Supplement of Atmos. Meas. Tech., 18, 7085–7104, 2025 https://doi.org/10.5194/amt-18-7085-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Qualification of an online device for the measurement of the oxidative potential of atmospheric particulate matter

Albane Barbero et al.

Correspondence to: Albane Barbero (albane.barbero@univ-grenoble-alpes.fr)

The copyright of individual parts of the supplement might differ from the article licence.

S1 ROS-Online answer under semi-controlled environment

10

15

20

S1.1 Atmospheric OP in near real conditions

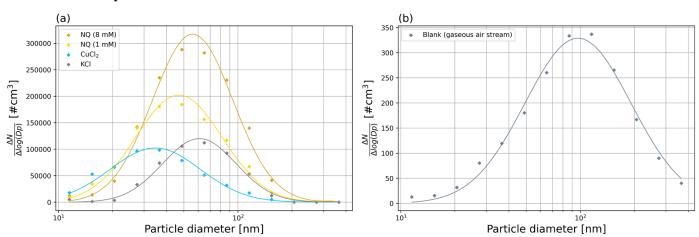


Figure S 1. particle size and distribution found in the pipe in (a) the four experiments generating respectively atomized KCl, $CuCl_2$, and NQ at 1mM and 8 mM and (b) the gaseous air stream blank (c) particle size distribution relative to the particle diameter.

S1.2 ROS-Online answer to gas

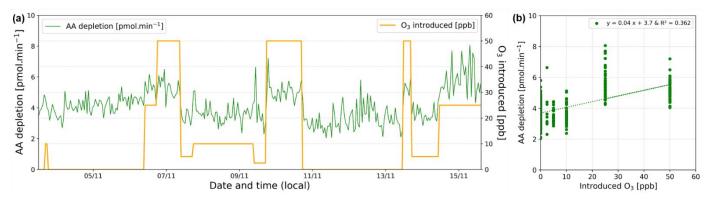


Figure S 2. (a) Timeserie of AA depletion [pmol.min $^{-1}$] (green) measured at different O₃ (orange) concentrations [ppb] introduced in the sampling line of *ROS-Online* and (b) summary of results.

S2 Real-life case study in Chamonix

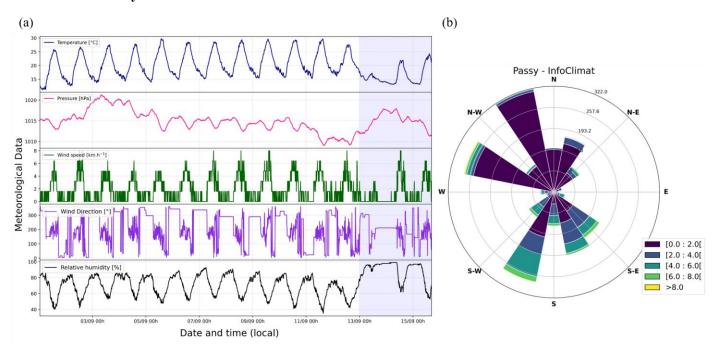


Figure S 3. Meteorological data at the air quality monitoring station of "Passy" during the ambient air OP sampling campaign (a) Temperature ($^{\circ}$ C - dark blue), Dew point ($^{\circ}$ C - dashed light blue), Pressure (hPa - pink), Wind speed (km.h $^{-1}$ - green), Wind direction ($^{\circ}$ - purple) and Relative humidity ($^{\circ}$ - black). (b) The associated Wind Rose.

S2.1 Time series - OPAA

25

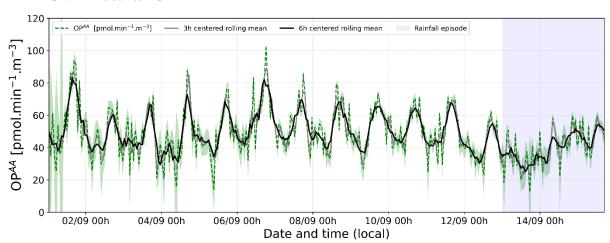


Figure S 4: Time series of OP^{AA} [pmol.min⁻¹.m⁻³] measurements during the 15 days' field campaign in Chamonix. Confidence intervals correspond to measurement error.

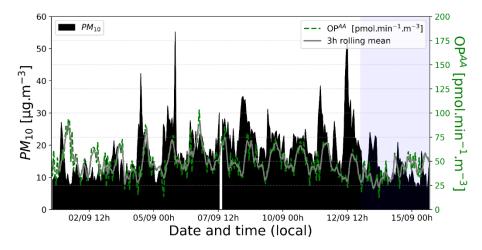


Figure S 5: Time series of PM_{10} [µg.m⁻³] (left-hand side) and OP^{AA} [pmol.min⁻¹.m⁻³] (right-hand side) measurements during the 15 days' field campaign in Chamonix.

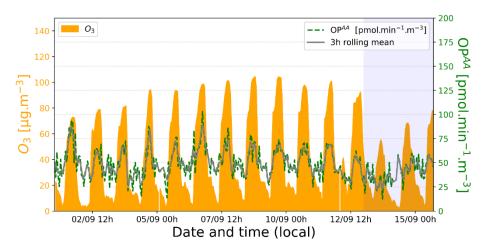


Figure S 6: Time series of O_3 [µg.m⁻³] (left-hand side) and OP^{AA} [pmol.min⁻¹.m⁻³] (right-hand side) measurements during the 15 days' field campaign in Chamonix

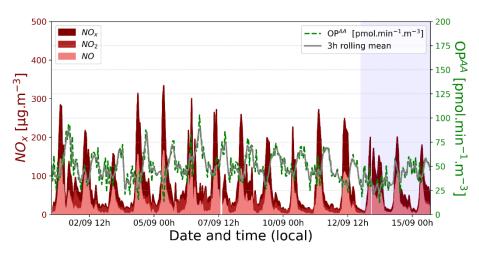


Figure S 7: Time series of NO_x [μ g.m⁻³] (left-hand side) and OP^{AA} [pmol.min⁻¹.m⁻³] (right-hand side) measurements during the 15 days' field campaign in Chamonix.

S2.2 Time series – OPDTT

45

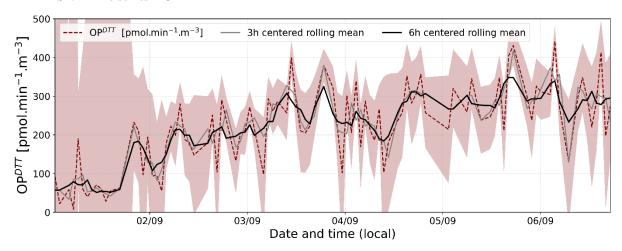


Figure S 8: Time series of OP^{DTT} [pmol.min⁻¹.m⁻³] measurements during the 6 days' field campaign in Chamonix. Confidence intervals correspond to measurement error.

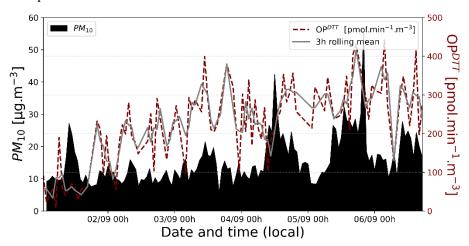


Figure S 9: Time series of PM_{10} [µg.m⁻³] (left-hand side) and OP^{DTT} [pmol.min⁻¹.m⁻³] (right-hand side) measurements during the 6 days' field campaign in Chamonix.

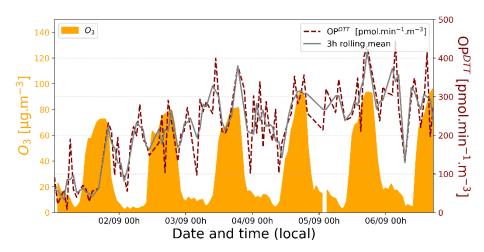


Figure S 10: Time series of O_3 [µg.m⁻³] (left-hand side) and OP^{DTT} [pmol.min⁻¹.m⁻³] (right-hand side) measurements during the 6 days' field campaign in Chamonix.

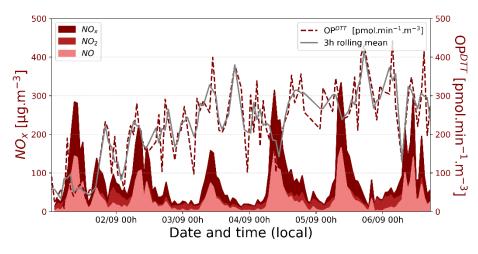


Figure S 11: Time series of NO_x [µg.m⁻³] (left-hand side) and OP^{DTT} [pmol.min⁻¹.m⁻³] (right-hand side) measurements during the 6 days' field campaign in Chamonix.