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Abstract. Many natural ecosystems are composed of hetero-
geneous patches differentiated by wetness levels and vegeta-
tion composition, resulting in fine-scale flux patterns across
the different landcovers that can be challenging to quantify.
Here, we present a case study at Stordalen Mire in subarc-
tic Sweden, where we conducted Uncrewed Aerial Vehicle
(UAV) measurements of CO2 mole fractions and combine
them with a large-eddy simulation (LES) model through a
site-level inversion method to differentiate the flux rate sig-
natures from different patch types. We use the LES model
EULAG (EUlerian LAGrangian) to simulate high-resolution
flow patterns and benchmark the spatial variability of mod-
elled concentrations with data from UAV-based grid surveys
of CO2 mixing ratio. Coupling the inversion results with
eddy-covariance (EC) flux measurements for the time of the
UAV flight allows quantifying net CO2 fluxes for the in-
dividual landcover types. Model evaluation showed an R2

up to 0.70, with model uncertainties mostly related to the
transport model uncertainty and the UAV sampling footprint
that does not evenly sample landcover types. The inversion
fluxes were subsequently compared to patch-level chamber
measurements of carbon dioxide from palsa, bog, and fen,
and showed a good agreement in flux patterns across those
patch types dominating the UAV-sampled footprint. Differ-
ent landcover classification schemes were considered, and re-
sults showed a consistent improvement in the model perfor-
mance when further representing the ecological and hydro-
logical heterogeneities. Our novel technique shows promis-
ing results in estimating landcover-type flux heterogeneity

within eddy-covariance tower footprints, thus providing a ba-
sis for upscaling of EC fluxes to a larger domain.

1 Introduction

Landcover heterogeneity plays a major role in modulating
greenhouse gas (GHG) emissions from natural biomes, thus
affecting the estimation of GHG emissions at the global
and local scales (Desai et al., 2008; Ludwig et al., 2024;
Premke et al., 2016). This heterogeneity is represented by
spatial variability across ecological (e.g., vegetation type and
composition), hydrological (e.g., wetness level, water depth,
lateral flow), chemical (e.g., pH, salinity, soil properties),
and microbial (e.g., microbial communities and correspond-
ing niches) characteristics (Arsenault et al., 2019; Bohn et
al., 2013; Hu et al., 2024; Kieckbusch et al., 2006; Oloo
et al., 2016), the main drivers of the carbon dynamics and
consequently carbon emissions (Cao et al., 2024; Li et al.,
2024). Peatlands are one of the natural ecosystems exhibit-
ing a high spatial variability that, in some cases, can result
in patches with typical sizes of only up to few meters having
strongly different biogeochemical fingerprints. This mosaic
composition of wetlands results in heterogeneous patterns of
greenhouse gas fluxes associated with the different patches
forming a wetland (McNicol et al., 2017; Rey-Sanchez et
al., 2018; Shahan et al., 2022), thus challenging landscape-
scale quantification of landcover specific-fluxes and conse-
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quently model’s estimations of such heterogeneous ecosys-
tems (Bohn et al., 2013; Yazbeck and Bohrer, 2023).

Several measurement techniques can be implemented to
quantify patch-level emissions of greenhouse gases. A com-
mon approach is to use flux chamber measurements (Pumpa-
nen et al., 2004), where usually an episodic quantification of
the flux from a specific patch is taken over an area hardly
exceeding 1 m2, noting that with the use of auto-chambers,
extended timeseries of chamber measurement are possible
(Bubier et al., 2003; Holmes et al., 2022). Chambers pro-
vide information on GHG flux rate variability across patch-
types and they are useful for hotspot detection (Anthony and
Silver, 2024; Ojanen et al., 2012). However, upscaling flux
rates from plot level (0.1–1 m) to the whole patch-scale (100–
1000 m) is challenging due to its relatively small spatio-
temporal scales (Morin, 2019). On the other hand, eddy-
covariance (EC) towers provide an estimate of flux rates at a
larger spatio-temporal coverage allowing flux quantification
over larger footprints through producing an effective net flux
of the mixed landscape (Baldocchi, 2014). Although EC tow-
ers provide measurements at high temporal resolution, they
cannot explicitly provide a direct quantification of the patch-
level flux forming the underlying landscape (Chu et al., 2021;
Matthes et al., 2014). Although several approaches have been
implemented to upscale flux observations from chamber to
EC footprint, bridging the gap between these different scales
remains challenging (Fox et al., 2008; Simpson et al., 2019)

The emergence of Uncrewed Aerial Vehicles (UAVs)
opened the door for new measurement possibilities with a po-
tential of bridging this scaling gap. UAVs are commonly used
for investigating landscapes at high spatial resolution, e.g.,
through grid surveys of hyperspectral and/or thermal imagery
that can be used to derive indices for vegetation classification
(Doughty and Cavanaugh, 2019; Zheng et al., 2022; Zhuo et
al., 2024), or other surface properties; however, the use of
UAVs is not restricted to imagery but includes meteorologi-
cal variables like wind speed, temperature and gas mole frac-
tions (Andersen et al., 2018; Bolek et al., 2024; Bolek and
Testik, 2022; Kunz et al., 2018; Neumann and Bartholmai,
2015; Wildmann and Wetz, 2022). UAV platforms equipped
with gas analyzers can effectively quantify emission rates
from point sources such as power plants by employing mass
balance or Gaussian plume inversion techniques, as they can
capture the spatial variability of concentration enhancements
at various downwind distances and altitudes (Andersen et al.,
2018; Shah et al., 2020; Shaw et al., 2021). Given the poten-
tial of UAVs for surveying and monitoring small-scale spa-
tial heterogeneity, integrating UAV measurements with EC
tower data could enhance our understanding of flux variabil-
ity within the tower footprint (Bou-Zeid et al., 2020; Gian-
nico et al., 2018).

Nevertheless, UAV inversion could also be applied to infer
patch-level and land surface fluxes. Mukhartova et al. (2024)
present a theoretical framework and application for inferring
the surface distribution of GHG fluxes over a complex vege-

tated terrain using a 3D hydrodynamic forward model linking
UAV observations at two different heights to surface fluxes.
Pirk et al. (2022) couple UAV profile measurements of tem-
perature and relative humidity to a Large-Eddy Simulation
(LES) model within a Bayesian optimization framework to
infer surface heat fluxes, showing a good match with EC data.
Wang et al. (2019) apply a top-down modeling approach cou-
pled with a light-use efficiency model to UAV multispectral
and thermal imageries to derive flux maps of Gross Primary
Production (GPP) and evapotranspiration and other relevant
variables. Other UAV-based approaches not involving inver-
sion techniques but incorporating an eddy-covariance set-up
showed a potential in estimating patch-type fluxes from het-
erogeneous landscapes (Pirk et al., 2024; Sun et al., 2021).

In this study, we leverage the UAV capability of sampling
grid surveys of CO2 model fraction through coupling it to
high resolution transport modeling, like LES, and eddy co-
variance measurement to derive patch-level fluxes from a het-
erogeneous landscape. We derive a submeso-scale inversion
that, after solving the steady state transport of a tracer emit-
ted from a heterogeneous surface, uses UAV-measured CO2
concentration to apply a linear optimization to derive scaling
factors of patch-level fluxes. We couple these results with EC
tower measurements of NEE in order to quantify flux magni-
tudes of each patch type. With this submeso-scale inversion,
we need one high resolution simulation using an LES model
and then perform the optimization on the time-averaged out-
put, thus, reducing the computational resources usually as-
sociated with optimization frameworks. Although we apply
this technique to a pilot project investigating CO2 emissions
from a northern peatland formed of a mixed patches of palsa,
bogs, and fens, this method could be applied to other het-
erogeneous landscapes, and is therefore not necessarily re-
stricted to wetlands.

2 Methodology

2.1 Study Site

The study site is the Stordalen mire, located in subarctic Swe-
den (68°21′ N, 19°02′ E). The site is characterized by spo-
radic permafrost and exhibits significant small-scale varia-
tion in soil moisture and vegetation types (Bäckstrand et al.,
2010; Sjögersten et al., 2023). This thawing permafrost peat-
land is situated close to the shoreline of Lake Torneträsk
and is encircled by small, shallow post-glacial lakes. It con-
sists of elevated, drained palsa areas underlain by ice-rich
permafrost, ombrotrophic wet bogs dominated by sphag-
num moss, permafrost-free fens characterized by sedge veg-
etation, and open water ponds, both permanent and those
formed more recently due to permafrost thaw (Varner et al.,
2022). The average annual near-surface air temperature at the
site is 1.0 °C and mean annual precipitation is approximately

Atmos. Meas. Tech., 18, 6917–6932, 2025 https://doi.org/10.5194/amt-18-6917-2025



T. Yazbeck et al.: Quantifying landcover-specific fluxes over a heterogeneous landscape 6919

330 mm yr−1, while rising temperatures are expected to ac-
celerate permafrost loss (Callaghan et al., 2013).

2.2 Field Measurements

A UAV-based set up is used to get grid surveys of CO2 mole
fractions within the area of interest, which is including the
footprint of the local ICOS EC tower (see also below). The
UAV carries a TriSonica Mini 2D anemometer for measur-
ing wind characteristics along with temperature, humidity,
and pressure. Additionally, a LI-850 analyzer was connected
to the drone with the sampling inlet placed adjacent to the
anemometer. The analyzer measures CO2 mixing ratio with a
10 s averaged uncertainty of± 0.36 ppm (Bolek et al., 2024).
We use two grid-surveys of CO2 mixing ratios taken in the
course of a field campaign during 11–14 September 2023 at
Stordalen mire (Bolek et al., 2024). The grid-survey was split
into three areas as shown in Fig. 1, with each surveyed area
sampled for about 14 min. The surveyed area is bounded by
the Villasjön lake to the west, and includes heterogeneous
patches of palsa, bog, and fens. The UAV was configured to
maintain a constant speed while navigating a predetermined
horizontal grid pattern at a constant altitude of 10 m. The
survey began with flight paths aligned along the east-west
axis, followed by north-south routes, ensuring that intersec-
tion points were sampled twice at different times. Given a
flight speed of 4 m s−1 and a sampling rate of 2 Hz, the spac-
ing between each sampling point, represented by black cir-
cles in Fig. 1, was approximately 2 m. After filtering and de-
spiking, the collected data in each area were aggregated into
10 spatial cells along both latitude and longitude, yielding
a resolution of approximately 15–20 m. To refine the spatial
representation, the averaged data were then interpolated us-
ing the ordinary Kriging method (Pereira et al., 2022). Fur-
ther details about UAV data collection and processing can be
found in Bolek et al. (2024).

For the eddy-covariance data, we used data provided by
the ICOS tower SE-Sto located in the center of the area of
interest (Lundin et al., 2024). Palsa, bog, and fen patches are
covered by the tower footprint. The measurement height is
2.2 m, and data of meteorological variables, energy and car-
bon fluxes is provided at half-hourly timestep. Chamber mea-
surements of CO2 fluxes from the different patches within the
tower footprint were taken over the course of the growing
season of 2023 during the months of May, July, and Septem-
ber. All measurements were taken during the daytime, mostly
between 08:00 and 14:00 local time. The chamber footprint
covers an area of 491 cm2, the chamber hood had a height
of 25 cm and was equipped with a fan, a probe for rela-
tive humidity and temperature probe, and a pressure sen-
sor. An Aeris MIRA Ultra N2O / CO2 gas analyzer was used
for CO2 concentration sampling. More information on the
chamber measurements performed can be found in Triches
et al. (2025).

2.3 Large-Eddy Simulation

In order to simulate the transport at the time of the UAV
flight, we used the Large-Eddy Simulation (LES) model EU-
LAG, the Eulerian/semi-Lagrangian fluid solver (Prusa et
al., 2008). EULAG is a well-established numerical tool for
simulating atmospheric dynamics across various scales. It is
particularly suited for high Reynolds number and stratified
flows under gravity (Piotrowski and Smolarkiewicz, 2022;
Smolarkiewicz et al., 2014). The model solves a soundproof
form of the Euler equations, incorporating conservation laws
for dry mass, momentum, and entropy, using a semi-implicit
integration scheme. This integrator utilizes the multidimen-
sional positive definite advection transport algorithm (MP-
DATA) for atmospheric flows (Smolarkiewicz, 2006). To ac-
count for turbulence, the model solves a prognostic equation
for Turbulent Kinetic Energy (TKE) and applies a dynamic
Smagorinsky model, where eddy viscosity is parameterized
based on TKE (Schumann, 1991; Sorbjan, 1996). EULAG
has been extensively used as an LES model for statistical and
applied studies (Englberger and Dörnbrack, 2017; Kilroy et
al., 2024; Klonecki and Prunet, 2020; Schlutow et al., 2024;
Strugarek et al., 2016; Wyszogrodzki et al., 2012; Ziemianski
et al., 2021).

2.3.1 EULAG Forcings and Input

In our simulations, we use the Boussinesq approximation
with cyclic boundary conditions. The domain size is 1024×
1024× 256 m3 with a resolution of 2× 2× 2 m3. A “mov-
ing sponge/absorber” is utilized at the top boundary, where
a Rayleigh damping scheme is applied above 200 m. This
scheme specifically affects the horizontal wind component,
gradually adjusting the flow toward the geostrophic wind.
The model is spun up for 12.5 h and an additional 30 min
are run under steady state conditions, which are used for the
analysis. We use the EC tower measurement for the time of
the UAV flight to prescribe EULAG forcings. Using the same
EC tower measurements, which provide the friction velocity
u∗ and the corresponding wind speed, we derive the input
roughness length and wind speed at the upper boundary con-
ditions. Heat flux is not included in the simulations as neutral
conditions dominate the time of measurement of the UAV
flight (based on the EC-derived Obukhov length). All patch
types were identically prescribed with the same input flux of
the simulated tracer as a starting condition. Table 1 includes
all details of EULAG forcing input parameters.

2.3.2 Land cover configuration

We adopted the landcover classification published in (Varner
et al., 2022). In this study, 8 main land cover types are de-
fined: palsa (or hummock), semi-wet bog, wet bog, fen (wet
graminoid), tall shrub, open water, rock, and others. Since
the focus of this study is on carbon emissions, the land-
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Figure 1. (a) Landcover classification within the Stordalen Mire study area at a grid resolution of 2×2 m based on Varner et al. (2022). Panel
(b) shows the UAV-surveyed area in Stordalen mire using a satellite image from © Google Maps. The yellow line delineates the three target
areas, and the black dots correspond to the points surveyed by the drone. The red triangle shows the EC tower location on the map.

Table 1. Input parameters and forcing conditions in EULAG.

Forcing Variables Simulation 1 Simulation 2

Wind speed (boundary conditions at start of sponge layer, i.e., 200 m height) 7.29 m s−1 9.84 m s−1

Wind direction (boundary conditions at start of sponge layer, i.e., 200 m height) 104.1° 309.4°
Land roughness length (for all land cover except lakes) 0.02 m 0.02 m
Lake roughness length (Jammet et al., 2017) 0.001 m 0.001 m
Latitude 68.35° 68.35°
Unit flux (same for all land covers) 0.00001 kg CO2 kg air−1 s−1 0.00001 kg CO2 kg air−1 s−1

cover considered in our simulations are palsa, bog, lake, fen,
and shrubs. Other landcovers are included in the study area,
but with no flux emissions. The classification resolution is
2× 2 m2. The exact location of the simulated landscape was
defined based on the wind direction (Fig. 2). In Simulation 1,
where the wind is coming from the southeast direction, the
map is defined so that the target area for flux quantification is
at its northwest, thus, reducing the effect of cyclic conditions
and taking into account the effect of upstream roughness and
transport on the concentration fields within the sampled area.
As for Simulation 2, the wind is coming from the northwest
direction, thus, the map section is defined so that the target
area for flux quantification is at its southeast.

In order to evaluate the configuration options of our setup,
specifically the impact of adding more landcovers to the
model, we run four EULAG simulations with different num-
bers of landcover types included, focusing on Simulation 1.
The simulations will be labeled as “lc_3”, lc_4”, “lc_5”, and
“lc_6” where lc_3 refers to the simulation with 3 landcover
types, lc_4 for the simulation with 4 landcover types and so
on. Table 2 includes the details of the classifications consid-
ered for the four different simulations and Fig. 3 shows the
corresponding simulated landcover map for each simulation.

2.4 Submeso-scale Flux Inversion

2.4.1 Derivation

The submeso-scale inversion is applied on the 30 min av-
eraged output of EULAG, after the model reaches a steady
state, coupled with the UAV grid survey. The below equation
lays down the assumption and derivation of the submeso-
scale flux inversion. Equation (1) represents the transport
equation for a Reynolds averaged inert (passive) tracer:

∂C

∂t
+∇.

(
uC
)
−∇.

(
K∇C

)
= 0 (1)

on the domain �⊂ R3 with flux boundary condition

−K
∂C

∂z
=Q(x,y) on ∂� (2)

where ∂� denotes the surface, i.e., all points (x, y, z) with
z= z0. u is the Reynolds averaged wind, C is the Reynolds
averaged tracer concentration, t denotes time, K denotes
the eddy diffusivity, and Q represents the surface flux. For
brevity, we define the linear transport operator as

T C =∇.
(
uC
)
−∇.

(
K∇C

)
(3)

Let i = 0,1, . . . index the land cover classes ∂�i , e.g.,
grass, shrubs, open water body, where each landcover or
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Figure 2. Input topographies for Simulations 1 (a) and Simulation 2 (b). The black box refers the area sampled by the UAV and corresponding
to the section shown in Fig. 1.

Table 2. Simulated landcover types for each of the four simulations, along with the corresponding land cover classifications from Varner et
al. (2022), are included in each simulated landcover.

Simulation Simulation Landcover Varner et al. (2022) classified landcovers included

lc_3 low vegetation palsa, semi-wet bog, wet bog
tall vegetation fen, tall shrub
lakes open water

lc_4 palsa palsa
bog semi-wet bog, wet bog
tall vegetation fen, tall shrub
lakes open water

lc_5 palsa palsa
bog semi-wet bog, wet bog
fen fen
tall shrub tall shrub
lakes open water

lc_6 palsa palsa
semi-wet bog semi-wet bog
wet bog wet bog
fen fen
tall shrub tall shrub
lakes open water

patch-type is associated with its own surface flux (unit of
kg CO2 kg air−1 s−1) as follows

Qi (x,y)=

{
10−5 if (x,y) ∈ ∂�i

0 else
(4)

With∑
i

∂�i = ∂�. (5)

Thus, all points on the surface belonging to the same land
cover class are associated with same surface flux. EULAG

would solve the transport equation outlined in Eq. (1) with a
boundary condition defined in Eq. (2) for individual tracers:

T ϕi = 0 on �

−K
∂ϕi

∂z
=Qi (x,y) on ∂�; (6)

where ϕi is the tracer associated with a specific landcover
type. Since we are dealing with linear transport of passive
tracers, we can construct the tracer field as a linear combina-
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Figure 3. Landcover classification map used as input to EULAG for each of the different four different landcover configurations.

tion of the patch-level associated fields ϕi as follows:

C (x,y,z)=
∑

i

aiϕi (x,y,z) (7)

where ai are scaling factors associated with each landcover.
Multiplying Eq. (6) by ai and summing over i leads to the
below Eq. (8):

T C = 0 on �

−K
∂C

∂z
=

∑
i

Qi (x,y) on ∂�, (8)

which leads to expression for the surface flux in terms of the
scaling factors

Q(x,y)=
∑

i

aiQi (x,y) . (9)

If observations of concentration or mole fractions of the
tracer are available, the scaling factors ai may be computed
from observations at points

(
xj ,yj ,zj

)
by minimizing the

below cost function:

J =
∑
j

(
C

j

Mod−C
j

Obs

)2
. (10)

Where C
j

Mod is the modeled averaged concentration and
could be expressed as C

j

Mod =
∑

iaiϕi

(
xj ,yj ,zj

)
and

C
j

Obs is the observed averaged concentration at the points(
xj ,yj ,zj

)
. The resulting problem can be solved with the

linear least square method, i.e., solving for ai minimizing by
J , noting that the Reynolds averaging can be realized with
a temporal average. In the case of our application C

j

Obs are
provided by the UAV grid surveys. EULAG provides C

j

Mod
for all defined landcover or patch-types, each associated with
the input flux. Subsequently, linear optimization is applied to
optimize for ai , and thus derive the landcover fluxes by mul-
tiplying the optimized value of ai with the originally input
flux Qi .
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2.4.2 Applied Inversion and Flux Quantification

From the EULAG output, we get the time-averaged ϕi over
30 min of steady-state simulation time at the same height
as the UAV concentrations are provided. UAV concentra-
tions are then converted from ppm to kg kg−1 to be con-
sistent with EULAG concentrations. EULAG domain has a
different background concentration than ambient concentra-
tion during the UAV flight, however, that would not affect
our method as this latter relies on the concentration vari-
ability driven by fluxes regardless of the difference in back-
ground concentration between EULAG and UAV. Therefore,
we subtract the mean concentration from observed and mod-
eled concentrations, respectively, in order to remove the ef-
fect of background concentration, which is different in both
modeled and observed datasets. We apply linear optimiza-
tion to Eq. (10) solving for the ai . Then, Qi values associ-
ated with each landcover type are derived by multiplying the
unit flux that was originally input in EULAG (constant flux
of 10−5 kg CO2 kg air−1 s−1 in our case) with the optimized
ai .

Note that the derived Qi fluxes cannot be compared with
ground-based measurements of fluxes, whether it is cham-
bers or eddy-covariance due to the difference in background
concentrations between the field and the model. However,
the relative value of the landcover or patch-level fluxes com-
pared to the mean flux value should hold. Therefore, having
a measurement of ecosystem-scale total flux (i.e., NEE for
carbon fluxes) for the time of UAV flight would provide us
with the field-based mean flux, which could be used to scale
the modeled landcover fluxes. Note though that the EC tower
footprint corresponds to a sub-section of the simulated do-
main, therefore, the domain-wide mean flux cannot be used
for the flux scaling but it should be restricted to the area sam-
pled by the EC tower. Therefore, in order to perform the scal-
ing a footprint model is needed to determine landcover type
contribution to the EC flux within the area sampled by the
EC tower. Using the Kljun et al. (2015) footprint model cou-
pled with the same landcover classification used to prescribe
the model’s landcover configuration (Varner et al., 2022), the
contribution of each landcover type to the EC-derived flux
is determined. The calculated landcover contribution is then
used to get a modeled average flux weighted by the landcover
contribution within the EC footprint. The relative value of
the inversion-derived fluxes to this modelled weighted mean
is coupled with the EC-derived fluxes to compute the quanti-
tative value of each landcover type.

2.5 Inversion Uncertainty

In order to investigate if there is any bias or uncertainty asso-
ciated with the optimization process, synthetic experiments
were performed. The lc_5 set-up was run again with the only
difference at the magnitude of input tracer fluxes, where ran-
dom fluxes were assigned for each patch type instead of unit

fluxes. The model was spun up according to the protocol de-
scribed in Sect. 2.3.1. The output 30 min average concentra-
tions were sampled at the location of the UAV-measurements
and were considered as “observed” concentrations for the
purpose of the synthetic experiment. Then, linear optimiza-
tion was applied to the lc_5 original simulation (i.e., simu-
lation with constant fluxes 10−5), and optimized fluxes were
compared to the random fluxes that were initially prescribed
to the synthetic experiment run. The output shows an exact
match between both set of fluxes. We tried this approach at
several heights and found that the match between prescribed
and optimized fluxes holds as long as the analysis height is
below the mixing height of the boundary layer. Thus, no un-
certainty or bias is induced from the linear optimization pro-
cess.

To get the statistical uncertainty associated with the model,
the 30 min simulation used in the inversion was consecu-
tively repeated over 20 times, thus obtaining an ensemble
of the optimized fluxes per patch type. In other words, af-
ter running the 12.5 h of spin up, the model was run for 10 h
where each half-hour was analyzed separately and is associ-
ated with a new set of fluxes, thus, resulting in an ensemble
of 20 estimated fluxes per patch type. Therefore, the range of
the optimized flux values per landcover type represents the
model’s uncertainty.

3 Results

3.1 Model Evaluation

To evaluate the model, we performed a linear regression be-
tween the UAV-observed and EULAG-modeled CO2 concen-
tration derived from the optimized scaling factors. The linear
regression metrics are summarized in Table 3. For Simula-
tion 1, the linear regression R2 increased with the number
of land cover classes, going from 0.52 to 0.70. The Root
Mean Square Error (RMSE) computed from the observed
and modelled concentrations decreased with increasing the
number of land cover classes, where it ranged between 0.68
and 0.54 ppm. The Akaike Information Criterion (AIC) de-
creased with increasing the number of landcover types, thus,
showing that increasing the number of simulated landcover
types improve the model performance. Figure 3 shows the
concentration fields as measured by the UAV and modelled
by EULAG for the lc_5 set-up after accounting for the dif-
ference in background concentrations. Simulation 2 focused
only on lc_5, and concentration evaluation results are shown
in Figure 5 where the linear model R2 is 0.62 and corre-
sponding RMSE of 0.24 ppm.
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Figure 4. Evaluation of modelled CO2 concentration fields at 10 m height for Simulation 1 corresponding to the lc_5 configuration. Panel
(a) shows a grid survey of the observed concentrations as measured by the UAV, panel (b) the corresponding modeled total concentrations.
Panel (c) plots the results of the linear regression applied to modelled concentration vs. observed concentration. It must be noted that here we
removed the spatial-temporal average modeled concentration from the modeled concentration values and added the UAV-observed spatial-
temporal average, thus, accounting for the difference in background concentrations, which is constant offset in this case. Concentrations are
reported in ppm.

Figure 5. Similar to Fig. 4 but showing results for Simulation 2 corresponding to the lc_5 configuration.

Table 3. Model evaluation metrics summary: The R2 of the linear
regression between modelled and observed CO2 concentrations, the
respective Akaike Information Criterion (AIC) and corresponding
RMSE are listed for different numbers of land cover classes.

Nb. of simulated Linear regression RMSE AIC
classes R2 [ppm]

3 0.52 0.68 13 846
4 0.60 0.62 13 561
5 0.69 0.55 12 569
6 0.70 0.54 12 389

Table 4 shows the optimized patch-level fluxes corre-
sponding to each of the landcover configurations for sim-
ulations 1 and 2. For Simulation 1, the patch-level fluxes
differ between the four simulations; however, some patterns
are preserved across the simulations. For example, bogs are
mostly acting as a carbon sinks, while fens and palsa are
mostly a carbon source. Large flux variation between land
cover setups is observed for palsa, bog, and fen, while a much
smaller variability is observed at the level of lakes with a

range of 1.87 to 4.08 µmol m−2 s−1, in addition of being a
constant small source of carbon. A high flux is observed in
lc_6 for wet bog, a consisting outlier for the set of flux val-
ues of the other patch-type and configurations. Simulation
2 fluxes show a different pattern than Simulation 1, where
bog and shrubs are CO2 sources, while palsa and fen are
sinks. Lakes showed emissions in agreement with Simulation
1. Note that flux values for Simulation 2 are much smaller
than fluxes for Simulation 1. This is due to the fact that EC-
derived NEE is larger in terms of magnitude for Simulation
1 (NEE =−3.29 µmol m−2 s−1) compared to Simulation 2
(NEE =−0.33 µmol m−2 s−1), which will consequently af-
fect the patch-level fluxes. Patch-type fluxes derived from
this inversion could be used to construct a flux map show-
ing the flux distribution over the surveyed area and around it
as shown in Fig. 6.

3.2 Model Assessment

We used chamber-measured fluxes from fen, bog, and palsa
plots at Stordalen mire sampled during the same day of the
UAV flight to assess the modeled flux estimations. Due to dif-
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Table 4. Optimized patch-level fluxes corresponding to the four landcover configurations. CO2 flux unit is µmol m−2 s−1.

Nb. of simulated Simulation Palsa Semi-Wet Wet Lake Fen Shrub
classes Bog Bog

3 1 −3.34 2.92 13.45
4 1 19.03 −16.27 4.08 1.98
5 1 1.71 −6.32 3.24 11.70 2.84
6 1 7.15 −4.54 −64.88 1.87 17.36 6.55
5 2 −0.33 0.87 0.36 −0.30 0.72

Figure 6. Flux map for the 5 classes landcover configuration for (a) Simulation 1 and (b) Simulation 2. Flux values are given in
µmol m−2 s−1.

ferences in spato-temporal scales between flux chamber mea-
surements and inversion-derived patch-level fluxes, it is not
meaningful to directly compare the flux values at pixel level.
Therefore, we compared the flux patterns between different
patches to the measured chamber fluxes for the same day of
the UAV flight as shown in Fig. 7. The fluxes correspond to
the lc_5 run, with their respective uncertainty constrained as
explained in Sect. 2.5. The lc_5 configuration was considered
as chamber measurements were split between fen, bog, and
palsa, thus, matching the classification of lc_5. Flux estima-
tion shows to have a wide range per patch-type, with palsa,
bog, and fen fluxes showed a higher variability than the other
landcovers (lake, shrubs). Still, some patterns are conserved
across all the simulations, specifically bog being the main
sink between the different patches and fen being a compar-
atively high source; however, palsa varied between being a
source and sink. Regarding additional landcover classes not
covered by flux chambers, lakes have mostly low fluxes with
low variability, while shrubs showed to be a source of car-
bon with a couple of outliers of high flux estimations. Each
of the 20 simulations shown in Fig. 7a has an associated R2

value, corresponding to the R2 of the linear regression be-
tween modeled and observed concentrations. The R2 ranged
between 0.62 and 0.72 for the 20 runs, where the flux val-
ues corresponding to the run with the highest R2 showed the
least variability in terms of flux values across the 5 different
landcovers as shown through the black dots in Fig. 7a.

Chamber measurements for the day of the UAV flight for
Simulation 1 show that most of the plots are a source of car-
bon, where fen and palsa are consistently emitting carbon
across all sampled plots and bog is a lower source on average
with few plots showing a slight sink of carbon. Note that all
chamber measurements are consistently higher than the EC-
derived NEE for the time of drone flight (Fig. 7b), thus, chal-
lenging any match between the inversion fluxes and cham-
ber fluxes. As for Simulation 2, there is a match between
the estimated fluxes and chamber-measured fluxes, noting
that in this case the EC-derived NEE is more consistent with
the chamber-measured values. The estimated fluxes for bog
and fen are very close to the mean of chamber measure-
ments, while fluxes simulated for palsa are underestimating
the chamber mean. Thus, comparing both simulation fluxes
to chamber data show a matching pattern between landcover
fluxes but not for the three of them. For Simulation 1, a sim-
ilar pattern is seen between bog and palsa but not for fen,
while for Simulation 2 a similar pattern is seen between bog
and fen but not for palsa.

4 Discussion

4.1 Model Evaluation

The model evaluation shows good results in terms of lin-
ear regression between modelled and observed concentra-
tions across all four different landcover classification, where
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Figure 7. Comparison of inversion fluxes with chamber measurements taken the same day of the UAV flight. (a) The left panel corresponds
to the ensemble of fluxes derived from the inversion of lc_5 set up corresponding to the inversion applied to 20 consecutive EULAG runs.
The black dots represent the inversion fluxes corresponding to the run with the highest R2 for the concentration linear regression. (b) The
middle panel shows the range of chamber-measured fluxes for the day the UAV flight for Simulation 1, where the black dots correspond to
the same dots as in panel (b). (c) The right panel shows the range of chamber-measured fluxes for the day the UAV flight for Simulation 2,
where the black dots correspond to the inversion fluxes. CO2 flux unit is µmol m−2 s−1. The red line in all panels represents the EC-derived
NEE for the time of the UAV flight.

R2 ranged between 0.52 and 0.70. The additional degrees
of freedom linked to an increased number of simulated land-
cover types led to an increase in linear regression metrics and
decrease in RMSE, which is expected although the improve-
ment in the model metrics differs between different scenar-
ios, especially at the level of the AIC. This consistent trend
in improved model evaluation metrics shows that having a
detailed landcover classification leads to a better inversion,
even when weighing the enhanced agreement between model
and observations against the degrees of freedom in the opti-
mization using the AIC. Going from lc_3 to lc_6, the split
was mostly done based on different wetness levels. Low veg-
etation was split between palsa and bog, where bog is mostly
wetter than palsa. Tall vegetation was split between shrub
and fen, where fen is wetter than shrubs. Finally, in a last
step bog was split between wet and semi-wet. Thus, this em-
phasizes the importance of accounting for the heterogeneity
in wetness levels across the landscape for a better estima-
tion of patch-level fluxes. This is mostly apparent through
the AIC. The largest drop in the AIC happens when going
from lc_4 to lc_5, i.e., splitting tall vegetation between shrub
and fen, which have the biggest contrast in wetness levels,
where fens are much wetter than shrubs. The lowest drop in
AIC happens when going from lc_5 to lc_6, i.e., splitting the
bog between wet and semi-wet, where the contrast wetness
is not as strong as in the earlier cases. This wetness contrast
is coupled in an ecological contrast, where wet and semi-wet
bogs correspond to the same or similar vegetation type while
shrubs correspond to a different vegetation type. Although
the AIC is a relative indicator, the corresponding decrease
trend across different configurations could be an indicator
of the impact hydrologic and ecological heterogeneity plays
when quantifying patch-level fluxes.

4.2 Flux Assessment

Comparing lc_3 to lc_6 fluxes, we see that splitting the low
vegetation areas into separate (palsa/bog) patches resulted
in a higher sink strength in bogs, compared to palsa, which
agrees with the chamber measurements showing similar pat-
terns in Fig. 7b. Similarly, splitting tall vegetation into fen
and shrub shows that fens are a strong source for carbon,
while shrubs are a smaller source with a range of estimated
fluxes close to the palsa fluxes (Fig. 7a). Note that, based on
the Varner et al. (2022) classification, palsa and shrubs are
both considered types of palsa, thus sharing similar net CO2
emissions characteristics. Also, when palsa and bog are sim-
ulated as one combined landcover class (lc_3), the resulting
flux is a sink, which agrees with the coarse classification of
this scenario where most of the palsa/bog area is labeled a
bog, thus, the resulting flux would be mostly a sink of CO2.
Lake fluxes show the lowest uncertainty compared to other
patch-types, with an estimated flux ranging between 1.87 and
4.76 µmol m−2 s−1. A study summarizing EC flux measure-
ments taken over the same lake in Stordalen over the years
2012–2014 by Jammet et al. (2017) reports a range between
−1.5 and 1.5 µmol m−2 s−1 for the ice-free season. Taking
this range as a reference, our estimations appear to be slightly
over-estimating lake emissions. The optimized fluxes show
that fens are acting as a source while palsa and bog are mostly
a sink, which might be unexpected as fens usually take up
more carbon through photosynthesis than bogs (Holmes et
al., 2022); however, a similar pattern is seen in the chamber
measurements (Fig. 7b), where fens represented higher emis-
sions than bogs, thus agreeing with the emissions of the time
of UAV measurement. This might be related to the fact that
our experiments took place at the end of the growing season,
when fens could experience positive fluxes during the day
time (Holmes et al., 2022).
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For Simulation 1, there is a partial agreement in flux pat-
terns between optimized fluxes and chamber fluxes, but in
terms of absolute values, there is a mismatch in the flux
range that varies between landcover types. For example, for
palsa the inversion-estimated flux range is between −6.65
and 4.13 µmol m−2 s−1, while the chamber flux range is be-
tween −0.64 and 3.05 µmol m−2 s−1; however, for fen there
is a large mismatch between the ranges, where the inversion
fluxes range between 10.94 and 22.26 µmol m−2 s−1, while
chamber data have a range of 0.04 and 2.95 µmol m−2 s−1.
Although the spatial scale mismatch between chamber plots
and whole patch-level flux footprint contributes to the dif-
ference observed in flux values, there are other factors that
contribute to this mismatch as well. One of these factors
is the composition of landcover patches within the domain
surveyed by the UAV. Although the grid survey depicted in
Fig. 1 is underlain by all simulated landcover types except
lakes, this area is mostly covered by palsa and bog and is
downwind of the lake bordering the mire from the east. As
a consequence, very little impact from fen areas is captured
by the UAV-surveyed mixing ratio, which could be one of
the main reasons why fen fluxes are not well-constrained
in the inversion and probably over-estimated. Similarly, this
could be the reason why in the lc_6 configuration the sink
strength in wet bogs is over-estimated – even though it is
common to see high sinks for CO2 in wetter bogs (Sulman
et al., 2010), our estimated flux value is probably unrealisti-
cally large. This is probably due to the fact that wet bogs are
poorly represented within the UAV-surveyed area, and asso-
ciated patch sizes are small so that this land cover type never
dominates a single UAV observation footprint. Although the
lakes are not directly surveyed by the UAV, their impact on
the measured mixing ratio is well-captured by the UAV as
it is located directly upwind of the surveyed area, thus, re-
sulting in much closer values to previously observed fluxes
from the lake as discussed earlier. Simulation 2 showed a
better match between chamber-measured fluxes and inver-
sion fluxes, where for the three patch types the estimated
fluxes fell within the range of measured fluxes, where fen
and bog flux estimation through inversion are matching the
mean of the chamber measurements fluxes. This is primar-
ily due to the better agreement between EC- and chamber
derived fluxes, so low EC-derived NEE flux also led to low
fluxes from the inversion that matched the chamber results
very well.

4.3 Model Uncertainty

Figure 7a shows a large variability across patch types: palsa
is estimated to have a median flux of 0.83 µmol m−2 s−1,
bog −6.46 µmol m−2 s−1, lake 3.35 µmol m−2 s−1, fen
13.80 µmol m−2 s−1, and shrubs 3.94 µmol m−2 s−1. How-
ever, for lc_5 where 20 simulations were performed, the
simulation corresponding to the largest R2 (0.72) and low-
est RMSE (0.53 ppm) for the concentration linear regression

had the least variability of fluxes between patch type where
flux estimation are as follows: palsa is −2.08 µmol m−2 s−1,
bog is−3.17 µmol m−2 s−1, lake is 2.54 µmol m−2 s−1, fen is
11.48 µmol m−2 s−1, and shrubs is 3.01 µmol m−2 s−1 (black
dots in in Fig. 7a). This comparison shows that the optimized
fluxes reported in Fig. 7a are probably over-estimating the
absolute value of the fluxes. Several sources of uncertainty
exist that could bias our flux estimations. Most prominently,
there is the uncertainty related to the LES modeling of the
tracer transport (Lucas et al., 2016; Zhang, 2021), especially
since the synthetic experiment showed that no uncertainty is
associated with the linear optimization (Sect. 2.5), in addi-
tion to the uncertainty that could arise from the steady-state
assumption on which the inversion derivation is based upon.

LES does resolve the turbulent transport but assuming
steady state and applying inversion on the temporally aver-
aged concentration implies losing a lot of the turbulent trans-
port information. This effect could be depicted in Figs. 4
and 5 when comparing the modeled and observed concen-
tration fields. Although the model is capturing the overall
variation in the concentrations, it is missing the small-scale
turbulent effect captured by the drone and not represented in
our model, like in the case of the horizontal vortices shown
Fig. 4a and not represented in Fig. 4b due to the 30 min aver-
aging. In the context of modeling wind flow and turbulence
for the time of the UAV flight, LES provides a solution of
the turbulent transport field that agrees with measured mete-
orological conditions which are then used to force the model
(Table 1); however, it is not necessarily the transport field that
was present at the time of UAV flight. Thus, each LES post-
spinup 30 min run represents one potential solution, and not
the truth, which results in the flux uncertainty of Fig. 7a. In
addition, LES models resolve the larger, energy-containing
turbulent eddies directly, while smaller sub-grid scale (SGS)
eddies are approximated using a parameterization. The ac-
curacy of LES depends on grid resolution – finer grids cap-
ture more turbulence but increase computational costs, while
coarser grids rely more on SGS models, introducing potential
errors. Uncertainties arise because SGS models approximate
rather than resolve small-scale turbulence, leading to errors
that can propagate to larger scales. These uncertainties affect
the accuracy of transport modeling, thus influencing predic-
tions of tracer concentrations, in our case CO2.

Other sources of uncertainty could arise from the land-
cover classification considered in this study and the UAV
measurements, although they both showed to have low errors
associated with them: for the land cover, Varner et al. (2022)
report 0.4 % a misclassification rate for the landcover classi-
fication, while Bolek et al. (2024) report an uncertainty less
than 0.36 ppm for UAV measurements. Other sources of un-
certainty arise from the errors associated with the EC mea-
surement of NEE and the footprint model, although these
errors would not affect the inversion-derived fluxes, but the
computation of the quantitative flux values. This comprises,
for example, the errors associated with the EC instrument
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noise, calibration drift, and data processing methods, as well
as from the footprint model, which introduces uncertainty
through assumptions about atmospheric stability, turbulence,
and the spatial representation of flux contributions from
heterogeneous surfaces. Uncertainty is also associated with
chamber measurements used to compare the derived fluxes
with, which can be affected by issues such as leakage, pres-
sure effects, and alterations of the natural microclimate inside
the chamber during sampling time.

Through this inversion approach, it is challenging to pro-
vide a value for the uncertainty in the flux estimations as we
do not have a patch-level scale measurement of the fluxes to
compare our data with. Nevertheless, assessing the mismatch
between modeled and observed concentrations provides an
estimate of the model uncertainty, where the lc_5 simulations
result in 95 % confidence interval of 1.08 ppm for Simulation
1 and 0.47 ppm for Simulation 2.

4.4 Limitation, Applications, and Outlook

A limitation of this study is the relatively small number of
land cover classes, which introduces the “aggregation er-
ror”. To address this, future work could substantially increase
the number of unknowns (i.e., classes) and incorporate “a
priori” information – such as wetness, nutrient status, mi-
crotopography, or specific vegetation types – to better con-
strain the problem. A promising direction would be to move
away from rigid, predefined landcover classes. A simple first
step could involve subdividing existing landcover categories
into smaller sectors and optimizing each separately. A more
advanced approach might optimize pixel-by-pixel, perhaps
incorporating spatial correlation length scales, followed by
post hoc analysis to identify coherent clusters – and assess
whether they align with the predefined structure. Implement-
ing such strategies would require more extensive data, poten-
tially including tailored UAV campaigns to provide balanced
coverage across the mire, in addition to extensive compu-
tational power, especially if models like LES are involved,
however, simpler transport models could be explored as this
study relies on the steady state assumption.

This small-scale inversion opens the door to further cou-
pling UAV and EC measurements to derive patch level fluxes
both within the EC tower footprint and in the surrounding
landscape. Based on the inversion fluxes, it is possible to get
the net carbon flux from larger areas, i.e. extrapolate mea-
surements within the EC footprint area to the full mire area
without having to assume matching land cover fractions in
both domains. Since Simulation 1 has a SE wind, we use
the Simulation 1 fluxes to get the net flux from the bog
area surveyed by the drone (right two sections in Fig. 1b),
while we use Simulation 2 fluxes to get the net flux from
the palsa area (left section in Fig. 1b) as the wind is com-
ing from the NW in this case. Using the lc_5 configura-
tion, we get a net flux of −1.45 µmol m−2 s−1 for Simula-
tion 1 and a net flux of 0.18 µmol m−2 s−1 for Simulation 2.

Note that the EC-derived NEE for the same time of the UAV
flights is −3.29 and −0.33 µmol m−2 s−1, respectively. The
mismatch between the EC-derived NEE and the whole-area-
derived NEE emphasize the role the small-scale heterogene-
ity and tower footprint play when deriving total net fluxes of
carbon, noting that this inversion technique could be lever-
aged in upscaling studies using EC-derived fluxes to derive
landscape-wide fluxes.

By applying this method during different periods over the
course of the growing season, i.e., through flying the drone
several times over the growing season, we could get a larger
set of the patch-level fluxes that could be integrated over
the whole growing season and result in season-long patch-
level flux. In this study relying on just a couple of flights,
we are able to estimate fluxes corresponding to the UAV
flight time and/or any other time within similar meteorologi-
cal and phenological conditions. Extending the results to rep-
resent patch-level carbon budgets for a full growing season
is thus challenging; however, with further implementation of
UAV flights within the EC tower footprint, patch-level car-
bon budgets could be possible. . In this case getting UAV
measurements over different time of day is important to get
patch-level flux contributions across different daytime con-
ditions, notably nighttime conditions, although running LES
under stable conditions could be challenging due to weak tur-
bulence and strong stratification. It must be mentioned that
this method would require a considerable amount of com-
putational resources for running high-resolution models like
LES; however, simpler transport models could be considered
especially when averaged transport processes for steady-state
conditions are assumed. The uncertainty coupled with the
flux estimation could be overcome by increasing the drone
surveyed area to better represent the effect of all landcover
on the measured mixing ratio. Note that the UAV-LES inver-
sion presented in this study could be applied to any flux tower
as long drone measurement and landcover classification are
provided, and is not limited to arctic or peatland ecosystems.

5 Conclusions

Through a combination of LES modeling, gridded mixing
ratio observations from a UAV platform, a landcover classifi-
cation, and Eddy covariance measurements, patch level CO2
fluxes at 2× 2 m resolution could be derived from a struc-
tured sub-Arctic mire. Distinct flux signatures could be as-
signed for pre-assigned land cover types, separating sources
and sinks, and deriving flux rates differing by more than one
order of magnitude between landscape elements. Evaluation
of the modeled concentration fields showed a good match
with UAV observations of atmospheric CO2 concentrations,
while assessment of the inversion flux rates through compar-
ing them to flux chamber datasets for the same day of UAV
flight showed an agreement in flux patterns between derived
patch level fluxes and corresponding chamber fluxes, mostly
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for bog and palsa, the main landcover within the UAV sam-
pled area footprint. This inversion technique opens the door
for deriving patch-level fluxes from EC data, while bridging
the scaling gap between patch-level fluxes (usually measured
with chambers) and plot-level fluxes, thus suggesting a new
method to upscaling to EC-derived fluxes to footprints larger
than the EC tower footprint.
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