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Abstract. Atmospheric rivers (ARs) are long filaments that
transport large amounts of water vapor from the Tropics to
mid- and high latitudes. They are directly related to heavy
precipitation and extreme weather leading to flooding and
mud slides. Accurate identification of AR structures over
the ocean is important to improve the forecast of their land-
fall location and timing. Global Navigation Satellite Systems
(GNSS) radio occultation (RO) is a space-based technique
that can measure meteorological variables with high vertical
resolution. While RO can observe structures like ARs in in-
dividual RO profiles, RO observations have non-uniform and
sparse spatial and temporal sampling, so it is not yet possible
to fully characterize AR morphology using RO alone.

In this work, we use previous research in which we applied
machine learning (ML) to enhance the spatial and tempo-
ral resolution of RO observations. Here, we train neural net-
works (NNs) to map RO observations and help resolve ARs.
Analyses using existing RO data, such as from the COSMIC-
2 mission, showed that the sampling density is insufficient
to resolve and geo-locate ARs. Adding observations from
the other available missions (for example METOP) improved
matters, but was still insufficient to reliably reconstruct AR
structure.

We undertake a study to determine how many LEO RO
satellites would be needed to quantify the structure, location,
and timing of ARs. We simulate RO observations as would
be obtained with Walker constellations of 12, 24, 36, 48 and
60 LEO RO satellites. First, we investigate possible constel-
lations for proper AR monitoring. We aim for constellations
that lead to hourly RO counts that change as little as possible

during the AR (up to several days). This allows us to resolve
ARs with similar accuracy during the scenario. We conclude
that 3 or 6 orbital planes and inclinations between 85 and
90° perform best. Second, we make use of 12 h forecasts of
the European Centre for Medium-range Weather Forecasts
(ECMWF) system to interpolate the forecasts to the simu-
lated RO constellation sampling coordinates. Third, we use
the ECMWF-based RO observations to train ML models and
map them to the ECMWF grid. We compare ML-mapped RO
sampled grids to ECMWF products in a closed-loop valida-
tion. Initially, we map RO refractivity at 2 km geopotential
height, where small-scale structures related to water vapor
are visible. We find that at least 36 RO satellites are needed
to characterize the morphology of ARs in the Pacific basin
with useful precision and accuracy (from the ML produced
maps). Then, we use a framework with two consecutive NNs
to map column-integrated water vapor (IWV) from profiles
of RO. The first NN maps the refractivity into IWV, and the
second NN maps the IWV spatially. In this case, we find that
a constellation of 48 satellites is needed to continuously map
IWV fields accurately and thus reconstruct the morphology
of ARs with useful precision and accuracy. Finally, when us-
ing RO, we find that mapping refractivity into IWV is less
accurate over land than over oceans. To further improve the
AR mapping over land, we made use of IWV from ground-
based (GB) GNSS. The significantly higher spatial and tem-
poral resolutions of GB data compared to RO lead to much
improved IWV fields and thus AR path and shape over land.
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1 Introduction

Global Navigation Satellite Systems (GNSS) radio occulta-
tion (RO) is a well-established remote sensing space tech-
nique, where GNSS signals are received by satellites in low-
Earth orbit (LEO). The atmosphere along the signal path re-
fractively bends the GNSS signals, and the induced delays
can be converted into bending angles which can further be
reduced to profiles of refractivity (Kursinski et al., 1997;
Kursinski et al., 2000; Mannucci et al., 2021; Melbourne,
2004). Using background atmospheric models, valuable in-
formation for temperature and water vapor is acquired by
breaking down the refractivity values (Kursinski et al., 2000).
The main features that make GNSS RO very attractive to
meteorologists and climatologists are its long-term stability,
all weather capabilities (not affected by clouds and rainfall),
global coverage, absolute accuracy, high vertical resolution
(100 m), and the fact that RO receivers are low-cost, low-
power and compact sensors (Kursinski et al., 2000). The hor-
izontal resolution of RO is 1.5 km in the cross-track direction.
The horizontal resolution of an RO sounding in the along-
track direction almost certainly depends on the effective ver-
tical resolution of the retrieval. Through a 100 m atmospheric
layer, the horizontal path of an RO ray is ∼ 70 km. This can
be considered an optimistic horizontal resolution of an RO
sounding.

In the horizontal dimension, RO data are heterogeneous in
sampling density because of the uncoordinated orbital con-
figuration of multiple RO spacecraft; GNSS constellations’
orbits also lead to non-uniform RO observations. This leads
to incomplete local time and meridional coverage as well as
weak singularities at specific latitudes (Leroy et al., 2012).
Additionally, RO sampling density has never been large
enough to sample every cell of atmospheric synoptic variabil-
ity, thus greater numbers of RO soundings should continue to
improve our knowledge of the atmosphere without diminish-
ing returns. (A cell is approximately described by the atmo-
spheric Rossby radius of deformation (about 1000 km) and a
span of several hours.)

To overcome the drawbacks of low horizontal sampling,
(Leroy et al., 2012) used Bayesian inference to map RO
data and study synoptic variabilities. Shehaj et al. (2023)
used neural networks (NNs) to further improve the hori-
zontal mapping of RO data; additionally, NNs could signifi-
cantly increase the temporal resolution. This is beneficial for
weather phenomena developing at short time scales. This re-
search leverages the methodology developed in Shehaj et al.
(2023) using RO observations to resolve atmospheric rivers
(ARs).

ARs are narrow maritime atmospheric low-level jets that
transport large amounts of moisture from the Tropics into
the mid- and high latitudes, often impinging on the conti-
nents (Newell et al., 1992; Zhu and Newell, 1994; Newell and
Zhu, 1994). ARs can release massive amounts of moisture in
the form of precipitation (NOAA, 2023). Depending on the

size and intensity of the AR, it might lead to extreme pre-
cipitation (Leung and Qian, 2009; Guan et al., 2010; Lavers
and Villarini, 2013; Guan et al., 2016; Lamjiri et al., 2017
Chen et al., 2018; Huning et al., 2019). ARs are related to
higher risk of flooding events (Ralph et al., 2006; Leung and
Qian, 2009; Lavers et al., 2011; Konrad and Dettinger, 2017;
Curry et al., 2019), high sea water levels (Khouakhi and Vil-
larini, 2016) and snow accumulation (Gorodetskaya et al.,
2014). The amount of water ARs transport is comparable to
average flow at the mouth of the Mississippi river (NOAA,
2023). In addition, their implicit connection to extratropical
cyclone strength has been discussed (Zhu and Newell, 1994).
Zhang et al. (2018) show that ARs can contribute to the in-
tensification of extratropical cyclones. The collection “Atmo-
spheric Rivers”, a first effort containing selected research as-
sociated to ARs in Geophysical Research Letters (agupubs,
2019), encompasses many papers that show the connection
of ARs to extreme weather events, the challenges/capabili-
ties of weather prediction models to forecast/model/predict
ARs, and the relationship between climate and ARs.

The more recent collection named “Atmospheric Rivers:
Intersection of Weather and Climate” in Journal of Geophys-
ical Research Atmospheres (agupubs, 2024), presents further
findings confirming the relationship between heavy precip-
itation/snowfall and ARs, capturing recent advances in nu-
merical weather prediction (NWP) model capability to mod-
el/forecast ARs, comparing features in different ARs, evalu-
ating the relationship between temperature and ARs, the ef-
fects of ARs on aerosols, modeling future ARs, and assessing
the response of ARs to current climate change effects such as
Arctic ice loss or mountain ice melting. Zheng et al. (2021)
shows that in-situ (dropsonde) observations along ARs im-
prove forecast models and Haase et al. (2021) shows that air-
borne ROs along rivers help distinguish key characteristics
of ARs.

AR widths are typically 1000 km, and their lengths
2000 km or longer (Zhu and Newell, 1998). The total pre-
cipitable (column-integrated) water vapor is at least 20 mm
(20 kg m−2) (Ralph et al., 2004). While they cover only 10 %
of Earth’s circumference, ARs are still responsible for 90 %
of the total meridional moisture transport (Zhu and Newell,
1998).

Previous works have utilized RO for ARs. Ma et al. (2011)
shows the importance of assimilation of RO data in NWM for
improving AR forecasting. Bonafoni et al. (2019) review the
importance of GNSS RO (and ground-based) data for observ-
ing, understanding and predicting extreme events. Murphy
and Haase (2022) evaluate GNSS RO profiles in the vicinity
of ARs. Cao et al. (2025) and Haase et al. (2021) study a cam-
paign of airborne RO flying during AR events, describing the
system, evaluating collected data, and showing their impor-
tance to distinguish AR characteristics, as well as the impact
of the assimilation of airborne RO data in forecast models
to predict ARs. Rahimi and Foelsche (2025) analyze spe-
cific humidity profiles and IWV from RO to study the verti-
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cal structure of ARs, concluding that ARs provide additional
vertically-resolved information not contained in background
or operational analyses.

Similar to GNSS RO, the high moisture in ARs is reflected
in ground-based (GB) GNSS precipitable water vapor obser-
vations (Wang et al., 2019). While such data cannot help to
reconstruct initial formation of ARs, the data are very use-
ful to sense the intensity of ARs when they reach landfall.
These observations are characterized by high temporal (up
to few minutes) and horizontal (depending on the network)
resolutions. Typically, GB GNSS networks are dense due to
low costs and because they serve other purposes, for example
monitoring of earthquakes (Blewitt et al., 2018).

Machine learning has been applied to RO data for differ-
ent purposes, with many studies claiming promising results.
Hooda et al. (2023) uses machine learning to improve the
water vapor retrieval from RO profiles. Lasota (2021) trains
different machine learning models capable of retrieving tro-
pospheric profiles of pressure, temperature and water vapor
without using external data. Chu et al. (2022) uses ML and
RO to forecast wind fields. Hammouti et al. (2024) and Con-
nor et al. (2021) apply ML to detect volcanic clouds and
cloud signature, respectively. Other studies apply machine
learning to ionospheric products of RO data; Pham and Juang
(2015) aims to improve the retrieval of electron density for
RO observations, and Ji et al. (2024) detect ionosphere scin-
tillation.

The goal of this paper is to utilize ML-mapped RO prod-
ucts to reconstruct the hourly evolution of ARs. The main
questions that we address are: what type of RO constella-
tion is necessary to resolve AR structures and, what is the
optimal number of satellites that can accurately reconstruct
our selected AR. We aim to resolve the total amount of wa-
ter vapor present in ARs. In this context, RO profiles are
mapped into hourly fields of IWV using two sequential NNs.
Furthermore, we exploit the high temporal and spatial reso-
lution IWVs from GB GNSS to further enhance the recon-
struction of ARs over land. The RO signal dynamics become
very complicated, and consequently tracking an RO signal in
the planetary boundary layer (PBL) becomes difficult. Con-
sequently, sometimes RO signals are not able to penetrate
deeply into the PBL. In addition, present retrieval algorithms
for RO must deal with several complications in the PBL such
as spherical asymmetry (Ahmad and Tyler, 1998; Ahmad and
Tyler, 1999), RO signal loss, and truncation by operational
retrieval systems. Also, RO retrievals are less precise due to
apparent noisy behavior in the retrieved profiles of refractiv-
ity and water vapor. Most importantly, super-refraction in-
duces negative biases in retrieved refractivity, which is asso-
ciated with steep vertical gradients of water vapor and the re-
sulting extreme bending of RO rays (Sokolovskiy, 2003; Ao,
2007; Xie et al., 2010). Advanced algorithms have been pro-
posed to ameliorate such biases in retrieval (Xie et al., 2006;
Wang et al., 2020; Wang et al., 2024), but have yet to be
applied to program-of-record data. Before applying the ML

algorithms to actual RO data to measure AR water vapor con-
tent, RO retrieval algorithms that account for super-refraction
must be applied operationally. Nevertheless, because the goal
of our project is one of RO sampling densities, we assume
perfect precision and accuracy in RO retrieval, leaving im-
provement in retrieval performance in the PBL to other on-
going research programs. In addition, it is important to point
out that often RO data can be exploited down to the surface
right in center of the ARs, where WV values are high, but
gradients are not.

Section 2 describes the selected AR scenario and the
methodology. Section 3 shows the chosen LEO constella-
tions and the simulated RO data using the European Cen-
ter for Medium-Range Weather Forecasts (ECMWF) model;
then, it displays the results of different LEO constellations to
reconstruct ARs. Section 4 shows the results when using cur-
rently available actual RO observations. Section 5 shows the
enhancement of AR mapping over lands using GB GNSS.
Section 6 summarizes the results and future work.

2 AR scenario and method to map RO data

In this section, we present the AR scenario that we use for
our analysis and give an overview of the ML method used to
map the RO observations to reconstruct the AR.

2.1 AR scenario

We focus on the North Pacific and ARs that landfall along the
west coast of North America. In this region, ARs are mainly
responsible for extreme precipitation events, contributing to
30 %–50 % of the annual precipitation (Dettinger, 2013). Fig-
ure 1 depicts the AR scenario reported on the website of US
National Weather Service, (NOAA, 2021). The left plot of
Fig. 1 shows the region (90–160° W and 10–60° N), and the
right plot of Fig. 1 depicts the AR as a blue stream from the
Pacific Ocean towards the US coast. The AR was visualized
using ECMWF forecast data.

This AR lasted about 2 d during 24 and 25 October 2021.
It was indicated in long range models by 18 October, and on
20 October the models were showing a high to moderate AR
that could lead to high precipitation. This was abnormal con-
sidering the AR was happening early for the region (NOAA,
2021). The river evolved together with a bomb-cyclogenesis
cyclone which developed above the river. Heavy rainfall pre-
cipitated on 24 October in the San Francisco Bay Area of
the U.S. The AR led to strong winds, flood warnings in all
the region, storms that caused flooding, fallen trees, power
outages and minor mudslides. The event also generated large
and powerful waves along the Pacific coast of the U.S. 24
October was the wettest day ever for many cities around the
San Francisco Bay Area, as reported in table “Heavy Rain”
in NOAA (2021).
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Figure 1. AR scenario visualized using 12 h forecast ECMWF data, with a resolution of 0.1°. The left panel shows the scene, and the right
panel shows the refractivity at 2 km height on the 24 October 2021 at 19:00 UTC, (similar to Shehaj, 2023). The purple rectangle highlights
the AR.

The evolution of the selected AR can be seen in the Sup-
plement where videos of ECMWF refractivity and IWV
fields are included.

2.2 Machine learning

The machine learning (ML) approach used here is based on
Shehaj et al. (2025), in which we mapped global climatolo-
gies. In this work, we focus on mapping RO data at a more
regional scale where the AR occurs. Our ML algorithm is a
classical artificial fully connected NN, where the first layer
has the inputs, the last layer the outputs and each neuron of
one layer is connected to all the neurons of the previous layer
(Haykin, 2009). This is also known as Multilayer Percep-
tron (MLP). NNs are one of the most important algorithms
in ML, proven generalizable across several fields. We have
successfully used NNs in previous research to map RO or
GB GNSS tropospheric products (Shehaj et al., 2023; She-
haj, 2023; Shehaj et al., 2025; Miotti et al., 2020).

The loss function that the network aims to minimize is the
mean squared error (mse) between the targets and model out-
put, the latter of which is dependent on the weights and bi-
ases of each neuron. The stochastic gradient descent is used
to find the local minimum of the function. The nonlineari-
ties between inputs and outputs are defined using the activa-
tion function, in this case the Rectified Linear unit Function
(ReLu) (Nwankpa et al., 2018). To avoid numerical issues,
we have standardized the feature data before training, center-
ing them around zero and using the variance to scale them,
as typically performed in many ML applications.

After the overview of the scenario and the ML method, the
next section presents our approach to resolve ARs.

3 Approach to detect ARs from RO and ML

In this section, we present our approach to reconstruct ARs
using simulated ROs in a closed-loop validation. In a first
step, we investigate different LEO constellations’ designs to

define suitable constellations for monitoring ARs. We use the
LEO and GNSS orbits to define the locations and times of
ROs, and the ECMWF weather model to simulate RO obser-
vations. In a second step, we train ML based on the simu-
lated RO observations, and then map the RO quantities to the
ECMWF grids for a closed-loop validation. We evaluate our
approach for RO-based refractivities and IWV, by analysing
the reconstruction of the AR for different LEO constellations
to conclude on the necessary minimum number of satellites.

3.1 First step: Simulated RO observations of LEO
constellations designed for AR detection

We investigate the sounding density that would be required
to analyse the location and morphology of an AR. Commer-
cial RO companies around the world are now projecting RO
sounding densities exceeding 100 000 daily, (Spire, 2024).
For this purpose, we will examine different LEO constella-
tion designs in order to conclude (a) what constellations are
suitable to continuously and accurately monitor ARs, and
(b) what is the minimum number of satellites that leads to
an appropriate amount of RO observations for our purpose.
Here, we define the amount of RO observations as appropri-
ate if it is sufficient to reconstruct the humidity in the AR.
We choose to work with Walker constellations because they
promise the most uniform possible RO coverage globally and
in local time and because they are infinitely scalable. Exam-
ples of constellations designed for uniform coverage are the
medium Earth orbit (MEO) GNSS constellations themselves,
which were developed to meet specifications of the minimum
number of satellites that would be visible above the horizon
at any time from any point on Earth. Although we will fo-
cus our analysis on the AR scenario located in the US West
Coast, discussed in Sect. 2.1, we expect our results to be valid
for ARs occurring in other regions globally.

In Sect. 3.1.1, we analyse different orbital parameters
to design an optimal constellation for monitoring ARs. In
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Sect. 3.1.2, for the defined constellations, we display sim-
ulated RO refractivity and IWV based on NWM data.

3.1.1 Simulated Walker Constellations

We test Walker constellations with 12, 24, 36, 48, and 60
satellites, to decide on the minimum number of satellites ap-
propriate for monitoring ARs. For all constellations, we set
the eccentricity equal to 0 and the altitude to 800 km. Every
LEO satellite can track RO events of 30 Global Positioning
System satellites, 23 GLONASS satellites, 17 Galileo satel-
lites, and 48 BeiDou satellites. These satellites were all op-
erational on the dates of the AR event described in Sect. 2.1.
The GNSS satellite orbits are taken from the two-line ele-
ment records of CelesTrak (2024) for October 2021 and are
propagated in time using SGP4 (2024). To evaluate constel-
lation performance, we count the number of RO observations
in the AR region that results from using different Walker con-
stellation configurations. We also consider the temporal uni-
formity of the sampling density since we aim to monitor and
reconstruct the AR structure continuously in time.

The free parameters of a Walker constellation are the num-
ber of orbit planes uniformly distributed in right ascension of
the ascending node (RAAN), the number of satellites in each
orbit plane distributed evenly in argument of latitude, the ec-
centricity and argument of perigee of each plane, the altitude
of the orbit planes, and a parameter describing how the satel-
lites’ orbit anomalies (timing) are staggered between planes.
We consider only circular orbits, so the eccentricity is zero
and the argument of perigee is undefined. We also fix the al-
titude of the orbits to 800 km. We compute the hourly RO
counts for inclinations every 5° in the interval 65 to 100°,
with 3–6 orbit planes, and with 12, 24, 36, 48, and 60 total
satellites. Over four-days, an inclination of 100° corresponds
to a nearly sun-synchronous orbit.

Figure 2 displays the hourly number of RO counts in the
AR region (10 to 60° N and 90 to 160° W) for an ensemble
of the RO count simulations. Figure 3 displays the hourly RO
counts in the AR region for inclinations of 85° for 3, 4, and
6 orbital planes for constellations of 12, 24, 36, 48, and 60
satellites. Table 1 summarizes the statistics in terms of av-
erage and standard deviation (SD) of the hourly RO counts.
The Walker constellation parameters that exert the greatest
influence on the hourly number of RO observations in the
AR region are the number of orbit planes and their inclina-
tion for a fixed number of satellites. The inclination changes
the distribution of RO soundings since low inclination leads
to absence of coverage at high latitudes. For example, the
COSMIC-2 mission with an inclination of 24° supports col-
lecting RO up to ∼ 45° latitude.

This analysis has several prominent outcomes. (1) Three-
and four-plane configurations show strong periodicity in the
hourly RO counts. The periodicity itself depends on the num-
ber of orbital planes and on their inclination, and the timing
of the extrema depends on inclination. (2) The least tempo-

ral variation of hourly RO counts for 3 planes happens at 90°
inclinations, and for 4 planes at 65° inclination. For 6 planes,
the temporal variation of hourly RO counts is very small for
all inclinations, with a minimum at 85° inclination. (3) For
constellations with 3 planes, inclinations of 65° and 100°
lead to the largest average hourly RO counts. 85° inclina-
tion leads to the least average hourly RO counts; see Table 1.
For constellations with 3 planes, inclinations of 65° lead to
the highest variation of hourly RO counts, while 90° inclina-
tions lead to the lowest variation. (4) For constellations with
4 planes, inclinations of 65° lead to the largest average hourly
RO counts, while 95° inclinations lead to the lowest average
hourly RO counts. For constellations with 4 planes, inclina-
tions of 95° lead to the largest variation of hourly RO counts,
while 65° inclinations lead to the least variation of hourly RO
counts. (5) For constellations with 6 planes, inclinations of
65° lead to the largest average hourly RO counts, while 85°
inclinations lead to the least average hourly RO counts. For
constellations with 6 planes, inclinations of 65° lead to the
largest variation of hourly RO counts, while 85° inclinations
(70° for 12 satellites) lead to the least variation of hourly RO
counts.

Heuristically, any LEO RO receiver in a high-inclination
orbit obtains approximately 500 soundings per day per
tracked GNSS constellation. This derives from a single satel-
lite orbiting the Earth approximately 14 times daily and there
being approximately 30 transmitters in a GNSS constella-
tion, with the RO receiver tracking both rising (fore-viewed)
RO soundings and setting (aft-viewed) RO soundings.

Using larger numbers of RO soundings and temporal uni-
formity as the criteria, we settle on the final configurations
for our ML exercises:

– 12 satellites: 3 planes and 90° inclination, yielding
145K global soundings, 8992 in the AR region;

– 24 satellites: 6 planes and 85° inclination, yielding
290K global soundings, 17 571 in the AR region;

– 36 satellites: 6 planes and 85° inclination, yielding
434K global soundings, 26 343 in the AR region;

– 48 satellites: 6 planes and 85° inclination, yielding
579K global soundings, 35 153 in the AR region;

– 60 satellites: 6 planes and 85° inclination, yielding
724K global soundings, 43 956 in the AR region.

The RO counts in Table 2 are for the entire 4 d period of
23–26 October 2021.

From our simulations, we achieve about 180K occultations
daily with a constellation of 60 satellites. While the number
of current LEO RO satellites is already around 60 satellites,
the number of RO counts reported is much lower compared
to our simulation. This is because of different factors, for ex-
ample, some LEO RO constellations do not collect data from
all available GNSS, in real constellations some data are not
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Figure 2. Hourly number of RO counts for Walker constellations of RO receivers in orbit planes with inclinations of 65, 80, 90, and 100° in
the AR region. On the left are displayed the cases for 12-satellite constellations and on the right the cases for 60-satellite constellations. The
top, middle and bottom panels represent the cases of 3, 4 and 6 orbital planes.

Figure 3. Hourly number of RO counts for 85°-inclination orbit planes, in the AR region, for 12, 24, 36, 48, and 60 satellites. The top, middle
and bottom panels represent the cases of 3, 4 and 6 orbital planes.

reported or difficult to obtain statistics on because they are
considered “bad” or poor-quality observations. In addition,
different LEO RO satellites only collect data up to a cer-
tain latitude, e.g., COMSIC-2 only collects data from 45° S
to 45° N. Finally, as we will see in the following sections, the
goal is to simulate a high-performing constellation in order
to reconstruct the IWV field in the AR scene; we find that the
statistical improvement is relatively small when we consider
60 satellites compared to 48 satellites (see Sect. 3.2.2 and

Sect. 3.2.3), so we did not expand the constellation beyond
60 in this work.

We also studied constellation design for another AR in the
UK region between 30 September and 3 October. The hourly
number of ROs and the number of planes is similar to the
event on the US West Coast. Differences appear for the in-
clination, where for the UK event an inclination of 100° ap-
pears more appropriate. This difference is mainly caused by
the different GNSS TLEs for the two events. Using the same
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Table 1. Temporal means and standard deviations (SD) of hourly RO counts for constellations of 12 and 60 satellites, for 3, 4 and 6 planes,
and for inclinations ranging from 65 to 100°. The bold values represent the highest value for the Mean and the smallest value for the SD
amongst the different inclinations.

12 satellites

Inclination [° ] 65 70 75 80 85 90 95 100

3 planes Mean 99.7 95.4 96.3 95.9 90.8 93.7 93.2 99.3
SD 32.9 23.0 23.5 17.0 9.0 6.6 11.5 20.2

4 planes Mean 98.5 98.1 96.9 94.2 93.3 92.4 91.9 98.2
SD 10.5 12.0 14.6 16.8 17.7 16.7 18.6 15.0

6 planes Mean 98.5 98.1 95.8 94.4 91.6 92.7 94.7 97.5
SD 8.0 7.1 7.2 7.5 7.2 7.9 7.2 7.6

60 satellites

Inclination [° ] 65 70 75 80 85 90 95 100

3 planes Mean 496.7 478.4 482.9 479.8 452.9 468.5 466.5 497.5
SD 164.0 114.4 116.4 82.6 40.7 28.7 55.5 98.8

4 planes Mean 492.1 490.1 483.3 471.7 465.3 462.8 459.3 489.6
SD 45.3 50.3 68.1 79.1 81.8 76.6 88.0 69.2

6 planes Mean 492.8 491.5 481.7 472.9 458.4 463.2 471.9 490.6
SD 32.2 25.0 23.2 25.0 20.3 28.9 28.2 25.5

Table 2. Final configurations of the LEO constellations.

Number of LEO Planes Inclination Number of global Number of soundings
satellites [° ] soundings [K] in the AR region

12 3 90 145 8992
24 6 85 290 17 571
36 6 85 434 26 343
48 6 85 579 35 153
60 6 85 724 43 956

TLEs leads to similar results for both scenarios. We point out
that for 6 planes, the variation of hourly RO counts is simi-
lar for the different inclinations. The variations for different
inclinations for 3 and 4 planes are much more noticeable, as
also reported in Table 1.

3.1.2 Refractivity and IWV from ECMWF

In this section, we display the simulated RO observations that
result from the selected Walker constellations in Sect. 3.1.1.
We use 12 to 23 h forecast fields (at an hourly cadence) from
the ECMWF operational 4DVar data assimilation system,
and the time and location where ROs geometrically occur, to
simulate the RO observations. Fields are published on 0.1°
grid in latitude and longitude. We used pressure p, tempera-
ture T , and water vapor pressure pw to compute refractivity
(Rueger, 2002):

N = (n− 1)× 106
=

(
77.6890KhPa−1

) (p−pw)

T

+

(
71.2952KhPa−1

) pw

T
+

(
375463K2 hPa−1

) pw

T 2 , (1)

When interpolating the model to the times and locations of
RO, we took the model refractivity profile in the cell nearest
to the RO sounding and interpolated linearly the vertical di-
mension. Figure 4 displays the simulated refractivity at 2 km
geopotential height. The refractivity plots show structures re-
lated to water vapor, which are also strongly correlated with
boundary layer clouds. The AR structure is not obvious in
these plots that collect four days of simulated refractivity be-
cause the AR changes position in that time frame.

Figure 5 displays the simulated refractivity based on
ECMWF, for the case of 12 satellites LEO constellation, for
1 to 10 km geopotential heights above the ground. The refrac-
tivity at different heights above ground shows similar struc-
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Figure 4. Simulated refractivity at 2 km geopotential height, based on ECMWF, for constellations of 12, 24, 36, 48, and 60 satellite constel-
lations, during 23 to 26 October 2021.

Figure 5. Simulated refractivity from 1 to 10 km height above the ground, based on ECMWF, during 23 to 26 October 2021. Here we display
the case of 12-satellite constellations.

ture over land. This reflects the terrain altitude (not shown
here). We will use the refractivity at different altitudes above
ground to map the IWV.

We use an ML approach to retrieving column-integrated
water vapor given refractivity values at discrete geopoten-
tial heights at 1 km intervals above the surface topography
up to 10 km above the surface. ECMWF forecasts are used
as the training data set. ECMWF is a layer-based model that
publishes temperature and humidity intended to represent
a layer of fluid and the pressures and heights at the inter-
faces between the model layers (ECMWF, 2024). Layer in-
dices are denoted as integers and layer boundaries as half-
integers. The pressure for layer i is determined by pi =(
pi−1/2+pi+1/2

)
/2 and similarly for layer heights hi . The

integrated water vapor (IWV) for layer i is calculated by

IWVi =Qi

(
pi+1/2−pi−1/2

)
/g0 (2)

where, Qi is the specific humidity for layer i, g0 is the WMO
standard mean sea-level acceleration due to gravity, equal to
9.80665 m s−2. The total column IWV is the sum of the in-
dividual layer integrated water vapors over all model layers.
The ECMWF operational data assimilation system has 137
model layers.

Figure 6 displays IWV calculated from ECMWF at the
simulated RO geolocations. The IWV (from the ground) is a
useful meteorological observation to model the total amount
of water vapor in the AR structure. Again, from these stacked
datasets (over 4 d), the AR shape and path is not obvious.

3.2 Second step: Machine learning framework to
detect AR from RO

This section displays the results of ML applied to ECMWF-
based RO simulated data to reconstruct the AR structure
for the constellations simulated in Sect. 3.1. Section 3.2.1
summarizes the input variables, output variables and hyper-
parameters for the different NNs used in this work. Sec-
tion 3.2.2 shows the results of reconstructing the AR at 2 km
height. In Sect. 3.2.3, we show the results of reconstructing
the entire IWV in the AR scenario, using two consecutive
NNs. The first NN is used to map refractivity profiles into
IWV (called mappable-IWV) and the second NN is used to
spatially interpolate the mappable-IWVs.

In this work, we aim to use RO to reconstruct (and moni-
tor) an AR. By reconstruction we consider the capability of
the ML model to produce fields of refractivity and IWV that
describe the spatial and temporal morphology of ARs and
quantify moisture associated with them to a degree sufficient
for atmospheric studies. The reconstructed fields can be used
to continuously monitor ARs.

We also point out that the ML-mapped quantities (such as
refractivity and IWV) are the result of an ensemble of 10 dif-
ferent NN trained models. This makes our results more gen-
eral and robust to randomness of the trained model caused
by initialization of model parameters, stochastic optimiza-
tion algorithms that randomly sample the data points or pos-
sible GPU precision and optimization implementation (Al-
tarabichi et al., 2024).

Atmos. Meas. Tech., 18, 6659–6680, 2025 https://doi.org/10.5194/amt-18-6659-2025



E. Shehaj et al.: A feasibility study to reconstruct atmospheric rivers 6667

Figure 6. IWV, based on ECMWF, for constellations of 12, 24, 36, 48, and 60 satellites, during 23 to 26 October 2021.

3.2.1 Architecture and hyperparameters tuning

In this work, we test two approaches to reconstructing the
AR structure. In the first approach, we train NNs that can
map the refractivity at 2 km iso-height with high horizon-
tal and temporal resolution. The NN-mapped fields displayed
here have a temporal resolution of 1 h and a horizontal res-
olution of 0.5°; these resolutions are enough for our visu-
alization/evaluation; however it is possible to interpolate at a
higher resolution. These numbers are sufficient to resolve the
spatial and temporal scales of ARs (Zhu and Newell, 1998).
The NN learns to map the refractivity from the geolocations
(and times) of the RO soundings. In the second approach, we
used refractivity profiles in the geopotential height interval
1–10 km above the ground in 1 km intervals to compute and
map IWV with high horizontal and temporal resolution. In
this case two sequential NNs are used. The first NN maps
refractivity profiles to IWV for each refractivity profile. In
this step, the surface geopotential height and sine and cosine
of local (solar) time are also input to the NN. The second
NN is trained to spatially (and temporally) map the IWVs
from the soundings horizontally, including geolocation, sur-
face geopotential, and UTC time as inputs.

Table 3 provides a summary of all the NNs used in this
work. In addition to the input and target variables, we also
show the chosen hyperparameters and architectures of the
NNs, which are selected based on the statistics of the vali-
dation set. These parameters are selected after tuning each
of the NNs individually for the three different mappings –
spatial mapping of refractivity, computing IWV from refrac-
tivity profiles, and spatially mapping IWV – for the different
satellite constellations (12, 24, 36, 48, 60). We formulate a
NN with standard hyperparameters for each of the three NN
types; see Table 3. When mapping refractivity, we consider
30 000 epochs and a batch size of 100; however, the learning
rate and the number of layers depend on the number of satel-
lites in the Walker constellation. When computing IWV from
refractivity profiles, we use 30 000 epochs, a batch size of 50,
a learning rate of 1× 10−4, and always 5 layers. When com-
puting maps of IWV from IWV soundings, we use 30 000
epochs, a batch size of 100, a learning rate of 1×10−3, and 5
layers. Considering that the postfit residuals can vary slightly
when applying different models, different ML algorithms, or
a (slightly) different input dataset, further tuning is not nec-
essary.

3.2.2 Horizontal mapping of refractivity at 2 km
iso-height

We trained ML using the simulated refractivity data at 2 km
shown in Fig. 4, in Sect. 3.1.2. Initially, we randomly split the
data into training and test datasets, where 80 % was used for
training and 20 % for testing. We used a random 10 % sub-
set of the training dataset for validation. We computed the
SD and mean relative error (MRE) of the residuals of the test
dataset for the constellations of 12, 24, 36, 48, and 60 satel-
lites. The post-fit residuals had SDs of 6.1, 5.5, 4.7, 4.6, and
4.3 N -units and mean-residual-errors of 1.6 %, 1.4 %, 1.2 %,
1.2 %, and 1.1 % for those same 5 constellations in the given
order. Post-fit residuals are reduced when using more satel-
lites no matter what metric we use; nonetheless, diminishing
returns on the increase in the number of satellites becomes
noticeable at 36 satellites.

We validate our approach by comparing the ECMWF fore-
casts to our ML analysis interpolated onto the ECMWF
longitude-latitude grid. Fig. 7 (top panels) displays ECMWF
and the ML analyses of the refractivity field at 2 km geopo-
tential height for one epoch during the AR and the differ-
ences. The reconstructed field improves with the increasing
number of satellites. With 12 and 24 satellites, an impor-
tant part of the river is not reconstructed well. We need at
least 36 satellites to reconstruct the AR well and we need
60 satellites to also model some parts of the cyclone off the
shore of British Columbia. The presence of the AR is ap-
parent with all five constellation configurations; increasing
the number of satellites, however, has the effect of refining
the horizontal resolution and fine-scale structures in the AR.
The improvement in fine-scale structure is reflected in the
smaller residuals with increasing number of satellites, shown
in Fig. 7 (bottom panels). The improved horizontal resolution
is further confirmed by the smaller SDs of the differences be-
tween ECMWF and ML-mapped grids for increasing number
of satellites, shown in Fig. 8. Increased horizontal resolution
also leads to better estimations of maxima in refractivity as-
sociated with AR along its entire length. Similar figures are
produced for the entire scenario and stacked together as a
movie, attached to this publication (see Video S1 in the Sup-
plement).

The hourly time series of the SD of the residuals (in the
bottom panels of Fig. 7) are displayed in Fig. 8. We can see
the improvement from 12 to 24 satellites and a clear improve-
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Table 3. Summary of the NNs developed for this work. Here, we show the input and target variables, as well as the tuned hyperparameters
and architecture of the NNs. Only the hyperparameters whose tuning affects the results are displayed here.

Input Output Constellation Hyperparameters Architecture

Epochs Learning Batch Number of Number of
rate size layers neurons

Mapping of – Latitude N 12 satellites 30’000 1e-3 100 7
refractivity – Longitude 24 satellites 1e-4 10
at 2 km – UTC time 36 satellites 1e-4 10

48 satellites 5e-5 10
60 satellites 5e-5 10

Refractivity – N 1 km IWV All cases 30’000 1e-4 50 5 Layer 1: 512
1–10 km – N 2 km Layer 2: n: 128
above – . . .
ground – N 10 km
mapped to – Cosine of LT
IWV – Sine of LT

– Surface topography

Mapping of – Latitude IWV All cases 30’000 1e-3 100 5
ground IWV – Longitude

– UTC time
– Surface topography

Figure 7. Refractivity fields at 2 km geopotential height, for 25 October 2021, at 03:00. Top panels: the left panel shows the ECMWF forecast
field and the other panels show the ML-based fields when using constellations of 60, 48, 36, 24, and 12 satellites. Bottom panels: differences
between the ECMWF field and the ML mapped fields.

ment from 24 to 60 satellites. The average SD for the 4 days
duration of the scenario are 6.6, 5.7, 5.1, 4.8, 4.6 N -units for
12, 24, 36, 48, and 60 satellites, respectively.

3.2.3 AR from IWV framework

We use a framework with 2 sequential NNs to reconstruct the
AR shape in terms of IWV using RO profiles and to perform
a closed-loop validation with the ECMWF grid. Figure 9 dis-
plays the flow chart, composed of three blocks: (1) we sim-
ulate the observations based on ECMWF, (2) we infer IWV

from refractivity profiles, and (3) we map IWV in the hor-
izontal. In this way we produce continuous IWV fields and
compare them with the original ECMWF IWV analyses.

We include all RO locations simulated using the propaga-
tors. Simulation studies have shown that only 70 % of poten-
tial RO soundings are actually recorded by actual RO mis-
sions. We point out that to make our experiments as realistic
as possible, as shown in the flow chart, only 50 % of the sim-
ulated RO profiles are used to train the 1st NN. The 2nd 50 %
is used to produce IWVs at untrained locations and they will
train the 2nd NN to map the final IWV fields and study the
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Figure 8. Time series of the SDs of the hourly differences between the ECMWF refractivity field and the ML-mapped refractivity fields at
2 km geopotential height for the different satellite constellations.

Figure 9. Flow chart of mapping IWV fields from simulated RO profiles. The flow chart consists of three main parts. The first part is the
simulation of the observations where the orbits of the LEO Walker constellations (and GNSS), and ECMWF forecast grids are used to
simulate RO observations. The second part is the first NN where refractivity profiles are mapped into IWV over the surface topography. The
sine and cosine of the local time and the surface topography are also used as input variables. The output of this part are the mappable-IWVs.
The third part is the second NN where the model is trained to map the mappable-IWVs spatially. This model can be used to produce grids of
IWVs (same locations as ECMWF grid) and compare the ML-mapped IWV fields with ECMWF fields, in a closed-loop validation.

AR structure. Using 100 % of the data to train the 1st NN is
not realistic because the resulting mappable-IWVs are not in-
dependent. Indeed, in a real-case scenario, we would obtain
refractivity profiles from RO, and to map the profiles into
IWVs we must use already trained NN models. Clearly these
NN models must be trained using other datasets.

Considering that in RO processing we lose many observa-
tions because of processing adversities and not being able to
process all current GNSS satellites, this amount of data can
be considered conservative.

IWV inferred from refractivity profiles

We trained NNs for the different constellations where we
mapped the refractivity from 1 to 10 km height above the
ground to IWV. We use refractivity at 1 km intervals up to
10 km above the surface for several reasons. The choice of
profiles in the 1–10 km interval is conservative considering
that in the lowest part of the atmosphere RO-retrieved re-
fractivity is less accurate due to ducting and super-refraction,
multipath, SNR attenuation or spherical symmetry in the at-
mosphere which have less accuracy for strong horizontal gra-
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dients. There is no simple retrieval of water vapor from re-
fractivity values in the lower atmosphere without a prior,
such as an atmospheric forecast, thus preventing retrieval
and vertical integration of water vapor to obtain a column-
integrated value. Thus, we rely instead on a few indica-
tive values in the PBL and information on the atmospheric
dynamical state, which information is contained in values
throughout the tropospheric column. A good machine learn-
ing algorithm should be able to discern the meteorology of
the local environment and draw on this information to estab-
lish a relationship between the refractivity values in the lower
troposphere, where water vapor contributes most to refrac-
tivity, and column-integrated water vapor. Our motivation is
justified by our results, which are found in Table 4.

The results in terms of residuals on the 50 % dataset not
used for training are displayed in Fig. 10. For simplicity, we
display only 3 constellations. For constellations with 12, 24,
36, 48, and 60 satellites, respectively, the SDs of the residuals
are 2.0, 1.7, 1.6, 1.5 and 1.5 mm of precipitable water, while
the MREs are 8.4 %, 6.8 %, 6.2 %, 5.7 % and 5.5 %. Note
that 1 mm of precipitable water is equal to 1 kg m−2 of mass
per unit area of column IWV. These statistics reflect the im-
portance of larger amounts of data to map IWV. In addition,
Fig. 10 shows regions of higher than usual residuals. One
such region is the ocean-continent boundary, caused by mi-
crometeorological phenomena associated with those bound-
aries. Another region is the Colorado Plateau, where most of
the water vapor is trapped in the lowest 1 km part of the at-
mosphere because of large-scale subsidence. Inferred IWV
in this circumstance is expected to be erroneous because our
NN uses no input below 1 km height above the surface. In
addition, errors in IWV over the continents are enhanced be-
cause of micrometeorology. Our NN trains only on a subset
of RO soundings, which cannot be completely representative
of all micrometeorological environments because of small-
scale spatial heterogeneity, leaving some micrometeorolog-
ical environments unsampled and thus subject to erroneous
inference by the NN. Lastly, large residuals seen over the
ocean are caused by abrupt horizontal discontinuities in IWV,
especially near the AR itself, where large refractivity gradi-
ents occur within a few kilometers.

In order to account for micrometeorological influences
of topography we included topography as defined by the
ECMWF model as input parameter for the NN for each
sounding. This is to account for the fact that the terrain on
continents varies much more significantly than the terrain
over ocean. In addition, we added the sine and cosine of solar
angle (local time) as input variables in order to provide the
neural network additional information for the on-shore/off-
shore flow and related diurnal cycles of water vapor. Both
the sine and the cosine are provided in order to circumvent
discontinuities across midnight that arise when instead pro-
viding a scalar on a finite [0.24] hour interval.

Using only 50 % of the data for training the model, we
lose an important part of the observations. We also performed

tests where we used 80 % of the entire dataset to train the
model and 20 % to test it. The results for the test dataset are
summarized in Table 4. We also computed separate statistics
of the mapped IWVs over ocean and over land. The statistics
over land and over ocean are similar in terms of SD, however
MRE reveals elevated error over land relative to over ocean.
We also trained models to learn the mapping over ocean and
over land independently. We found no notable improvement
in performance in the latter experiment; thus, we proceed to
only consider joint land-ocean learning only. The results of
mapping separately ocean and land show that the IWVs over
ground, visible in Fig. 6, are more difficult to map. One rea-
son is the larger variation of the surface topography. For this
reason, in Sect. 5, we augment the IWV data set with ground-
based GPS station measurements of IWV.

Continuous IWV fields from mappable-IWV

We use the mappable-IWVs produced from the 1st NN (the
NN that maps refractivity into IWV) to map continuous fields
of IWVs. The error of the mappable-IWVs was shown in the
previous section (for example Fig. 10 shows their differences
to ECMWF IWVs). The mappable-IWVs, used to map IWV
spatially (and thus produce continuous IWV fields), are for
the profiles not trained in the 1st NN. This is for 50 % of the
simulated ROs, as shown in the flow chart in Fig. 9.

Figure 11 (top panels) displays the IWV fields, for one
epoch during the AR, for the ECMWF forecast model (left
panel) and the reconstructed fields mapped with ML, for the
different constellation configurations (60, 48, 36, 24, and 12
satellites from left to right). The bottom row displays the
difference between the ECMWF field and the ML-mapped
fields. The reconstructed field clearly improves with increas-
ing number of satellites. From the residuals (bottom panels of
Fig. 11), we also see how the number of large value residuals
(dark blue or dark red) decreases with increasing number of
satellites. Again, similar figures are produced for the entire
scenario and stacked together as an animation in Video S2.

The hourly SD of the residuals (bottom panels of Fig. 11)
are displayed in Fig. 12. Both the SD and the MRE are re-
duced with increasing numbers of satellites in the constel-
lation, but improvement becomes marginal beyond 48 satel-
lites. For 12, 24, 36, 48 and 60 satellites the average SDs
of the differences are. 3.2, 2.6, 2.2, 2.1 and 2.0 mm; an incre-
ment of 12 satellites improves the results by∼ 19 % (12 to 24
satellites),∼ 15 % (24 to 36 satellites),∼ 5 % (36 to 48 satel-
lites) and∼ 5 % (48 to 60 satellites). The average MREs (not
visualized here) are 12.1 %, 9.9 %, 8.7 %, 8.0 % and 7.5 %;
an increment of 12 satellites improves the results by ∼ 18 %
(12 to 24 satellites),∼ 12 % (24 to 36 satellites),∼ 8 % (36 to
48 satellites) and ∼ 6 % (48 to 60 satellites). These numbers
indicate that information saturates beyond 48 satellites.

To further study how the error from the first network
propagates into the output of the second network, we also
mapped the “true” ECMWF IWVs spatially, for the same
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Figure 10. Differences between ML-mapped IWVs from refractivity profiles and IWVs simulated from ECMWF. The mapped IWVs are
produced for the 50 % of the dataset that was not used to train the ML model. Here we display the differences for constellations of 12, 36
and 60 satellites.

Table 4. Statistics of the differences between the ML mapped IWVs from refractivity profiles and the IWVs simulated using ECMWF model,
for the 80 % test dataset. The statistics, in terms of SD and MRE, are computed for the entire scene, for only the IWVs over ocean and for
the IWVs over land.

N unit 12 satellites 24 satellites 36 satellites 48 satellites 60 satellites

All data SD [mm] 1.8 1.6 1.4 1.4 1.3
MRE [%] 7.6 6.0 5.5 5.2 4.8

Over Ocean SD [mm] 1.6 1.6 1.4 1.4 1.3
MRE [%] 6.0 5.3 4.4 4.4 4.1

Over Land SD [mm] 1.8 1.5 1.4 1.3 1.3
MRE [%] 9.7 7.3 6.8 6.4 6.2

50 % dataset as the mappable-IWVs. Then, we compared the
ECMWF IWV fields, and the ones mapped with the trained
NN models, i.e., computed their differences. For 12, 24, 36,
48, and 60 satellites the average SDs are 2.6, 2.1, 1.8, 1.6,
and 1.5 mm; an increment of 12 satellites improves the re-
sults by ∼ 19 % (12 to 24 satellites), ∼ 14 % (24 to 36 satel-
lites), ∼ 11 % (36 to 48 satellites), and ∼ 6 % (48 to 60 satel-
lites). The average MREs are 9.3 %, 7.4 %, 6.3 %, 5.7 %, and
5.3. %; an increment of 12 satellites improves the results by
∼ 20 % (12 to 24 satellites), ∼ 15 % (24 to 36 satellites),
∼ 10 % (36 to 48 satellites), and ∼ 7 % (48 to 60 satellites).

The statistics of the mappable-IWVs, compared to
ECMWF-based IWVs (with the same spatial distribution),
are about 20 % worse in terms of SD and about 25 % worse
in terms of MRE. This is the additional error in the final IWV
fields that propagates from the 1st NN to the 2nd NN. We
conclude that the reconstruction of an AR structure requires
a constellation of at least 48 satellites.

4 Results based on available RO refractivity
observations

We investigate how well the COSMIC-2 mission, the most
scientific RO-based mission, performs to reconstruct the AR
of our scenario, shown in Sect. 2.1. We use the COSMIC-
2 data available on the website (Earth Radio Occultation,

2024) on the Registry of Open Data on AWS (Leroy et al.,
2024), where RO observations from different missions are
collected. We evaluate the refractivity at 2 km, a height where
small-scale structures related to water vapor are visible and
so also the AR. To have a reasonable amount of data, we
use observations for six days, from 22 until 27 October;
i.e., we include two days before and after the AR. This re-
sulted in approximately 31 000 observations globally from
the COSMIC-2 mission (UCAR, 2025).

For our scenario, other observations were available from
different scientific missions such as MetOp (EUMETSAT,
2025), Paz (rohp-PAZ, 2025), KompSat5 (eoPortal, 2024),
TerraSAR-X (GFZ, 2025), as well as the publicly available
commercial data from Spire (2024). Adding these observa-
tions results in approximately 54 000 global observations of
refractivity at 2 km geopotential height. We performed two
experiments; one where only COSMIC-2 data were used, and
a second one where all the available data are used. In this
way we demonstrate the importance of higher density obser-
vations for monitoring and resolving ARs.

Using only COSMIC-2 data, we had 673 occultations for
24 and 25 October in the AR region; this results in ∼ 14 oc-
cultations hourly. Using data from COSMIC-2, MetOp, Paz,
KompSat5, TerraSAR-X, and Spire, we had 1173 occulta-
tions for 24 and 25 October in the AR region; this results
in ∼ 24.4 occultations hourly. The global datasets are visual-
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Figure 11. IWV fields, for 25 October 2021, at 03:00. Top panels: the left panel shows the ECMWF forecast field and the other panels show
the ML-based IWV fields when using constellations of 60, 48, 36, 24 and 12 satellites. Bottom panels: differences between the ECMWF
field and the ML mapped fields.

Figure 12. Time series of the SDs of the hourly differences between the ECMWF IWV field and the ML mapped IWV fields, for the different
satellite constellations.

ized in Fig. 13, and a refinement in the AR region is shown
in Fig. 14. To fill hourly every 1° latitude-longitude bin of
the AR region that we selected we would need 3,500 occul-
tations. As we can see in Figs. 13 and 14, the COSMIC-2
mission has observations up to ∼ 45° latitude, while obser-
vations from all the missions fully cover the investigated re-
gion.

We initially perform ML experiments where we split the
data into 80 % training (and validation) dataset and 20 %
testing dataset. We see an improvement of about 15 % in
standard deviation (SD) of the residuals of the test datasets
when the data from all the missions are used compared to the
case when only COSMIC-2 data are used. We produce hourly
maps of refractivity at 2 km using the COMSIC-2 dataset and
the dataset including all missions. Figures 15 and 16 display
the ML-mapped refractivity fields (center and right panels),
and the ECMWF 12 h forecast maps (left panels), for two
epochs during the AR occurrence. We computed the hourly

SDs of the differences between ECMWF and ML-based
maps. Using all RO missions rather than just COSMIC-2 re-
duces the SD from 11.49 N -units to 9.42 N -units over the
entire timespan, an approximately 18 % improvement. Con-
sidering only the latitudes covered by COSMIC-2, then the
SD falls from 11.40 N -units to 10.59 N -units when consid-
ering all missions, an approximately 7 % improvement. From
Figs. 15 and 16 we can see that the greater number of obser-
vations better tracks the AR shape for a longer duration; at
15:00, on 25 October (Fig. 16) a narrow blue stream when
we use all the observations (right panel) is visible, while us-
ing only COSMIC-2 observations results in dry values, thus,
losing the AR shape (center panel).
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Figure 13. Refractivity at 2 km height from COSMIC-2 (left panel) and all available missions (right panel), during 22 and 27 October 2021.
The purple rectangle highlights the AR scene.

Figure 14. Refractivity at 2 km height from COSMIC-2 (left panel) and all available missions (right panel), during 22 and 27 October 2021.
This is a zoom of Fig. 13 that highlights the AR scene.

5 AR in ground-based GNSS data

We saw that mapping IWVs over land is not as accurate as
over ocean. To enhance AR mapping over land we also ex-
ploit IWV estimated from ground-based (GB) GNSS. The
IWVs from GB GNSS are computed from the zenith total de-
lays, which are a principal output of GNSS processing. The
dry delay is modelled using an empirical model, such as the
Saastamoinen model (Saastamoinen, 1973), and subtracted
from the total delay. The remaining wet delay is converted
into IWV using the mean temperature from ERA5 (Yuan et
al., 2023). NNs are not needed to produce mappable-IWVs,
unlike the case of ROs.

5.1 AR in GB GNSS data

GB GNSS determinations of IWV are elevated when an AR
crosses a station, just as GNSS RO determinations of IWV
are elevated when they are located directly in an AR. The
spatial density of GB GNSS stations is especially useful in
improving the mapping of the fine structure of ARs, espe-
cially in the case of Pacific-coast stations for ARs in the
Pacific basin. Moreover, GNSS GB determinations of IWV
can be produced at a very high temporal resolution (down to
5 or 15 min). Figure 17 (right panels) show the IWV from
ECMWF 12 h forecast for two epochs, one during the AR

life cycle and one when it has ended. The black dots mark the
GNSS GB stations. The average GNSS stations distance over
the entire scene (displayed here) is 20 km, with much smaller
separations on the Pacific Coast where ARs occur. The left
panels display the IWVs processed from the Nevada Geode-
tic Laboratory (NGL) (Blewitt et al., 2018). We can clearly
see the higher values when the AR is occurring (Fig. 17, top
panels), and much lower IWV values when it has finished
(Fig. 17, bottom panels).

Figure 17 (center panels) displays the IWV from the
ECMWF model, interpolated at the NGL stations’ locations.
Their agreement with the GNSS IWVs (left panels) is visibly
very good. To be consistent with the results obtained from
the test case of simulated RO, we also use ECMWF to simu-
late IWVs for the ground-based GNSS network. In Sect. 5.2,
we use the simulated IWVs to display the improvement in
AR shape and path over land with GB GNSS compared to
RO. Similar figures are produced for the entire scenario and
stacked together as an animation in Video S3.

5.2 Continuous monitoring of ARs over land using
mapped GB GNSS data

We train a NN to spatially map the simulated IWVs for the
GNSS network, shown in Fig. 17. Then, we map IWVs at
the ECMWF grid and compute the differences between the
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Figure 15. Refractivity fields at 2 km height, for 24 October 2021, at 06:00 UTC. The left panel shows the ECMWF forecast field; the center
panel the ML-mapped field when using COSMIC-2 observations as input to train the NN; and the right panel the ML-mapped field when
using observations from all the available missions as input to train the NN.

Figure 16. Refractivity fields at 2 km height, for 25 October 2021, at 15:00. The left panel shows the ECMWF forecast field; the center panel
the ML-mapped field when using COSMIC-2 observations as input to train the NN; and the right panel the ML-mapped field when using
observations from all the available missions as input to train the NN.

“original” ECMWF IWV field and the ML-mapped IWV
field. For one epoch during the AR, Fig. 18 displays ECMWF
IWV field (left panel), the residuals for the case that simu-
lated GB GNSS data were used (right panel), and the resid-
uals for the case that ROs for a constellation of 60 satel-
lites were used to map IWVs following the framework of
Sect. 3.2.3 (center right panel). The results are displayed for
the ground area surrounded by GB GNSS stations (30 to
50° N and 90 to ∼ 125° W); mapping outside this area leads
to poor results due to extrapolation. Since the ML model is
trained with a dataset collected in a defined area (such as the
one shown in Fig. 17), the model would fail to generalize for
new meteorological environment. This is especially the case
for a highly variable gas (in space and time) such as water
vapor. From Fig. 18, we clearly see that the residuals when
mapping GB data are much smaller than when using RO data.

Figure 19 shows the hourly SDs of the residuals for the
different cases; again, these are the statistics over land for the
area in the GB GNSS network shown in the Fig. 19. There
is a clear improvement of about 65 % in SD when using GB
GNSS data. Additionally, GB GNSS IWV induces no error
from adjacent soundings with different IWV as is incurred
by RO IWV.

We also train NNs where we simultaneously use IWVs
from GB GNSS and mappable-IWVs from RO. After tun-
ing, the hyperparameters of the NNs when using GB data

are: “number of epochs” equal to 15 000, “batch size” equal
to 4000 and “learning rate” equal to 0.001. The NNs had 5
layers with 512 neurons in the first layer and 128 neurons
in the other layers. The results were similar to using only the
GB data because the number of observations does not change
much when considering ROs over land. For the 4 d scenario,
there are ∼ 330K GB observations and ∼ 7.5K RO observa-
tions over land (for the 50 % test dataset used to generate the
mappable-IWVs, see Fig. 9) assuming a 60-satellite constel-
lation. The simultaneous use of GB IWVs and RO mappable-
IWVs would be beneficial in areas with low-density GB net-
works; our study area has one of the densest GB networks
globally. We conclude that GB GNSS data are extremely
helpful to reconstruct continuously and accurately the IWV
structure of the selected AR over ground.

6 Summary, conclusions and discussion

In this work, we investigate GNSS RO as a method to re-
construct (and monitor) ARs. The high vertical resolution
of GNSS RO is important to capture the amount of water
vapor at different altitudes, for RO profiles located in the
atmospheric planetary boundary layer. One drawback with
GNSS RO is its horizontal and temporal resolution. Indeed,
the narrow width of ARs and short timescales associated
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Figure 17. AR scenario on 24 October at 13:00 when the river is occurring (top panels) and on 26 October at 09:00 when the river has
finished (bottom panels). Right panels: the ECMWF field, the dots in black are the GB GNSS stations. Left panels: IWVs from GNSS
processing, from NGL (Blewitt et al., 2018). Center panels: ECMWF IWVs interpolated at the GB GNSS locations. The green squares are
used to highlight the AR location over ground. All IWV values are for precipitable water in mm.

Figure 18. The left panel shows the ECMWF forecast IWV over ground, during 25 October 2021 at 04:00. The other panels show the
differences between the ECMWF field and the ML mapped fields for the 60-satellites constellation (center right panel), and for the case
when using GB GNSS data (right panel).

with ARs make it difficult to use current RO densities to
reconstruct ARs. With current RO data, only few (tens) of
occultations are available inside an AR scene (here defined
∼ 70°× 50° in latitude/longitude). To ameliorate this prob-
lem, we leverage our previous work, where we developed an
ML approach to map GNSS ROs, showing that our method
can increase the resolution of RO observables both spatially
(horizontally) and temporally. We focus our analysis on an
AR that hit the West Coast of the US during the 24 and 25
October 2021. This AR led to heavy precipitation, flooding
events (and warnings), storms (treefalls), power outages and
minor mud slides.

We investigate how different prospective GNSS RO LEO
constellation configurations might impact the reconstruc-
tion of the AR structure. Using an orbit propagator for the
LEO satellites and actual ephemerides of the GNSS satel-
lites, we calculate the geolocations and the times that RO
would occur. We consider RO soundings, fore and aft, that
would be obtained using the GPS, GLONASS, Galileo, and
BeiDou GNSS constellations. We use NWP forecasts from

ECMWF with 0.1° latitude/longitude resolution to interpo-
late ECMWF refractivities and IWVs to the geolocations and
times of the occultations, thus, producing simulated RO ob-
servations. By mapping the simulated ROs to the original
ECMWF grid, we can perform closed-loop validations of our
results.

In this work, we have two main objectives:

– The first goal is to design appropriate LEO constella-
tions for detection of ARs. We consider Walker con-
stellations because of their uniform RO sounding cov-
erage, symmetrical distribution of satellites and scala-
bility. We test constellations consisting of 12, 24, 36,
48 and 60 satellites. The main orbital parameters that
we investigate are the number of planes and the inclina-
tion. We find the optimal inclination to be polar orbits,
which minimize temporal variability in regional sound-
ing numbers. For a 12-satellite constellation, 3 orbital
planes and 90° inclination lead to the best results for re-
constructing ARs. For 24, 36, 48, and 60 satellites, the
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Figure 19. Time series of the SDs of the hourly differences between the ECMWF IWV field and the ML-mapped IWV fields over land, for
the different satellite constellations and for the GB GNSS case (black curve).

best option is using 6 orbital planes with an inclination
of 85°.

– After finding the best constellations, and simulating the
RO observations based on ECMWF, the second objec-
tive is to define the minimum number of satellites that
is appropriate to reconstruct accurate and continuous
AR fields. Initially, we map the refractivity at 2 km iso-
height. In this case, we notice important improvements
when increasing the number of satellites from 12 to 24
and from 24 to 60. A constellation of 36 satellites can
reconstruct the AR structure well. Then, we map the
IWV in the AR scene, using profiles of refractivity. In
this case, we use an architecture with two consecutive
NNs. The first NN is used to map the refractivity pro-
files into IWV; the output being mappable-IWVs. We
can see that mapping refractivity into IWV is less accu-
rate (at least in terms of MRE) over land compared to
locations over the ocean. The second NN uses the out-
put of the 1st NN, i.e., the mappable-IWVs, to produce
continuous fields of IWVs, i.e., to map IWV spatially
and temporally. In this case, a 48-satellite constellation
seems more appropriate to reconstruct the IWV field
during the AR. By studying fields of IWV mapped using
as inputs (1) the ML-based mappable-IWVs and (2) the
original ECMWF-based IWVs, we can also conclude
that the error propagating from the 1st NN network to
the 2nd NN is ∼ 20 % in terms of SD and ∼ 25 % in
terms of MRE. We point out that the ML results in this
study are an average of an ensemble of 10 trained NNs.

We use observations of current RO missions and map con-
tinuous fields of refractivity at 2 km height to reconstruct the
AR path and shape. We map refractivities from the COSMIC-
2 mission and refractivities from all RO missions horizon-
tally during the AR occurrence. The hourly RO counts are
14 for COSMIC-2 only and 24.4 for all missions. Due to the

low density (in both cases), while we are able to map parts
of the AR structure, it is not possible to continuously pro-
duce refractivity maps that reconstruct appropriately the AR.
However, these tests show that including more RO soundings
can benefit the reconstruction of the AR.

To enhance the reconstruction of the AR structure over
land we use observations of GB GNSS. IWVs from GB
GNSS have been used for a long time to monitor water va-
por in the atmosphere. Here, after visualizing the AR sensed
by the GB network, we map GB IWVs into gridded prod-
ucts over ground. In this case, we only need one NN to map
IWV spatially. The high temporal and spatial distribution of
GB GNSS leads to much improved (∼ 65 %) AR structure
over ground compared to the case when we use RO. The
combination of space- and ground-based GNSS observations
works very well in areas with high-density of ground-based
GNSS observations. Many atmospheric rivers occur in West-
ern Europe, Australia, New Zealand and Chile that have local
ground-based networks with a relatively high density.

There is no question that current operational RO retrievals
suffer from biases associated with super-refraction. The bi-
ases are typically −4% in refractivity, which leads to ap-
proximately−25% is water vapor. It is a long recognized and
venerable problem. On the other hand, at least three methods
have been proposed for mitigating the bias associated with
super-refraction: (1) with collocated water vapor radiometer
soundings, (2) with collocated infrared or microwave nadir
radiance data, or (3) by consideration of the synchronous sig-
nal of the RO transmitter off of the ocean surface in maritime
environments. None of these algorithms have been exercised
on program-of-record data at scale yet, and certainly modifi-
cations to GNSS RO receiver design and formation flying of
RO satellites with radiance sounder satellites are expected to
help in the future. We leave the problem of super-refraction
to the RO retrieval science community, which is very actively
making progress along these lines.
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Our study aims to provide a framework to reconstruct ARs
from space- and ground-based GNSS observations. An im-
portant part of our study is the demonstration of the ML
framework with simulated observations. While the study sets
a baseline to map and study IWV fields for AR events, there
are some limitations worth mentioning due to our simulation
design and focus on this particular AR:

– Distribution of GB GNSS networks: the GB network in
the US West Coast of the Pacific is one of the densest
GNSS networks. In areas with low density of GNSS sta-
tions, for example in Africa, the combination of GB and
RO data will bring less improvement. In this case, we
would benefit more from simultaneous IWVs from GB
and RO over ground.

– IWV at RO locations: the IWV at the RO location will
often be underestimated due to missing RO data in the
profile for the lowest hundred meters. While this is not a
problem with simulated data, there will be an increased
uncertainty from training ML models that map IWV
from refractivity profiles for real data. A possible solu-
tion is to train the RO profiles on other datasets that do
not miss the lowest IWV information such as datasets of
reprocessed weather models or microwave radiometers.

– Duration, location and lateral movement of ARs: the re-
sults we have presented are focused on one AR, a rel-
atively representative AR event. However, the duration,
location and movement vary for different ARs, which
means that while our results can be generalized to some
extent, a similar analysis would be appropriate when
considering other ARs.

– Possible combination with Special Sensor Microwave
Imager/Sounder (SSMI/S) data: while in this work we
focus on space- and ground-based GNSS data, SSMI/S
satellite data are a viable IWV source to combine with
RO over ocean. An important consideration for SSMI/S
is that such datasets may contain large gaps under rainy
and cloudy conditions that are typical in ARs. In addi-
tion, SSMI/S and other microwave radiometers can ob-
tain high sounding densities, but they are poor at dis-
cerning the vertical structure of water vapor in a col-
umn, and they are far more costly instruments. As a
consequence, they typically do not obtain good cover-
age of the diurnal cycle and leave significant gores in
their sampling patterns at low latitudes.

– Horizontal resolution of AR: in our study, in case of
simulated observations we assume RO data with very
high horizontal resolution. In case of real data, RO res-
olution is very good in the cross-track direction with
1.5 km resolution. The horizontal resolution of an RO
sounding in the along-track direction has never been
objectively quantified. It almost certainly depends on

the effective vertical resolution of the retrieval, which
is detected by radioholographic filters that are applied
in “physical optics” retrievals and on any other smooth-
ing of the raw data or retrieved profiles in the retrieval
algorithm. In theory, it should be possible to obtain ef-
fective vertical resolution of∼ 100 m in an RO retrieval.
The horizontal path of an RO ray through a 100 m atmo-
spheric layer is ∼ 70 km. We can consider this an opti-
mistic horizontal resolution of an RO sounding.
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