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Abstract. Large quantities of carbon are stored in Yedoma
permafrost. When temperatures rise, its high ice content is a
catalyst for rapid degradation, which in turn may cause the
release of large quantities of carbon. 40 % to 70 % of the ra-
diative forcing from this release is expected to be in the form
of CH4. In this observing system simulation experiment, we
examined the capabilities of three atmospheric GHG mon-
itoring platforms i.e. tall towers, and the TROPOMI and
MERLIN satellite instruments, to detect changes in CH4 re-
lease from increased Yedoma thaw. A set of environments
are simulated with the GEOS-5 model: one representing a
“natural” emission case as the reference, a second featuring
enhanced CH4 release from Yedoma soils. From within these
modelled environments, synthetic measurements are gener-
ated following best in situ practices and realistic error char-
acterizations.

For the satellites we find the lowest detection limits when
aggregating measurements over a 112 d period, at Yedoma
fluxes of 144 % to 367 % of current conditions. These factors
are up to 1.2 times higher when taking transport modelling
uncertainties into account. The tall tower network shows a
wide range of detection lower limits, the lowest at only 107 %
of current fluxes, but has considerably higher lower detection
limits when factoring in transport modelling errors. Overall,
the individual systems appear to lack the ability to detect and
attribute small changes in Yedoma CH4 fluxes, and would ei-
ther need to be used in combination or require a considerable
time to detect changes under higher emission scenarios.

1 Introduction

The Northern high latitudes are seeing rapid changes in envi-
ronmental conditions as a result of climate change (Serreze
and Barry, 2011; Pachauri et al., 2014; Meredith et al., 2019).
These changes can have far-reaching consequences since per-
mafrost soils contain large stocks of carbon, almost twice that
of the atmosphere (Yu, 2012; Schuur et al., 2013; Hugelius
et al., 2014; Strauss et al., 2017; Nichols and Peteet, 2019;
Mishra et al., 2021). This carbon may be released to the
atmosphere when permafrost thaws (Hugelius et al., 2020;
Schuur et al., 2015, 2008; Serreze and Barry, 2011). The
form in which this carbon is released (e.g. as carbon diox-
ide (CO2) or methane (CH4)) has a large influence on its cli-
mate impact (Schneider von Deimling et al., 2015; Walter
Anthony et al., 2018), with 40 %–70 % of the radiative forc-
ing from permafrost thaw projected to originate from CH4
emissions. To understand how the Arctic will be affected and
to properly capture any changes, continuous monitoring is
essential; however, the monitoring capacity for pan-Arctic
methane fluxes is still limited (O’Connor et al., 2010; Pal-
landt et al., 2022; Peltola et al., 2019; Pirk et al., 2016; Wille
et al., 2008; Wittig et al., 2024; Xu et al., 2016), and likely
not sufficient to detect abrupt changes in methane emissions
at an adequate resolution and precision to inform adaptation
measures designed by policymakers.

There are many methods to directly monitor the methane
exchange processes between the surface and the atmosphere.
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Bottom-up methods, which include flux chambers and eddy
covariance stations, measure locally with footprints ranging
from < 1 to several 1000s of m2 (Pirk et al., 2016; Schimel,
1995; Virkkala et al., 2018; Zona et al., 2016). These mea-
surements can be upscaled to a larger domain to obtain
regional-scale methane budgets (Davidson et al., 2017; In-
gle et al., 2023; Nelson et al., 2024; See et al., 2024). There
are also transient methods such as drone and airborne cam-
paigns (Fix et al., 2023; Miller and Dinardo, 2012; Scheller
et al., 2022; Shaw et al., 2021; Sweeney et al., 2022), ca-
pable of capturing the spatial variability of methane flux
signals in the atmosphere in episodic snapshots. Top-down
methods make use of observations over large regions based
on greenhouse gas sensors mounted on tall towers or satel-
lites. To relate changes in measured atmospheric concentra-
tions to fluxes between the biosphere and atmosphere, at-
mospheric inverse modelling is a commonly-used technique
(Houweling et al., 2017; Michalak et al., 2004; Miller et
al., 2014; Peters et al., 2010; Rödenbeck et al., 2003; Thomp-
son et al., 2017). In atmospheric inverse modelling, emis-
sions are estimated by minimising a cost function that com-
pares observed atmospheric mixing ratios with simulated val-
ues based on surface-atmosphere fluxes and transport mod-
els, including estimates of related uncertainty fields. Details
on these methods can vary (Brasseur and Jacob, 2017), while
the result is usually some form of local to regional estimate
of fluxes constrained by observed concentrations.

1.1 Tall towers

However, all top-down methods rely upon measurements of
the atmospheric mixing ratios, either via in situ sampling
or remote sensing. In this study we are using tall tower
measurements to represent in situ measurements in general.
Tall towers are typically equipped with in-situ greenhouse
gas sensors that allow them to directly sample GHG mix-
ing ratios. Many of these towers take samples from differ-
ent heights, which corresponds to probing air with increas-
ingly remote origins. Some towers are tall enough to breach
the atmospheric boundary layer (at least at night), and take
samples from the free troposphere, without a direct link
to nearby surface fluxes (Bakwin et al., 1995; Winderlich
et al., 2010). Continuous measurements often utilise cavity
ring-down spectrometers to constantly sample the air from
tower inlets, though they are more limited in the species
they can detect (Andrews et al., 2014; Ball and Jones, 2003;
Winderlich et al., 2010). As an alternative to direct in-situ
GHG measurements, air samples can be collected in flasks at
regular intervals, often (bi-)weekly, and stored for later anal-
ysis in a laboratory. This method has a lower temporal res-
olution compared to in-situ analysers, but allows for a large
range of compounds and isotopes to be detected (Andrews et
al., 2014; Keeling et al., 1976; Levin et al., 2020). Tall towers
can have footprints covering several 1000s of km2, therefore
a single site can capture the influence of surface signals on

a regional scale. A network of multiple towers can be used
in inversions to link atmospheric concentrations to ground
processes.

1.2 Satellites

While a tall tower takes measurements at a fixed point within
the lower atmosphere, satellites sample the total atmospheric
column, with measurements distributed across the globe.
Satellite retrievals make use of molecular absorption lines at
specific wavelengths to deduce the mixing ratio of a target
gas, such as methane. While instruments measuring emit-
ted radiation in the thermal infrared are mostly sensitive to
methane in the upper troposphere and lower stratosphere,
sensors measuring in the shortwave infrared have sensitivity
to the full atmospheric column, making these sensors bet-
ter able to capture the spatio-temporal variability near the
surface, which is important for flux inversions. In the past
there have been several missions with such instruments: these
include the SCanning Imaging Absorption spectroMeter for
Atmospheric CHartographY (SCIAMACHY) on ESA’s En-
visat (Bovensmann et al., 1999; Buchwitz et al., 2006; Bur-
rows et al., 1995; Dils et al., 2006; Frankenberg et al., 2006),
the Japanese GOSAT mission (Butz et al., 2011; Yokota et
al., 2009), and the TROPOspheric Monitoring Instrument
(TROPOMI) on ESA’s Sentinel-5 Precursor mission (Hu et
al., 2018; Lorente et al., 2021; Veefkind et al., 2012).

1.2.1 TROPOMI

In this study we will take a closer look at TROPOMI’s detec-
tion capabilities as a state-of-the-art (Lindqvist et al., 2024)
passive Short Wave InfraRed (SWIR) sensor with the best
spatial coverage. TROPOMI measures in the ultraviolet and
visible (270–500 nm), near-infrared (675–775 nm) and short-
wave infrared (2305–2385 nm) spectral bands. It is there-
fore able to detect a host of compounds (e.g. nitrogen diox-
ide, ozone, formaldehyde, sulphur dioxide, methane and
carbon monoxide). It has a spatial resolution as high as
7 km× 5.5 km at nadir. With a swath width of 2600 km and
14 sun-synchronous orbits a day, it produces a large number
of soundings, especially around the poles where soundings
overlap with those from previous orbits. A radiative transfer
model is used to estimate the spectrum that would be ex-
pected at the top of the atmosphere based on a prior estimate
of the atmospheric state, simulating the instrument sampling.
Then pre-defined fit parameters (i.e. the state vector) influ-
encing the atmospheric profile are adjusted, taking into ac-
count the uncertainty on the prior guess, to best match the
measured spectrum, in a method known as optimal estima-
tion. In the Weighting Function Modified Differential Optical
Absorption Spectroscopy retrieval (WFMD), the fit param-
eters include scaling factors for the prior columns of CH4,
CO, and H2O, a shift parameter for the temperature profile,
a scaling factor for the pressure profile, and parameters for
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a third-order polynomial to fit the sun-normalized radiance,
which is a factor of Rayleigh scattering, aerosol optical depth
and surface albedo. One of the largest sources of errors in this
measurement technique is related to uncertainties in the light
path due to scattering from aerosol particles and thin cirrus
clouds. Such scattering may both shorten and lengthen the
true path length of the light, leading to systematic errors that
are difficult to correct, leading to under- and overestimation
of XCH4. Further, as a passive sensor, it cannot sample with-
out sunlight, making its use in the wintertime Arctic limited.

1.2.2 MERLIN

One way to overcome this innate limitation of passive remote
sensing is the use of an active sensor, which comes equipped
with its own radiation source, making it independent of sun-
light. The French Centre national d’études spatiales (CNES)
and the German Aerospace Center (DLR) are developing
such a sensor for the Methane Remote Sensing Lidar Mis-
sion (MERLIN), which is the sole instrument on the MER-
LIN mission. with an expected launch date of 2028. The in-
strument is an integrated-path differential absorption nadir-
viewing Lidar (IPAD). Two spectrally narrow laser pulses at
frequencies close to 1.64 microns are emitted in the nadir
direction in close succession. One pulse has a frequency
located in the wing of a pressure-broadened CH4 absorp-
tion line, ensuring absorption close to the Earth’s surface.
The other pulse is located “offline”, with negligible CH4 ab-
sorption, serving as a reference. The two pulses follow in
close succession (250 µs apart) to measure nearly identical air
masses. In contrast to passive sensors, the light path is well
known from the timing of the return pulse, making the mea-
surement much less sensitive to aerosol- and cloud-related
errors (Ehret et al., 2017; Pierangelo et al., 2016; Stephan
et al., 2011). Thus, the systematic errors are expected to be
considerably less than for passive instruments (Bousquet et
al., 2018). However, the random error of a single measure-
ment is much larger than for a passive sensor, and multi-
ple single-shot pairs (with a ∼ 150 m diameter, separated by
∼ 650 m) will be averaged in on-ground processing to re-
duce this, with a nominal averaging length of 50 km, or 142
shot pairs. These random errors depend mainly on the sig-
nal intensity measured by the instrument, and are thus nega-
tively affected by low albedo and aerosol scattering. Of note
for this high latitude study is that snow has a low albedo in
the 1.64 microns range. While TROPOMI offers many more
measurements per orbit, MERLIN provides global sampling
over the entire year. The difference is especially striking at
high latitudes, where TROPOMI is essentially blind through
much of the Arctic winter. This study aims to quantify the
effect of this difference on the detection of flux signals in the
atmosphere.

1.3 Inversion modelling

The large regional to global scales on which these systems
operate might mean that local effects or processes with small
flux magnitudes may remain undetected. While tall towers
have large footprints, these are too sparse to cover all regional
processes in the domain of interest. Processes relatively close
to a tower may be hidden from it due to prevailing winds
from different sectors (Pöhlker et al., 2019), and even a sig-
nal that falls within the footprint may not be detected as its
influence to the final concentration decreases over distance
(Vermeulen et al., 2011). Furthermore, inversion models typ-
ically report significant transport modelling errors, especially
at high northern latitudes (Baker et al., 2006), further com-
plicating the precise spatial attribution of an atmospheric sig-
nal. Satellites typically have global coverage, but they still
require transport modelling, and calibration against ground-
based reference datasets, such as those provided by the To-
tal Carbon Column Observing Network (TCCON) (Wunch
et al., 2011), to relate the column-integrated concentrations
to ground processes (Bergamaschi et al., 2009; Parker et
al., 2011; Toon et al., 2009). Moreover, atmospheric con-
ditions, such as the presence of clouds or aerosols, which
are typically detrimental to satellite soundings, need to be
considered (Alexe et al., 2015; Bergamaschi et al., 2009;
Houweling et al., 2014). As a consequence, each of the avail-
able observation platforms features uncertainties that may
compromise its ability to monitor minor changes in surface-
atmosphere exchange processes.

1.4 Outline

To better understand the detection limits of the tall tower net-
work and satellites, we conducted an observing system sim-
ulation experiment (OSSE) (Arnold and Dey, 1986; Errico
et al., 2013; Zeng et al., 2020) where we tested a scenario
of increased CH4 release from so-called Yedoma soils in
the Arctic, and how it would be detected by the three ob-
servation platforms introduced above. OSSEs are typically
used to test large networks like these where local experi-
ments would not yield meaningful results or for systems that
are not yet operational (such as MERLIN). In an OSSE, an
environment is modelled that mimics a natural system, and
synthetic measurements with realistic errors are generated.
Such synthetic measurements can then be compared between
a baseline run reflecting in situ conditions and a scenario
run where specific conditions are created. Here we use the
Goddard Earth Observing System (GEOS) model for these
simulations, a framework which is well suited to simulate
earth observing missions. The remainder of the manuscript
is laid out as follows. Section 2 outlines the Methods, in-
cluding the model setup for conducting the OSSEs and the
simulated sampling strategy for our three observing systems
– tall towers, TROPOMI and MERLIN. Section 3 provides
the results, specifically focusing on the capability of these
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sensors to capture various attributes related to detection of
methane emissions from Yedoma thaw. We continue with a
discussion in Sect. 4, including caveats associated with our
study and summarize the results and findings in Sect. 5.

2 Methods

2.1 GEOS

The Goddard Earth Observing System (GEOS) Earth System
Model (Molod et al., 2015; Rienecker et al., 2011) is a ver-
satile coupled ocean-land-atmosphere modelling framework
consisting of several components that allow it to address a
wide range of questions related to Earth Science investiga-
tions. With land, ocean and atmospheric components and the
ability to assimilate data for all three of these, it sees a wide
range of uses. Particularly relevant for this study is its abil-
ity to model the carbon cycle (Ott et al., 2015; Sweeney et
al., 2022; Weir et al., 2021), and its use for generating model
simulations for OSSEs for satellite signal detection studies
(Errico et al., 2013; McCarty et al., 2021).

In this model setup, we simulated CH4 fields at 0.5° hori-
zontal resolution and with 72 vertical layers (up to∼ 0.1 hPa)
at a three-hourly temporal resolution. The extend of the
model is global though our analysis is limited to north
of 50° N. CH4 flux input fields consist of five datasets:
(1) agricultural emissions, (2) anthropogenic biofuel emis-
sions, and (3) industrial and fossil fuel emissions, all taken
from the Emissions Database for Global Atmospheric Re-
search (EDGAR v4.3.2) (Janssens-Maenhout et al., 2019);
(4) biomass burning emissions from the Quick Fire Emis-
sions Dataset (QFED) (Koster et al., 2015); and finally,
(5) wetland emissions from the process-based ecosystem
Lund–Potsdam–Jena model, WSL version (LPJ-wsl) (Poul-
ter et al., 2011; Zhang et al., 2016). The setup is in line with
Sweeney et al. (2022).

As a scenario to test the detection limits we focus on ex-
pected increased CH4 release from thawing Yedoma (Schnei-
der von Deimling et al., 2015; Strauss et al., 2017). Yedoma
deposits are ice- and carbon-rich permafrost soils which
are widespread in Siberia and Alaska (covering more than
107 km2). These soils are highly vulnerable to disturbance
and degradation and are also prone to abrupt thaw processes
such as e.g. thermokarst. Strauss et al. (2017) predict that
5–40 TgC from deep sources will be released in the form of
CH4 per year over the coming century. We generate a nature
run across an entire year (in this study, we picked the year
2010 for our baseline year), and a high-emission scenario
run for the same time period. In this high-emission scenario,
wetland CH4 fluxes in grids flagged as containing Yedoma
(Fig. 1) are amplified above the baseline from March until
the end of the year with all other fluxes unaltered; we call this
the flux enhancement (Fe) factor. In this study, the maximum
flux enhancement factor applied was 111 (Fig. 2), which was

derived by comparing the magnitude of methane emissions
from the labile carbon pool at the end of the century (Schnei-
der von Deimling et al., 2015; Strauss et al., 2017) relative to
the magnitude of methane fluxes for the year 2010 based on
fluxes prescribed in the LPJ-wsl model. However, the main
focus was placed on sensitivity experiments whereby the flux
enhancement factor was gradually decreased to a minimum
value of 1.06 (see Sect. 2.5). The spatial extent of the Yedoma
fields has been adapted from Strauss et al. (2016) (Fig. 1) to
match the GEOS 0.5° resolution.

2.2 Tall-tower network

For this model setup, we identified 63 tall towers in the boreal
and Arctic domain located between 42.6 to 82.5° N (Fig. 1,
Table S1 in the Supplement), for which we designed a re-
alistic synthetic sampling protocol. There is a large varia-
tion in elevation above sea level within this network, with
the lowest point at Kjolnes (KJN) in Northern Norway 5
metres above sea level and Summit (SUM) at the apex of
Greenland’s ice sheet at 3215 m. Concerning the instrument
height above ground level, Russia features both the lowest
and highest mounting positions with Teriberka (TER) at 2
meters above ground level and ZOTTO (ZOT) with a height
of 301 m. ZOTTO is the only tower that samples in the sec-
ond atmospheric layer of the GEOS model. Of the 63 towers,
17 are listed to have flask samples with a predominant sam-
pling scheme of one flask per week. Continuous sampling
with in-situ gas analyzers was confirmed at 35 of the 63 sites.
The exact method of sampling is unknown for the remain-
ing 11 sites. Even in cases where data were collected con-
tinuously throughout the day, for this study we restricted the
database to samples taken during the day when the bound-
ary layer is expected to be well mixed; however, during the
Arctic winter, when very stable stratification dominates, this
may still not always be the case.

From the GEOS nature and enhanced flux run, each grid
and level that contained a tall tower was sampled 3 times
a day from the top inlet height during the 10:00 to 18:00
local time window, with 3 h between each sample for a to-
tal of 1095 samples per site per year. Since GEOS out-
puts have a 3 h temporal resolution the time offset to UTC
(in hours) from where a tower is located determines if the
first sample is taken at 10:00, 11:00 or 12:00. This is in
line with typical practice to sample in the afternoon when
a well-mixed boundary layer has been formed. The timestep
at which GEOS model output was written out was 3-hourly,
even though the model internal timestep is much higher.

Two error schemes were applied to the synthetic data:

– Tall Tower ideal scenario (TTi) only takes into account
the 2 ppb precision as set by the WMO for atmospheric
CH4 sample analysis. This precision error term has a
gaussian distribution and is scaled in such a way that
95 % of this distribution falls within this −2 to 2 ppb
range (µ 0 ppb, σ 1.02 ppb). This error represents a the-
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Figure 1. Spatial extent of areas within the Arctic study domain dominated by Yedoma soils (cyan shading), including site locations of the
tall tower network (coloured circles). Yedoma areas were adapted from Strauss et al. (2016) to match the GEOS grid resolution of 0.5°. 63
tall towers are shown, colour-coded by distance to the closest Yedoma area in km. Land-sea boundary vectors were taken from natural earth.

Figure 2. Tall-tower network wide average methane concentrations for the year 2010 showing the baseline concentrations from the nature
run (Blue) and concentrations resulting from an 1.06 and 111-times flux enhancement (Fe) from natural sources in Yedoma areas (Peach and
Yellow respectively). For signal detection the Fe was decreased by a factor of 1.1 in 80 steps down to a lowest value of 1.06.
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oretical detection limit of an atmospheric signal, includ-
ing the ability to detect a change, but excluding an attri-
bution of the source of the signal.

– In the Tall Tower full error scheme (TTf), a transport
modelling error is added to the before-mentioned pre-
cision. The transport modelling error represented addi-
tional uncertainty caused by a model to link measured
concentrations to surface fluxes often distant in space
and time from the point of measuring. This transport
modelling error is scaled to have a mean absolute error
of 30 ppb (µ 0 ppb, σ 44.5 ppb) to match Bergamaschi
et al. (2022). This reflects the network’s ability to detect
a change and attribute it to the region of origin. In this
scenario the total error equals (µ 0 ppb, σ 1.02 ppb) +
(µ 0 ppb, σ 44.5 ppb).

2.3 TROPOMI

For cloud screening of all satellite soundings we used the
International Satellite Cloud Climatology Project (ISCCP-H
series) dataset (Rossow et al., 2022; Young et al., 2018).

Total-column soundings were generated to match opti-
mal TROPOMI sampling, with one full 227-orbit repeat cy-
cle (∼ 16 d) repeated over the year. To estimate appropri-
ate thresholds for simulating the cloud screening, we looked
at the statistics for “good” soundings from two TROPOMI
products: the RemoTeC (v2.0.4) retrieval from the Nether-
lands Institute for Space Research (hereafter referred to
as SRON) (Lorente et al., 2021, 2023) and the Weight-
ing Function Modified Differential Optical Absorption Spec-
troscopy (2.0) from the University of Bremen (referred to
as WFMD) (Schneising et al., 2019, 2023). For the analysis
of the WFMD data the standard quality screening was used
(xch4_quality_flag= 0 for good retrievals) and for the SRON
v2.0.4 product the screening (qa_value> 0.5) was applied..
We used these to establish general cutoffs and relations be-
tween variables and errors. After an initial analysis we solely
used the WFMD product since the reported uncertainties in
the SRON product appear to be too low, and do not match
the scatter when compared with TCCON colocations, unlike
the WFMD reported uncertainties. We diagnosed the Solar
Zenith Angle (SZA) and established a cutoff at < 75°. An
assessment of the relation between measurement uncertainty
and different factors indicated that albedo dominates. Ran-
dom errors in ppb, the precision, were modelled by fitting a
curve to the reported uncertainties from the WFMD sound-
ings (Fig. S1 in the Supplement), showing the strongest rela-
tion to SZA and retrieved albedo at 2.3 µm (function 1). We
binned the data onto our 0.5°× 0.5° model grid for compar-
ison with samples from the model, but counted all sound-
ings (not just one per bin per orbit). A host of filter settings
were compared to the measurement coverage from 2020 and
2021 to produce the best fit between the spatial and tem-
poral distribution of their good-quality measurements and

our synthetic sampling, resulting in the following filter set-
tings: an ISCCP cloud fraction (cf)< 0.2, solar zenith an-
gle (SZA)< 75°, albedo2.3 µm× cos(SZA)> 0.01 Land frac-
tion> 0.9 or sea ice fraction> 0.995. Pressure-weighted col-
umn averaging was applied as averaging kernel to generate
these modelled samples (Fig. S3).

Precision= 10.03+
0.234

albedo · cos(SZA)+ 0.0034
(1)

To apply this relationship to the simulated data, albedo from
MODIS band 7 was used (albedo7), which is measured at
2.1 µm. For most applications over land, this small difference
in spectral albedo should not be significant. However, the
MODIS albedo sampled by GEOS is a snow-cleared value
available only over land, and does not reflect the snow and
ice coverage, where the albedo is set to 0.05. Considering
the fraction of the pixel covered with (sea)ice and snow FrI,
this results in the following albedo for pixels over land:

albedo= (1−FrI) · albedo7+FrI · 0.05. (2)

Over sea ice (defined as FrI> 0.8 and a land fraction
FrL< 0.1), albedo is set to 0.05. Over open water (FrI< 0.8
and FrL< 0.1), only retrievals near the sun glint point are
possible, which is negligible at these latitudes (Schneising
et al., 2023). To account for the correlation between nearby
measurements, the ∼ 3 million soundings were binned by
taking the mean of all soundings within 100 km and 1 h of
each other, yielding∼ 475 932 samples that were then treated
as independent (Figs. 3 and 4).

Seven subsets of TROPOMI data were created to in-
vestigate the impact of ground conditions on measurement
precision (Table 1). The “Full” subset contains all sound-
ings. “Sea”, “Ice”, and “Land” contain only soundings from
grids with 100 % coverage of their corresponding type. The
“> 0.5” cases contain soundings with at least 50 % of the grid
covered by their corresponding type, and less than 95 % ice
or snow (in line with the 0.95 ice cutoff employed in Kiemle
et al., 2014). Note that TROPOMI can only measure over
open water when pixels are located close to the sun glint lo-
cation, which seldom occurs north of 40°.

2.4 MERLIN

Total column soundings were generated to match the planned
MERLIN orbits. We filtered out all fully clouded soundings,
yielding 588 037 samples. The random error characterisation
is based on the work by Bousquet et al. (2018), and each sam-
ple consists of all the along track samples with an averaging
length of 50 km (Figs. 3 and 4), with the following precision:

Precision=

√
Kon

2
+Koff

2

2
√

142 · (1− cf) · 1780
, (3)
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Figure 3. In the two top tiles mean monthly XCH4 simulated retrievals from TROPOMI and MERLIN in March, with the precision in
the bottom tiles. These values are based on filtered and the spatio temporal averaged retrievals as described in Sect. 2.3 and 2.4. While
TROMPOMI nets less unique measurements is has better (lower) precision than MERLIN.

where

Kon =

√
a+ b · c ·E ·D

c ·D
, (4)

Koff =

√
a+ b · c ·E

c ·E
(5)

with

D = e
−2·DAODref

Psurf
Pref , (6)

E = e−2·AODSW ·
ρ

ρref
. (7)

Here a, b and c are constants which were set to 20, 0.2 and
70 respectively to match Fig. S2b in the Supplement of Bous-

quet et al. (2018); cf denotes the cloud fraction, which was
taken from the ISCCP data product sampled along the sim-
ulated orbit. 142 is the number of shot-pairs that are aver-
aged over the 50 km sampling distance. By multiplying it by
(1− cf), the number is reduced by the fraction that would
be screened by clouds. DAODref is the Differential Absorp-
tion Optical Depth reference value of 0.534 at a CH4 con-
centration of 1780 ppb; ρref is the reflectance reference value
of 0.1, with ρ being the reflectance converted from albedo
as in Kiemle et al. (2014); Pref is the standard pressure at
sea level at 1013 hPa and Psurf the surface pressure in hPa;
finally AODsw is the aerosol optical depth at 1650 nm con-
verted from the AOD at 550 nm (sampled online from the
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Figure 4. In the two top tiles mean monthly XCH4 simulated retrievals from TROPOMI and MERLIN in September, with the precision
in the bottom tiles. These values are based on filtered and the spatio temporal averaged retrievals as described in Sect. 2.3 and 2.4. While
TROMPOMI nets less unique measurements is has better (lower) precision than MERLIN.

GEOS-5 data assimilation) with the Junge power law (Zhu
et al., 2018). The main factors determining the precision are
the surface reflectance, cloud fraction, aerosol optical depth
and pressure. Just as for TROPOMI pressure-weighted col-
umn averaging was applied as averaging kernel to generate
these modelled samples (Sect. S3 in the Supplement).

In addition to the seven subsets we introduced for the
TROPOMI sampling, we considered two more scenarios
which included transport modelling errors taken from Bous-
quet et al. (2018). Full transport low reflects the low end of
the random error increase as a result of including a transport
modelling error of 8 ppb, and full transport high represents

the high end of the transport-modelling-related random error
at 23 ppb (Table 1).

2.5 Signal detection

We compare the nature run with the Yedoma thaw scenario
for each of the seven sampling and error characterizations
listed above using an array of two-tailed t tests to detect any
difference with the alternative hypothesis that no detectable
differences are present. We opted for two-tailed t tests since
in reality we would not know if at a certain point or time
a flux would increase or decrease. The basis for the signal
detection experiment is a variable signal strength, where we
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Table 1. Synthetic satellite retrieval subsets and basic descriptives. FrL indicates the land fraction and FrI the snow and ice fraction. Soundings
are the total number of soundings north of 50° latitude. Precision indicates the mean random error per system for the entire domain over
1 year. The last two rows indicate the MERLIN scenarios including transport modelling errors.

Subset Condition TROPOMI MERLIN

Soundings Mean XCH4 Precision Soundings Mean XCH4 Precision
(ppb) (ppb) (ppb) (ppb)

Full All data 475 932 1803 18.1 588 037 1803 108

Sea FrL= 0 and FrI= 0 0 – – 60 475 1809 95.4

Ice FrI= 1 159 026, 1799 20.2 232 279 1799 155
141 461

Land FrL= 1 and FrI= 0 9891 1807 13.1 12 352 1807 35.8

Sea> 0.5 FrL< 0.5 and FrI< 0.95 270 499 1805 24.2 175 645 1805 74.8

Ice> 0.5 FrI> 0.5 241 590 1800 20.4 373 108 1801 134

Land> 0.5 FrL> 0.5 and FrI< 0.95 229 808 1807 15.2 115 401 1808 44.1

Soundings Mean XCH4 Precision + transport
(ppb) modelling error

Full transport Low All data – – – 588 037 1803 116

Full transport High All data – – – 588 037 1803 131

reduce the 111 (Fe) over 80 steps to a minimum Fe of 1.06.
Since the power of a t test increases with sample size, we
test six temporal bin sizes of increasing length (7, 14, 28, 56,
112, 224 d) with step sizes of 1 d as these move across the
year, similar to a moving average. However, because of the
large number of tests, we can expect a large number of false
positives. Therefore we apply a false discovery rate (FDR)
correction (Benjamini and Hochberg, 1995) on the p values
and report the resulting q values. In this context, we consider
each q value of 0.05 or lower to be a significant detection of
differences. In the tall tower network, we test each tower in-
dividually and report the number of towers that show a signif-
icant difference. We then establish the lower detection limit
cutoff point for each time step. The first step is finding the
range of Fe values where both significant and non-significant
values are present. The top of this range is the lowest signif-
icant Fe where all preceding steps were also significant. The
bottom of this range is the highest Fe for which all lower Fe
values were not significant. The cutoff point is then the centre
of this range, weighted by the number of (non)significant val-
ues in this range. For example, if this range had three signif-
icant and four non-significant results, the cutoff point would
be set at three down from the top.

No systematic biases are included since they would be un-
affected by the perturbation and thus not affect the outcome
of this test.

3 Results

3.1 Optimal detection limits

Evaluating the effect of the bin sizes in both the tall tower
network (Fig. 3) and satellite systems (Fig. 6) shows that a
longer evaluation period increases the discriminatory power
of these systems, though only to a certain extent. In the
tall tower network and the MERIN subsets ice> 0.5 and
sea> 0.5, only minimal improvements and in some cases de-
creases in performance are found after 112 d. In the case of
TROPOMI and the remaining MERLIN subsets, no substan-
tial improvements are found in bin sizes longer than 28–56 d.
Increases in bin sizes come at a cost, as periods considerably
longer than the 112 d will increasingly sample from outside
the peak fluxes in this experiment (Fig. 2). And in the case
of the satellites, larger bin sizes can increase the number of
samples in unfavourable conditions. The Arctic night greatly
reduces the data yield from TROPOMI (Fig. 7), and snow
and ice negatively affect the precision of both instruments,
especially MERLIN (Table 1). Unless noted otherwise, re-
ported values in the text reflect the 112 d bins.

We find that the tall tower network is capable of detecting
the lowest flux differences: this happens at the peak of fluxes
in September, with a Fe value of 1.07, but only for a single
site (Baranov), when excluding transport modelling errors.
Including such errors increases the lower detection bound to
a flux enhancement Fe of 4.56. We also observe that there
is a large difference in detection limits between the towers:
for all 63 towers to detect a change, Fe needs to be at least
1.58 (TTi), or up to 32.9 (TTf) when considering transport

https://doi.org/10.5194/amt-18-7053-2025 Atmos. Meas. Tech., 18, 7053–7073, 2025



7062 M. M. T. A. Pallandt et al.: Quantifying detection limits of top-down methane monitoring

Figure 5. Minimum detection limit ranges for the tall tower network
between detection at a single site (lower bound) and at all sites of
the network (upper bound) per temporal bin size. The non linear
y axis shows flux enhancement (Fe). Without transport modelling
errors (yellow), detection limits are low but there is a large range
between the best and worst locations. A similar pattern is visible
when transport modelling errors are considered (purple), but here
the network benefits more from longer temporal bins.

modelling errors. For at least five towers to detect a signifi-
cant difference between natural and enhanced emissions, de-
tection limits are more than doubled compared to that for a
single site (compare Figs. 5 and 8).

TROPOMI’s lowest detection limit is slightly higher at an
Fe of 1.40 in the Land> 0.5 compared to the Full subset
at 1.53. Even at a short 7 d bin size, TROPOMI can detect
significant differences at a Fe of ∼ 2.7 under the Full and
Land> 0.5 subsets.

In the Full subset, MERLIN’s lowest detection limit is at
an Fe value of 3.67; however, the Land> 0.5 subset performs
better than the Full subset at an Fe of 3.21, owing to signif-
icantly lower random errors over land (Table 1). The impact
of transport modelling errors appears to be relatively small,
with the Low scenario in some cases having similar detection
limits as the Full scenario without transport modelling errors
and the High scenario only adding an average 0.76 Fe to the
detection limit.

4 Sea Ice and Land subsets

For both satellite-based platforms we investigated the effect
of different surface conditions on the retrievals by splitting
the dataset by Sea, Ice or Land grids, and grids that predom-
inantly contained one of these classes.

Since TROPOMI has no reliable way of sampling over
open sea at these latitudes, the Sea> 0.5 subsets therefore re-

flect samples taken from predominantly sea grids containing
land or ice. The Sea> 0.5 and Ice> 0.5 subsets performed
worse than the Full subset at a Fe of 3.43 and 2.51 respec-
tively (Fig. 6). The Land> 0.5 performed slightly better at
1.40. However, the Ice and Land subsets performed signifi-
cantly worse than the Full subset, at a Fe of 5.31, and 3.94
respectively. In the case of Ice this is likely a result of a strong
seasonality in the sampling, since it has a similar number of
total samples and mean error to the Land> 0.5 subset (Ta-
ble 1). The difference is that the flux enhancement is low in
the winter months when ice and snow dominate (Fig. 1).

Owing to the large sensitivity to ground conditions, we see
large differences between the subsets in MERLIN data. The
lower detection limit for Sea, Ice, and Land is ∼ 7 Fe higher
than for the Full subset. The detection limits of these scenar-
ios are fairly similar since the number of samples and mean
errors are proportional, with Land having the smallest sam-
ple size and the smallest error and Ice the highest number
of samples and the largest error (Table 1). In the > 0.5 sub-
sets we see that sample size is no longer the limiting fac-
tor, with Land> 0.5 having the lowest error and perform-
ing best, followed by Sea> 0.5 with the second-lowest er-
rors followed by Ice> 0.5 with the highest errors. Of note
is that the Land> 0.5 subset performs better than the Full
case, indicating that, depending on the application, it can be
beneficial to only consider soundings over mostly snow- and
ice-free land.

4.1 Seasonality

In the case of the tall towers network we assumed undis-
turbed operations during wintertime, though fluxes are lower
during this time. Therefore, despite similar sampling sizes
and errors, we observe on average a lower detection level
twice as high as in summer (Fig. 8) which is likely related to
lower wintertime fluxes (Fig. 1).

TROPOMI, being a passive sensor, has limited to no
wintertime observational capabilities in the high latitudes
(Fig. 7), and therefore detection limits display a strong de-
cline during the winter (Fig. 9). As a result, detection limits
increase on average by a factor of 4.8 during winter. We ob-
serve the lower detection limits of the Sea and Land subsets
increasing faster from summer to winter than those of Ice
resulting from the increasing sea ice and snow extent (not
shown), and thus a relatively larger number of samples under
these conditions.

MERLIN’s active sensor can measure in the absence of
sunlight; however, during the winter the majority of the do-
main is covered by snow and ice, which has a low reflectance
in the shortwave infrared and substantially increases the ran-
dom error. Therefore we still observe a 2.4-fold seasonal in-
crease in the lower detection limit (Fig. 10). While this rel-
ative increase is smaller than in TROPOMI’s case, the abso-
lute lower detection limits are higher. The Land> 0.5 case
has been shown to have the lowest detection limits, but in
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Figure 6. Minimal detection limits for MERLIN and TROPOMI by temporal bin size. The y axis shows the Fe values of the lowest detection
limits (note the shorter y axis and linear scale). On the x axis the size of temporal bins is given. Full sets are in magenta, Sea in purple, Ice in
cyan and Land in yellow. Distinctions between MERLIN and TROPOMI and the subset thresholds are shown in line style. We see optimal
detection limits at a temporal bin size of 112 d. A version with all cases can be found in Fig. S4.

wintertime the Full, Ice> 0.5 and Sea> 0.5 cases outper-
form it. This indicates that during spring, summer and early
autumn the Land> 0.5 subset functions best while for the
rest of the year the Full subset yields better results. In gen-
eral, masking high error regions can improve overall perfor-
mance on the metric considered here.

5 Discussion

5.1 Methodological aspects

In the scenario presented here, CH4 fluxes from Yedoma
were uniformly increased by a single, homogeneous Fe fac-
tor across the domain and time. However, this is unrealistic in
the sense that rapid localised thawing of Yedoma may result
in localised increased CH4 release that may be heterogeneous
in space and time. While higher flux magnitudes would have
a lower detection limit, more localised fluxes or temporally
asynchronous fluxes would require higher detection limits.
It is therefore reasonable to assume that these opposing fac-
tors might balance out over time and space. How this would
affect detection limits could be quantified only in additional
OSSE runs, but the definition of such detailed scenarios were
beyond the scope of this investigation.

There are limitations to the degree by which random er-
rors, either based on previous studies or expert knowledge,
are applicable and transferable. The transport modelling er-
ror characterization of tall towers is based on a study fo-
cused on the European tall tower network (Bergamaschi et
al., 2022), which consist of a far denser network of tall tow-
ers than is present in the Arctic, which in turn may indicate an
underestimation of the error in our study. However, methane
fluxes (especially from anthropogenic sources) are higher in
Europe than in most of the Arctic, and spatially heteroge-
neous, which would indicate an overestimation of the error
in our study. To which degree these compensate each other is
uncertain.

The TROPOMI random errors and cloud-screening were
based on a best-fit to actual retrievals from Schneising et
al. (2019). Despite this, the number of “good” retrievals for
a given year is double that produced by our sampling due
to the limited spatial and temporal resolution of our model.
However, after spatio-temporal binning to account for corre-
lation between measurements, these differences are largely
mitigated.

In this experiment we applied the random errors to the syn-
thetic signals of both the nature run and the perturbed run.
This setup is based on the premise that a baseline is built on
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Figure 7. Number of cloud-screened synthetic satellite soundings, by month, 5° latitude bin and platform, left: TROPOMI, right: MERLIN.
TROPOMI is not capable of reliable soundings over clear water at these latitudes. Because of the precession of its orbit MERLIN will not
sample north of 85° N.

past monitoring, which therefore implies similar uncertainty
in our prior knowledge of the system. With a large enough
dataset, such as e.g. a baseline set over multiple years, ran-
dom errors should, by definition, average out to zero. Thus,
an argument could be made that the baseline runs should not
have these error terms. However, when we also consider in-
terannual variability in both transport and fluxes, we are of
the opinion that including the error terms in the baseline is
more realistic.

To set detection limits, we performed an array of t tests
corrected by a test for false detection rates (FDR). The com-
bination of t test with a p threshold at 0.05 and an FDR cor-
rection with a q threshold at 0.05 is a fairly strict measure,
especially since the FDR correction decreases the statistical
power slightly. More lenient cutoffs would result in slightly
better detection limits, although at an increased uncertainty.
There are methods (Lai, 2017) to better fine tune the FDR
cutoff which can be considered in future work.

We also note that this analysis does not fully take into
account some of the benefits of the satellites: TROPOMI
and MERLIN operate at a higher spatial resolution than our
model runs, and while that may not directly aid in monitor-
ing large scale processes, it is certainly a benefit that should
not be overlooked, especially if the methane emissions were

to happen at very localized scales that are smaller than our
model resolution (0.5°× 0.5°).

Furthermore, MERLIN’s expected low systematic errors
are of great importance when quantifying fluxes (Bousquet
et al., 2018). Unlike random errors, systematic errors do not
decrease when averaging over time and space, and result in
biased flux estimates. Due to the approach used in this study,
this potential strength was not taken into account in our anal-
ysis.

5.2 Data interpretation

To put results of this experiment in perspective we look at
three future example scenarios for CH4 release in the Arc-
tic based on different Representative Concentration Path-
ways (RCPs) (Moss et al., 2010; Schuur et al., 2022): Low,
based on RCP2.6–4.5, which assumes slow warming and
slow ecosystem response; Medium, based on RCP4.5–8.5,
envisioning moderate to high global and Arctic warming
with moderate ecosystem and landscape response; and High,
RCP8.5, high global and Arctic warming with fast ecosys-
tem and landscape response. For each of these scenarios,
CH4 fluxes are expected to increase significantly over time,
and are considered for current conditions, halfway through
the century (2049), and end of the century (2099). Consid-
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Figure 8. Contour plot of the Yedoma CH4 flux detection limit of
the tall tower network. Shown for the 28 d bin sizes which retains
most of the temporal variation. The top panel shows results for the
pure detection limits (TTi) scenario, while in the bottom panel de-
tection limits are given including transport modelling errors (TTf).
Non linear y axis shows flux enhancement (Fe), on the x axis the
date (centre of 28 d bins). Colours and isolines indicate the number
of tall towers that detect a significant difference (q ≤ 0.05) between
the natural and enhancement scenarios. Note that the peak of the
emissions was during September.

ering current boreal and arctic fluxes to be on average 40 Tg
C-CH4 yr−1 (Kuhn et al., 2021; Zhang et al., 2016), with-
out considering transport modelling errors on average the
TROPOMI and tall tower networks are able to detect a dou-
bling of fluxes. Therefore they will only be able to detect
these increased fluxes in the Medium scenario for the 2099
emissions and the High scenario from 2049 onwards. MER-
LIN would detect these changes in the High scenario from
2099. If we aim to allocate these flux increases to their re-
spective sources by inverse modeling, then MERLIN’s detec-
tion limits will allow this in the High 2099 scenario. Consid-
ering similar detection limits and largely similar challenges
in transport modelling, TROPOMI would follow a similar
pattern. The tall tower network would likely not be able to
directly allocate these fluxes as a result of their high trans-
port modelling errors. Therefore, given the expected flux in-

Figure 9. Contour plot of the Yedoma CH4 flux detection limit of
TROPOMI, showing the Full case. Shown for the 28 d bin sizes
which retain most of the temporal variation. Non linear y axis shows
flux enhancement (Fe), on the x axis the date (centre of 28 d bins).
Colours and isolines indicate the detection limits as statistical sig-
nificance (q value) of the differences between the baseline and en-
hancement scenarios. Note that the peak of the emissions was dur-
ing September.

creases, these systems will likely not be able to detect, let
alone attribute, current changes in methane emissions from
Yedoma areas. And even in the High and Medium scenarios,
for which such changes could be detected, this would still
be a matter of decades. This result is in line with Wittig et
al. (2024), who analysed the tall tower network’s ability to
detect a potential “methane bomb” emission scenario from
degrading Arctic permafrost, and also found long delays in
detection. With different methods these studies arrive at sim-
ilar conclusions, emphasizing the robustness of these results.

It is possible that multi-year monitoring of peak fluxes
(e.g. summer and autumn) could expose significant differ-
ences sooner at the cost of seasonal and spatial distinction.
However this would require a reliable baseline trend and
would not be informative about the source of the change.
Given that a flux enhancement of 1.58 leads to a detectable
enhancement for the entire network of tall towers, it is clear
that these signals are quickly mixed throughout the entire do-
main, reaching all towers. However, when including trans-
port modelling errors, this increases to 32.9. This indicates
that while the signal reaches all towers, attribution is highly
dependent on tower placement. If the goal is to link changes
to relevant processes, a far denser network would be re-
quired. To properly guide such tower placement, future stud-
ies should aim to include site-specific transport modelling
into the analysis and network optimization.
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Figure 10. Contour plot of the Yedoma CH4 flux detection limit
of MERLIN. Shown for the 28 d bin sizes which retain most of the
temporal variation. The top panel shows pure detection limits un-
der the union of the Land> 0.5 and Full subsets, the bottom panel
the detection limits of Full including high transport modelling er-
rors. Non linear y axis shows flux enhancement (Fe), on the x axis
the date (centre of 28 d bins). Colours and isolines indicate the de-
tection limits as statistical significance (q value) of the differences
between the baseline and enhancement scenarios. Note that the peak
emissions were during September.

5.3 Outlook

There is still ample opportunity for improvements to these
monitoring systems. For the tall tower network, the transport
modelling errors are the main crux. While improvements to
the transport models themselves can partially solve this, a
denser monitoring network would go far in this regard, not
just in the Arctic since inversions are typically performed on
global scales. Monitoring and maybe more important util-
ising co-emitted species may also aid in improving the in-
versions. With satellites we can expect to see a continued
improvement in sensor quality. But especially in the Arc-
tic they lack ground validation with fairly sparse TCCON
and COCCON networks. Additionally specific regional re-

trieval product can be created since for example filters that
make sense in a high flux well sampled region may be detri-
mental in one with low fluxes and few samples. Further, of
note is that in this analysis we do not leverage the combined
strengths of these systems. The precise measurements of the
tall towers can distinguish between small changes, while the
two satellites have excellent spatial coverage and resolution.
While TROPOMI performs better than MERLIN in summer-
time (while disregarding systematic errors, as in this study),
MERLIN is able to take samples in partially cloudy and dark
conditions, though often at a lower precision. Retrievals from
cloud tops, including cloud-slicing approaches (Ramanathan
et al., 2015), may also be possible, though are not consid-
ered here. Since these systems therefore partly compensate
for each other’s weaknesses, a multi-stream data assimilation
system can produce results better than the sum of its parts
(Houweling et al., 2017). An essential component of such a
system would be an extensive CH4 flux network, which has
been shown to be lacking in the high Northern latitudes (Pal-
landt et al., 2022; Peltola et al., 2019). Future studies may ex-
plore the potential of a coordinated, diverse observing port-
folio to monitor such sudden emissions and changes to the
northern high-latitude carbon cycle.

6 Concluding remarks

In this study we presented results from an OSSE system
based on GEOS-5 nature runs, to perform signal detection
experiments and demonstrate the value of top-down GHG
monitoring systems across the northern high latitudes. Using
this system, we are able to simulate and compare detection
limits of tall towers, passive and active satellites. This sig-
nal detection experiment is a first step in a larger effort to
quantify the capability of high-latitude top-down networks
for monitoring changes, and to a degree, warning society of
sudden and profound changes in the carbon cycle as a result
of climate change.

Using our OSSE framework, we specifically targeted a
scenario in which Yedoma thaw causes increased CH4 re-
lease from soils to the atmosphere. We find that the tall tower
network is capable of detecting the smallest flux increases
tested (at a factor 1.07). Though, when relating changes to
local processes the tall tower network struggles, as the lower
detection limits rise to a flux enhancement factor of ∼ 32.9
for the entire network. Minimum detection limits for the
tested satellites are higher than for the best of the tall tower
network, with a required flux increase approximately one and
a half times larger for TROPOMI and threefold in MERLIN’s
case. MERLIN’s ability to consistently take measurements
during the Arctic winter is somewhat offset by the increased
error as a result of snow and ice’s low reflectance in the short-
wave infrared. The transport modelling error scenarios of the
MERLIN run show a relatively small increase in lower de-
tection limits. We find these three systems will only be able
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to detect changes on the scale of Yedoma thaw in the higher
emission scenarios, and typically only after emissions have
risen significantly over time. Longer time series can allevi-
ate this issue to some degree at the cost of reduced temporal
resolution. Furthermore, we propose an expansion of the tall
tower network, and advise on an increased focus on the de-
velopment of multi-stream data assimilation systems, since
optimally leveraging the strengths of each of these observing
systems shows great promise.
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