er-
ror when the SNR is small. In this study, we avoid over-
constraining the solution by using a loose and conservative
prior uncertainty. This is feasible due to the relatively high
information content of HSRL measurements, along with the
use of a solution grid that is coarser than the measurement
grid, permitting the same benefits as smoothing of the in-
puts, but with a formally correct accounting of the attenua-
tion within each layer of the coarser grid. In this study we
illustrate the trade-offs between effective resolution and un-
certainty using our methodology and demonstrate how the
effective resolution and degrees of freedom vary throughout
the state profile.

Another benefit of OE compared to other regularization
methodologies is the relative ease of mathematically propa-
gating both random and systematic uncertainty, including the
systematic uncertainty related to the assumed prior solution
itself. In this study, we are careful to include other important
potential sources of systematic error, including relative cali-
bration and cross-talk calibration parameters, and include the
overall calibration as a nuisance parameter. While it is easy to
characterize input uncertainties as either random (e.g. mea-
surement noise) or systematic (e.g. calibration errors), after
propagation through the lidar equations, output uncertainties
are not as easy to describe in those simple terms. For exam-
ple, contrast ratio or cross-talk calibration error can lead to
greater errors at sharp gradients in the profile, and uncertain-
ties can be correlated within a profile or between quantities.
Covariance matrices are shown to provide the complete char-
acterization of propagated uncertainty.

Finally, the retrieval is also demonstrated here for a real
data case of airborne HSRL-2 data from the ORACLES field
mission, implementing a finer horizontal resolution than was
used for processing the field mission archive data. Future
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work on automated data preparation, including cloud clear-
ing, would allow the practical use of this retrieval for full
flight curtains. For application to space or for solving within
optically thin clouds or the tops of clouds would also require
treatment of multiple scattering, as in Donovan et al. (2024)
or Mason et al. (2023).
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