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Abstract. Aerosol optical depth (AOD) is a crucial param-
eter for understanding the impact of aerosols on Earth’s at-
mosphere and air quality. Nevertheless, most existing remote
sensing techniques rely on the shortwave spectrum, preclud-
ing nighttime measurements. While lunar and stellar pho-
tometry can measure nighttime AOD, their data availability
is limited due to the scarce moonlight for lunar photome-
try and the rarity of application for stellar photometry. In
this study, we made a first attempt to retrieve AOD from
ground-based microwave radiometer (MWR) measurements
in Beijing Nanjiao Meteorological Observatory in China.
Brightness temperatures (BTs) at the K-band (from 22.23
to 30.00 GHz) and V-band (from 51.25 to 58.80 GHz) are
trained against daytime spectral AOD from sun photome-
ter measurements together with the temperature profile us-
ing the random forest regression (RFR) retrieval model, and
the model is then used to retrieve nighttime AOD. The al-
gorithm demonstrates satisfactory performance, with rea-
sonable agreement with lunar AOD retrievals from the lu-
nar photometer (R =0.91 and RMSE = 0.14). The results
also reveal a distinct day—night cycle of AOD, with night-
time AOD typically higher than its daytime value for the
Beijing-CAMS Aerosol Robotic Network (AERONET) site
and AOD estimated based on MWR measurements. The
physical basis of our approach is verified using vertical
temperature and humidity profiles from sounding observa-
tion and simulation results from WRF-Chem as well as the
monochromatic radiative transfer model (MonoRTM). Our
study provides an effective and convenient approach to esti-
mate nighttime aerosol loading from surface, which has great
potential in environmental monitoring and climate forcing re-
search.

1 Introduction

Aerosols have a significant impact on weather patterns and
the Earth’s climate (Huang et al., 2014; Li et al., 2022, 2019;
Riemer et al., 2019), offsetting about one-third of the warm-
ing effect by anthropogenic greenhouse gases and influence
large-scale circulation (Huang et al., 2014; Li et al., 2022).
However, accurately assessing their role in radiative forcing
is a major challenge (Fan et al., 2016; Ghan et al., 2016;
IPCC, 2021; Seinfeld et al., 2016). Monitoring aerosol op-
tical depth (AOD) is crucial for understanding aerosol im-
pacts on climate and air quality, as it reflects the total amount
of aerosols in the atmosphere from its direct radiative im-
pact (Visioni et al., 2023; Yang et al., 2020). As a result,
there have been extensive efforts to measure AOD by vari-
ous methods.

The AOD is firstly measured through the inversion of the
Beer—Bouguer—Lambert law, which describes the attenua-
tion of spectral direct normal irradiance (DNI) (Gueymard,
2012). This process typically involves the use of a spectrome-
ter or spectroradiometer to measure direct solar irradiance as
monochromatically as possible on a specific spectral chan-
nel (Gueymard, 2012). This can be achieved using either a
filter-based photometer or a narrow-band spectroradiometer.
The ground-based Cimel CE318-T sun photometer is widely
used within the Aerosol Robotic Network (AERONET) to
provide relatively accurate estimates of daytime AOD serv-
ing as referenced values since 1980s (Holben et al., 1998).
Other observations measure physicochemical properties of
aerosols instead of optical properties like AOD (Kremser et
al., 2016; Li et al., 2016b). Mainstream aerosol remote sens-
ing techniques rely on aerosol scattering of shortwave ra-
diation in the ultraviolet and/or visible spectrum; thus only
daytime AOD can be obtained (Sayer et al., 2019; Sun et
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al., 2021). However, aerosols typically have day—night vari-
ability, due to factors such as different emission sources and
boundary layer structure (Arola et al., 2013; Cachorro et al.,
2004; Cachorro et al., 2008; Guo et al., 2017). Aerosols at
nighttime also have detectable impacts on the radiative bal-
ance, since they usually exert a warming effect in contrast to
the cooling effect at daytime (Chen and Zhao, 2024; Colarco
et al., 2014; Zhang et al., 2022), particularly in polar regions
with the rapid change of AOD between daytime and night-
time (Chen and Zhao, 2024; Stenchikov et al., 2002; Wei et
al., 2021). In special cases such as aerosols above the open
oceans, they consistently exert a cooling influence in both
shortwave and longwave, yet for dust aerosols, they poten-
tially exert a warming effect in longwave during both day
and night (Adebiyi et al., 2023; Feng et al., 2022; Song et al.,
2022).

Remote sensing of aerosol properties at night is a chal-
lenging task. Lunar photometry has emerged during recent
years as an effective and relative accurate nighttime AOD
retrieval technique and has been widely used within the
AERONET since 2013 (Barreto et al., 2013, 2016). How-
ever, this method is limited in its temporal coverage, pro-
viding data for only approximately half of each month. This
limitation arises because the method requires a substantial
amount of moon-reflected solar radiation, which is not con-
sistently available due to the imperfect anti-correlation be-
tween the lunar and solar set/rise cycles (Barreto et al., 2017;
Berkoff et al., 2011). Compared with the lunar photome-
ter method, stellar photometry, despite its rarity of use, pro-
vides nighttime AOD measurements by leveraging stellar ir-
radiance, eliminating lunar phase corrections, with long-term
datasets revealing diurnal aerosol dynamics (Pérez-Ramirez
et al., 2011, 2016, 2008, 2015). Arctic deployments and fur-
ther development such as using a wide-field imager enhance
its adaptability in extreme environments and spatiotempo-
ral resolution, addressing gaps in traditional sun-photometer-
based nocturnal monitoring (Ebr et al., 2021; Ivanescu et al.,
2021; Ivanescu and O’Neill, 2023). However, this method is
not widely adopted globally due to the bulkiness of the facil-
ities and the complex operational processes required for de-
ployment (Herber et al., 2002; Leiterer et al., 1995). Other re-
search studies take advantage of urban light to retrieve night-
time AOD from space from multiple sensors (Jiang et al.,
2022; Meng et al., 2023; Wang et al., 2023, 2020; Zhou et
al., 2021). For example, Zhang et al. (2019) examined the ef-
fectiveness of retrieving nighttime AOD over urban areas by
utilizing city lights observed through the satellite-based in-
strument VIIRS (Visible Infrared Imaging Radiometer Suite)
Day-Night Band (DNB). However, this approach has limita-
tions as it does not account for multiple scattering and gas
absorption, which can potentially reduce the signals from
aerosols (Zhou et al., 2021). Furthermore, these studies are
constrained to the spatial scale of urban areas, resulting in
vast rural regions being unexplored (Meng et al., 2023). Ac-
tive remote sensing, such as lidars, can provide aerosol mea-
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surements at both day- and nighttime (Balmes et al., 2021;
Jiang et al., 2024). Nonetheless, solving the lidar equation
requires assumption of the lidar ratio, and this assumed lidar
ratio often causes large uncertainty of the retrieved extinction
profiles as well as column-integrated AOD usually (Liu et al.,
2018; Rogers et al., 2014; Santa Maria and Winker, 2005).
For the day—night difference of AOD, previous studies find
slight increases in nighttime AOD using the long-term sun
and star photometry data (Pérez-Ramirez et al., 2012, 2016;
Wang et al., 2004). Moreover, using Infrared Atmospheric
Sounder Interferometer (IASI) and Cloud-Aerosol Transport
System (CATYS) is also effective to understand day—night dif-
ferences in dust aerosols (Tindan et al., 2023; Yu et al., 2021).
Gralfl et al. (2024) also presented a homogenized dataset de-
rived from a sun and star photometer operated in the Eu-
ropean Arctic over a 20-year period. However, existing re-
search regarding day—night difference of AOD only focuses
on special types of aerosols such as dust aerosols and has
low availability due to the moon phase and urban light extent
(Barreto et al., 2017; Jiang et al., 2022; Meng et al., 2023;
Wang et al., 2023, 2020; Zhou et al., 2021). Due to our lim-
ited capability to measure nighttime AOD, there is a signifi-
cant knowledge gap between daytime and nighttime aerosol
properties.

In contrast to shortwave radiation, which is only available
during daytime, longwave radiation, especially in the ther-
mal infrared and microwave spectrum, exists during both day
and night and offers the potential to derive nighttime aerosol
property (Dufresne et al., 2002; Panicker et al., 2008). Previ-
ous research has explored the possibility to retrieve aerosol
loading using longwave measurements but mostly focused on
large particles such as dust (Clarisse et al., 2019; DeSouza-
Machado et al., 2010; Kliser et al., 2012; Pierangelo et al.,
2004, 2005; Zheng et al., 2022, 2023). For example, using
collocated thermal infrared observations from MODIS and
dust optical depth from Cloud-Aerosol Lidar with Orthog-
onal Polarization (CALIOP), Zheng et al. (2023) simulta-
neously retrieve the thermal infrared dust optical depth and
coarse-mode effective diameter over global oceans. Obser-
vational and simulation studies indicate that the microwave
brightness temperatures (BTs) and brightness temperature
polarization differences may both be useful for estimating
the dust mass loading (Ge et al., 2008; Hong et al., 2008;
Huang et al., 2007; Mitra et al., 2013). Our previous study
utilized satellite-based thermal infrared measurements in the
atmospheric window region to retrieve nighttime AOD (Liu
et al., 2024) and proved the effectiveness of these longwave
measurements in deriving aerosol properties.

The ground-based microwave radiometer (MWR) is a
widely used remote sensing instrument to retrieve temper-
ature and humidity profiles using emitted longwave radia-
tion by the surface—atmosphere system (Bianco et al., 2005;
Greenwald et al., 2018; Knupp et al., 2009). Considering the
aforementioned concepts of utilizing longwave radiances to
retrieve aerosol properties and the potential alterations in mi-
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crowave BTs due to the modified temperature and humid-
ity profiles resulting from the shortwave radiation effect of
aerosols, there is potential that aerosol information can be
derived from MWR measurements, thereby further filling the
gaps of previous retrieval methods. Therefore, in this study,
we explore the possibility to retrieve AOD using surface-
based MWR measurements in the K spectral bands (22.23,
22.50, 23.03, 23.83 25.00, 26.23, 28.00, and 30.00 GHz)
and V spectral bands (51.25, 51.76, 52.28, 52.80, 53.34,
53.85, 54.40, 54.94, 55.50, 56.02, 56.66, 57.29, 57.96, and
58.80 GHz). A machine-learning-based algorithm is devel-
oped to estimate AOD during both day and night. The theo-
retical basis of the method is further verified using regional
model and radiative transfer simulations. The difference be-
tween day- and nighttime AOD is also examined using the
retrieval results.

2 Data and methods

The retrieval algorithm used in this study is described in
Fig. 1 and includes four main steps: (1) preprocessing of
input variables, (2) training of the Random Forest Regres-
sion (RFR) retrieval model, (3) estimation of AOD using the
trained model, and (4) independent validation to refine the
model and assess its performance compared to lunar pho-
tometer observations. The details of the datasets and methods
are explained below.

2.1 Datasets

The study area is located at the northern edge of the North
China Plain, featuring a temperate continental monsoon cli-
mate with four distinct seasons (Yu et al., 2009). Spring is oc-
casionally influenced by dust episodes transported by north-
westerly and westerly winds from the Kumutage and Takli-
makan deserts in western China or by northerly winds from
the Mongolian deserts (Liu et al., 2022a). Summer is marked
by relatively hot and humid conditions and accounts for ap-
proximately 74 % of the annual precipitation. Autumn is mild
and dry, with clear skies and cooling temperatures. Winter is
cold and dry, with occasional snowfall and minimal precipi-
tation (Feng et al., 2010; Hao et al., 2017).

In this study, we utilized BT data collected from the
MP-3000A MWR, which was stationed at the Beijing Nan-
jiao Meteorological Observatory located in China (39.80° N,
116.47°E, http://bj.cma.gov.cn/, last access: 8 April 2024)
(Ding et al., 2010; Lei et al., 2011; Zhou et al., 2024). The
MP-3000A MWR is capable of detecting signals in the K-
band (22 to 30 GHz) and V-band (51 to 59 GHz), and it is
also equipped with additional features such as a precipitation
sensor, an infrared radiation thermometer, and other relevant
instruments. To maintain the accuracy and consistency of the
atmospheric BT measurements, the MWR undergoes regu-
lar real-time calibration. These measurements are essential
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for obtaining temperature profiles and AOD data. Our anal-
ysis focuses on the K- and V-band of BT observations with
22 available channels because BT observations at the K-band
are sensitive to water vapor absorption and BT observations
at the V-band are sensitive to oxygen absorption and temper-
ature changes. We use the data ranging from December 2019
to October 2020 with a temporal resolution of 1 min due to
limitations of data distribution policy. We also aim to extend
the temporal range of our analysis in the future study.

The measured BTs include inaccuracies and unusual val-
ues caused by instrumental faults, calibration problems, and
environmental factors. Hence, it is crucial to conduct quality
control (QC) checks on the BT data before processing it fur-
ther. These checks involve removing abnormal values to en-
sure that the BTs fall within a reasonable temperature range
of 2.7 to 330 K and inspecting for data consistency over time
as per the methodology of Zhang et al. (2024). Ultimately,
nearly 4.36 % of BT data were excluded from the study due
to a combination of instrumental faults, calibration prob-
lems, and environmental factors. Notably, the Level 2 sun
photometer AOD products from AERONET are already val-
idated and represent clear-sky conditions. Therefore, the col-
location of MWR data with these AERONET products inher-
ently excludes cloudy conditions. While AERONET data can
be cloud-free in the direction of the sun, the MWR, which
measures in the zenith direction, may still detect the pres-
ence of clouds. Therefore, we further conducted additional
cloud screening following the method of the previous study
to ensure the clear-sky conditions in the analysis (Zhang et
al., 2024).

AQOD retrieved using the solar and lunar methods at the
Beijing-CAMS AERONET site (39.95°N,116.32° E, located
in the Chinese Academy of Meteorological Sciences; see Ta-
ble S1 in the Supplement), which is the closest site to the
MWR location (20.77 km), is used as training and valida-
tion data in the retrieval algorithm. For training our model,
we utilized Level 2 sun photometer AOD products at the
wavelengths of 440, 500, 675, 870, and 1020 nm during the
day and Version 3 Level 1.5 lunar AOD products at the
same wavelengths to validate AOD retrievals at night. It
is noteworthy that the distance between the Beijing-CAMS
AERONET site and MWR site is 20.77 km. Considering
the vast urban area of Beijing, which spans approximately
160 km both east—west and north—south, this distance is rel-
atively short. We specifically chose this AERONET station
rather than others because it is the only one that provides con-
sistent Version 3 Level 1.5 lunar AOD products from 2019 to
2020, ensuring a consistent dataset with daytime AOD for
our analysis.

Given that MWRs are instrumental in tracking atmo-
spheric temperature and humidity profile changes (Zhang
et al., 2024), our method retrieves vertical temperature pro-
files concurrently. This is achieved using temperatures at dif-
ferent pressure levels obtained from the European Center
for Medium-Range Weather Forecasts (ECMWF) Reanaly-
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Figure 1. The flowchart for clear-sky nighttime AOD and vertical temperature profile retrieval algorithm.

sis version 5 (ERA-5) as the target for our training (Hers-
bach et al., 2023). We chose the ECMWEF products mainly
because of their hourly temporal resolution, which provides
more training samples for the RFR model than the twice-
daily sounding data. This enhances the model’s ability to cap-
ture temporal variability and improve prediction accuracy of
the predicted variables. To further assess the accuracy of the
model in predicting vertical temperature profiles, we utilized
the collocated sounding data obtained from Beijing Meteo-
rological Station (station ID: 54511) during the correspond-
ing time frame. The collocation process involves identify-
ing the temporally nearest valid BT measurement and subse-
quently inputting this BT value into the model to generate the
MWR-based vertical temperature profile prediction. The ra-
diosonde temperature profiles are then vertically interpolated
to the standard pressure levels (100, 200, 500, 700, 850, and
1000 hPa) using a linear interpolation method, allowing for
direct comparison with the MWR-based temperature profile
prediction. These sounding data were collected twice daily
respectively at 00:00 and 12:00 UTC from December 2019
to October 2020.

For the physical interpretation of our retrieval method,
we employed collocated vertical profiles of temperature
and relative humidity (RH) from the same sounding data
under varying aerosol loadings to explore the effects of
aerosol loading on the vertical profiles of meteorological
variables. These vertical profiles were further utilized to
compute BTs using the monochromatic radiative transfer
model (MonoRTM).

In summary, our study primarily relies on in situ measure-
ments from three sites: the MWR site, the AERONET site,
and the sounding site (see Table S1 and Fig. 2b for details).
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These sites are located at the Beijing Nanjiao Meteorological
Observatory, the Chinese Academy of Meteorological Sci-
ences, and the Beijing Meteorological Station, respectively.
All three sites are situated within the urban or suburban areas
of Beijing, with relatively close proximity to each other. The
aerosol types expected at these sites include urban aerosols
and mixed aerosols, with dust aerosols peaking during the
boreal spring season (Chen et al., 2016; Ou et al., 2017).

2.2 Retrieval algorithm

Because the relationship between aerosol loading and mi-
crowave radiation is complicated and could be nonlinear, we
use a machine-learning-based retrieval method focusing on
the RFR method (Svetnik et al., 2003). The RFR model lever-
ages the power of ensemble learning, integrating multiple de-
cision trees to enhance prediction accuracy and robustness.
Each decision tree within the ensemble is constructed using
a random subset of the training data and a random selection
of features, thereby reducing overfitting and improving gen-
eralization capabilities. Through this mechanism, the RFR
model can effectively capture the complex interactions be-
tween aerosol properties and microwave radiation signals,
providing a reliable and efficient approach for aerosol re-
trieval.

All variables are rigorously matched in both temporal
and spatial dimensions to ensure consistency and accuracy.
Specifically, AOD data derived from sun photometer mea-
surements are temporally matched with BTs from the MWR
within a 5 min time window. Meanwhile, hourly temperature
profiles from the ERA-5 reanalysis datasets are collocated
with MWR BTs within a 30 min time window and a 15 km
spatial radius. It should be noted that the acquisition of tem-
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perature profiles relies solely on the ERA-5 reanalysis data
and does not require data from the AERONET station and
that the 15 km spatial radius only refers to the distance be-
tween the ERA-5 grid point and the MWR site location.

We first apply the relative importance feature selection
technique, which is based on the Gini importance measure
(Nembrini et al., 2018), to identify significant independent
variables and build a generalized model. In the context of
random forests, the relative importance of each predictor
variable (feature) is quantified by a numeric array of size 1-
by-Nvars. The importance measure for each variable is de-
fined as the increase in prediction error that results from per-
muting the values of that variable across the out-of-bag ob-
servations. This measure is calculated for each tree in the en-
semble and then averaged across all trees. To standardize the
importance scores, the average values are normalized by di-
viding them by the standard deviation computed over the en-
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tire ensemble. This process yields a normalized importance
measure that provides a robust assessment of each feature’s
contribution to the model’s predictive performance. The rel-
ative importance of each factor is presented in Fig. 3. It is
observed that BT across various frequency bands carry sim-
ilar levels of importance, suggesting that the BTs are almost
equally important for retrieving AOD.

The retrieval algorithm is subsequently trained using 8 se-
lected K-band BTs and 14 V-band BTs from the MP-3000A
MWR as input variables. The target variables include AOD
at 440, 500, 675, 870, and 1020 nm from the Beijing-CAMS
AERONET site, as well as ERA-5 vertical temperature pro-
files at 100, 200, 500, 700, 850, and 1000 hPa. To ensure the
representativeness of the sampling, we select the first three-
quarters of the data in each month as the training set and the
last one-quarter of the data as the testing set. Additionally,
the algorithm is adapted to estimate nighttime AOD using
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nighttime BTs from microwave radiometry as input, which
is then validated against nighttime AOD observations from
lunar measurements by the lunar photometer for the same
period. Moreover, AOD, whether in the visible or microwave
region, is associated with aerosol loading, which serves as the
foundation for retrieving visible AOD using microwave ob-
servations. Since we primarily aim at retrieving AOD rather
than aerosol type, we did not consider AOD at the other
wavelengths when building the AOD retrieval model. The re-
lationship between AOD at 440, 500, 675, 870, and 1020 nm
(the output wavelengths of the RFR model) and at the mi-
crowave band is enclosed in the random forest model. The
model performance is assessed against photometer retrievals
using metrics such as linear regression slope and intercept,
correlation coefficient (R), root-mean-square error (RMSE),
and mean absolute percentage error (MAPE).

The RFR model is built by varying the number of decision
trees from 8 to 256. Through validation analysis, it is deter-
mined that the optimal number of trees is 128, based on the
best performance during validation. The super parameters of
this RFR model are detailed in Table S2. After refining the
algorithm through extensive training and testing, it is used to
retrieve nighttime AOD from nighttime MWR BTs, with val-
idation against collocated lunar AOD measurements from the
lunar photometer. Moreover, before investigating the diurnal
cycle of MWR-derived AOD, we perform a quality control
on the minute-resolution retrieval results that typically have
a higher noise level. Specifically, for each specific minute,
we extract the AOD for this minute from each day to form an
AOD sequence. We then calculate the mean and standard de-
viation of this AOD sequence. Finally, we remove AOD that
exceeds 3 times the standard deviation. Considering the suit-
able quantity of outliers procured by setting the threshold at
3 standard deviations and the prevalently utilized 3o rule, we
used 3 standard deviations as the threshold (Li et al., 2016a;
Liu et al., 2024; Wang et al., 2012).

2.3 WRF-Chem simulations

To investigate the effect of aerosols on downward mi-
crowave radiation, we use the Weather Research and Fore-
casting model with Chemistry (WRF-Chem) simulations
combined with the MonoRTM radiative transfer model. Be-
cause MWR-observed BT change not only is due to AOD
change but also reflects the change of meteorological condi-
tions due to the AOD change, we apply WRF-Chem and the
MonoRTM instead of radiative transfer simulations only.
WRF-Chem simulation runs from 00:00 UTC on 17 De-
cember 2016 to 00:00 UTC on 20 December 2016 (a 72h
period). The simulation period is different from that of the re-
trieval because there are no updated emission fields for 2019
and 2020. The initial meteorological conditions used for
the simulations are based on the National Center for Atmo-
spheric Research (NCEP) Final Global Forecast System Op-
erational Analysis (FNL) provided by the National Oceanic
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and Atmospheric Administration (NOAA), with a 1° x 1°
spatial resolution and a 6h temporal interval. The emis-
sion fields used here are Emissions Database for Global At-
mospheric Research (EDGAR), MIX, and Multi-resolution
Emission Inventory for China (MEIC) (Crippa et al., 2018;
Lietal., 2017; Wang et al., 2014). The surface emissivity we
used for simulation is the default data for WRF-Chem. The
simulation domain encompasses the area of Beijing, Tian-
jin, and Hebei provinces (as shown in Fig. 2a), with a cen-
ter point at 40.00° N, 116.25° E. The model employs a three-
tiered nesting configuration, featuring outer grids of 40 x 46
with a 90km horizontal spacing, middle grids of 48 x 60
with a 30 km horizontal spacing, and inner grids of 51 x 72
with a 10 km horizontal spacing. The vertical atmosphere is
segmented into 47 levels, ranging from the model’s ground
level to 100 hPa, encompassing both the surface and the up-
per atmosphere. Figure 3 illustrates the domains of the WRF
model simulations and the location of the MWR deployed at
the Beijing Nanjiao Meteorological Observatory in China. To
further confirm our findings, we perform another set of paral-
lel experiments lasting from 00:00 UTC on 3 December 2016
to 00:00UTC on 5 December 2016 (a 48h period) with
the same settings. Additionally, to augment the representa-
tiveness of our results, analogous WRF-Chem simulations
were executed during the boreal summer from 00:00 UTC
on 5 July 2016 to 00:00 UTC on 8 July 2016 (a 72 h period).
The choice of these simulation periods is based on the pres-
ence of significant pollution events, which provide a robust
basis for examining the influence of aerosols on meteorolog-
ical fields and the associated microwave BTs. The first day of
both sets of experiments is used for model stabilization, and
the subsequent days are utilized for analysis.

For the choices of physical parameterization schemes,
we employ the Lin microphysics scheme, the rapid radia-
tive transfer model for global climate model (GCM) appli-
cations (RRTMG) for shortwave radiation, the Yonsei Uni-
versity (YSU) boundary layer scheme, the Monin—Obukhov
ground layer scheme, the Carbon-Bond Mechanism version
Z (CBM-Z) for gas-phase chemistry, and the Model for Sim-
ulating Aerosol Interactions and Chemistry (MOSAIC). The
model output has a 1h temporal resolution. Here, we uti-
lize AOD at 550 nm instead of 500 nm because WRF-Chem
does not simulate AOD at 500 nm. Thus, 550 nm was se-
lected as the closest available alternative wavelength in the
WRF-Chem output.

To investigate the responses of surface downward mi-
crowave radiation to aerosol loadings, we also conducted
two parallel experiments with and without aerosol emis-
sions in the study. Two simulations that are designated
as “EXP_AER” and “EXP_NOAER” are carried out. The
EXP_AER experiment is defined as a control simulation in
which the aerosol and aerosol precursor emission scheme
is turned on. This aerosol emission includes emissions
of carbon monoxide, nitrogen oxides, sulfate oxides, dust
aerosols, biomass aerosols, biomass burning aerosols, sea
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salt aerosols, and anthropogenic aerosols. The sensitivity ex-
periment (“EXP_NOAER?”) is also conducted by closing cor-
responding aerosol and aerosol precursor emission scheme.
The difference between control and sensitivity results are
considered the adjustments of vertical meteorological pro-
files to aerosol loadings. This method is also widely used to
explore the radiative forcing of different kinds of aerosol and
its effects on meteorological fields in previous studies (Chen
et al., 2023c; Matsui et al., 2018).

It is important to note that the aerosol-radiation interac-
tion feature is activated in the WRF-Chem model to investi-
gate the impact of aerosol loadings on meteorological fields.
Subsequently, we input meteorological profile data from pol-
lution cases without cloud cover at each grid point into the
monochromatic radiative transfer model (MonoRTM) to cal-
culate the corresponding BT responses at various frequencies
within the K-band.

2.4 MonoRTM

The MonoRTM (Clough et al., 2005; Huang et al., 2013),
developed by Atmospheric and Environmental Research
(AER), is a radiative transfer model specifically designed for
microwave and millimeter-wave applications (Clough et al.,
2005; Huang et al., 2013). This model is particularly useful
in the microwave radiation calculation (Payne et al., 2011).
In this study, it is used to calculate the brightness temper-
atures (BTs) associated with the simulated temperature and
humidity vertical profiles from WRF-Chem.

3 Results
3.1 Model fitting and validation

The AERONET AOD data are used for training and validat-
ing the model. Specifically, daytime AERONET AOD data
are used for model training and testing. To ensure the rep-
resentativeness of the sampling, we have partitioned the data
such that the three-quarters of the data in each month are des-
ignated as the training set, while the remaining one-quarter
serves as the testing set. After training, nighttime MWR BT
measurements are input into the model to generate night-
time AOD estimates. These estimates are then compared with
nighttime AERONET lunar AOD measurements for valida-
tion.

The retrieval model has great fitting performance, as
shown by Fig. 4. The model fitting reaches correlation coef-
ficients of 0.98 for 440, 500, 675, 870, and 1020 nm, respec-
tively, albeit with a minor systematic low bias for high-AOD
scenarios, which is similar to MODIS AOD products (Levy
et al., 2013). Due to the consistent model performance in all
wavelengths (Fig. 4), we will focus on results at 500 nm in
the following discussions since this is typically the reference
wavelength for satellite remote sensing (Levy et al., 2013).
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Figure 5 displays the comparison between the daytime and
nighttime AOD independently retrieved by MWR using our
algorithm and those from the sun and lunar photometer from
December 2019 to October 2020. The model, tested dur-
ing the daytime, utilized a dataset of over 3000 samples and
achieved correlation coefficients of 0.96 for 500 nm (Fig. 5a).
The performance in 500 nm of the testing set (R = 0.96,
RMSE = 0.08, and MAPE = 0.11) is slightly inferior to the
training set (R = 0.98, RMSE = 0.07, and MAPE = 0.10)
regarding the statistical metrics (Fig. 5a). Most points are
concentrated on the 1: 1 line, with RMSE within 0.08 and
MAPE within 0.11. The accuracy of this estimation is simi-
lar to existing shortwave-based algorithms based on the satel-
lite sensor such as the MODIS aerosol products (Levy et al.,
2013). However, the key advantage of using microwave BT
is the capability to retrieve AOD at night, a feature lacking in
these shortwave-based algorithms (Fig. 5b). Nighttime AOD
retrieval reaches comparable performance to that for day-
time, exhibiting a high correlation of 0.91 with lunar AOD.
A minor systematic bias towards lower values in high-AOD
scenarios is also noted, with RMSE about 0.14 and MAPE
approximately 0.27, indicating the overall satisfactory per-
formance of MWR retrievals. In addition, the MWR results
also capture the spectral variation of AOD for fine-mode
(440 to 870 nm Angstrém index > 1) and coarse-mode parti-
cles (440 to 870 nm Angstrém index < 1) well, as shown in
Fig. 6. Moreover, the MWR tends to underestimate AOD dur-
ing both daytime and nighttime, particularly at shorter wave-
lengths. As the wavelength increases, this underestimation
diminishes, and the MWR measurements align more closely
with AERONET observations (Fig. 6). This trend is observed
for both fine-mode and coarse-mode aerosols (Fig. 6).

For retrieving vertical temperatures profiles, similarly to
the AOD, we also partitioned the data such that three-quarters
of the data in each month are designated as the training set,
while the remaining one-quarter serves as the testing set.
Our algorithm simultaneously retrieves daytime and night-
time temperature profiles. As shown in Figs. 7 and 8, atmo-
spheric temperature retrieval results also demonstrate good
performance and exceed those of AOD. This is expected
since the main signals in the microwave come from emitted
radiation by the atmosphere that is directly related to tem-
perature. In detail, R is generally above 0.98, and all of the
RMSEs are around 1.0K in the training set (Fig. 7). Simi-
larly, the model’s performance on the testing set is somewhat
lower compared to the training set but remains satisfactory
overall. Specifically, R is above 0.95, and all of the RMSEs
are around 1.8 K the testing set (Fig. 8), comparable to previ-
ous studies using MWR to retrieve temperature profiles with
an optimal estimation method (Cimini et al., 2006). The sig-
nificant biases at some pressure levels may be attributed to
the larger biases between sounding data and reanalysis data
that are used to train the model (Varga and Breuer, 2022).
Our model also captures the characteristics of the climato-
logical mean temperature vertical profile well, with the er-
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ror in each pressure layer within 1.5 K (Fig. 9a). There are
greater RMSE and bias in low pressure levels partially due
to the higher temperature variations in these levels; the over-
all RMSE and bias serve to illustrate the exemplary perfor-
mance of the model in estimating the vertical temperature
profiles (Fig. 9b and c).

In summary, the day- and nighttime MWR-based AOD
and vertical temperature profiles derived from our algorithm
successfully capture the AOD variability and vertical temper-
ature profile characteristics with satisfactory accuracy. This
model also unveils the spectral characteristics of AOD, with
higher wavelengths corresponding to lower AOD. With great
performance through model validation, we will investigate
the diurnal cycle of AOD in the following section.

Atmos. Meas. Tech., 18, 6705-6725, 2025

3.2 The diurnal cycle of MWR-derived AOD

We further examine the day-night differences in the AOD
retrieved by MWR and compare them to those revealed by
surface photometer. It should be noted that the analysis pe-
riod in the following section remains from December 2019
to October 2020, contingent upon the availability of data.
We acknowledge that the analysis period may not fully rep-
resent typical regional conditions due to COVID-19 (Lv et
al., 2020; Sulaymon et al., 2021). However, the impact of
COVID was mainly confined to January—March 2020. By
April 2020, Beijing had largely recovered, with industrial
and anthropogenic pollution sources returning to normal (Liu
et al., 2022b; Tao et al., 2021).

https://doi.org/10.5194/amt-18-6705-2025



G. Liu et al.: Estimation of nighttime aerosol optical depths

(a) Fine mode
06

—J—Daytime MWR
05t —F—Daytime AERONET

-F Nighttime MWR

o
~

o
[N

Find mode AOD
o
w

IS4
i

0
440 nm 500 nm 675 nm 870 nm 1020 nm
Wavelength

]
-F Nighttime AERONET <ut) 047

Coarse mod

6713

(b) Coarse mode
06

——Daytime MWR
0.5t —J—Daytime AERONET

-F Nighttime MWR
- T Nighttime AERONET

o
w

o
(N
’

0 . . . . .
440 nm 500 nm 675 nm 870 nm 1020 nm
Wavelength

Figure 6. The relationship between wavelength and its corresponding AOD for MWR-based (blue lines) and the photometer (red lines) in
the daytime (solid lines) and nighttime (dashed lines) for (a) fine-mode particles (440 to 870 nm Angstrém index > 1) and (b) coarse-mode
particles (440 to 870 nm Angstrom index < 1). The upper bound of the error bar is the 25th percentile, the middle is the median, and the

lower bound is the 75th percentile.

(a) 100 hPa temperature (train)  (b) 200 hPa temperature (train) (2)0 500 hPa temperature (train)
. . 70 ¢ B -
220 1:1 Line | 1:1 Line ! 1:1 Line e
. — = 099x+2.01 . ——y = 1.00x+-0.80 _ 265} Ty =101x+-322
3 < € 1
c 215 c = 260/
§ S S
B B 220} S 255
8 210 K 3
a S 215 S 250} 08
g N =512 g N=512 g =
g 205 R=0.98 % 210 R=0.98 % | RMSE = 1.02 &
RMSE = 0.87 RMSE = 0.88 i - =
,,,,,,,,,,,,, MAPE = 0.0033 /.. ... MAPE=00032 ML . MAPE 200032 g
205 210 215 220 210 215 220 225 240 245 250 255 260 265 270 06 =
Sounding (K) Sounding (K) Sounding (K) (:)
d) 700 hPa temperature (train) i i
( p (e) 850 hPa temperature (train)  (f) 1000 hPa temperature (train) %
— 285 1:1 Line 295 1:1 Line — [ 1:1 Line 104 S
X 580! —y=1.00x+-0.70 3 ——y = 1.00x+0.23 K3 | —y=1.01x+1.80 (2
= g 0 z w00 Z
:‘(-} 275 .5 285 5 :
8 270 3 280 B 200 10.2
o Q. Qo
g 265 ﬂg: 275 Dgi
- 280
270 N =512 v N =512
= 260 ! = R =0.99 = % R=0.99
) RMSE = 1.08 265 RMSE = 1.19 v RMSE = 1.21 L0
55 MAPE = 0.0032 MAPE = 0.0034 270; MAPE = 0.0033
265 260 265 270 275 280 285 265 270 275 280 285 290 295 270 280 290 300
Sounding (K) Sounding (K) Sounding (K)

Figure 7. Density scatter plots of the vertical temperature profile in the training set of MWR and sounding data at (a) 100, (b) 200, (¢) 500,
(d) 700, (e) 850, and (f) 1000 hPa. The dashed dark-gray line represents the 1 : 1 line, and the black solid line represents the linear regression

line.

Figure 10a-b illustrate the mean diurnal cycles of the pho-
tometer AOD and MWR-based AOD derived from BT ob-
servations at the Beijing Nanjiao Meteorological Observa-
tory in China. Although the MWR-based AOD tends to un-
derestimate extreme values relative to the photometer AOD,
the MWR measurements exhibit strong agreement with the
photometer AOD (Fig. 10a-b). As shown in Fig. 10a, mean
diurnal AOD follows a bimodal temporal distribution, with a
greater peak ~21:00 LT and a secondary peak at ~ 03:00 LT.
The AOD stays relatively low from 06:00 to 10:00LT and
gradually rises from 10:00 to 21:00 LT, reaching the first peak
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at 21:00 LT. After that greater peak, the AOD decreases from
22:00 to 00:00LT and then increases again until it reaches
the second peak at 03:00 LT. This pattern is consistent across
other spectral bands (675, 870, and 1020 nm, not shown
here). This decrease may be attributed to the higher relative
humidity near 23:00 LT and the corresponding aerosol scav-
enging effect, but further investigation is needed in future
studies. Moreover, although the MWR-based AOD seems to
underestimate the extreme pollution with high AOD com-
pared with photometer observations, since the number of up-
per outliers of AOD of the photometer is higher than that of
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MWR, the overall temporal pattern is similar to that of the
photometer (Fig. 10a).

The mean and median AOD values further support the
above findings, highlighting higher nighttime AOD com-
pared to daytime (Fig. 10b). This difference is validated by
the box plots of MWR-based AOD and photometer AOD
(Fig. 10c), passing Student’s ¢ test significance test with
p <0.05. Specifically, the median daytime AOD is in the
range of 0.15 to 0.28 for MWR and 0.15 to 0.27 for the
photometer, while the median nighttime AOD is greater than
0.34 for MWR and higher than 0.30 for the photometer. Sim-
ilarly, the mean daytime AOD is in the range of 0.25 to 0.35
for MWR and 0.24 to 0.32 for the photometer, while the
mean nighttime AOD is greater than 0.40 for MWR and over
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0.44 for the photometer. This discrepancy between daytime
and nighttime AOD has also been observed in previous stud-
ies estimating nighttime AOD by incorporating infrared radi-
ance measurement from the Atmospheric InfraRed Sounder
(AIRS) instrument into the machine learning model, further
corroborated by surface and space lidar measurements (Liu
et al., 2024). Notably, the mean AOD tends to exceed the
median AOD, partly due to the long-tail distribution of AOD
and the presence of high extreme values (Sayer et al., 2019).

We have further divided the results into four seasons and
validated the consistency of the diurnal cycle of AOD across
all seasons, with the most pronounced diurnal difference oc-
curring in summer (Fig. S1 in the Supplement). It is noted
that the lunar AOD is not available for JJA, which further un-
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derscores the supplementary role of MWR-predicted AOD
in complementing lunar AOD measurements. The seasonal
variation of AOD diurnal cycle agrees with previous studies
derived from downscaling reanalysis datasets (Wang et al.,
2025). The more significant diurnal difference in AOD dur-
ing summer can be attributed to two primary factors. Firstly,
the intense solar radiation and high temperatures prevalent in
summer significantly promote the formation of aerosol parti-
cles through the process of gas-to-particle conversion (Chen
et al., 2023a). Secondly, the high humidity levels in sum-
mer facilitate aerosol hygroscopic growth, which enhances
aerosol extinction (Chen et al., 2023b; Lv et al., 2017). AOD
at the other wavelengths (440, 675, 870, and 1020 nm) ex-
hibits similar diurnal patterns, with peaks at about 20:00—
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22:00 (not shown here) and higher nighttime AOD in general
(Fig. 6).

The increase in nighttime AOD compared to daytime can
be attributed to various factors, including a shallower mixed
layer due to reduced horizontal mixing and transport, a de-
crease in atmospheric environmental capacity, higher relative
humidity, enhanced aerosol hygroscopic growth, or intensi-
fied pollution emissions (Brock et al., 2016). Similar obser-
vations of elevated nighttime particle matter concentration
have been reported in previous studies (Perrone et al., 2022;
Su et al., 2023). However, research on nighttime aerosol
properties is limited, warranting further analysis to fully un-
derstand these discrepancies, which exceeds the scope of this
study.

In summary, using the BT measured by the MWR to re-
trieve AOD during nighttime, we can uncover the daily cycle
of AOD. This improves our understanding of the daytime—
nighttime AOD variability, provides insights into the diurnal
changes of atmospheric pollution, and sheds light on night-
time aerosol radiative effects.

3.3 Physical interpretation

Since the machine learning technique does not necessarily
represent the physical relationship between aerosol loading
and microwave radiances, we further verify the theoretical
basis of our technique by analyzing the observed temperature
and RH profiles under various AOD levels and using WRF-
Chem combined with MonoRTM simulations. The simula-
tion is designed to establish a connection between aerosol
loadings and microwave radiances. A set of sensitivity exper-
iments with and without aerosol forcing is conducted using
WRF-Chem as described in Sect. 2, whose atmospheric pro-
files, including temperature, water vapor, gases, and aerosols,
are then used as inputs to the MonoRTM to simulate the
downward microwave radiances (represented by BT) ob-
served by the MWR. To mitigate the influence of surface
temperature on BT, we maintained a consistent surface tem-
perature range (265270 K) throughout the simulation.

We first analyze the temperature and RH profiles from
sounding observations under various AOD levels (Fig. 11a-b
and d—e). These AOD levels include light pollution (AOD <
0.2), medium pollution (0.2 < AOD < 0.5), and heavy pol-
lution (AOD > 0.5) scenarios. The selection of this threshold
is to ensure a balanced sample size for each scenario. All dif-
ferences in the temperature and RH profiles under different
AOD scenarios passed the significance test with p < 0.1 by
the ¢ test. For the temperature profiles, a higher AOD cor-
responds to a lower temperature in the upper atmosphere,
and vice versa (Fig. 11a). However, for the low-level at-
mosphere, the temperature might first increase as AOD in-
creases and then decrease with AOD as increases. This is
associated with aerosol type and optical properties (Che et
al., 2024; Mahowald et al., 2011). For the RH vertical pro-
files, RH increases as AOD increases at all pressure levels
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Figure 11. (a-b) The observational vertical profiles of temperature (Temp, unit: K) and relative humidity (RH, unit: %) under various
AOD levels at 550 nm. The cyan, orange, and red solid lines correspond to low-level polluted scenarios (AOD < 0.2), mid-level polluted
scenarios (0.2 < AOD < 0.5), and high-level polluted scenarios (AOD > 0.5). (¢) Their corresponding brightness temperature (BT, unit: K)
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samples with 1 standard deviation. All differences have passed the significance test of p value < 0.01 by Student’s ¢ test.

(Fig. 11b). This may be attributed to the aerosol hygroscopic
growth effect, leading to a higher AOD (Quan et al., 2018).
Notably, since the collocation between MWR and Level 2
sun photometer AOD products from the AERONET is for
clear-sky data, the vertical profile of RH is relatively low.
BTs at 22.23 GHz calculated by these vertical profiles from
MonoRTM also demonstrate that BTs tend to increase with
AQOD (Fig. 11c¢). BTs at other frequencies in the K-band also
show a similar trend (not shown here). We have also con-
ducted a detailed seasonal analysis and found similar re-
sponses in temperature, RH, and BT to AOD, with minor
differences likely attributable to variations in aerosol types
(Fig. S2). Similarly, the WRF-Chem output also demon-
strates the sensitiveness of temperature and RH vertical pro-
files to aerosol loading, contributing to statistically signifi-
cant BT difference under different pollution levels (Fig. 11d-
f). Although there might be a significant discrepancy of BT
between WREF simulation results and observations with re-
gards to the range, the trend and the overall pattern are quite
similar, revealing the similar trends in BT as a function of
AOD (Fig. 11f). This suggests that despite the range dis-
crepancies, the fundamental relationships between BT and
AOD are consistent between observation and simulation. The
above observational evidence might indicate that MWR esti-
mates AOD by detecting the temperature and humidity pro-
file differences caused by the presence of aerosols, but the
impact of aerosols on microwave radiative transfer is highly
complex, involving multiple processes such as aerosol scat-
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tering and absorption, changes in surface temperature and
temperature/humidity profiles due to aerosol radiative and
hygroscopic effects, and the nonlinear relationship between
aerosol properties in the microwave and visible spectra. The
above-mentioned complexities inspire us to conduct further
simulations to verify the theoretical basis of our technique.
Furthermore, to isolate the impact of AOD on BT, we
have fixed the surface temperature between 270 and 275K
in our analysis. The selection of this specific surface tem-
perature range effectively minimizes the influence of tem-
perature variability on BT. Our simulation results, illus-
trated in Figs. 12 and 13, indicate that for all frequencies
in the K-band, BT increases as AOD levels increase. This
phenomenon exists in both the daytime and the nighttime.
Specifically, at 22.23 GHz, BT levels for clean conditions
range from 60 to 80K, while for polluted conditions they
range from 80 to 130K, showing a statistically significant
difference at both daytime and nighttime (Figs. 12a and 13a).
BT levels at other frequencies support this trend, indicating
that BT tends to increase with AOD (Figs. 12b—d and 13b-
d). The increase in K-band BT with AOD might be related
to coherent changes of water vapor and aerosols, due to ei-
ther aerosol absorption of water or meteorological condi-
tions that affect both water vapor and aerosols. When AOD
is higher, RH is typically also higher, accompanied by more
water vapor due to the hygroscopic growth effect of aerosols,
as supported by previous analysis (Fig. 11a and c). Since
the K-band includes the water vapor absorption line near
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Figure 13. Similar to Fig. 12 but for the nighttime.

22.235 GHz, the BT in the K-band is sensitive to water va-
por, and thus the BT increases as AOD increases (Liu et al.,
2014; Xie et al., 2013), further strengthening the theoretical
foundation of the proposed approach.

In contrast to the observations in the K-band, an analysis
of the V-band frequencies reveals a consistent decrease in BT
with the reduction of AOD levels, applicable to both diurnal
and nocturnal periods (Figs. 12e-h and 13e-h), which cor-
responds well to the cooling effect of aerosols. Notably, at
a frequency of 51.76 GHz, the BT levels exhibit a range of
264 to 270 K under pristine atmospheric conditions, whereas
under polluted conditions, these levels are observed to be be-
tween 262 and 265 K. Although the magnitude of this change
is less pronounced than that observed in the K-band, it passes
the statistical significance (p < 0.1 by the ¢ test), indicating
a reliable and measurable effect. The detailed physical in-
terpretation is as follows: due to the presence of the oxygen
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absorption band within the frequency range of the V-band,
it is highly sensitive to changes in atmospheric temperature
(Van Leeuwen et al., 2001). Variations in AOD can influence
the atmospheric temperature profile as shown by observation
and simulation (Fig. 11b and d). Consequently, in cases when
AOD is high, the BT in the V-band decreases.

The above-mentioned conclusion was further verified by
simulations lasting from 00:00 UTC on 3 December 2016
to 00:00 UTC on 5 December 2016 (a 48 h period) with the
same settings (not shown). In conclusion, MWR has the po-
tential to estimate AOD by identifying the differences in tem-
perature and humidity profiles, as well as the direct scattering
and absorption signals that arise from varying aerosol load-
ings. While previous studies have demonstrated that large
aerosol particles, particularly dust aerosols, can significantly
influence microwave radiation and BT (Ge et al., 2008; Hong
et al., 2008), the primary mechanism by which MWR es-
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Figure 14. The difference of (a, d) aerosol optical depth (AOD, unitless), (b, e) surface temperature (ST, K), and (c, f) ground downward
longwave radiation (GDLR, W/m2) between EXP_AER and EXP_NOAER experiments (EXP_AER-EXP_NOAER) during the (a—c) day-
time and (d—f) nighttime. The black circle indicates the MWR, and the dark-gray square indicates the photometer. The daytime corresponds
to the period from 22:00 UTC on 18 December 2016 to 10:00 UTC on 19 December 2016. The nighttime corresponds to the period from

10:00 UTC on 19 December 2016 to 22:00 UTC on 19 December 2016.

timates AOD in this study might be through detecting the
changes of temperature and RH profiles.

To deepen our understanding of the impact of aerosol
loading on longwave radiation, we conducted a comparative
analysis using WRF-Chem. By comparing scenarios with
aerosol loadings (EXP_AER) and without aerosol loadings
(EXP_NOAER), we examined the differences in AOD, sur-
face temperature (ST) and ground downward longwave ra-
diation (GDLR). This comparison is specifically designed to
examine the impact of aerosol loading on longwave radia-
tion, particularly its spatial distribution. As such, no BT in-
formation is generated or output in this comparison experi-
ment. The findings reveal that higher aerosol concentration
levels have a negative effect on ST (Fig. 14b and e), particu-
larly during the daytime (Fig. 14b), while positively influenc-
ing GDLR (Fig. 14c and f), especially at nighttime (Fig. 14f),
which is consistent with the above MonoRTM calculations.

The validity of the aforementioned conclusion was further
corroborated through simulations that spanned the period of
00:00 UTC on 3 December 2016 to 00:00 UTC on 5 Decem-
ber 2016, encompassing a continuous 48 h period, utilizing
identical settings (not shown here). Additionally, to augment

Atmos. Meas. Tech., 18, 6705-6725, 2025

the representativeness of our results, analogous WRF-Chem
simulations were executed during the boreal summer. Specif-
ically, these simulations were conducted from 00:00 UTC
on 5 July 2016 to 00:00 UTC on 8 July 2016, covering a
72 h duration, and they also yielded consistent conclusions
(Figs. S3-S5).

4 Conclusions and discussions

This study introduces a new method for estimating clear-
sky AOD using BT measurements in the K- and V-band ob-
tained from the MWR. By establishing a strong correlation
(R=0.96, RMSE =0.11, and MAPE =0.11 in the day-
time testing set) between the photometer AOD and multiple
BTs derived from the MWR at the Beijing Nanjiao Meteoro-
logical Observatory using a machine learning algorithm, we
were able to accurately retrieve nighttime AOD (R = 0.91,
RMSE = 0.14, and MAPE = 0.28) and vertical temperature
profiles (R > 0.95 for all levels and RMSE < 2.20K for all
levels). This model also captures the spectral characteristics
of AOD well, with a higher Angstrbm index for fine-mode-

https://doi.org/10.5194/amt-18-6705-2025



G. Liu et al.: Estimation of nighttime aerosol optical depths

dominated AOD and a lower Angstrom index for coarse-
mode-dominated AOD. After applying this model with sat-
isfactory performance, we investigate the AOD diurnal cycle
and find that AOD values follow a bimodal diurnal cycle tem-
poral distribution, with a greater peak at ~21:00 and a sec-
ondary peak at ~03:00, suggesting higher nighttime AOD
compared with daytime. The difference between daytime and
nighttime AOD observed in the MWR data well agrees with
sun and lunar photometer observations as well as particle
matter concentration observations.

The theoretical basis of our algorithm is also confirmed by
analyzing observational vertical profiles of temperature and
RH under various AOD levels and WRF-Chem as well as
MonoRTM simulations. Observation indicated that the verti-
cal profiles of temperature and RH have statistically signif-
icant differences (p < 0.1) under different AOD levels, sug-
gesting that MWR might estimate AOD by detecting the tem-
perature and humidity profile differences caused by various
aerosol loadings. Simulation further indicated a consistent
and mostly linear increase in BTs in the K-band (increasing
from ~ 70 to ~ 105K at 22.23 GHz) and decrease in BTs in
the V-band (decreasing from ~ 265 to ~ 257 K at 51.76 GHz)
with AOD (550 nm, the wavelength of WRF-Chem simu-
lated AOD) across all time periods. Aerosols tend to induce a
cooling effect at surface while increasing ground downward
longwave radiation, especially at the nighttime. This study
holds significant promise for environmental and climate re-
search as MWR BT measurements can be obtained at both
day and night without being hindered by bright surfaces. The
methodology developed here can potentially be applied to
MWRs in other locations worldwide to retrieve both daytime
and nighttime AOD values. However, it is important to note
that this investigation is preliminary and may contain uncer-
tainties. It is also applicable under clear-sky conditions since
during cloudy-sky conditions, the downward microwave ra-
diation will be dominated by that emitted by clouds.

It is important to note that the analysis of AOD is specifi-
cally conducted for the Beijing Nanjiao Meteorological Ob-
servatory in China, covering the period from December 2019
to October 2020. This time frame encompasses various cli-
mate and pollution conditions and is contingent upon the
availability of data. Moving forward, we aim to extend the
time range of our analysis and explore additional aerosol
characteristics that may be inferred from BT measurements,
such as aerosol absorption and layer height. This will en-
hance our understanding of aerosol distribution and proper-
ties, ultimately improving our ability to monitor and predict
aerosol impacts on climate and the environment.
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