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Abstract. We previously developed the Cloud Height Re-
trieval from O2 Molecular Absorption (CHROMA) algo-
rithm for the Ocean Color Instrument (OCI) on the new
NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE)
mission. Here, we apply CHROMA to observations from the
Ocean Land Colour Instrument (OLCI) to guide expectations
for PACE, as it will take some time to obtain large-scale val-
idation data for OCI. We use cloud top height (CTH), phase,
and (for liquid clouds) cloud optical thickness (COT) data
from the ground-based Atmospheric Radiation Measurement
(ARM) network to evaluate the OLCI retrievals. We found
that OLCI and Moderate Resolution Imaging Spectrora-
diometer (MODIS) CTH compare similarly well to the ARM
reference. OLCI has a tendency to underestimate CTH as
CTH increases, and algorithm assumptions about cloud ge-
ometric thickness may contribute to this. ARM COT from
multifilter shadowband radiometers (MFRSR) and Sun pho-
tometers are well-correlated with one another, albeit with
a roughly 30 % offset on average; OLCI and MODIS COT
agree more closely with the MFRSR data. OLCI retrieval
uncertainty estimates show skill at telling low-uncertainty
cases from high-uncertainty ones, although CTH uncertain-
ties are underestimated. Additionally, we compare the OLCI
data to satellite retrievals based on thermal infrared measure-

ments from MODIS and Sea and Land Surface Temperature
Radiometer (SLSTR) data. Differences are broadly consis-
tent with physical expectations based on the A-band vs. ther-
mal techniques, although one key challenge in such aggre-
gated comparisons is different cloud masking sensitivities
and algorithm failure rates meaning additional sampling dif-
ferences are introduced. We conclude by discussing the tran-
sition to and possible enhancements for PACE OCI.

1 Introduction

The NASA Plankton, Aerosol, Cloud, ocean Ecosystem
(PACE) mission (https://pace.gsfc.nasa.gov, last access:
10 November 2025) launched on 8 February 2024. PACE’s
primary payload is the Ocean Color Instrument (OCI), a
broad-swath (2600 km) passive imaging radiometer with
continuous spectral coverage from the ultraviolet to near-
infrared (NIR), seven discrete channels in the NIR and short-
wave infrared (SWIR), and an approximately 1.2 km hori-
zontal pixel size at the sub-satellite point (Werdell et al.,
2019; Meister et al., 2024). OCI will be used for (among
other things) routine generation of a suite of cloud data prod-
ucts: a cloud mask, cloud optical thickness (COT) at mid-
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visible wavelengths, cloud effective radius (CER), cloud top
pressure (CTP), and cloud phase (liquid droplets or ice crys-
tals). Together COT, CER, and phase will also be used to cal-
culate cloud water path (CWP). CTP will also be transformed
to cloud top height and temperature (CTH, CTT respectively)
with the use of ancillary meteorological profiles. PACE also
carries two cubesat-sized multi-angle polarimeters, namely
the Hyper-Angle Rainbow Polarimeter 2 (HARP2; Martins
et al., 2018) and Spectro-Polarimeter for planetary EXplo-
ration (SPEXone; van Amerongen et al., 2019). These are
also expected to provide cloud retrieval products, although
they will not be further discussed here.

Several OCI cloud products have algorithmic heritage with
data from NASA’s MODerate resolution Imaging Spectrora-
diometer (MODIS) and Visible Infrared Imaging Radiometer
Suite (VIIRS) sensors (Platnick et al., 2003, 2021): specifi-
cally, the “cloud optical properties” code that generates COT,
CER, and CWP (Platnick et al., 2017) is being run on OCI.
However, unlike MODIS and VIIRS, OCI lacks thermal in-
frared (TIR) channels which were used for cloud mask, CTH,
and phase retrievals for these sensors (e.g. Menzel et al.,
2008). As a result, for OCI new cloud mask and phase algo-
rithms are being researched (Coddington et al., 2017). Sayer
et al. (2023) developed the Cloud Height Retrieval from O2
Molecular Absorption (CHROMA) algorithm to fill the other
gap: cloud top altitude. That study included simulated re-
trievals for OCI and the Ocean and Land Colour Instrument
(OLCI) on the Sentinel-3 satellites (Donlon et al., 2012),
which was identified as a suitable proxy for OCI due to sim-
ilar spatial resolution and information content in the O2 A-
band that the algorithm uses.

In advance of launch, we applied CHROMA to one month
(July 2019) of Sentinel-3A OLCI data globally and for an
extended period (October 2016 to December 2022) over sev-
eral ground validation sites. These analyses are the subject
of the present paper. Sayer et al. (2023) found that OLCI and
OCI should provide CTP with similar fidelity, so analysis of
retrievals from CHROMA applied to OLCI should provide
information useful to guide user expectations of OCI CTP
data and assist in algorithm refinements. Section 2 introduces
the OLCI instrument and a brief summary of CHROMA
(a full description is in Sayer et al., 2023), as well as the
other satellite and ground data sets used in this study. Sec-
tion 3 describes the comparison against ground-based data,
and Sect. 4 the comparison with other satellite retrievals. Fi-
nally, Sect. 5 provides a summary and some possibilities for
algorithm refinement on PACE OCI.

2 Data sets used in this study

2.1 CHROMA applied to OLCI measurements

OLCI is a pushbroom imaging radiometer with 21 spectral
channels across the visible and NIR and a swath width of

1270 km (Donlon et al., 2012). Its “reduced resolution” data
mode provides a horizontal pixel size of about 1.2 km, simi-
lar to OCI. It is tilted 12.6° westwards to decrease the amount
of Sun glint observed over oceans. OLCI flies on a Sun-
synchronous polar orbit with a 10:00 am local solar Equa-
torial crossing time on the Sentinel-3A (launched 2016) and
3B (launched 2018) satellites; only Sentinel-3A data are used
here.

The CHROMA algorithm (Sayer et al., 2023) uses four
of OLCI’s channels near the O2 A-band – named OA12 to
OA15, with nominal central wavelengths of 753.75, 761.25,
764.38, and 767.50 nm and full width at half maximum
(FWHM) of 7.5, 2.5, 3.75, and 2.5 nm respectively. It is a
Bayesian retrieval approach using the Optimal Estimation
(OE) technique (Rodgers, 2000) which accounts for uncer-
tainties on the measurements and forward radiative transfer
assumptions to simultaneously retrieve COT, CTP, and sur-
face albedo (the latter with a significant prior constraint).
The principle behind the algorithm is that the observed top-
of-atmosphere (TOA) reflectance in the so-called “window”
channel (outside the O2 A-band) at 753.75 nm is sensitive to
COT and surface albedo but not cloud altitude; given a con-
straint on albedo, the brightness in this channel is then infor-
mative on COT. The other three channels see O2 absorption
of varying strengths, and for a given COT and surface albedo
their brightness is most strongly dependent on cloud altitude.
Other parameters (including within-cloud structure, particle
microphysics, and aerosol loading) are assumed and the un-
certainty on the TOA reflectance due to these assumptions
is included in the retrieval. Advantages of OE include that, if
these uncertainties are well-specified, it provides quantitative
uncertainty estimates on the retrieved quantities, and a mea-
sure of goodness-of-fit (the “cost” statistic; Rodgers, 2000).

As is common in satellite data processing, we use pre-
calculated lookup tables (LUTs) of radiative transfer results
which are iteratively interpolated linearly to find the OE solu-
tion. There are two LUTs, one corresponding to simulations
for liquid water clouds, and another for ice phase clouds. In
both cases clouds are single-layer and single-phase. The al-
gorithm runs twice on each cloudy pixel (once per LUT) and
the retrieval with the lower cost statistic (i.e. greater consis-
tency between the measurements and forward model at the
solution) is used in subsequent analysis here. PACE OCI is
expected to have a separate cloud phase product, but none
is available for OLCI, which is why we use the lowest-cost
method. Based on expected ranges of parameters, COT is re-
trieved in log10 space on the interval [−0.5,1.6̇]; CTH (when
framed in terms of a standard atmospheric profile) on the in-
tervals [0.3,7] km for liquid-phase clouds and [3,17] km for
ice-phase clouds; and surface albedo on the interval [0,1]
(Sayer et al., 2023). We provide some additional details nec-
essary to go from simulated retrievals as in Sayer et al. (2023)
to real measurements:
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– We use the cloud mask from the operational OLCI pixel
identification algorithm (IdePix), described by Wevers
et al. (2021), and only process cloudy pixels with solar
zenith angles smaller than 80°.

– We use Modern-Era Retrospective Analysis for Re-
search and Applications, Version 2 (MERRA-2) me-
teorological profiles to account for variations in atmo-
spheric pressure and convert retrievals between CTP
and CTH, and snow/ice cover status for each pixel
(Gelaro and Coauthors, 2017). These data are available
on a 0.5° latitude by 0.625° longitude grid at an hourly
cadence.

– The prior surface albedo is obtained from the version
2.1 TROPOspheric Monitoring Instrument (TROPOMI)
Lambertian equivalent reflectivity (LER) data base
(Tilstra et al., 2024). This provides a climatology of
spectral monthly LER on a 0.125° equal-angle grid; we
use the 758 nm value (taken as spectrally flat across the
four OLCI channels). For each month, two values are
tabulated, corresponding to climatologies from snow-
or ice- covered vs. snow- and ice- free scenes (and
the MERRA2 data inform which is used for a given
pixel). The data base also includes an optional direc-
tional modification of LER; as recommended by Tilstra
et al. (2024), the directional component is not used here
due to the opposite orbital directions of TROPOMI and
Sentinel-3. As the data base is spatially coarse, some
coasts and islands report a low water-like LER; in these
cases, if the data base’s LER is under 0.05, the pixel’s
LER is set to 0.2 with an uncertainty of 0.05 (based on
typical values and variability for land scenes in the data
base).

– Uncertainty on the prior surface albedo is also provided
within the same data base; we set a floor of 0.02 on this
to account for sub-grid variability.

– The contiguous OLCI swath is formed from five cam-
eras; the sensor design leads to an across-track vari-
ation of spectral response function commonly known
as “smile” distortion (Preusker, 2021). As a result the
retrieval LUTs include two additional dimensions ac-
counting for variation of band centre and FWHM across
each camera and with time. Preusker (2021) provides
a tool to calculate the effective central wavelength and
bandwidth for each OLCI pixel, used here. This is im-
portant because the O2 absorption features are strong
and so poor spectral response characterisation can lead
to significant biases in retrieved feature (whether cloud,
aerosol, or surface) pressure (Lindstrot et al., 2009).

– For simulated retrievals Sayer et al. (2023) assumed
a spectrally-correlated sensor calibration uncertainty (a
perfectly correlated error covariance matrix). On-orbit

Figure 1. Locations of ground sites used for CTH validation. The
site names (including acronym representation) are Ascension Island
(ASI); Sierras de Córdoba (COR); Graciosa/East North Atlantic
(ENA); Gunnison, Colorado (GUC); Houston, Texas (HOU); North
Slope of Alaska (NSA); Southern Great Plains (SGP).

calibration efforts for Sentinel-3A OLCI suggests a ra-
diometric high bias of 2 %–3 % in the relevant bands
(ESA/EUMETSAT, 2023). To account for that, here
OLCI TOA reflectances were decreased by 2.5 % for all
four bands used, and the remaining calibration uncer-
tainty was taken as 2 % and spectrally uncorrelated (i.e.
as a noise term).

– The first guess at the solution is the LUT node point
with the smallest cost function. Pixels which fail to
move from this first guess (typically clear-sky pixels er-
roneously flagged as cloud), or with a retrieval cost of
30 or more (significant misfit with observations, such as
incorrect surface model or pixel misclassification; Sayer
et al., 2023) are not considered in subsequent analysis.

2.2 Ground-based observations from ARM

The US Department of Energy’s Atmospheric Radiation
Measurement (ARM) program maintains a suite of sensors
operating routinely at several permanent facilities, as well
as shorter-term (months to a few years) deployments in sup-
port of field campaigns (Mather and Voyles, 2016; Acker-
man et al., 2016). Observations from various instruments
are combined and processed to generate “Value-Added Prod-
ucts” (VAPs, Giangrande et al., 2022), some of which are rel-
evant to validation of satellite cloud products (Shupe et al.,
2016). We use seven ARM sites here, shown in Fig. 1 (those
operating for around a year or more during the period 2016-
2022), specifically: Ascension Island (ASI); Sierras de Cór-
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doba (COR); Graciosa/East North Atlantic (ENA); Gunni-
son, Colorado (GUC); Houston, Texas (HOU); North Slope
of Alaska (NSA); Southern Great Plains (SGP). We use
datasets from the central or main facilities, contingent on
whether this is an ARM fixed (ENA, NSA, SGP) or ARM
mobile facility (AMF – the other sites) deployment; infor-
mation on AMF capabilities is provided by e.g. Miller et al.
(2016) and Giangrande et al. (2017). We use the following
VAPs:

1. Active Remote Sensing of Cloud Layers using Ka Band
ARM Zenith Radars (KAZRARSCL; Clothiaux et al.,
2001; Kollias et al., 2016). This multisensor data set
provides cloud layer boundaries (top and base height for
up to 10 layers identified in each vertical column) on a
vertical grid of 30 m with a 4 s time cadence. Typically,
CTH is the “echo top” height from the ARM Ka band
(35 GHZ) radar; however, for shallow and low-COT
clouds it is sometimes determined by micropulse lidar
(see discussion in e.g. Mechem et al., 2015; Mechem
and Giangrande, 2018). We take the CTH uncertainty
as the greater of the range of CTH within the averaging
window (see below) or the 30 m vertical grid size. This
data set is available at all ARM sites used in this study.

2. Sun photometer COT (SPHOTCOD), which is based on
the 3-channel algorithm of Chiu et al. (2012). This uses
solar zenith radiance measurements at visible and SWIR
wavelengths and is retrieved for overhead liquid-phase
clouds from patchy to overcast conditions on a 5 min
time cadence (although this is reported as a mean and
standard deviation of higher-frequency measurements).
We take the COT uncertainty as the quadrature sum
of this standard deviation and the 17 % retrieval uncer-
tainty estimated by Chiu et al. (2010). This data set is
available for only the ENA and SGP sites, and was re-
cently extensively analyzed by Sookdar et al. (2025).

3. Multifilter rotating shadowband radiometer (MFRSR)
COT (MFRSRCLDOD; Turner et al., 2021), which
is based on diffuse transmittance measurements at
415 nm. It is only available for liquid clouds and locally
overcast conditions (at least 90 % cloud cover from an
effective 160°field of view, inferred from downwelling
shortwave irradiances; Long et al., 2006). It is most
valid for a COT of approximately 7 or higher (though
lower COTs are included in the data set as well), is pro-
vided on a 1 min time cadence, and is available for the
ASI, COR, ENA, and SGP sites. The data set also in-
cludes an estimate of COT uncertainty.

4. Thermodynamic cloud phase (THERMOCLOUD-
PHASE; Shupe, 2007) takes in multiple VAPs and
identifies each cloud layer in KAZRARSCL as liquid
water droplets, ice crystals, or mixed-phase. This is
provided on a 30 s time cadence, and is only available

at the high latitude sites (COR and NSA). While
CHROMA (and MODIS) do not include mixed-phase
cloud retrievals, we retain this category in order to
better understand how the satellite retrievals behave in
these situations. Additionally, we classify as mixed-
phase any column which contains either mixed-phase
layers, or contains both liquid and ice-phase layers.

ARM is not the only available ground network suitable
for CTH validation. Another, Cloudnet, has several dozen
sites (Illingworth et al., 2007); we focus on ARM partially
because its sites are less geographically clustered (Cloudnet
sites are predominantly in Europe) and because it also offers
the opportunity to evaluate liquid COT which is not available
from Cloudnet. Satellite CTH retrievals have been evaluated
using ARM (e.g. Smith et al., 2008), Cloudnet (e.g. Wang
and Stammes, 2014; Compernolle et al., 2021), or both (e.g.
Sayer et al., 2011; Lelli et al., 2012; Vinjamuri et al., 2023) in
similar ways. As the OLCI implementation of CHROMA is
a research-level code it was not feasible to process data from
both networks, and we felt that ARM alone provided suffi-
cient data for an intial evaluation of CHROMA. For eventual
application to routine PACE OCI data, we intend to also eval-
uate at Cloudnet sites.

2.3 MODIS cloud retrievals

We use MODIS Terra data due to the similarity between
Terra and Sentinel-3 overpass times (10:30 and 10:00 am
local solar Equatorial crossing for daytime nodes, respec-
tively) and known diurnal patterns of cloud property varia-
tions which would confound comparisons if Aqua (01:30 pm
local time) were used instead.

The MODIS cloud products used here come from two sep-
arate algorithms, with a pixel size of 1 km at the sub-satellite
point. Cloud altitude is obtained from TIR bands in atmo-
spheric windows near 11 and 12 µm and so-called CO2 slic-
ing bands centred from 13 to 14 µm, which provide additional
sensitivity to optically-thin high clouds (Baum et al., 2012).
This data set does not provide pixel-level uncertainty esti-
mates. MODIS COT is obtained from a bispectral approach
(Platnick et al., 2017), combining a band at which clouds are
(almost) purely scattering (typically 650 or 865 nm) with a
SWIR band where cloud droplets absorb strongly to simul-
taneously infer COT and CER as the two measurements are
roughly orthogonal to these properties. This data set provides
pixel-level uncertainty estimates. Cloud phase is determined
through a series of tests based mostly on retrieved CER and
CTT. Finally, MODIS has a flag to indicate the suspected
presence of multi-layer clouds, which is determined from a
combination of solar vs. thermal cloud phase estimates, pre-
cipitable water retrievals, and spectral reflectance/tempera-
ture tests (Marchant et al., 2020).
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2.4 SLSTR cloud retrievals

The Sea and Land Surface Temperature Radiometer
(SLSTR) flies alongside OLCI on the Sentinel-3 satellites
(Donlon et al., 2012), and is a successor to the Along-Track
Scanning Radiometer (ATSR) sensor series. The instrument
has a nadir-looking and an aft view and measures from visi-
ble to TIR wavelengths with a pixel size of 0.5 or 1 km (de-
pendent on band).

We use data from the Optimal Retrieval of Aerosol and
Cloud (ORAC) algorithm which was previously applied to
the ATSR sensors (Sayer et al., 2011; Poulsen et al., 2012)
and others (Sus et al., 2018). ORAC (like CHROMA) is an
OE approach which simultaneously determines COT, CER,
and height from a combination of solar and thermal bands
(McGarragh et al., 2018). Cloud phase is determined using
spectral tests described by Pavolonis and Heidinger (2004)
and Pavolonis et al. (2005). The Copernicus Climate Change
Service (C3S) version 3.1.1 data set we use (Poulsen et al.,
2022) is provided at 0.1° resolution on a daily basis.

3 Evaluation against ARM data

3.1 Matchup methodology

As clouds can vary rapidly in space and time, we use fairly
strict criteria for a successful matchup to decrease the con-
tribution of spatiotemporal mismatch to apparent disagree-
ment. As the ARM data are upward-looking while the satel-
lite data are mostly off-nadir, we perform a parallax correc-
tion to account for the apparent shift in cloud horizontal loca-
tion from the satellite’s point of view. This is necessary even
for a single-viewing instrument as the satellite data are na-
tively geolocated to surface level, so there will be a distortion
unless the satellite is viewing directly at nadir. This is only
an approximate correction due to uncertainties in the satellite
CTH retrieval and unknown vertical extent. First, neglecting
local curvature (a negligible effect on these scales), the total
horizontal shift (in km) 1 is estimated as

1= h tan(θv) (1)

where h is the CTH (retrieved by satellite) and θv the view-
ing zenith angle in degrees, such that θv = 0° is a nadir view
and θv = 90° is a limb view. This shift 1 can be split into
longitudinal (1x) and latitudinal (1y) components:

1x =1sin(φv) (2)
1y =1cos(φv) (3)

here, φv is the viewing azimuth angle in degrees, measured
clockwise from North, from the satellite pixel location to the
sub-satellite point. By convention this is reported in the in-
terval [−180°,180°] in which case scenes to the east of the
sub-satellite point along the scan line have negative azimuth

and those to the west have positive; due to the periodicity of
the sin and cos functions, it mathematically does not mat-
ter whether this convention or the range 0 to 360° is used.
Assuming a spherical Earth with 110 km per degree latitude
and 110cosγ km per degree longitude (where γ is the lati-
tude), we subtract these shifts from the apparent satellite ge-
olocation (as we wish to undo the parallax-induced distor-
tion) to estimate the true latitude and longitude of the clouds
the satellite is seeing.

For both the satellite and ARM data, we calculate medians
(rather the means) for the spatiotemporal average to reduce
the impact of outliers (that can occur due to e.g. multiple
cloud systems within the averaging zone). For cloud phase,
we take the modal classification. Satellite pixels with cen-
tres within± 2 km of the ARM site, and ARM measurements
within ± 2.5 min of the satellite overpass time, are consid-
ered (except for Sun photometer COT where we use ± 5 min
due to its lower measurement frequency). Additionally, we
exclude points where the range of CTH in the ARM data is
1 km or more, as here sampling-related differences are likely
more severe. The focus of this analysis is on OLCI-ARM
comparisons. However, as MODIS is a well-used satellite
product and to provide a point of comparison to OLCI re-
sults (which has not, to our knowledge, been reported in the
literature) we also provide MODIS-ARM comparisons.

Based on physical understanding and simulated retrievals
(Sayer et al., 2023) we expect that retrieval performance
will differ between optically-thick single-layer cloud systems
(generally seen as the ideal), optically-thin single-layer sys-
tems (where there is more sensitivity to assumptions about
the underlying surface reflectance), and multi-layer systems
(where uncertainty is dependent on the properties of each
cloud layer). We therefore consider these three categories
separately for aggregate CTH statistics. The PACE mission
goal is that 65 % of scenes with a COT ≥ 3 should have a
CTP uncertainty 60 mb or smaller (Werdell et al., 2019), so
we adopt COT = 3 as the division for optically-thin cases
(using the satellite-retrieved COT), noting that this may in-
clude some cases of undetectable sub-pixel broken cloudi-
ness combined with higher-COT clouds. Additionally, we
track the fraction of matchups meeting this goal, translating
60 mb to a CTH using a standard atmospheric profile (Dubin
et al., 1976). This leads to about a 1 km uncertainty goal for
a CTH of 3 km, and about 3 km for a CTH of 12 km. We also
record the fraction meeting COT uncertainty goals of± 25 %
and ± 35 % for liquid and ice-phase clouds, respectively.

3.2 CTH comparisons

A statistical summary of the OLCI CTH validation results
are shown for each site and category in Table 1; the equiva-
lent for MODIS are in Table 2. We describe the importance
of these metrics in the discussions below. In general, we fo-
cus on robust metrics such as Spearman’s rank correlation
coefficient over Pearson’s linear correlation coefficient, and
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Table 1. OLCI CTH validation summary statistics for each site for the three analysis categories. F60 and FED are the fraction of matchups
meeting the 60 mb goal and agreeing within the expected discrepancy, respectively (the latter discussed in Sect. 3.3). RS is Spearman (rank)
correlation coefficient. Matchup count, median absolute error (MAE), and root mean square error (RMSE) are also shown. Metrics are not
reported for categories with fewer than 10 matchups.

Site Count F60 FED RS Median bias (km) MAE (km) RMSE (km)

COT < 3

All 654 0.23 0.66 0.57 −0.82 2.10 3.78
ASI 19 0.16 0.32 0.24 1.67 1.85 4.82
COR 1 – – – – – –
ENA 147 0.47 0.58 0.72 −0.56 1.47 3.75
GUC 15 0.40 1.00 0.54 −0.06 1.05 2.07
HOU 8 – – – – – –
NSA 422 0.15 0.75 0.38 −0.87 2.37 3.59
SGP 42 0.19 0.17 0.29 −3.27 3.48 5.16

Single-layer, COT ≥ 3

All 1360 0.53 0.57 0.80 −0.37 0.58 2.07
ASI 116 0.63 0.70 0.03 0.45 0.48 0.99
COR 19 0.74 0.63 0.92 −0.56 0.56 1.29
ENA 345 0.68 0.75 0.70 −0.12 0.38 1.53
GUC 81 0.33 0.30 0.51 −1.54 1.54 3.03
HOU 49 0.55 0.55 0.46 −0.35 0.67 2.99
NSA 531 0.47 0.52 0.74 −0.53 0.61 2.18
SGP 219 0.47 0.42 0.88 −0.69 0.84 2.29

Multi-layer, COT ≥ 3

All 868 0.15 0.15 0.58 −3.83 3.84 4.82
ASI 26 0.65 0.65 0.48 0.25 0.57 2.31
COR 9 – — – – – –
ENA 190 0.21 0.19 0.57 −3.63 3.65 4.96
GUC 17 0.00 0.00 0.41 −4.60 4.60 5.13
HOU 21 0.29 0.19 0.47 −1.70 1.70 4.25
NSA 481 0.12 0.13 0.50 −3.94 3.94 4.80
SGP 124 0.09 0.08 0.63 −4.14 4.14 5.15

median rather than mean bias. Some variability in retrieval
performance between sites is expected as ASI and ENA are
islands while NSA is snow-covered and at large solar zenith
angles; in Sayer et al. (2023) we found, based on simulated
retrievals, that (compared to land) errors should be smaller
for ocean scenes and larger for snow- or ice-covered scenes.
This fact is particularly relevant when examining bulk com-
parison statistics since (due to its high latitude and so more
frequent overpasses), the NSA site provides over half of all
matchups. Additionally, ASI, COR, GUC, and HOU were
temporary ARM sites not available for the whole analysis
period (hence fewer matchups).

While sampling limits the conclusions – and the available
sites are not globally-representative – we can state some gen-
eral tendencies. As expected, errors (whether sign or magni-
tude errors) are smaller for single-layer opaque clouds than
either the thin cloud or multi-layer subsets. They also tend to
be smaller for the ocean sites and larger for NSA. In general,
for single-layer opaque clouds, OLCI has slightly smaller

Figure 2. Cumulative frequency distributions of ARM CTHs, for
the ARM-OLCI matchups. Different colours indicate different sites.
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Table 2. As Table 1, except for MODIS and without the FED column due to the absence of pixel-level uncertainties in the MODIS CTH data
set.

Site Count F60 RS Median bias (km) MAE (km) RMSE (km)

COT < 3

All 745 0.46 0.76 −0.98 1.25 3.23
ASI 2 – – – – –
COR 3 – – – – –
ENA 185 0.65 0.70 −0.72 0.94 2.78
GUC 13 0.77 0.90 −0.05 0.72 0.90
HOU 18 0.56 0.62 −0.59 1.18 3.93
NSA 340 0.28 0.70 −1.55 1.73 3.28
SGP 184 0.55 0.67 −0.92 1.20 3.59

Single-layer, COT ≥ 3

All 2600 0.49 0.72 0.2 0.73 1.71
ASI 71 0.35 0.32 0.79 0.79 1.87
COR 45 0.76 0.79 0.21 0.44 1.69
ENA 542 0.60 0.67 0.18 0.51 1.69
GUC 107 0.64 0.54 0.10 0.76 2.60
HOU 49 0.39 0.58 −0.34 0.81 2.65
NSA 1456 0.43 0.57 0.36 0.79 1.52
SGP 330 0.52 0.84 0.11 0.92 1.92

Multi-layer, COT ≥ 3

All 2108 0.40 0.68 −1.24 1.44 3.34
ASI 24 0.50 0.73 0.63 0.63 0.76
COR 15 0.73 0.62 −0.27 0.82 3.25
ENA 357 0.50 0.65 −0.96 1.25 3.43
GUC 26 0.62 0.73 −0.62 1.09 1.41
HOU 32 0.75 0.96 0.26 0.73 1.13
NSA 1418 0.31 0.54 −1.64 1.86 3.52
SGP 236 0.62 0.82 −0.71 0.89 2.46

median absolute error (MAE) but larger root mean square er-
ror (RMSE) than MODIS, which implies the present of more
or larger outliers in the OLCI data set. At the island sites
(ASI and ENA) and NSA, though, OLCI has a lower RMSE.
Some of this can be explained by the underlying sensitivities
of the two techniques: A-band retrievals are sensitive to pres-
sure contrast (i.e. rate of change of pressure with respect to
height) which is greatest in the boundary layer (Sayer et al.,
2023); thermal retrievals are sensitive to temperature con-
trast which is greatest in the upper troposphere. Additionally,
boundary layer inversions can cause ambiguity in thermal-
based retrievals of low clouds as the same temperature is
found below and above the inversion (Holz et al., 2008), and
the clouds tend to be trapped at the inversion (leading to a
positive bias in retrieved CTH). So the relative abundance of
low vs. high-altitude clouds between sites can explain some
of the variation between satellite performance. The distribu-
tion of ARM CTHs at the times of OLCI matchups is shown
in Fig. 2; low clouds are more common at ASI, ENA, and
NSA (as well as HOU). The curves tend to be steepest at the
low and high ends, indicating most clouds are fairly low or

high-altitude, with SGP and NSA having the most mid-level
clouds.

Additionally, in both the OLCI and MODIS data sets, the
RMSE is inflated due to a few extreme outliers. Manual ex-
amination of these scenes (not shown) suggests that some are
not true retrieval errors, but rather spatio-temporal mismatch
when there are both high and low clouds in the vicinity of
a site (but only one type lies above the ARM site, while the
other is more common in the area of satellite observations
considered). The fairly strict matchup criteria cannot totally
eliminate this type of sampling mismatch, and this is a mo-
tivation for the aforementioned use of robust metrics such as
MAE and rank correlation.

The fraction of matchups meeting the goal uncertainty of
60 mb for single-layer opaque clouds (F60) is 0.53, but varies
from 0.33 to 0.74 dependent on site. This falls short of the
goal fraction of 0.65 on average. While sampling is limited
at some sites, of the sites with at least 100 matchups, the
ocean sites appear to perform a bit better than the others.
F60 is lower for optically-thin or multi-layer cloud systems.
This is all in line with our simulated retrievals in Sayer et al.
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Figure 3. OLCI CTH error as a function of ARM CTH. Diamonds
and lines show bin median and central 68 % of data, respectively.
Data are split into COT< 3 (grey), single-layer COT≥ 3 (blue), and
multi-layer COT ≥ 3 (red) cases. Numbers in parentheses indicate
counts for each category. The dashed black line indicates zero error.

(2023). For MODIS, the equivalent values are 0.35–0.76 for
single-layer opaque clouds, indicating similar performance.
The overall value is 0.49, lower than OLCI, but the propor-
tion of matchups at NSA is higher in MODIS than OLCI
so this number is less directly comparable. MODIS also per-
forms better for optically-thin and multi-layer systems, likely
due to its greater sensitivity to the higher-altitude ice-phase
clouds more common in these cases.

Figure 3 examines the error tendencies of the OLCI re-
trievals as a function of CTH. Here and in later plots, the data
are binned with the number of bins equal to the cube root of
the number of points (to balance the statistical robustness of
each bin with the range of CTH covered by the bin values).
Bin-median values are given on both axes, and vertical bars
indicate the central one standard deviation (16th to 84th per-
centile). We choose this method of presentation as the errors
may be asymmetric and skewed, which would be hidden by
a mean/standard deviation analysis.

For each of the three categories, the error becomes more
negative and more variable as CTH increases. The increased
error variability is linked to the aforementioned higher pres-
sure sensitivity in the lower atmosphere than upper (i.e. the
same CTP uncertainty translates to a larger CTH uncertainty
higher in the atmosphere). As NSA contributes the most
matchups of any single site and is known to be a more dif-
ficult site for retrievals, we also created an equivalent of
Fig. 3 excluding it (not shown). This has smaller magni-
tude errors but the same general tendency of increasing neg-
ative bias with increasing CTH, suggesting the tendency is
robust between sites and not primarily a feature at NSA.
One exception is the overestimate of CTH of low clouds
for COT < 3 conditions became significantly smaller. This
is likely due to these being low-level mixed-phase clouds,
which are common in the Arctic (e.g. Fig. 2 and Shupe et al.,

2006; Shupe, 2011), retrieved by OLCI as being ice-phase
(for which CHROMA permits a minimum CTH of 3 km).

The negative bias in CTH suggests some systematic error
in OLCI calibration, and/or in the retrieval radiative transfer
(e.g. modeling of O2 absorption) or assumptions (discussed
shortly); while the ARM data may be sensitive to lower cloud
droplet concentrations (and retrieve a higher top) than satel-
lite remote sensing, this would not account for a multi-km
error. Clouds being retrieved lower down in the atmosphere
than they are implies insufficient absorption in the forward
model. One potential source of this would be limitation of
the HITRAN absorption line data base (Gordon et al., 2022)
and/or MT_CKD continuum models (Mlawer et al., 2012)
used in the retrieval. We use the latest HITRAN 2020 line
data base and Voigt line shape (Gordon et al., 2022); while
more complicated line shape models have been developed
and shown to be useful for the O2 A-band (e.g. Tran and
Hartmann, 2008; Mendonca et al., 2019), the parameters for
these shapes are not available in the present version of HI-
TRAN. Additionally, it is not clear how large or systematic
any differences from Voigt would be when integrated over
the OLCI (or OCI) spectral response.

In Sayer et al. (2023) we identified that a key algorith-
mic assumption influencing CTH bias was the assumed cloud
geometric thickness. Given a CTH and a cloud base height
(CBH), we defined cloud fractional geometric depth FGD=
1−(CBH/CTH) such that FGD= 1 indicates full cloudiness
vertically from the cloud top to the surface, and FGD = 0 an
infinitesimally geometrically thin cloud concentrated at the
cloud top. Previous research had found that FGD was not ro-
bustly retrievable from OLCI measurements in many cases
(Fischer and Preusker, 2021), so we opted to use fixed val-
ues for this initial version, of FGD = 0.5 for liquid clouds
and 0.25 for ice clouds, based on examination of ARM data
(Kollias et al., 2016), but noted (Sect. 3.2.3 and Fig. 4 of
Sayer et al., 2023) that there was considerable variability in
FGD as a function of CTH and by site.

Our simulated retrievals showed (Sect. 4.1.2 and Fig. 13
of the above) that a true FGD larger than assumed resulted
in an overestimate of retrieved CTP (i.e. underestimate of
CTH), and vice versa. Although the magnitude of this error
depended on multiple factors it could exceed the 60 mb goal
uncertainty, which corresponds to about 1 km for a CTH of
3 km, and about 3 km for a CTH of 12 km. Figure 4 helps as-
sess whether the retrievals on real data show similar tenden-
cies. One difficulty is that due to the absence of a ground-
truth cloud phase at most of the ARM sites we rely on the
satellite-retrieved phase, and that is expected to be uncertain
for low-COT or multi-layer cases (Sayer et al., 2023). Never-
theless, this figure shows near-zero CTH bias for cases where
the FGD is similar to the assumption, and a tendency for in-
creasing negative bias as FGD increases (except for, poten-
tially, the optically-thin ice clouds case).

Figure 5 shows the high variability of FGD from the ARM
data, as a function of CTH (from ARM) and COT (from
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Figure 4. OLCI CTH error as a function of ARM cloud fractional geometric depth (FGD), for clouds retrieved as (a) liquid-phase and (b) ice
phase. Diamonds and lines show bin median and central 68 % of data, respectively. Data are split into COT< 3 (grey), single-layer COT ≥ 3
(blue), and multi-layer COT ≥ 3 (red) cases. Numbers in parentheses indicate counts for each category. The horizontal dashed black line
indicates zero error, and the vertical dashed black lines indicate the retrieval’s FGD assumption for each cloud phase.

Figure 5. (a) Median and (b) range of central 68.4 % of values of cloud FGD from ARM, binned as a function of OLCI-retrieved COT and
ARM CTH. Bins with fewer than five matchups contributing are shaded grey.

OLCI due to the lack of a ground-truth). While Fig. 5a re-
veals some general tendencies, Fig. 5b shows a large de-
gree of variability for a given COT/CTH combination, and
the available data do not robustly span the entire range
of parameter space. In general increasing COT is associ-
ated with larger FGD, which is consistent with expectations
for convective growth of clouds. For optically-thin clouds,
higher CTH (e.g. cirrus) tend to have smaller FGD than
lower CTH (e.g. low cumulus or stratus) clouds. On average,
however, values tend to be slightly higher than CHROMA’s
current assumption of 0.5 for liquid-phase clouds and 0.25
for ice-phase clouds. One possibility for OCI is to update
CHROMA’s assumption about FGD with data derived (and
extrapolated) from Fig. 5. Alternatively, these could be used
as a priori values and uncertainties if FGD were to be re-
trieved rather than fixed. However, getting the right FGD
alone is not a guarantee of an unbiased retrieval because the
within-cloud extinction profile may also differ from what is
assumed. Additionally, the data gathered from these limited

sites may not be globally representative, and uncertainties in
the COT data may confound the true relationships.

Although other retrievals based on O2 absorption have also
found negative offsets in retrieved CTH compared to ther-
mal or active remote sensing techniques (e.g. Sneep et al.,
2008; Lelli et al., 2012; Compernolle et al., 2021), we do
not believe this is an inherent problem with O2-based re-
trievals. Rather, all these retrievals make (different) simplify-
ing assumptions about clouds. Some approaches (e.g. Sneep
et al., 2008) treat clouds as a Lambertian reflector, mean-
ing they neglect the potential for multiple scattering inside
the clouds. This naturally leads to the algorithm retrieving
a lower altitude than the actual top. Other algorithms which
incorporate within-cloud scattering (Lelli et al., 2012; Sayer
et al., 2023) tend to show smaller biases because they model
the cloud more realistically. However, they are still biased
if they make inappropriate assumptions for a specific cloud.
For all algorithm types, these assumptions may be violated
more significantly for higher clouds (as, by nature, they of-
fer more opportunity for variation in vertical structure). We

https://doi.org/10.5194/amt-18-6681-2025 Atmos. Meas. Tech., 18, 6681–6703, 2025



6690 A. M. Sayer et al.: Cloud top pressure for OLCI

also note that retrievals with higher information content of-
fer the potential to retrieve additional parameters related to
cloud structure (e.g. CBH) and ameliorate some of these bi-
ases (see e.g. theoretical work by Heidinger and Stephens,
2000). Richardson et al. (2019) presented a technique to
retrieve cloud geometric thickness of marine stratocumulus
from Orbiting Carbon Observatory 2 (OCO-2) A-band mea-
surements, which have a finer spectral resolution than OLCI,
using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) profiles to provide a prior con-
straint on top pressure. Yang et al. (2021) present another
OCO-2 method which does not require such a prior. As an-
other example, Nagao et al. (2025) combine O2 and TIR
measurements to retrieve CTH and CBH. Further, although
not in all conditions, Fischer and Preusker (2021) found that
this was possible in some cases using OLCI A-band measure-
ments alone. These examples raise promise for PACE OCI
because in addition to the A-band it also samples the B-band
and strong absorption features associated with H2O.

Scene heterogeneity and 3D radiative transfer effects (both
sub-pixel and horizontal photon transport between pixels) are
another potential source of error. Heidinger and Stephens
(2002) studied this using radiative transfer modeling and
Landsat data, although they focused on the effects on COT
retrievals rather than on CTH. In general, studies of hetero-
geneity have focused mostly on COT and CER (e.g. Zhang
and Platnick, 2011). To our knowledge the effect on retrieved
height has not been investigated thoroughly and it is not clear
whether heterogeneity would result in a random or system-
atic error in CTH. Whatever the major contributing causes,
this CTH-dependent bias has some implications for the over-
all statistics in Table 1. For example, while 53 % of single-
layer opaque clouds meet the 60 mb goal error metric overall
(F60), the fraction is 0.65 for the subset of them where ARM
CTH is 3 km or below and only 0.29 for the subset where
ARM CTH is above 3 km. Similarly, the median CTH bias
is −0.16 and −1.93 km for these two subsets, vs. −0.37 km
overall. Similar variations in performance between lower and
higher clouds are also seen in the optically-thin and multi-
layer subsets. Our take-away message from this is that miti-
gating the CTH-dependent retrieval bias should be the main
priority for algorithmic refinement.

3.3 CTH uncertainty evaluation

Finally, the OE technique provides estimates of the uncer-
tainties on the retrieved quantities (Rodgers, 2000), which
can be evaluated. We follow our previous methodology for
this (Sayer et al., 2020). In essence, OE provides the max-
imum a posteriori retrieval solution and an uncertainty as-
suming Gaussian (Normal) error distributions. We can there-
fore define an expected discrepancy (ED) between retrievals
and ARM data as the quadrature sum of this retrieval un-
certainty and the ARM uncertainty (assuming they are inde-
pendent). Then, statistically, if the uncertainty estimates are

Figure 6. Expected OLCI-ARM CTH discrepancy vs. 68th per-
centile of CTH error (see text). Data are split into COT < 3 (grey),
single-layer COT ≥ 3 (blue), and multi-layer COT ≥ 3 (red) cases.
Numbers in parentheses indicate counts for each category. The
dashed black line indicates 1 : 1.

well-calibrated then normalised retrieval errors (i.e. retrieval
error divided by ED) should follow a Normal distribution
with mean 0 and variance 1. In this case the mean is nega-
tive because of the negative bias seen in the retrievals. But a
corollary of this is that one standard deviation (i.e. ∼ 68 %)
of matchups should agree within this ED. Table 1 shows that
this is almost met for the COT < 3 subset of data (66 %), but
not for the single-layer opaque (57 %) or multi-layer (15 %)
cases; the retrieval is therefore overconfident. This is not sur-
prising for multi-layer cases because a core assumption of
the algorithm (that the cloud system is single-layer) is vio-
lated so the OE estimates cease to be applicable (see also dis-
cussion in Povey and Grainger, 2015, on conditions required
for uncertainty estimates to be meaningful). Interestingly, at
the island sites (ASI and ENA) this fraction is exceeded for
single-layer opaque clouds implying the retrieval is slightly
underconfident. Potentially, if the assumed uncertainty on the
a priori TROPOMI surface albedo is too low, it could lead to
the retrieval overestimating how well-constrained the COT
and CTH are.

A related question is: does the algorithm have skill at
telling low-uncertainty cases from high ones? This can also
be examined statistically (Sayer et al., 2020), shown here in
Fig. 6. If data are stratified by ED then, under Gaussian er-
rors, within each bin the 68th percentile of observed error
should match the ED and the data should fall along the 1 : 1
line. This is performed with binned data and not individual
points because the observed error is a draw from an uncer-
tainty distribution, i.e. for a given level of uncertainty (ED)
one needs a distribution of observed errors to assess whether
the observations are consistent with expectation. In Fig. 6, for
the single-layer opaque subset the observed errors are well-
correlated with ED, indicating the uncertainty estimates are
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Figure 7. MFRSR vs. Sun photometer COT at the ENA (blue) and
SGP (green) ARM sites, coincident with MODIS matchups. Num-
bers in parentheses indicate counts for each site. Horizontal and ver-
tical error bars indicate the uncertainties provided by each ARM
data set. The dashed black line indicates 1 : 1.

skillful. The points mostly lie above the 1 : 1 line, consistent
with the overall slight overconfidence. For the thin and multi-
layer subsets, however, the errors and ED do not show this
linear agreement indicating that the uncertainty estimates are
not skillful. The lack of skill for optically-thin cases traces in
part due to the positive bias of low clouds in Fig. 3, which are
sometimes retrieved as ice phase near 3 km: such category er-
rors are not well captured by the OE uncertainty propagation
methodology.

These metrics also depend on the ARM CTH: FED for
single-layer opaque clouds increases from 0.57 overall to
0.71 where ARM CTH is 3 km or lower, and drops to 0.26
where ARM CTH is above 3 km. For the optically-thin
clouds, the equivalent FED are 0.66 overall vs. 0.89 and
0.17 for lower and higher clouds, respectively. These met-
rics should ideally not show any dependence on the true
CTH. The limitations of uncertainty estimate skill imply non-
negligible contributions to the retrieval error which are not
adequately accounted for by the retrieval’s uncertainty bud-
get. These may be similar factors contributing to the CTH-
dependent bias of retrieved CTH seen in Fig. 3. Decreasing
this retrieval bias (whether through improved calibration, ra-
diative transfer, or treatment of FGD) might therefore also
improve the skill of the uncertainty estimates.

The MODIS CTH product does not provide pixel-level un-
certainty estimates so a equivalent evaluation is not possible.

3.4 COT comparisons

As discussed in Sect. 2.2, ARM has liquid COT data from
two techniques: MFRSR and Sun photometry. These are in-
dependent techniques with different assumptions, and fortu-
nately both are available at the ENA and SGP sites. Figure 7

compares these two data sets, for the data coincident with
MODIS matchups (results for OLCI are numerically simi-
lar but with a smaller data volume). This shows that the two
ARM COT data sets are well-correlated with one another but
MFRSR COTs are about 30 % lower, with the interquartile
range (IQR) of ratios from 0.57 to 0.85. This 30 % offset
between the two is consistent between sites and larger than
the PACE goal COT uncertainty for liquid clouds of 25 %,
which presents a challenge in terms of using these to evalu-
ate satellite retrievals as it is not clear which is more accu-
rate. Interestingly, a similar analysis for SGP by Chiu et al.
(2010) did not find such an offset, although their MFRSR
COT was retrieved independently from the ARM operational
algorithm (McFarlane and Shi, 2012). Additionally, a com-
parison of MFRSR retrievals vs. aircraft cloud probes from
eight profiles at SGP by Min et al. (2003) found a higher
level of agreement in COT. An earlier study by Min and Har-
rison (1996) did find MFRSR COT higher by a factor of ∼ 2
than geostationary retrievals for thick (COT > 10) clouds,
but due to the older instruments and retrievals used it is not
clear whether those results would be reflective of current
data. The offset seen in our results is, however, consistent
with the recent analysis by Sookdar et al. (2025) who also
compared (for a more restrictive subsetting to stratocumulus
clouds without ground-level precipitation) Sun photometer
and MFRSR COT at the ENA and SGP sites.

Importantly, however, both instruments (and the satellite
data sets) have different limitations which affect their quality
and appropriateness. Sun photometers have a smaller field of
view (1.2°) so are less affected by broken cloudiness (they
either see a cloud, or a gap) while the MFRSR technique re-
quires more fully-overcast scenes (see earlier). Satellite pix-
els are larger so even more sensitive to sub-pixel heterogene-
ity (Jones et al., 2012; Loveridge and Di Girolamo, 2024).
Cloud inhomogeneity and edges can also affect the retrievals
in different ways. We have also not applied additional filter-
ing for precipitation beyond ARM standard quality checks.
For these reasons, we report results but do not draw as strong
conclusions from the COT analysis of this study.

Summary statistics comparing OLCI and ARM COTs are
given in Table 3, and comparing MODIS and ARM COTs
in Table 4. These are split into single-layer and multi-layer
cases using the KAZRARSCL data set; both MFRSR and
Sun photometer retrievals should be valid in multi-layer con-
ditions, provided all layers are liquid phase. Note that, unlike
for CTH, the MODIS COT algorithm does provide pixel-
level uncertainty estimates.

For the MFRSR matchups, ASI is an outlying site where
the retrieved OLCI COT is significantly lower than the rest
(median ratio 0.47). This might be due to poor surface albedo
constraints; Ascension Island where this site is located does
not appear in the TROPOMI LER data base used due to its
small size (the minimum LER technique used means it is
represented by water-like values), meaning CHROMA uses
a default a priori value (Sect. 2.1). Excluding this, the me-
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Table 3. OLCI COT validation summary statistics for each site for the three analysis categories. F25 is the fraction of matchups meeting the
25 % difference goal; the median satellite : ground COT ratio and interquartile range (IQR) of the ratio are also shown. Other metrics are as
in Table 1.

Site Count F25 FED RS Median ratio IQR of ratio

MFRSR matchups

Single-layer

All 460 0.33 0.67 0.73 0.80 (0.49, 1.18)
ASI 123 0.15 0.43 0.66 0.47 (0.28, 0.65)
COR 14 0.43 0.79 0.93 1.20 (0.81, 1.38)
ENA 188 0.41 0.80 0.74 0.89 (0.60, 1.23)
SGP 135 0.38 0.67 0.84 1.02 (0.65, 1.54)

Multi-layer

All 230 0.33 0.54 0.70 0.67 (0.45, 1.07)
ASI 29 0.14 0.38 0.33 0.41 (0.23, 0.63)
COR 7 – – – – –
ENA 114 0.35 0.58 0.66 0.70 (0.45, 1.03)
SGP 80 0.36 0.52 0.71 0.75 (0.53, 1.22)

Sun photometer matchups

Single-layer

All 46 0.54 0.65 0.76 0.76 (0.36, 0.98)
ENA 24 0.46 0.54 0.55 0.71 (0.31, 0.98)
SGP 22 0.64 0.77 0.73 0.82 (0.55, 0.98)

Multi-layer

All 45 0.38 0.49 0.67 0.51 (0.32, 0.79)
ENA 28 0.46 0.54 0.47 0.50 (0.30, 0.99)
SGP 17 0.24 0.41 0.62 0.56 (0.39, 0.65)

dian ratio for the other sites is 0.89 to 1.20 indicating small
overall bias. Ratios are lower for multi-layered cases, and
for the Sun photometer matchups. The OLCI COTs appear
more consistent with the MFRSR data than with the Sun pho-
tometer data, both in terms of median ratio and the fraction
agreeing within ED being nearer to 0.68. Similar comments
apply to the MODIS matchups in Table 4: ratios are closer
to 1 for MFRSR than for Sun photometry, and ASI data are
a low outlier (though it is unclear whether the reason is sur-
face albedo). MODIS COT uncertainties appear highly un-
derestimated, with FED much lower than 0.68. Both data sets
are similarly well-correlated with the ground-based COTs,
although the limited sample sizes means correlation compar-
isons should not be over-interpreted (Schönbrodt and Perug-
ini, 2013).

Figure 8 evaluates uncertainty estimate skill for the OLCI
COT retrievals. For single-layer cases, uncertainty estimates
appear skillful and well-calibrated. This contrasts with the
simulated retrievals in Sayer et al. (2023), where we found
that COT uncertainty was overestimated - the difference may
be due to uncertainties in the real-world data and retrievals
not captured by the simulation study. Multi-layer COT un-

certainties also appear skillful, but slightly underestimated.
The fact that the uncertainty estimates show good skill for
both data sets despite the significant offsets between MFRSR
and Sun photometer COTs implies that the bulk of the dis-
agreement/error is systematic (i.e. calibration of one or all
sensors/algorithms) rather than noise. A better understanding
of (and, if necessary, correcting for) the offsets between the
ground data would enable better understanding of the satel-
lite retrievals.

3.5 Phase comparisons

At present, ARM cloud phase VAPs are only available at two
of the sites used in this study: the NSA permanent site near
Barrow, Alaska, USA; and the COR site which was a mobile
facility deployment in the Sierras de Córdoba mountains in
Argentina as part of the Cloud, Aerosol, and Complex Ter-
rain Interactions (CACTI) field campaign for seven months
in 2018–2019 (Varble et al., 2021). This means that the re-
sults from these sites may not be generalisable to broader
conditions; data volume at COR is also low because of the
limited CACTI campaign length. Confusion matrices for
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Table 4. As Table 3, except for MODIS COT.

Site Count F25 FED RS Median ratio IQR of ratio

MFRSR matchups

Single-layer

All 656 0.39 0.16 0.79 0.82 (0.52, 1.13)
ASI 72 0.29 0.08 0.68 0.62 (0.39, 0.83)
COR 42 0.29 0.14 0.81 0.94 (0.57, 1.43)
ENA 309 0.43 0.13 0.71 0.86 (0.57, 1.12)
SGP 233 0.40 0.24 0.84 0.83 (0.50, 1.18)

Multi-layer

All 445 0.29 0.08 0.64 0.63 (0.39, 0.95)
ASI 25 0.24 0.08 −0.07 0.44 (0.22, 0.68)
COR 13 0.15 0.00 0.20 0.60 (0.36, 1.15)
ENA 237 0.26 0.06 0.58 0.60 (0.37, 0.95)
SGP 170 0.35 0.11 0.75 0.70 (0.44, 1.01)

Sun photometer matchups

Single-layer

All 72 0.38 0.19 0.62 0.62 (0.35, 0.85)
ENA 40 0.38 0.25 0.49 0.62 (0.35, 0.87)
SGP 32 0.38 0.12 0.69 0.66 (0.39, 0.81)

Multi-layer

All 73 0.21 0.14 0.57 0.41 (0.26, 0.73)
ENA 37 0.19 0.08 0.36 0.33 (0.22, 0.70)
SGP 36 0.22 0.19 0.65 0.51 (0.32, 0.87)

Figure 8. Expected OLCI-ARM COT discrepancy vs. 68th percentile of CTH error (see text), for comparisons with (a) MFRSR and (b) Sun
photometer date. Data are split into single-layer (blue) and multi-layer (red) cases. Numbers in parentheses indicate counts for each category.
The dashed black line indicates 1 : 1.

OLCI and MODIS comparisons at these sites are shown in
Tables 5 and 6, respectively.

About half of the matchups at COR, and about 2/3 at NSA,
are mixed-phase clouds. Neither OLCI nor MODIS retrievals
include a mixed-phase cloud type, meaning that overall skill
at phase identification is poor. If the mixed-phase clouds
are excluded, though, accuracies improve significantly. Both

satellite data sets are significantly more likely to label mixed-
phase clouds as liquid than ice, although note that they are
most sensitive to the phase near the top of the clouds (which
could be either phase dependent on circumstances). Misclas-
sification of ice clouds as liquid is also more common than
the converse.
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Table 5. OLCI vs. ARM cloud phase confusion matrix. The right-
most two columns indicate the fraction of phase classifications
agreeing at each site, first for all matchups, and then excluding
points identified by ARM as mixed-phased conditions.

Site Satellite ARM phase Fractional
agreement

phase Liquid Ice Mixed All Non-
mixed

COR
Liquid 11 2 9

0.48 0.87
Ice 0 2 3

NSA
Liquid 128 39 363

0.26 0.79
Ice 12 63 127

Table 6. As Table 5, except for MODIS.

Site Satellite ARM phase Fractional
agreement

phase Liquid Ice Mixed All Non-
mixed

COR
Liquid 29 3 10

0.58 0.92
Ice 0 4 11

NSA
Liquid 288 30 729

0.25 0.93
Ice 1 95 360

4 Comparison against MODIS and SLSTR retrievals

To take a bigger-picture look at the CHROMA retrieval, we
processed the OLCI record globally for the month of July
2019. The choice of month was somewhat arbitrary but at the
time we began the analysis, only limited SLSTR retrievals
were available. We subsampled OLCI at 3× 3 pixel reso-
lution, taking the median reflectance from cloudy pixels (if
any in the box) as input, to decrease computational over-
head as the CHROMA-OLCI code is research-level and not
optimized for speed. The implementation was otherwise as
described in Sect. 2.1. We then applied the quality filtering
described there, and aggregated the results on a 1° grid on
a daily basis. We averaged COT geometrically because it
varies over several orders of magnitude, and CTP and CTH
arithmetically. We focus on CTP over CTH here is that this
is the native coordinate of the CHROMA retrieval; unlike
the ARM comparison above (where ARM natively provides
CTH and can be considered a reference truth), none of the
satellite data sets are a true reference for cloud altitude. We
do provide some CTH statistics as a point of reference.

We aggregated SLSTR cloud retrievals from this month
in the same way. We also use the MODIS standard daily
cloud product (MOD08_D3), which is already provided on
this grid, and includes equivalent averaging methods to the
one we chose for OLCI. In the following analysis, we only

consider grid cells (on a daily basis) where all three instru-
ments sampled with at least 100 satellite pixels on each day,
and discard cells with a solar zenith angle above 70°. This
gives a total of 761 875 common grid cells over the month.

Some summary statistics comparing the three satellite data
sets (from this co-sampled, gridded data) are given in Table 7.
We also show a mapped comparison between the data sets
(focusing on differences relative to OLCI) in Fig. 9. This por-
tion of the analysis is an intercomparison rather than a vali-
dation as the three different satellite retrievals have their own
strengths and limitations and there is no reference known
truth. For this reason, as with the ARM COT analysis, we
use terminology of offset and difference as opposed to bias
and error. Additionally, pixel-level uncertainties and mission
goals do not translate directly to such gridded aggregates.
We do, however, calculate the fractions of grid cells agreeing
within PACE mission goals of 25 % for liquid COT, 35 % for
ice COT, and 60 mb for CTP (F25, F35, F60 respectively) as
a general point of reference for magnitude discrepancies be-
tween the data sets. Prior to discussing differences, we first
feel it is worth mentioning that examining daily and monthly
aggregates for all three sensors (not shown) reveals they all
show the same basic spatial and temporal features.

For COT, OLCI and SLSTR agree with one another better
than either do with MODIS, on all metrics in Table 7 except
median offset. The fact that these sensors are on the same
satellite probably contributes to this – although MODIS on
Terra has a similar overpass time it has a different orbital cy-
cle and, even restricting to grid cells seen on the same day
as here, the clouds might not be seen at the same times as
viewed by OLCI and SLSTR on Sentinel-3A. Thus there is
additional discrepancy expected due to spatiotemporal vari-
ability in the clouds seen. Unfortunately, MOD08 does not
provide averaged observation times so it is not possible to
filter based on Terra vs. Sentinel-3A time difference using
these files. A related factor is that high latitudes are rela-
tively overrepresented in the sample due to orbital charac-
teristics. Additionally, the MODIS cloud product is known
to have some across-track patterns in retrieved properties.
For example, in the previous MODIS Collection 5, Maddux
et al. (2010) found (their Fig. 2) a tendency for higher liquid
and ice COTs near nadir (view zenith angles up to 10°) com-
pared to near the edge of swath (view zenith angles of 60° or
higher). Although that analysis concerned an older version
of the MODIS algorithm, the underlying reasons – a combi-
nation of retrieval assumptions and the fundamental physi-
cal differences (both in sensitivity and what is observed) be-
tween viewing clouds from near nadir and at oblique angles
– likely persist in some form, and similar phenomena likely
affect the OLCI and SLSTR retrievals as well.

The primary factors influencing the satellites’ reported
COT include differing sensitivity of the underlying cloud
masks (affecting the population of clouds on which retrievals
are performed), radiometric calibration, and appropriate re-
trieval assumptions (chiefly surface albedo and cloud scatter-
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Figure 9. Cloud properties and differences for co-sampled grid cells by the three sensors in July 2019. Panels (a) and (d) show geometric
mean OLCI COT and arithmetic mean OLCI CTP, respectively. Panels (b) and (c) show the median ratio of OLCI/MODIS and OLCI/SLSTR
COT, respectively. Panels (e) and (f) show the median OLCI-MODIS and OLCI-SLSTR CTP, respectively. Grid cells with fewer than three
days contributing are shaded grey.

Table 7. Summary statistics for comparison between OLCI, MODIS, and SLSTR co-sampled daily gridded data from July 2019. Offsets are
defined by the first sensor minus the second sensor. MAD and RMSD indicate median absolute difference and root mean square difference,
respectively.

Sensor pair RS F25 F35 Median offset (%) MAD (%) RMSD (%)

COT comparison

OLCI/MODIS 0.73 0.40 0.51 −11.7 33.7 59.8
OLCI/SLSTR 0.82 0.41 0.54 −19.0 31.6 54.4
MODIS/SLSTR 0.78 0.40 0.52 −7.3 33.0 55.5

Sensor pair RS F60 Median offset (mb) MAD (mb) RMSD (mb)

CTP comparison

OLCI/MODIS 0.72 0.35 −2.06 90.2 161.3
OLCI/SLSTR 0.82 0.47 −7.35 65.3 116.0
MODIS/SLSTR 0.84 0.52 −7.21 56.4 125.1

Sensor pair RS Median offset (km) MAD (km) RMSD (km)

CTH comparison

OLCI/MODIS 0.58 −0.42 1.22 2.75
OLCI/SLSTR 0.74 −0.03 0.96 1.84
MODIS/SLSTR 0.74 0.27 0.79 2.14
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ing properties, which are determined by CER and, for ice,
shape and roughness). For liquid clouds midvisible wave-
lengths are less sensitive to assumed particle size than SWIR
ones (Nakajima and King, 1990), so the fact that CHROMA
assumes a CER is likely not a significant factor. For ice crys-
tals, CHROMA and MODIS assume the same ice crystal
habit model of severely roughened 8-element column aggre-
gates from Yang et al. (2013). ORAC uses the generalised
habit mixture of Baum et al. (2014), which has a more com-
plicated CER-dependent asymmetry parameter than the col-
umn aggregates habit and may be one of several contributors
to differences.

Over water (where surface albedo is low) OLCI COTs tend
to be slightly lower than MODIS and SLSTR, although are
a little higher than MODIS in a few areas such as the in-
tertropical convergence zone (ITCZ) and some storm tracks.
In many cases, differences are within ±25 %. Lower values
could be attributable to OLCI’s cloud mask detecting fewer
thin clouds (e.g. cirrus or fragments near cloud edges) than
the other sensors (thus pushing up the average COT), due to
OLCI’s lack of SWIR or TIR bands which are useful for de-
tection of optically-thin clouds. This seems particularly plau-
sible in the ITCZ, where cirrus is common, and OLCI CTP
is also higher (suggesting lower clouds, on average) than the
other sensors. COT differences are more complicated over
land; the patterns of COT offset with respect to MODIS and
OLCI are moderately similar, suggesting different surface
albedo assumptions between the assorted satellite algorithms
contribute. One commonality is OLCI retrieving much lower
COT over Greenland, which is likely due to difficulties in
cloud masking and surface albedo modeling over this bright
surface (which is also observed in fairly low-Sun conditions).
MODIS COT is intermediate between OLCI and SLSTR.

For CTH and CTP, OLCI agrees better overall with
SLSTR than MODIS for all summary statistics (except again
median offset, in the case of CTP). The spatial patterns of
CTP difference between OLCI and the others are quite sim-
ilar with different magnitudes. This makes sense because
MODIS and SLSTR are both TIR-based algorithms while
OLCI uses the O2 A-band so the two have differing funda-
mental physical and algorithmic sensitivities. MODIS’ CO2-
slicing channels should provide additional precision for the
retrieval of high-level clouds beyond that of SLSTR (both
sensors share TIR channels near 11 and 12 µm). Additionally,
the MODIS CTP retrieval is independent from the MODIS
COT data set (different algorithms), while OLCI and SLSTR
use a single algorithm to retrieve both parameters simultane-
ously. CTP differences are larger in magnitude in the OLCI-
MODIS comparison than the OLCI-SLSTR, especially over
south-eastern Asia and the ITCZ. There are offsets of both
signs, reinforcing the earlier discussion that A-band based
cloud altitude retrievals are not necessarily always lower than
those determined from TIR techniques.

We also examined how COT and CTP differ between the
data sets as a function of A-band surface albedo (not shown).

There were no large-scale patterns, aside from a large ten-
dency for OLCI to retrieve lower COT than the others over
the brightest surfaces (as visible in the Arctic and Green-
land in Fig. 9). This is unsurprising due to the difficulties
in cloud detection and accurate modeling of surface charac-
teristics over the bright snow and ice.

As discussed previously, one key difficult situation with
CTP retrievals, for which A-band and TIR techniques are ex-
pected to behave in different ways, is in multi-layer cloud
systems. Figure 10 shows the average MODIS multi-layer
cloud fraction (defined as the fraction of all clouds for which
the MODIS data product indicates that a multi-layer cloud
system is likely; Marchant et al., 2020) and the binned dif-
ference between OLCI and other CTPs as a function of
the multi-layer fraction from the individual daily grid cells.
Many of the areas with higher average multi-layer fraction
are also ones of more positive OLCI CTP offset in Fig. 9,
suggesting that differing sensitivities to multi-layer systems
are important. This could also explain some of the COT off-
sets, due to differing phase identification leading to differ-
ent cloud scattering properties being used (and in each case
the single-layer not representing the multi-layer scattering
properties well). Although the ITCZ is visible in this map,
the multi-layer fraction is typically low (under 0.2) implying
that other factors such as cloud detection are more signifi-
cant here. The binned data in Fig. 10b show a roughly linear
variation in OLCI CTP offset as a function of MODIS multi-
layer fraction, more positive for MODIS than for SLSTR.
This behaviour is consistent with our simulated multi-layer
retrievals in Sayer et al. (2023), and the near-zero offset for
multi-layer fractions under 0.1 confirms that the A-band and
TIR techniques behave similarly in single-layer situations.

Another factor influencing the CTP retrievals more than
COT is the cloud vertical extent assumptions. The TIR-based
MODIS and SLSTR retrievals assume a cloud with negligi-
ble vertical extent; as the cloud is a grey body, in these sit-
uations if the cloud is opaque with high extinction (in the
TIR) near the top then the retrieved cloud altitude will be
very close to the cloud top. If the cloud is low COT then the
retrieved altitude will be some point within the cloud (Sayer
et al., 2011). Note that the visible and TIR COT are often
similar for ice clouds, but TIR COT is generally lower than
visible for water clouds (see Fig. 8 of Sayer et al., 2011). In
contrast, as seen earlier, CHROMA assumes a finite geomet-
rical thickness and its error is dependent on how appropriate
that is. These differences between approaches may contribute
to the negative CTP offsets in the low-COT parts of tropical
oceans in Fig. 9, where the TIR retrievals may penetrate fur-
ther into the cloud.

A complex issue influencing all of the above, in addition
to differing accuracies of underlying cloud masks, is different
failure rates of the COT and CTP retrievals between the data
sets. This occurs when the algorithms are unable to find so-
lutions meeting their internal consistency and quality checks.
For CHROMA, manual examination of cases excluded by the
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Figure 10. (a) Mean fraction of clouds detected as multi-layer by MODIS. Grid cells with fewer than three days contributing are shaded
grey. (b) Binned OLCI vs. other CTP difference as a function of MODIS multi-layer fraction. MODIS (blue) and SLSTR (red) data are offset
horizontally slightly for clarity. Diamonds and lines show bin median and central 68 % of data, respectively; the zero line is dashed grey. In
both panels cases, data are shown for co-sampled grid cells by the three sensors in July 2019.

iterations and cost thresholds described in Sect. 2.1 suggests
that many of these are areas where the cloud mask was ei-
ther a false positive, or the surface albedo assumption was
incorrect. Cho et al. (2015) examined liquid-phase MODIS
COT and CER retrievals over oceans and found higher fail-
ure rates for broken cumulus than stratocumulus overall; con-
ditions associated with failure included inhomogeneity/sub-
pixel cloudiness, Sun glint or large solar/view angles, and
cloud mask or phase determination errors. MODIS CTP
retrieval failures are less well-documented. Restricting the
comparison to grid cells where MODIS and SLSTR cloud
fractions are both within 0.05 of OLCI removes over 80 % of
the sample; statistical metrics of the type shown in Table 7 do
not appreciably change when this is done (not shown), and as
the resulting spatial sampling is different and quite limited it
is not clear how meaningful this is in terms of understanding
the level of agreement between the data sets at these gridded
scales.

5 Conclusions and implications for PACE OCI

In this analysis we applied the CHROMA algorithm, devel-
oped primarily for cloud altitude retrievals for the OCI in-
strument on NASA’s PACE mission, to the OLCI sensor on
the Sentinel-3A satellite. We performed the bulk of the anal-
ysis prior to PACE’s launch in February 2024; the purpose
of the study is to evaluate and understand how the algorithm
performs on real data before a large PACE validation data set
can be acquired.

Comparing the OLCI-derived CTH to ground-based ARM
reference data revealed a comparable quality to MODIS, with
differences between the records generally consistent with
physical understanding. OLCI retrievals have a tendency to
underestimate the CTH as the true CTH increases, especially
for multi-layer cloud systems. OLCI CTH uncertainty esti-
mates have skill for single-layer opaque clouds although are
too small because of the systematic nature of this bias. We
anticipate continuing this type of validation exercise with

PACE and ARM, and expanding to use similar data prod-
ucts from the Cloudnet network (Illingworth et al., 2007) as
well.

We also compared the COT retrievals against ARM data
from two instruments (for liquid phase clouds): MFRSR and
Sun photometry. These two ARM data streams had around a
30 % offset from one another on average, which is problem-
atic to validate satellite retrievals, although the common data
volume was fairly small and limited to two of the seven ARM
sites used. OLCI and MODIS COT retrievals were closer to
the MFRSR data, and uncertainty estimates (for single-layer
clouds) seemed both skillful and reasonably well-calibrated.
However, it is possible that both the MFRSR data and satel-
lite retrievals respond to deviations from an idealised cloud
in similar ways (e.g. inhomogeneity leading to errors of the
same sign) as they are more sensitive to this than Sun pho-
tometry often is.

Finally, we used ARM cloud phase data and found that
both OLCI and MODIS performed significantly better than
guesswork for discriminating between pure liquid or ice
clouds. They were more likely to classify mixed-phase
clouds as liquid than ice. These were, again, unfortunately
only available for two of the sites used.

Our previous simulated retrievals suggested that, with
a common algorithm configuration, OLCI and PACE OCI
should perform similarly well (Sayer et al., 2023). As a re-
sult, we expect these results should be broadly applicable to
OCI. One exception is that, with a 01:00 pm local overpass
time compared to Sentinel-3’s 10:00 am, OCI will see lower
solar zenith angles. Potentially, this means smaller 3D ef-
fects (less self-shadowing by clouds), which is an advantage.
However, photons would also pass through a slightly smaller
amount of atmosphere, and see slightly larger scattering an-
gles, and it is unclear whether this is a small advantage or
disadvantage on average. The ARM analysis suggests sev-
eral avenues for development which could, particularly for
OCI, improve the retrieval:
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1. Investigate more advanced (beyond Voigt) O2 absorp-
tion line shapes, and update line data bases and contin-
uum absorption models as they become available, as the
spectral contrast in absorption drives the retrieved cloud
altitude.

2. Reassess the assumptions about cloud geometric depth
(or attempt to add this as a retrieval parameter, even
though it would likely not be robust in some circum-
stances). The evaluation supported our previous simu-
lated retrievals suggesting that this is an important fac-
tor contributing to retrieval bias. This is expected to be a
more significant driver of retrieval quality than O2 line
models, based both on previous sensitivity studies, and
the fact that O2-based CTH retrievals have been per-
formed for decades (see e.g. the introductory discussion
in Sayer et al., 2023).

3. Consider adding a mixed-phase cloud type, or devel-
oping a flag for such cases, as they can be common in
some regions and would likely be associated with poor
COT retrievals (although this could not be tested with
the ARM products we used).

OCI has some capabilities beyond OLCI which could as-
sist with the above, such as measurements in the O2 B-
band (although these may saturate in bright scenes) and H2O
absorption channels (which could provide additional con-
straints if the H2O profile is known). Additionally, OCI’s
SWIR channels should improve on cloud masking and phase
determination beyond the VIS-NIR spectral range of OLCI.
Nevertheless, multi-layer clouds are likely to remain prob-
lematic for passive retrievals. In principle combining O2 ab-
sorption with TIR bands, such as the OLCI-SLSTR combina-
tion, could prove fruitful; the combination of these spectral
regions has been explored recently by Nagao et al. (2025).
PACE is not co-mounted with a TIR radiometer but has or-
bital overlap with MODIS, VIIRS, and geostationary sensors
which could be used for a subset of their mutual records.

We found the three-way OLCI, MODIS, and SLSTR com-
parison to provide broadly consistent conclusions to the
ARM analysis, although one key difficulty (related more
broadly to the use of satellite spatiotemporal aggregates) is
that, due to differing orbital characteristics, sensor/algorithm
sensitivities, and retrieval failure rates, sampling is incom-
plete and can be biased. We did not use the CALIPSO lidar
and CloudSat radar missions in this analysis, even though
they can act as a spaceborne reference for cloud altitude and
phase (Stephens et al., 2018), because these flew in the A-
train in an early afternoon orbit and observations were not
spatiotemporally coincident with the morning Sentinel-3A
and Terra overpasses. The CALIPSO and CloudSat missions
have now ended, but in May 2024 the Earth Cloud, Aerosol
and Radiation Explorer (EarthCARE) mission, with simi-
lar active sensing capabilities, launched in a similar early-
afternoon orbit. PACE is also in an early-afternoon Sun-

synchronous polar orbit, and their tracks intersect in the
Southern hemisphere, meaning EarthCARE will be able to
be used as a source of frequent validation for CTH (albeit
over a limited latitude range) once both data streams are rou-
tine.

COT evaluation is a more challenging problem; the two
ARM data streams were well-correlated with each other,
and with MODIS and OLCI retrievals, although systemati-
cally offset. These offsets should ideally be better understood
but could plausibly linked to factors such as spatial scales
of cloud heterogeneity. PACE’s polarimeters (Martins et al.,
2018; van Amerongen et al., 2019) will provide independent
COT retrievals though these have their own uncertainties. Ice
COT is a particular challenge due to the effects of varia-
tions in crystal size, shape, and roughness, which can vary
greatly both within and between clouds, on scattering and
absorption. The NASA PACE Postlaunch Airborne eXper-
iment (PACE-PAX, https://espo.nasa.gov/pace-pax, last ac-
cess: 10 November 2025) took place in September 2024
around coastal California (USA) and collected data which
will be highly valuable to validate PACE cloud properties.
However, as field campaigns are unavoidably limited in time
and space, additional work will be necessary to evaluate
and improve our understanding of space-based cloud remote
sensing. A common thread through all of these comparisons
is that the fundamentally different nature of ground-based
and satellite observations – in terms of observation geome-
try, field of view, and spectral range used to probe the clouds
– makes evaluation of satellite cloud retrievals a challenging
task.

Code availability. The CHROMA retrieval code as eventually ap-
plied to OCI will be available within NASA SeaDAS (https://
seadas.gsfc.nasa.gov/, last access: 10 November 2025) once imple-
mented as a standard product within the PACE data processing sys-
tem. The research codes used for the implementation here and vali-
dation analysis are in IDL and available from the lead author upon
request.

Data availability. The OLCI retrievals are available from the
author upon request as they are not a NASA standard prod-
uct. OLCI RSRs are available at https://sentiwiki.copernicus.eu/
web/s3-olci-instrument (last access: 10 November 2025). The
TROPOMI surface data base is available at https://www.temis.nl/
surface/albedo/tropomi_ler.php (last access: 10 November 2025).
MERRA2 data are available from https://gmao.gsfc.nasa.gov/
reanalysis/MERRA-2/ (last access: 10 November 2025). ARM
data are available from https://adc.arm.gov/discovery (last access:
10 November 2025), as data streams arsclkazr1kolliasC1, mfrsr-
cldod1minC1, sphotcod2chiuC1, and thermocldphaseC1. MODIS
cloud products are available from https://ladsweb.modaps.eosdis.
nasa.gov/ (last access: 10 November 2025), and SLSTR from
https://doi.org/10.24381/cds.68653055 with citation Copernicus
(2022).

Atmos. Meas. Tech., 18, 6681–6703, 2025 https://doi.org/10.5194/amt-18-6681-2025

https://espo.nasa.gov/pace-pax
https://seadas.gsfc.nasa.gov/
https://seadas.gsfc.nasa.gov/
https://sentiwiki.copernicus.eu/web/s3-olci-instrument
https://sentiwiki.copernicus.eu/web/s3-olci-instrument
https://www.temis.nl/surface/albedo/tropomi_ler.php
https://www.temis.nl/surface/albedo/tropomi_ler.php
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://adc.arm.gov/discovery
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://doi.org/10.24381/cds.68653055


A. M. Sayer et al.: Cloud top pressure for OLCI 6699

Author contributions. AMS led development of the CHROMA al-
gorithm, performed OLCI data processing, performed the analyses,
and led preparation of the manuscript. GET provided the SLSTR
satellite data used. SG and DZ are leads of several of the ARM
VAPs used. All authors provided advice during algorithm develop-
ment and/or evaluation, and contributed to editing and review of the
manuscript.

Competing interests. At least one of the (co-)authors is a member
of the editorial board of Atmospheric Measurement Techniques. The
peer-review process was guided by an independent editor, and the
authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibil-
ity lies with the authors. Views expressed in the text are those of the
authors and do not necessarily reflect the views of the publisher.

Acknowledgements. We are grateful to the Editor and four review-
ers for their thorough reading and comments on our manuscript.
René Preusker (Freie Universität Berlin) and Julien Chimot (EU-
METSAT) are thanked for the OLCI smile distortion model, as well
as numerous discussions on OLCI data. Christine Chiu’s (Colorado
State University) insights into the Sun photometer and MFRSR
COT data were greatly appreciated. NASA’s Global Modeling and
Assimilation Office (GMAO) are thanked for the MERRA2 meteo-
rological data used as ancillary input for the CHROMA algorithm.
We acknowledge the free use of the TROPOMI surface DLER
database provided through the Sentinel-5p+ Innovation project of
the European Space Agency (ESA). The TROPOMI surface DLER
database was created by the Royal Netherlands Meteorological In-
stitute (KNMI); Gijsbert Tilstra (KNMI) is thanked for assistance in
better understanding this data base. Ground data were obtained from
the ARM user facility, a U.S. DOE Office of Science user facility
managed by the Biological and Environmental Research Program.
Site staff, algorithm developers/VAP translators, and the ARM pro-
gram are thanked for the creation and stewardship of these data
records – in particular, in addition to those on the author list of this
manuscript, Karen Johnson and Dié Wang (Brookhaven National
Laboratory).

Financial support. NASA-affiliated authors were funded by the
NASA PACE project. LL was funded by the Alexander von Hum-
boldt foundation via the Feodor-Lynen fellowship 2020. This work
(SEG and DZ) was also supported by the US Department of Energy
(DOE) Atmospheric Radiation Measurement (ARM) program and
Atmospheric System Research (ASR) program. This paper has been
authored by an employee of Brookhaven Science Associates, LLC,
under contract no. DE-SC0012704 with the US DOE.

Review statement. This paper was edited by Piet Stammes and re-
viewed by Steven Compernolle and three anonymous referees.

References

Ackerman, T. P., Cress, T. S., Ferrell, W. R., Mather,
J. H., and Turner, D. D.: The programmatic matura-
tion of the ARM program, Meteor. Monogr., 3.1–3.19,
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0054.1,
2016.

Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E.,
Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS Cloud-
Top Property Refinements for Collection 6, J. Appl. Meteor.
Climatol., 51, 1145–1163, https://doi.org/10.1175/JAMC-D-11-
0203.1, 2012.

Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A., Cole,
B. H., Merrelli, A., Schmitt, C., and Wang, C.: Ice cloud
single-scattering property models with the full phase ma-
trix at wavelengths from 0.2 to 100 µm, Journal of Quan-
titative Spectroscopy and Radiative Transfer, 146, 123–139,
https://doi.org/10.1016/j.jqsrt.2014.02.029, 2014.

Chiu, J. C., Huang, C.-H., Marshak, A., Slutsker, I., Giles, D. M.,
Holben, B. N., Knyazikhin, Y., and Wiscombe, W. J.: Cloud
optical depth retrievals from the Aerosol Robotic Network
(AERONET) cloud mode observations, J. Geophys. Res., 115,
https://doi.org/10.1029/2009JD013121, 2010.

Chiu, J. C., Marshak, A., Huang, C.-H., Várnai, T., Hogan, R.
J., Giles, D. M., Holben, B. N., O’Connor, E. J., Knyazikhin,
Y., and Wiscombe, W. J.: Cloud droplet size and liquid wa-
ter path retrievals from zenith radiance measurements: exam-
ples from the Atmospheric Radiation Measurement Program and
the Aerosol Robotic Network, Atmos. Chem. Phys., 12, 10313–
10329, https://doi.org/10.5194/acp-12-10313-2012, 2012.

Cho, H.-M., Zhang, Z., Meyer, K., Lebsock, M., Platnick, S.,
Ackerman, A. S., Di Girolamo, L., Labonnote, L. C., Cor-
net, C., Riedi, J., and Holz, R. E.: Frequency and causes of
failed MODIS cloud property retrievals for liquid phase clouds
over global oceans, J. Geophys. Res. Atmos., 120, 4132–4154,
https://doi.org/10.1002/2015JD023161, 2015.

Clothiaux, E. E., Miller, M. A., Perez, R. C., Turner, D. D., Moran,
K. P., Martner, B. E., Ackerman, T. P., Mace, G. G., Marc-
hand, R. T., Widener, K. B., Rodriguez, D. J., Uttal, T., Mather,
J. H., Flynn, C. J., Gaustad, K. L., and Ermold, B.: The ARM
millimeter wave cloud radars (MMCRs) and the active remote
sensing of clouds (ARSCL) value added product (VAP), Tech.
rep., dOE Tech. Memo. ARM VAP-002. 1, 56 pp., https://www.
arm.gov/publications/tech_reports/arm-vap-002-1.pdf (last ac-
cess: 10 November 2025), 2001.

Coddington, O. M., Vukicevic, T., Schmidt, K. S., and
Platnick, S.: Characterizing the information content of
cloud thermodynamic phase retrievals from the notional
PACE OCI shortwave reflectance measurements, Journal
of Geophysical Research: Atmospheres, 122, 8079–8100,
https://doi.org/10.1002/2017JD026493, 2017.

Compernolle, S., Argyrouli, A., Lutz, R., Sneep, M., Lambert,
J.-C., Fjæraa, A. M., Hubert, D., Keppens, A., Loyola, D.,
O’Connor, E., Romahn, F., Stammes, P., Verhoelst, T., and
Wang, P.: Validation of the Sentinel-5 Precursor TROPOMI

https://doi.org/10.5194/amt-18-6681-2025 Atmos. Meas. Tech., 18, 6681–6703, 2025

https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0054.1
https://doi.org/10.1175/JAMC-D-11-0203.1
https://doi.org/10.1175/JAMC-D-11-0203.1
https://doi.org/10.1016/j.jqsrt.2014.02.029
https://doi.org/10.1029/2009JD013121
https://doi.org/10.5194/acp-12-10313-2012
https://doi.org/10.1002/2015JD023161
https://www.arm.gov/publications/tech_reports/arm-vap-002-1.pdf
https://www.arm.gov/publications/tech_reports/arm-vap-002-1.pdf
https://doi.org/10.1002/2017JD026493


6700 A. M. Sayer et al.: Cloud top pressure for OLCI

cloud data with Cloudnet, Aura OMI O2–O2, MODIS, and
Suomi-NPP VIIRS, Atmos. Meas. Tech., 14, 2451–2476,
https://doi.org/10.5194/amt-14-2451-2021, 2021.

Copernicus: Cloud properties global gridded monthly and daily data
from 1982 to present derived from satellite observations, Coper-
nicus Climate Change Service (C3S) Climate Data Store (CDS)
[data set], https://doi.org/10.24381/cds.68653055, 2022.

Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M.-H., Fémé-
nias, P., Frerick, J., Goryl, P., Klein, U., Laur, H., Mavrocordatos,
C., Nieke, J., Rebhan, H., Seitz, B., Stroede, J., and Sciarra, R.:
The Global Monitoring for Environment and Security (GMES)
Sentinel-3 mission, Remote Sensing of Environment, 120, 37–
57, https://doi.org/10.1016/j.rse.2011.07.024, 2012.

Dubin, M., Hull, A. R., and Chapman, K. S. W. c.: U.S. Standard
Atmosphere, 1976, Tech. rep., nOAA S/T 76-1562, U.S. Gov-
ernment Printing Office, Washington, D.C., https://ntrs.nasa.gov/
citations/19770009539 (last access: 10 November 2025), 1976.

ESA/EUMETSAT: S3 Product Notice – OLCI S3.PN-OLCI-L1.11,
Tech. rep., https://sentinels.copernicus.eu/documents/247904/
2702575/Sentinel-3-OLCI-Product-Notice-Level-1 (last access:
10 November 2025), version 1.1, 2023.

Fischer, J. and Preusker, R.: Study on cloud top pressure develop-
ment from Sentinel-3 OLCI OCTPO2, Tech. rep., eUMETSAT
Algorithm Product Validation and Evolution Report Issue 2.0,
20.06.2021 EUM/CO/19/4600002221/AIBo, https://www-cdn.
eumetsat.int/files/2021-09/OCTPO2_PVR_v2-1.pdf(last access:
10 November 2025), 2021.

Gelaro, R. and Coauthors: The Modern-Era Retrospective Anal-
ysis for Research and Applications, Version 2 (MERRA-2),
J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-
0758.1, 2017.

Giangrande, S., Comstock, J., Collis, S., Shilling, J., Gaustad, K.,
Kehoe, K., Xie, S., and Zhang, D.: Translator Plan: A Coordi-
nated Vision for Fiscal Years 2023–2025, Tech. rep., Oak Ridge
National Laboratory (ORNL), Oak Ridge, TN (United States),
ARM Data Center, https://doi.org/10.2172/1893730, 2022.

Giangrande, S. E., Feng, Z., Jensen, M. P., Comstock, J. M., John-
son, K. L., Toto, T., Wang, M., Burleyson, C., Bharadwaj, N.,
Mei, F., Machado, L. A. T., Manzi, A. O., Xie, S., Tang, S., Silva
Dias, M. A. F., de Souza, R. A. F., Schumacher, C., and Martin,
S. T.: Cloud characteristics, thermodynamic controls and radia-
tive impacts during the Observations and Modeling of the Green
Ocean Amazon (GoAmazon2014/5) experiment, Atmos. Chem.
Phys., 17, 14519–14541, https://doi.org/10.5194/acp-17-14519-
2017, 2017.

Gordon, I., Rothman, L., Hargreaves, R., Hashemi, R., Karlovets,
E., Skinner, F., Conway, E., Hill, C., Kochanov, R., Tan, Y.,
Wcisło, P., Finenko, A., Nelson, K., Bernath, P., M. Birk, V. B.,
Campargue, A., Chance, K., Coustenis, A., B.J. Drouin, J. F.,
Gamache, R., Hodges, J., Jacquemart, D., Mlawer, E., Nikitin,
A., Perevalov, V., Rotger, M., Tennyson, J., Toon, G., Tran,
H., Tyuterev, V., Adkins, E., Baker, A., Barbe, A., Canè, E.,
Császár, A., Dudaryonok, A., Egorov, O., Fleisher, A., Fleur-
baey, H., Foltynowicz, A., Furtenbacher, T., Harrison, J., Hart-
mann, J., Horneman, V., Huang, X., Karman, T., Karns, J.,
Kassi, S., Kleiner, I., Kofman, V., Kwabia-Tchana, F., Lavren-
tieva, N., Lee, T., Long, D., Lukashevskaya, A., Lyulin, O.,
Makhnev, V., Matt, W., Massie, S., Melosso, M., Mikhailenko,
S., Mondelain, D., Müller, H., Naumenko, O., Perrin, A., Polyan-

sky, O., Raddaoui, E., Raston, P., Reed, Z., Rey, M., Richard,
C., Tóbiás, R., Sadiek, I., Schwenke, D., Starikova, E., Sung,
K., Tamassia, F., Tashkun, S., Auwera, J. V., Vasilenko, I., Vi-
gasin, A., Villanueva, G., Vispoel, B., Wagner, G., Yachmenev,
A., and Yurchenko, S.: The HITRAN2020 molecular spectro-
scopic database, J. Quant. Spectrosc. Radiat. Transfer, 277,
https://doi.org/10.1016/j.jqsrt.2021.107949, 2022.

Heidinger, A. and Stephens, G. L.: Molecular Line Absorp-
tion in a Scattering Atmosphere. Part II: Application to
Remote Sensing in the O2 A band, Journal of Atmo-
spheric Science, 57, 1615–1634, https://doi.org/10.1175/1520-
0469(2000)057<1615:MLAIAS>2.0.CO;2, 2000.

Heidinger, A. K. and Stephens, G. L.: Molecular Line Absorption in
a Scattering Atmosphere. Part III: Pathlength Characteristics and
Effects of Spatially Heterogeneous CLouds, Journal of Atmo-
spheric Science, 59, 1641–1654, https://doi.org/10.1175/1520-
0469(2002)059<1641:MLAIAS>2.0.CO;2, 2002.

Holz, R. E., Ackerman, S. A., Nagle, F. W., Frey, R., Dutcher, S.,
Kuehn, R. E., Vaughan, M. A., and Baum, B.: Global Moder-
ate Resolution Imaging Spectroradiometer (MODIS) cloud de-
tection and height evaluation using CALIOP, J. Geophys. Res.,
113, https://doi.org/10.1029/2008JD009837, 2008.

Illingworth, A. J., Hogan, R, J., O’Connor, E. J., Bouniol, D.,
Brooks, M. E., Delanoé, J., Donovan, D. P., Eastment, J. D.,
Gaussiat, N., Goddard, J. W. F., Haeffelin, M., Klein Baltink,
H., Krasnov, O. A., Pelon, J., Piriou, J.-M., Protat, A., Russ-
chenberg, H. W. J., Seifert, A., Tompkins, A. M., van Zadel-
hoff, G.-J., Vinit, F., Willén, U., Wilson, D. R., and Wrench,
C. L.: Cloudnet: Continuous Evaluation of Cloud Profiles in
Seven Operational Models Using Ground-Based Observations,
Bulletin of the American Meteorological Society, 88, 883–898,
https://doi.org/10.1175/BAMS-88-6-883, 2007.

Jones, A. L., Di Girolamo, L., and G., Z.: Reducing the
resolution bias in cloud fraction from satellite derived
clear-conservative cloud masks, J. Geophys. Res., 117,
https://doi.org/10.1029/2011JD017195, 2012.

Kollias, P., Clothiaux, E. E., Ackerman, T. P., Albrecht,
B. A., Widener, K. B., Moran, K. P., Luke, E. P., John-
son, K. L., Bharadwaj, N., Mead, J. B., Miller, M. A.,
Verlinde, J., Marchand, R. T., and Mace, G. G.: Devel-
opment and Applications of ARM Millimeter-Wavelength
Cloud Radars, Meteorological Monographs, 57, 17.1–17.19,
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0037.1,
2016.

Lelli, L., Kokhanovsky, A. A., Rozanov, V. V., Vountas, M., Sayer,
A. M., and Burrows, J. P.: Seven years of global retrieval of cloud
properties using space-borne data of GOME, Atmos. Meas.
Tech., 5, 1551–1570, https://doi.org/10.5194/amt-5-1551-2012,
2012.

Lindstrot, R., Preusker, R., and Fischer, J.: The Retrieval of
Land Surface Pressure from MERIS Measurements in the Oxy-
gen A Band, J. Atmos. Oceanic Technol., 26, 1367–1377,
https://doi.org/10.1175/2009JTECHA1212.1, 2009.

Long, C. N., Ackerman, T. P., Gaustad, K. L., and Cole, J.
N. S.: Estimation of fractional sky cover from broadband short-
wave radiometer measurements, J. Geophys. Res. Atmos., 11,
https://doi.org/10.1029/2005JD006475, 2006.

Loveridge, J. R. and Di Girolamo, L.: Do subsampling strategies
reduce the confounding effect of errors in bispectral retrievals

Atmos. Meas. Tech., 18, 6681–6703, 2025 https://doi.org/10.5194/amt-18-6681-2025

https://doi.org/10.5194/amt-14-2451-2021
https://doi.org/10.24381/cds.68653055
https://doi.org/10.1016/j.rse.2011.07.024
https://ntrs.nasa.gov/citations/19770009539
https://ntrs.nasa.gov/citations/19770009539
https://sentinels.copernicus.eu/documents/247904/2702575/Sentinel-3-OLCI-Product-Notice-Level-1
https://sentinels.copernicus.eu/documents/247904/2702575/Sentinel-3-OLCI-Product-Notice-Level-1
https://www-cdn.eumetsat.int/files/2021-09/OCTPO2_PVR_v2-1.pdf
https://www-cdn.eumetsat.int/files/2021-09/OCTPO2_PVR_v2-1.pdf
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.2172/1893730
https://doi.org/10.5194/acp-17-14519-2017
https://doi.org/10.5194/acp-17-14519-2017
https://doi.org/10.1016/j.jqsrt.2021.107949
https://doi.org/10.1175/1520-0469(2000)057<1615:MLAIAS>2.0.CO;2
https://doi.org/10.1175/1520-0469(2000)057<1615:MLAIAS>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<1641:MLAIAS>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<1641:MLAIAS>2.0.CO;2
https://doi.org/10.1029/2008JD009837
https://doi.org/10.1175/BAMS-88-6-883
https://doi.org/10.1029/2011JD017195
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0037.1
https://doi.org/10.5194/amt-5-1551-2012
https://doi.org/10.1175/2009JTECHA1212.1
https://doi.org/10.1029/2005JD006475


A. M. Sayer et al.: Cloud top pressure for OLCI 6701

on estimates of aerosol cloud interactions?, J. Geophys. Res. At-
mos., 129, https://doi.org/10.1029/2023JD040189, 2024.

Maddux, B. C., Ackerman, S. A., and Platnick, S.:
Viewing Geometry Dependencies in MODIS Cloud
Products, Bull. Amer. Meteor. Soc., 27, 1519–1528,
https://doi.org/10.1175/2010JTECHA1432.1, 2010.

Marchant, B., Platnick, S., Meyer, K., and Wind, G.: Evaluation of
the MODIS Collection 6 multilayer cloud detection algorithm
through comparisons with CloudSat Cloud Profiling Radar and
CALIPSO CALIOP products, Atmos. Meas. Tech., 13, 3263–
3275, https://doi.org/10.5194/amt-13-3263-2020, 2020.

Martins, J. V., Fernandez-Borda, R., McBride, B., Remer, L.,
and Barbosa, H. M. J.: The HARP hyperangular imag-
ing polarimeter and the need for small satellite pay-
loads with high science payoff for earth science remote
sensing, in: IGARSS 2018 – 2018 IEEE International
Geoscience and Remote Sensing Symposium, 6304–6307,
https://doi.org/10.1109/IGARSS.2018.8518823, 2018.

Mather, J. H. and Voyles, J. W.: The ARM Climate Research Fa-
cility: A Review of Structure and Capabilities, Bull. Amer. Me-
teor. Soc., 94, 377–392, https://doi.org/10.1175/BAMS-D-11-
00218.1, 2016.

McFarlane, S. and Shi, Y.: Changes to MFRSRCLDOD1MIN
Datastream, Tech. rep., U.S. Department of Energy, Of-
fice of Science, Office of Biological and Environmental Re-
search, report DOE/SC-ARM/TR-112, https://www.arm.gov/
publications/tech_reports/doe-sc-arm-tr-112.pdf?id=45 (last ac-
cess: 10 November 2025), 2012.

McGarragh, G. R., Poulsen, C. A., Thomas, G. E., Povey, A. C.,
Sus, O., Stapelberg, S., Schlundt, C., Proud, S., Christensen, M.
W., Stengel, M., Hollmann, R., and Grainger, R. G.: The Com-
munity Cloud retrieval for CLimate (CC4CL) – Part 2: The op-
timal estimation approach, Atmos. Meas. Tech., 11, 3397–3431,
https://doi.org/10.5194/amt-11-3397-2018, 2018.

Mechem, D. B. and Giangrande, S. E.: The challenge of identifying
controls on cloud properties and precipitation onset for cumulus
congestus sampled during MC3E, J. Geophys. Res. Atmos., 123,
3126–3144, https://doi.org/10.1002/2017JD027457, 2018.

Mechem, D. B., Giangrande, S. E., Wittman, C. S., Borque, P., Toto,
T., and Kollias, P.: Insights from modeling and observational
evaluation of a precipitating continental cumulus event observed
during the MC3E field campaign, J. Geophys. Res. Atmos., 120,
1980–1995, https://doi.org/10.1002/2014JD022255, 2015.

Meister, G., Knuble, J. J., Gliese, U., Bousquet, R., Chemerys,
L. H., Choi, H., Eplee, R. E., Estep, R. H., Gorman,
E. T., Kitchen-McKinley, S., Kubalak, D., Lee, S., McClain,
C., McIntire, J. W., Patt, F. S., Rhodes, Z., and Werdell,
P. J.: The Ocean Color Instrument (OCI) on the Plank-
ton, Aerosol, Cloud, ocean Ecosystem (PACE) Mission: Sys-
tem Design and Prelaunch Radiometric Performance, IEEE
Transactions on Geoscience and Remote Sensing, 62, 1–18,
https://doi.org/10.1109/TGRS.2024.3383812, 2024.

Mendonca, J., Strong, K., Wunch, D., Toon, G. C., Long, D.
A., Hodges, J. T., Sironneau, V. T., and Franklin, J. E.: Us-
ing a speed-dependent Voigt line shape to retrieve O2 from
Total Carbon Column Observing Network solar spectra to im-
prove measurements of XCO2, Atmos. Meas. Tech., 12, 35–50,
https://doi.org/10.5194/amt-12-35-2019, 2019.

Menzel, W. P., Frey, R. A., Zhang, H., Wylie, D. P., Moeller,
C. C., Holz, R. E., Maddux, B., Baum, B. A., Strabala, K. I.,
and Gumley, L. E.: MODIS Global Cloud-Top Pressure and
Amount Estimation: Algorithm Description and Results, Jour-
nal of Applied Meteorology and Climatology, 47, 1175–1198,
https://doi.org/10.1175/2007JAMC1705.1, 2008.

Miller, M. A., Nitschke, K., Ackerman, T. P., Fer-
rell, W. R., Hickmon, N., and Ivey, M.: The ARM
Mobile Facilities, Meteor. Monogr., 57, 9.1–9.15,
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0051.1,
2016.

Min, Q.-L. and Harrison, L. C.: Cloud properties derived from
surface MFRSR measurements and comparison with GOES re-
sults at the ARM SGP Site, Geophys. Res. Lett., 23, 1641–1644,
https://doi.org/10.1029/96GL01488, 1996.

Min, Q.-L., Duan, M., and Marchand, R.: Validation of sur-
face retrieved cloud optical properties with in situ mea-
surements at the Atmospheric Radiation Measurement Pro-
gram (ARM) South Great Plains site, J. Geophys. Res., 108,
https://doi.org/10.1029/2003JD003385, 2003.

Mlawer, E., Payne, V. H., Moncet, J.-L., Delamere, J. S., Alvarado,
M. J., and Tobin, D.: Development and recent evaluation of the
MT_CKD model of continuum absorption, Phil. Trans. Roy. Soc.
A, 360, 1–37, https://doi.org/10.1098/rsta.2011.0295, 2012.

Nagao, T. M., Suzuki, K., and Kuji, M.: Retrieving cloud-base
height and geometric thickness using the oxygen A-band chan-
nel of GCOM-C/SGLI, Atmos. Meas. Tech., 18, 773–792,
https://doi.org/10.5194/amt-18-773-2025, 2025.

Nakajima, T. and King, M. D.: Determination of the Opti-
cal Thickness and Effective Particle Radius of Clouds from
Reflected Solar Radiation Measurements. Part I: Theory,
J. Atmos. Sci., 47, 1878–1893, https://doi.org/10.1175/1520-
0469(1990)047<1878:DOTOTA>2.0.CO;2, 1990.

Pavolonis, M. J. and Heidinger, A. K.: Daytime Cloud Overlap De-
tection from AVHRR and VIIRS, J. Appl. Meteor., 43, 762–778,
https://doi.org/10.1175/2099.1, 2004.

Pavolonis, M. J., Heidinger, A. K., and Uttal, T.: Daytime Global
Cloud Typing from AVHRR and VIIRS: Algorithm Description,
Validation, and Comparisons, J. Appl. Meteor., 44, 804–826,
https://doi.org/10.1175/JAM2236.1, 2005.

Platnick, S., King, M., Ackerman, S., Menzel, W., Baum, B., Riedi,
J., and Frey, R.: The MODIS cloud products: algorithms and ex-
amples from Terra, IEEE Trans. Geosci. Remote Sens., 41, 459–
473, https://doi.org/10.1109/TGRS.2002.808301, 2003.

Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amaras-
inghe, N., Marchant, B., Arnold, G. T., Zhang, Z., Hubanks,
P. A., Holz, R. E., Yang, P., Ridgway, W. L., and Riedi,
J.: The MODIS Cloud Optical and Microphysical Prod-
ucts: Collection 6 Updates and Examples From Terra and
Aqua, IEEE Trans, Geosci. Remote Sens., 55, 502–525,
https://doi.org/10.1109/TGRS.2016.2610522, 2017.

Platnick, S., Meyer, K., Wind, G., Holz, R. E., Amaras-
inghe, N., Hubanks, P. A., Marchant, B., Dutcher, S.,
and Veglio, P.: The NASA MODIS-VIIRS Continuity
Cloud Optical Properties Products, Remote Sensing, 13,
https://doi.org/10.3390/rs13010002, 2021.

Poulsen, C., McGarragh, G., Thomas, G., Stengel, M., Chris-
tensen, M., Povey, A., Proud, S., Carboni, E., Hollmann, R., and
Grainger, D.: Cloud properties, CCI ICDR product version 3.1.

https://doi.org/10.5194/amt-18-6681-2025 Atmos. Meas. Tech., 18, 6681–6703, 2025

https://doi.org/10.1029/2023JD040189
https://doi.org/10.1175/2010JTECHA1432.1
https://doi.org/10.5194/amt-13-3263-2020
https://doi.org/10.1109/IGARSS.2018.8518823
https://doi.org/10.1175/BAMS-D-11-00218.1
https://doi.org/10.1175/BAMS-D-11-00218.1
https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-112.pdf?id=45
https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-112.pdf?id=45
https://doi.org/10.5194/amt-11-3397-2018
https://doi.org/10.1002/2017JD027457
https://doi.org/10.1002/2014JD022255
https://doi.org/10.1109/TGRS.2024.3383812
https://doi.org/10.5194/amt-12-35-2019
https://doi.org/10.1175/2007JAMC1705.1
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0051.1
https://doi.org/10.1029/96GL01488
https://doi.org/10.1029/2003JD003385
https://doi.org/10.1098/rsta.2011.0295
https://doi.org/10.5194/amt-18-773-2025
https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2
https://doi.org/10.1175/2099.1
https://doi.org/10.1175/JAM2236.1
https://doi.org/10.1109/TGRS.2002.808301
https://doi.org/10.1109/TGRS.2016.2610522
https://doi.org/10.3390/rs13010002


6702 A. M. Sayer et al.: Cloud top pressure for OLCI

Copernicus Climate Change Service (C3S) Climate Data Store
(CDS), https://doi.org/10.24381/cds.68653055, 2022.

Poulsen, C. A., Siddans, R., Thomas, G. E., Sayer, A. M., Grainger,
R. G., Campmany, E., Dean, S. M., Arnold, C., and Watts, P.
D.: Cloud retrievals from satellite data using optimal estima-
tion: evaluation and application to ATSR, Atmos. Meas. Tech.,
5, 1889–1910, https://doi.org/10.5194/amt-5-1889-2012, 2012.

Povey, A. C. and Grainger, R. G.: Known and unknown unknowns:
uncertainty estimation in satellite remote sensing, Atmos. Meas.
Tech., 8, 4699–4718, https://doi.org/10.5194/amt-8-4699-2015,
2015.

Preusker, R.: Sentinel-3 OLCI temporal model of spectral character-
istics, Tech. rep., report S3MPC.SE.TN.020, version 1.1, https:
//sentinels.copernicus.eu/documents/247904/2700436/S3MPC_
OLCI_spectral_characterisation_SD_RP_EUM_SD_v1.1.pdf
(last access: 10 November 2025), 2021.

Richardson, M., Leinonen, J., Cronk, H. Q., McDuffie, J., Lebsock,
M. D., and Stephens, G. L.: Marine liquid cloud geometric thick-
ness retrieved from OCO-2’s oxygen A-band spectrometer, At-
mos. Meas. Tech., 12, 1717–1737, https://doi.org/10.5194/amt-
12-1717-2019, 2019.

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding Theory
and Practice, World Scientific (Singapore, London, New Jersey,
Hong Kong, https://doi.org/10.1142/3171, 2000.

Sayer, A. M., Poulsen, C. A., Arnold, C., Campmany, E., Dean, S.,
Ewen, G. B. L., Grainger, R. G., Lawrence, B. N., Siddans, R.,
Thomas, G. E., and Watts, P. D.: Global retrieval of ATSR cloud
parameters and evaluation (GRAPE): dataset assessment, At-
mos. Chem. Phys., 11, 3913–3936, https://doi.org/10.5194/acp-
11-3913-2011, 2011.

Sayer, A. M., Govaerts, Y., Kolmonen, P., Lipponen, A., Luf-
farelli, M., Mielonen, T., Patadia, F., Popp, T., Povey, A. C.,
Stebel, K., and Witek, M. L.: A review and framework for
the evaluation of pixel-level uncertainty estimates in satellite
aerosol remote sensing, Atmos. Meas. Tech., 13, 373–404,
https://doi.org/10.5194/amt-13-373-2020, 2020.

Sayer, A. M., Lelli, L., Cairns, B., van Diedenhoven, B., Ibrahim,
A., Knobelspiesse, K. D., Korkin, S., and Werdell, P. J.: The
CHROMA cloud-top pressure retrieval algorithm for the Plank-
ton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission,
Atmos. Meas. Tech., 16, 969–996, https://doi.org/10.5194/amt-
16-969-2023, 2023.

Schönbrodt, F. D. and Perugini, M.: At what sample size do correla-
tions stabilize?, Journal of Research in Personality, 47, 609–612,
https://doi.org/10.1016/j.jrp.2013.05.009, 2013.

Shupe, M. D.: A ground-based multisensor cloud phase classifier,
Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL031008,
2007.

Shupe, M. D.: Clouds at Arctic Atmospheric Observatories. Part II:
Thermodynamic Phase Characteristics, J. Appl. Meteorol. Clim.,
650, 645–661, https://doi.org/10.1175/2010JAMC2468.1, 2011.

Shupe, M. D., Matrosov, S. Y., and Uttal, T.: Arctic
Mixed-Phase Cloud Properties Derived from Surface-
Based Sensors at SHEBA, J. Atmos. Sci., 63, 697–711,
https://doi.org/10.1175/JAS3659.1, 2006.

Shupe, M. D., Comstock, J. M., Turner, D. D., and
Mace, G. G.: Cloud Property Retrievals in the
ARM Program, Meteor. Monogr., 57, 19.1–19.20,

https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0030.1,
2016.

Smith, Jr, W. L., Minnis, P., Finney, H., Palikona, R., and
Khaiyer, M. M.: An evaluation of operational GOES-derived
single-layer cloud top heights with ARSCL data over the
ARM Southern Great Plains Site, Geophys. Res. Lett., 34,
https://doi.org/10.1029/2008GL034275, 2008.

Sneep, M., de Haan, J. F., Stammes, P., Wang, P., Vanbauce, C.,
Joiner, J., Vasilkov, A. P., and Levelt, P. F.: Three-way com-
parison between OMI and PARASOL cloud pressure products,
J. Geophys. Res., 113, https://doi.org/10.1029/2007JD008694,
2008.

Sookdar, K., Giangrande, S. E., Rausch, J., Ma, L., Wang,
M., Wang, D., Jensen, M. P., Hung, C.-S., and Chiu, J.
C.: Marine and continental stratocumulus cloud microphys-
ical properties obtained from routine ARM Cimel sunpho-
tometer observations, Atmos. Meas. Tech., 18, 6271–6289,
https://doi.org/10.5194/amt-18-6271-2025, 2025.

Stephens, G., Winker, D., Pelon, J., Trepte, C., Vane, D.,
Yuhas, C., L’Ecuyer, T., and M., L.: CloudSat and CALIPSO
within the A-Train: Ten Years of Actively Observing the
Earth System, Bull. Amer. Meteor. Soc., 99, 569–581,
https://doi.org/10.1175/BAMS-D-16-0324.1, 2018.

Sus, O., Stengel, M., Stapelberg, S., McGarragh, G., Poulsen,
C., Povey, A. C., Schlundt, C., Thomas, G., Christensen, M.,
Proud, S., Jerg, M., Grainger, R., and Hollmann, R.: The Com-
munity Cloud retrieval for CLimate (CC4CL) – Part 1: A
framework applied to multiple satellite imaging sensors, At-
mos. Meas. Tech., 11, 3373–3396, https://doi.org/10.5194/amt-
11-3373-2018, 2018.

Tilstra, L. G., de Graaf, M., Trees, V. J. H., Litvinov, P., Dubovik,
O., and Stammes, P.: A directional surface reflectance cli-
matology determined from TROPOMI observations, Atmos.
Meas. Tech., 17, 2235–2256, https://doi.org/10.5194/amt-17-
2235-2024, 2024.

Tran, H. and Hartmann, J.-M.: An improved O2 A band ab-
sorption model and its consequences for retrievals of pho-
ton paths and surface pressures, J. Geophys. Res., 113,
https://doi.org/10.1029/2008JD010011, 2008.

Turner, D. D., Lo, C., Min, Q., Zhang, D., and Gaustad, K.:
Cloud Optical Properties from the Multifilter Shadowband Ra-
diometer (MFRSRCLDOD): An ARM Value-Added Product,
Tech. rep., US Deparment of Energy technical report DOE/SC-
ARM-TR-047, https://www.arm.gov/publications/tech_reports/
doe-sc-arm-tr-047.pdf (last access: 10 November 2025), 2021.

van Amerongen, A., Rietjens, J., Campo, J., Dogan, E., Ding-
jan, J., Nalla, R., Caron, J., and Hasekamp, O.: SPEXone: a
compact multi-angle polarimeter, in: Proc. SPIE 11180, Inter-
national Conference on Space Optics – ICSO 2018, 111800L,
https://doi.org/10.1117/12.2535940, 2019.

Varble, A. C., Nesbitt, S. W., Salio, P., Hardin, J. C., Bharadwaj,
N., Borque, P., DeMott, P. J., Feng, Z., Hill, T. C. J., Mar-
quis, J. N., Matthews, A., Mei, F., Ökten, R., Castro, V., Gold-
berger, L., Hunziger, A., Barry, K. R., Kriedenweis, S. M., Mc-
Murdie, L. A., Pekour, M., Powers, H., Romps, D. M., Saulo,
C., Schmid, B., Tomlinson, J. M., van der Heever, S. C., Ze-
lenyuk, A., Zhang, Z., and Zipser, E. H.: Utilizing a Storm-
Generating Hotspot to Study Convective Cloud Transitions: The

Atmos. Meas. Tech., 18, 6681–6703, 2025 https://doi.org/10.5194/amt-18-6681-2025

https://doi.org/10.24381/cds.68653055
https://doi.org/10.5194/amt-5-1889-2012
https://doi.org/10.5194/amt-8-4699-2015
https://sentinels.copernicus.eu/documents/247904/2700436/S3MPC_OLCI_spectral_characterisation_SD_RP_EUM_SD_v1.1.pdf
https://sentinels.copernicus.eu/documents/247904/2700436/S3MPC_OLCI_spectral_characterisation_SD_RP_EUM_SD_v1.1.pdf
https://sentinels.copernicus.eu/documents/247904/2700436/S3MPC_OLCI_spectral_characterisation_SD_RP_EUM_SD_v1.1.pdf
https://doi.org/10.5194/amt-12-1717-2019
https://doi.org/10.5194/amt-12-1717-2019
https://doi.org/10.1142/3171
https://doi.org/10.5194/acp-11-3913-2011
https://doi.org/10.5194/acp-11-3913-2011
https://doi.org/10.5194/amt-13-373-2020
https://doi.org/10.5194/amt-16-969-2023
https://doi.org/10.5194/amt-16-969-2023
https://doi.org/10.1016/j.jrp.2013.05.009
https://doi.org/10.1029/2007GL031008
https://doi.org/10.1175/2010JAMC2468.1
https://doi.org/10.1175/JAS3659.1
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0030.1
https://doi.org/10.1029/2008GL034275
https://doi.org/10.1029/2007JD008694
https://doi.org/10.5194/amt-18-6271-2025
https://doi.org/10.1175/BAMS-D-16-0324.1
https://doi.org/10.5194/amt-11-3373-2018
https://doi.org/10.5194/amt-11-3373-2018
https://doi.org/10.5194/amt-17-2235-2024
https://doi.org/10.5194/amt-17-2235-2024
https://doi.org/10.1029/2008JD010011
https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-047.pdf
https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-047.pdf
https://doi.org/10.1117/12.2535940


A. M. Sayer et al.: Cloud top pressure for OLCI 6703

CACTI Experiment, Bull. Amer. Meteor. Soc., 192, E1597–
E1620, https://doi.org/10.1175/BAMS-D-20-0030.1, 2021.

Vinjamuri, K. S., Vountas, M., Lelli, L., Stengel, M., Shupe,
M. D., Ebell, K., and Burrows, J. P.: Validation of the
Cloud_CCI (Cloud Climate Change Initiative) cloud prod-
ucts in the Arctic, Atmos. Meas. Tech., 16, 2903–2918,
https://doi.org/10.5194/amt-16-2903-2023, 2023.

Wang, P. and Stammes, P.: Evaluation of SCIAMACHY Oxygen A
band cloud heights using Cloudnet measurements, Atmos. Meas.
Tech., 7, 1331–1350, https://doi.org/10.5194/amt-7-1331-2014,
2014.

Werdell, P. J., Behrenfeld, M. J., Bontempi, P. S., Boss, E., Cairns,
B., Davis, G. T., Franz, B. A., Gliese, U. B., Gorman, E. T.,
Hasekamp, O., Knobelspiesse, K. D., Mannino, A., Martins,
J. V., McClain, C. R., Meister, G., and Remer, L. A.: The
Plankton, Aerosol, Cloud, Ocean Ecosystem Mission: Status,
Science, Advances, Bulletin of the American Meteorological
Society, 100, 1775–1794, https://doi.org/10.1175/BAMS-D-18-
0056.1, 2019.

Wevers, J., Müller, D., Scholze, J., Kirches, G., Quast, R.,
and Brockman, C.: IdePix for Sentinel-3 OLCI Algo-
rithm Theoretical Basis Document (version 1.0), Zenodo,
https://doi.org/10.5281/zenodo.6517333, 2021.

Yang, J., Li, S., Gong, W., Min, Q., Mao, F., and Pan,
Z.: A fast cloud geometrical thickness retrieval algorithm
for single-layer marine liquid clouds using OCO-2 oxy-
gen A-band measurements, Remote Sens. Environ., 256,
https://doi.org/10.1016/j.rse.2021.112305, 2021.

Yang, P., Bi, L., Baum, B. A., Liou, K.-N., Kattawar, G., and
Mishchenko, M.: Spectrally consistent scattering, absorption,
and polarization properties of atmospheric ice crystals at wave-
lengths from 0.2 µm to 100 µm, J. Atmos. Sci., 70, 330–347,
https://doi.org/10.1175/JAS-D-12-039.1, 2013.

Zhang, Z. and Platnick, S.: An assessment of differences be-
tween cloud effective particle radius retrievals for marine water
clouds from three MODIS spectral bands, J. Geophys. Res., 116,
https://doi.org/10.1029/2011JD016216, 2011.

https://doi.org/10.5194/amt-18-6681-2025 Atmos. Meas. Tech., 18, 6681–6703, 2025

https://doi.org/10.1175/BAMS-D-20-0030.1
https://doi.org/10.5194/amt-16-2903-2023
https://doi.org/10.5194/amt-7-1331-2014
https://doi.org/10.1175/BAMS-D-18-0056.1
https://doi.org/10.1175/BAMS-D-18-0056.1
https://doi.org/10.5281/zenodo.6517333
https://doi.org/10.1016/j.rse.2021.112305
https://doi.org/10.1175/JAS-D-12-039.1
https://doi.org/10.1029/2011JD016216

	Abstract
	Introduction
	Data sets used in this study
	CHROMA applied to OLCI measurements
	Ground-based observations from ARM
	MODIS cloud retrievals
	SLSTR cloud retrievals

	Evaluation against ARM data
	Matchup methodology
	CTH comparisons
	CTH uncertainty evaluation
	COT comparisons
	Phase comparisons

	Comparison against MODIS and SLSTR retrievals
	Conclusions and implications for PACE OCI
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

