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Abstract. High ice water content (HIWC) conditions are a
concern for aviation as the ingestion of ice particles in the jet
engines can induce ice crystal icing (ICI), which results in
performance loss and damage. To constantly monitor these
conditions, retrievals for the detection of ICI were recently
developed based on geostationary satellite imagery, but their
calibration is limited to targeted flight campaigns or scattered
samplings from ICI events databases. In this work, we close
this gap, using exclusively remote sensing data to develop
and assess a new retrieval for potential ICI conditions.
Cloud IWC measurements are provided from the syn-
ergy of radar and lidar (DARDAR) on board the polar-
orbiting satellites CloudSat and CALIPSO. HIWC condi-
tions (IWC > 0.5 gm™3) at typical cruise altitudes are used
as the proxy for areas with potential ICI formation. The
HIWC conditions predictors are taken from a combination of
observations and retrievals of the geostationary satellite Me-
teosat Second Generation (MSG). A random forest is trained
and tested based on the collocated dataset of active and pas-
sive measurements during the summer months of 2013 and
2015, covering the European domain. The input predictors
are the brightness temperature difference between the MSG
channels at 6.2 and 10.8 um wavelengths, the visible channel
at 0.6 um wavelength, the cloud optical thickness at 0.6 um
wavelength, and four convection metrics related to the dis-
tance to the closest convective cell, area extent of the con-
vective cells, and convection density in the pixel surround-
ings. Over Europe, 83 % of HIWC conditions measured in
the DARDAR dataset are correctly detected. The associated

false alarm rate is 51 %. The retrieval is further tested with
the ICI events database reported by Lufthansa. Four out of
seven events are correctly detected. In conclusion, the re-
trieval achieves performances comparable to previously de-
veloped retrievals. An operational application would enable
aircraft rerouting around areas with high ICI probability.

1 Introduction

Ice Crystal Icing (ICI) is a phenomenon that aircraft may
encounter when flying through cloudy regions with high ice
crystal concentrations. These regions are mostly found close
to deep convection, in particular within tropical mesoscale
convective systems (MCSs). In such systems, pilots can eas-
ily avoid strong updrafts, as onboard radars can detect em-
bedded precipitation based on its high reflectivity signal,
or available satellite-based nowcasting of severe convection
(NCS-A, Miiller et al., 2022) can issue early warnings. How-
ever, regions outside the main updraft may not be affected by
nowcasting warnings and they can still contain high ice con-
centrations despite having little to no radar reflectivity due to
the presence of non-precipitating ice particles (Gayet et al.,
2012); this is where ICI events can occur because ice parti-
cles can build up inside the engine and lead to performance
loss and damage (Grzych, 2010; Grzych et al., 2015; Bravin
et al., 2015; Haggerty et al., 2019), or they can clog the pitot
tube which in turns result into a wrongful transmission of in-
formation to the autoflight system; this latter occurrence has
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caused two fatal accidents in recent years (Ayra et al., 2020).
Because those failures can happen in high ice concentration
regions, on-board sensor anomalies, as for example the total
air temperature (TAT) anomalies, are often used as precur-
sors for engine failures (Haggerty et al., 2016; Rodriguez-
Sanz et al., 2018). In contrast with convection patterns, no
clear diurnal trends are found globally; however, a seasonal
correlation is observed between local convective active sea-
sons and ICI events (Bravin et al., 2015).

High ice water content (HIWC) conditions are often used
as a proxy for potential ICI occurrence. For these conditions,
a threshold ranging between 0.5-1.0 gm™ is chosen in ear-
lier studies, although a standard value is still under debate
because exposure times and engine types might also affect
ICI occurrence (de Laat et al., 2017; Yost et al., 2018; Hag-
gerty et al., 2019, 2020; Bedka et al., 2020).

Aircraft manufacturers and airlines have collected ICI
events in databases to analyze the importance of the phe-
nomenon. Bravin et al. (2015) present a Boeing database that
included 162 events over 12 years. de Laat et al. (2017) con-
struct a database from Airbus containing 59 events, without
specifying their time frame. Here, a collection of 100 events
from Lufthansa flights during 2016 is considered (Sect. 2.4)
to analyze a subset of ICI events as case studies (Sect. 4.2).
The worldwide number of ICI events and their impact on en-
gine performance highlights the relevance of the issue to air
traffic safety.

The importance of this problem led to the execution of
flight campaigns to measure in situ cloud microphysical
properties during such events. A combination of specifi-
cally designed probes, sensors, and radar instruments was
deployed to measure high ice concentrations, particle size
distributions, and cloud vertical profiles, respectively. These
campaigns are:

— the HAIC-HIWC flight campaign, Darwin, Australia
2014, where HAIC stands for “high altitude ice crys-
tal”;

the HAIC-HIWC II flight campaign, Cayenne, French-
Guiana 2015;

the HAIC-RADAR flight campaign, Fort Lauderdale,
Florida 2015;

the HAIC-RADAR II flight campaign, Fort Lauderdale,
Florida 2018.

The problem’s relevance and the availability of new in
situ measurements triggered activities in the research area of
HIWC conditions detection products from satellites. Indeed,
the following retrievals were developed:

— Grzych et al. (2015) develop a 3D HIWC mask ex-
ploiting infrared (IR) channels from geostationary satel-
lite imagery combined with numerical weather pre-
diction (NWP) wind fields at different heights and
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the tropopause level (ECMWF-ERAS, Hersbach et al.,
2020). The algorithm is tested with the HAIC-HIWC
flight campaign case studies, which are used as ground
truth. While a clear correlation between the mask and
the in situ measured HIWC conditions is found, the al-
gorithm tends to overestimate the areas affected by this
phenomenon, but no performance metrics are reported;

— de Laat et al. (2017) approach the problem by manu-
ally setting thresholds on retrieved cloud microphysi-
cal variables from geostationary satellite imagery. These
thresholds are calibrated using case studies in the Air-
bus dataset and verified with the synergistic space-borne
lidar-radar dataset (DARDAR), derived from active re-
mote sensing measurements on polar-orbiting satel-
lites that include, among others, IWC. The algorithm
achieves a probability of detection (POD) of 0.59 but
with an associated false alarm rate (FAR) of 0.52;

— Yost et al. (2018) use a combination of geostationary
satellite imagery and retrieved cloud optical properties.
The considered input variables are associated with a
corresponding value of IWC according to a statistical
fit performed by collocating the satellite data with flight
campaign measurements. This information is translated
into a HIWC probability using fuzzy logic. The algo-
rithm is verified with the HAIC-HIWC, HAIC-HIWC
I, and HIWC-RADAR flight campaigns, achieving a
POD of 0.75 and a FAR of 0.35 during daytime. Re-
ported nighttime performances are inferior (POD: 0.62,
FAR: 0.35) because of the lack of cloud optical proper-
ties;

— Haggerty et al. (2020) integrate a multitude of data
sources, like satellites, on-ground radar, and NWP data.
Particle swarm optimization is used to select a subset
of variables of interest, which are then combined via
fuzzy logic to produce the HIWC probability. The re-
trieval is verified with the HAIC-HIWC, HAIC-HIWC
II, and HIWC-RADAR II flight campaigns, achieving a
POD of 0.86 and a FAR of 0.51.

When training potential ICI detection retrievals, a significant
amount of in situ HIWC measurements should be considered
for statistical significance. Dedicated research flight cam-
paigns are often geographically limited, and they specifically
target HIWC conditions. This may introduce a bias when ex-
trapolating from a local to a global context (Haggerty et al.,
2020).

While in situ HIWC measurements are the best data to
assess potential ICI conditions in convective clouds, alter-
native approaches exploiting remote sensing measurements
can be implemented if one wants to increase the training
samples. For operational monitoring, geostationary satellites
are used due to their wide field of view and high temporal
resolution. Polar-orbiting satellites’ active observations can-
not be directly applied in operational scenarios because of
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their small field of view and low repetition time. This work
demonstrates the feasibility of a detection method for poten-
tial ICI from geostationary satellite observations based on
machine learning techniques and trained with the DARDAR
dataset as ground truth.

The paper contains a description of the combination of
data used to train the ICI detection retrieval in Sect. 2. Next,
we describe how the machine learning techniques are ap-
plied for the ICI detection task in Sect. 3. In Sect. 4, we
present the results validated with active remote sensing data
and Lufthansa’s ICI database. Finally, in Sect. 5 we summa-
rize the results on the retrieval’s performance and discuss its
main limitations.

2 Datasets

The ICI retrieval developed in this study relies on physical
quantities measured and retrieved by passive instruments on
board geostationary satellites, called “predictors” hereafter.
The geostationary satellite and the corresponding retrievals
employed are presented in Sect. 2.1. The DARDAR dataset
is presented in Sect. 2.2 because this contained our ground
truth data for IWC measurements of cloud profiles. Lastly, it
is important to establish the spatial and temporal distribution
of selected in-service ICI events, analyzed in Sect. 2.4.

2.1 MSG and MSG-based retrievals

The predictors’ source for this work is the geostationary
satellite Meteosat Second Generation (MSG) because it guar-
antees a continuous spatial coverage of Europe. MSG is
equipped with the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) that measures reflectance and radiance in
the visible and infrared range, thanks to its 11 narrow-band
channels and one high-resolution visible (HRV) broadband
channel. SEVIRI provides a 3712pixels x 3712 pixels im-
age of the Earth disk with a 3km x 3km resolution at the
nadir. The temporal resolution is 15 min, with a rapid scan
service (RSS) available for a subset of the Northern Hemi-
sphere, where images are produced every 5min (Schmetz
etal., 2002). Besides SEVIRI channels, we also use ice cloud
properties retrievals based on SEVIRI. The considered re-
trievals for this study are developed in-house, because of our
expertise in their strengths and limitations and because of
their availability to us. Nevertheless, in one example we have
applied our algorithm using alternative products as input: op-
tical thickness from EUMETSAT and convective cloud in-
formation from TOOCAN. This is demonstrated in Sect. 4.4.
The ice cloud properties are used as predictors for our ICI
retrieval, so the corresponding geostationary-based retrievals
are briefly discussed below.
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2.1.1 CiPS

CiPS (Cirrus Properties from SEVIRI), developed and char-
acterized by Strandgren et al. (2017a, b), detects thin cir-
rus clouds from MSG and determines ice optical thickness,
ice water path, and cloud top height. The detection is based
on Artificial Neural Networks trained with CALIPSO lidar
data as ground truth. The training and validation datasets
cover the entire SEVIRI disc and the period between 2007—
2013, containing close to 50 million data points. The lidar
signal experiences strong attenuation when interacting with
clouds; therefore, it is considered saturated and thus unreli-
able whenever there is no backscattering from the surface.
This limited CiPS to thin cirrus cloud detection with an op-
tical thickness of approximately below 3. When validated
against CALIPSO, CiPS detects correctly 95 % of all cirrus
clouds with optical thickness of 1.0, while for thinner cir-
rus clouds with optical thickness of 0.1, the proportion of
detected cirrus over all cirrus is 71 %. The best optical thick-
ness estimation is obtained in the range between 0.35-1.7
with a deviation of less than 50 % from CALIPSO’s measure-
ments. The detection exploits SEVIRI thermal channels, re-
gional maximum and averaged brightness temperatures in the
infrared and water vapor channels, and surface skin temper-
atures from NWP global reanalysis (Hersbach et al., 2020).

2.1.2 APICS

APICS (Algorithm for the Physical Interpretation of Clouds
with SEVIRI Bugliaro et al., 2011) discriminates cloud phase
and microphysical properties from MSG. In particular, cloud
optical thickness and effective radius (ranging from 5 to
25 um for water clouds and from 6 to 84 um for ice clouds)
are retrieved using a look-up table approach based on radia-
tive transfer calculations, which exploits the visible chan-
nel at 0.6 um wavelength, and the near-infrared channel at
1.6 um.

CiPS and APICS thus analyze similar cloud optical and
microphysical characteristics, but they perform best in dif-
ferent situations. CiPS is better suited for thin cirrus clouds
analysis, both during day and nighttime. APICS has a wider
scope, covering both ice and water clouds of any thickness,
but it is limited to daytime due to its rule-based approach on
visible and near-infrared channels. Both retrievals are used
in this study, because they may provide candidate precursors
of high ice water content conditions. The suitability of these
retrievals for this task has been discussed in Sect. 3.2

2.1.3 Cb-TRAM

Cb-TRAM (Zinner et al., 2008, 2013) enables the detection
and tracking of convective cells from geostationary satellite
imagery. It relies on the HRV, infrared 10.8 um, and water va-
por window 6.2 um channels. Cloud motion and development
can be detected through the disparities between two consec-
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utive satellite images. The algorithm can also discriminate
different convection development stages: “Stage 17 denotes
convection initiation, “Stage 2” rapid vertical development
through cloud tops cooling, and “Stage 3” indicates mature
convective cells.

2.2 DARDAR
DARDAR description

The DARDAR-CLOUD products (Delanog, 2023a) devel-
oped by (Delanoé and Hogan, 2008) exploit the synergy of
space-borne data from radar and lidar of the A-train satel-
lite constellation to retrieve ice cloud properties. The A-
Train constellation is a group of satellites that use the sun-
synchronous orbit at 705 km altitude. CloudSat was equipped
with a radar operating in the 94 GHz band, whose aim
was to characterize cloud vertical profiles of cloud wa-
ter and ice contents (Stephens et al., 2002). The lidar on
board CALIPSO operated at 532 and 1064 nm wavelengths.
CALIPSO provided cloud characterization as a function of
height and water and ice content (Winker et al., 2003). These
satellites were launched on 28 April 2006 (Delanoé& and
Hogan, 2010).

The DARDAR-CLOUD products exploit the different sen-
sitivities of the instruments in a synergistic approach. The
radar is less sensitive to small particles, but it has a higher
penetration capability within thick clouds; the lidar is more
sensitive to optically thin clouds, but it is affected by rapid
attenuation, while the infrared radiometer can only estimate
bulk cloud properties (Delanoé and Hogan, 2010). For this
reason, IWC, effective radius, and particle size distributions
are retrieved with a variational method that efficiently com-
bines radar and lidar measurements (Delanoé and Hogan,
2008). The DARDAR products are collocated to the Cloud-
Sat horizontal resolution of 1.4km (Stephens et al., 2002)
and CALIPSO vertical resolution of 60 m (Delanoé and
Hogan, 2010).

2.3 DARDAR-MSG collocation and ICI proxy selection

For our ICI retrieval, we consider DARDAR measurements
as ground truth. Therefore, in the first step, we need to collo-
cate the SEVIRI and DARDAR measurements. In the follow-
ing, we refer to “DARDAR profile” or simply “profile” as the
vertical cross-section of clouds as retrieved from the DAR-
DAR dataset. This corresponds to the atmospheric column
encompassed in the field of view of one radar-lidar pixel. In-
stead, we refer to the “DARDAR trajectory” as the DARDAR
footprint on the surface in terms of longitude/latitude coordi-
nates.

The DARDAR trajectories have a finer along-track resolu-
tion than the geostationary grid. MSG and DARDAR data
are combined following the approach described by Mayer
et al. (2023). Satellite observations are collocated by ex-
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ploiting longitude, latitude, cloud top height, and observa-
tion times. Cloud top height allows us to correct the parallax
effect arising from the different observation geometry of geo-
stationary and polar-orbiting satellites. DARDAR profiles are
coarsened to the MSG grid by averaging all profiles within an
MSG pixel at each DARDAR height level.

Then, in each averaged profile, we check for HIWC, i.e.
IWC > 0.5 gm™3, in an altitude range that is relevant for air
traffic. We consider only cruise levels between 9000 m and
13000 m (defined in Sect. 2.4). Figure 1 illustrates the map-
ping process. Panel (a) showcases the DARDAR IWC pro-
files coarsened to the MSG grid along the satellite track.
HIWC areas are represented with the blue shading. If the
maximum IWC value within the cruise levels in the DAR-
DAR IWC profile exceeds the HIWC threshold, the HIWC
flag is assigned to the corresponding pixel. Panel (b) depicts
the brightness temperature from SEVIRI at 10.8 ym with the
corresponding DARDAR trajectory with its longitude/lati-
tude coordinates, the maximum IWC values for each pixel,
and the HIWC flag, if applicable. The HIWC flag was used
as the target variable to train the machine learning algorithm
(Sect. 3).

We consider June, July, August, and September 2013 and
June, July, and August 2015. Summer months were selected
because of the seasonal convective activity peak in Europe.
Years 2013 and 2015 are selected because they lie within
the time window where DARDAR and a single MSG plat-
form (MSG-3) overlap (from 2013 to 2017) to avoid differ-
ences that may arise due to different instrument calibrations
(Strandgren et al., 2017a; Mayer et al., 2023; Piontek et al.,
2023). The collocated dataset results in 165 139 collocations,
889 of them flagged as HIWC pixels (see Table 1).

Convection-related metrics from Cb-TRAM

DARDAR trajectories seldom overlap with convective cells
as detected by Cb-TRAM. Therefore, additional convection-
related metrics are used. The time spent by an aircraft within
a HIWC region seems to play a role in the onset of ICI events
(Bravin et al., 2015), thus, information about the areal extent
of convective cells may be useful during the learning process.
To this end, convection-related variables (shown in Fig. 2)
are derived from the Cb-TRAM scene:

— distance from the trajectory point to the closest convec-
tive cell;

— area size of the closest convective cell, in terms of pix-
els and km?. Since organized convective systems, such
as MCSs, are defined as cumulonimbus clouds able to
generate contiguous precipitation areas in the order of
100 km (Markowski and Richardson, 2010), this infor-
mation is useful to assess whether detected cells belong
to such organized systems, or if they are associated with
single and multi-cell convection, that are generally char-
acterized by a smaller area extent;
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Figure 1. (a) mapping from the DARDAR vertically-resolved IWC information to the HIWC flag associated with the geostationary grid
pixel. (b) SEVIRI brightness temperature at 10.8 um wavelength with the DARDAR trajectory associated with (a).

Table 1. Proportion of HIWC events vs. no-HIWC events for the original and undersampled dataset. The MSG slot is a single MSG scene
containing one DARDAR trajectory. The MSG slot is flagged with HIWC if the corresponding DARDAR trajectory contains at least one
HIWC sample; otherwise, it is flagged as no-HIWC. The undersampled dataset excludes five DARDAR trajectories with at least one HIWC

pixel that are left out to test the model.

#pixels #MSGslots % pixels

Original dataset HIWC 889 83 0.54
£ No-HIWC 165139 418 99.46
HIWC 160 78 4.5

Undersampled dataset No-HIWC 3424 418 955
HIWC 71 5 4.6

Test dataset No-HIWC 1477 0 95.4

— number of convective cells within a 100 km radius. This
metric contains the density of convective clouds in the
surrounding area, which can be associated with a higher
chance of intercepting anvil cirrus;

— pixels within a radius of 10, 50, and 100 km belong to
detected convective cells. This gathers information on
cell extent and convection density in the area close to
the trajectory point.

The full list of convection-related metrics with their defini-
tions is presented in Table 2.
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2.4 Lufthansa ICI database

The Lufthansa ICI database comprises 100 pilot-reported ICI
events selected manually based on in situ measured total air
temperature anomalies (Kalinka et al., 2023). Figure 3 dis-
plays the database’s geographical distribution. The database
is also important to get an indication of the seasonal occur-
rence of these events, with a special focus devoted to the
European continent. We focused on this region because the
products that we have used as high ice water content predic-
tors are limited to the upper part of the SEVIRI HRV channel,
which remains still over Europe and North Africa. The ICI
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Table 2. Candidate input predictors for the potential ICI detection. Chosen input predictors for the random forest are highlighted in italics.

SEVIRI CiPS/APICS

VIS006 Reflectivity for channel 0.6 um wavelength cth_cips Cloud top height from CiPS

VIS008 Reflectivity for channel 0.8 um wavelength iot_cips Ice clouds optical thickness from CiPS

IR_016 Reflectivity for channel 1.6 um wavelength iwp_cips Ice water path from CiPS

IR_039 Brightness temperature for channel 3.9 ym wavelength ictau Ice clouds optical thickness from APICS

WV_062 Brightness temperature for channel 6.2 um wavelength icref Ice clouds effective radius from APICS

WV_073 Brightness temperature for channel 7.3 um wavelength sza Solar zenith angle from APICS

IR_087 Brightness temperature for channel 8.7 um wavelength wctau_mie  Water cloud optical thickness from APICS

IR_097 Brightness temperature for channel 9.7 um wavelength wcreff_mie  Water cloud optical thickness from APICS

IR_108 Brightness temperature for channel 10.8 pm wavelength phase_apics  Cloud phase from APICS

IR_120 Brightness temperature for channel 12.0 ym wavelength

IR_134 Brightness temperature for channel 13.4 um wavelength

Cb-TRAM stage 2 Cb-TRAM stage 3

Cb2 Cb-TRAM stage 2 Cb3 Cb-TRAM stage 3

D 2 Distance to the closest convective cell of Cb-TRAM stage2 | D_3 Distance to the closest convective cell of Cb-TRAM stage 3

A2 Area size (kmz) of the closest convective cell of Cb-TRAM | A_3 Area size (kmz) of the closest convective cell of Cb-TRAM
stage 2 stage 3

p_2 Area size (pixels) of the closest convective cell of Cb- | p_3 Area size (pixels) of the closest convective cell of Cb-
TRAM stage 2 TRAM stage 3

Cpl0_2 Number of pixels within convective cells as detected by Cb- | Cpl0_3 Number of pixels within convective cells as detected by Cb-
TRAM stage 2 in a radius of 10 km TRAM stage 3 in a radius of 10 km

NC10_2 Number of convective cells as detected by Cb-TRAM stage | NC10_3 Number of convective cells as detected by Cb-TRAM stage
2 in a radius of 10km 3 in a radius of 10km

Cp50_2 Number of pixels within convective cells as detected by Cb- | Cp50_3 Number of pixels within convective cells as detected by Cb-
TRAM stage 2 in a radius of 50 km TRAM stage 3 in a radius of 50 km

NC50_2 Number of convective cells as detected by Cb-TRAM stage | NC50_3 Number of convective cells as detected by Cb-TRAM stage
2 in a radius of 50 km 3 in a radius of 50 km

Cp100_2 Number of pixels within convective cells as detected by Cb- | Cpl00_3 Number of pixels within convective cells as detected by Cb-
TRAM stage 2 in a radius of 100 km TRAM stage 3 in a radius of 100 km

NC100_2 Number of convective cells as detected by Cb-TRAM stage | NC100_3 Number of convective cells as detected by Cb-TRAM stage
2 in a radius of 100km 3 in a radius of 100 km

Features combinations

BTD_062_108  Brightness temperature difference between WV_062 and IR_108

BTD_062_073  Brightness temperature difference between WV_062 and WV_072

BTD_039_108 Brightness temperature difference between IR_039 and IR_108

RD_016_006 Reflectance difference between NIR_016 and VIS006

D_A-1_2 Ratio between distance and area of the closest convective cell from Cb-TRAM stage 2

D_A-1_3 Ratio between distance and area of the closest convective cell from Cb-TRAM stage 3

events distribution agrees with expectations. The majority of
them occurred in the Northern Hemisphere summer (JJA).
In Europe, two events occurred in autumn (SON) and two
in spring (MAM). Therefore, we focus on processing DAR-
DAR trajectories during the summer months to maximize the
chance of sampling HIWC conditions in Europe.

In Fig. 4, we present the ICI events related to the standard
envelope FAA 14 CFR Part 33 Appendix D (Federal Aviation
Administration, Department of Transportation, 2023), which
depicts where ICI events occur in terms of altitude vs. am-
bient temperature. Most of the events collected by Lufthansa
fall within the specified boundaries, except for three cases.
88 % events occur between 9000 m (29 527 ft) and 13 000 m
(42 650ft). This altitude band, called ‘“cruise levels” here-
after, indicates the portion of the troposphere that is consid-
ered when sampling IWC in the cloud profile from active
satellite instruments. Furthermore, while testing for multiple
cruise level limits (not shown), we observed that the cor-
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rect detection of HIWC conditions was more likely when
these conditions occur at higher altitudes, as observed also by
de Laat et al. (2017). We speculate that this is due to passive
sensors measuring emitted and reflected radiation in proxim-
ity to cloud tops, thus inherently limiting the in-cloud HIWC
detection.

3 ICI retrieval

The core idea behind the ICI retrieval is to combine a
broad range of predictors measured by passive instruments
on board geostationary satellites (Sect. 2.1) to detect poten-
tial ICI events, determined with DARDAR measurements of
HIWC conditions. The retrieval, based on a random forest
approach, estimates the probability of HIWC conditions. By
setting a threshold on the probability of HIWC conditions,
one can convert this information to the HIWC binary flag to
use it as a deterministic target output variable for the ICI re-
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DARDAR trajectory and metrics related to convection
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Figure 2. Demonstration of the convection-related variables inte-
grated in the DARDAR dataset. The DARDAR trajectory is color-
coded according to the closest convective cell detected. For each
color portion in the trajectory, the closest pixel to the respective
closest convective cell is indicated by the starting points of the ar-
rows. The distance d3 is displayed along the arrow. p3 indicates the
areal extent in terms of pixels of the convective cell with the cor-
responding color. The complete list of convection-related metrics
with their definitions is presented in Table 2.
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Figure 3. Locations of the Lufthansa ICI events collected in 2016,
color-coded according to the season they were recorded.

trieval training and validation. Finally, the ICI retrieval can
be applied to geostationary imagery to obtain a probability
mask of HIWC conditions.

Random forest classifiers are an ensemble method based
on single decision trees. Decision trees divide recursively the
predictor space into distinct non-overlapping regions, which
are the tree’s nodes. The split is aimed at minimizing the out-
put variance within each region. The output probability to
predict a certain class is the proportion of that class found in
the training dataset for the end nodes, or leaves. The main
disadvantage of single trees is that they are very sensitive
to the training dataset. Hence, the need for random forests,
which reduce the variance by averaging a set of single trees.
Because random forests have many hyperparameters that can
be tuned by the user, such as the number of trees, the tree
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Figure 4. FAA 14 CFR Part 33 Appendix D (Federal Aviation Ad-

ministration, Department of Transportation, 2023) standard enve-

lope encloses typical air temperature and altitudes found for ICI

conditions. The points denote the temperature and altitude associ-

ated with the events in the Lufthansa ICI database.

depth, and the number of samples allowed in the leaves, it is
often necessary to determine them through cross-validation.
Cross-validation is a method to estimate the statistical learn-
ing method’s test error by holding out a subset of the origi-
nal dataset. K fold cross-validation consists of dividing the
dataset into k groups, or folds, of equal size. One fold is
treated as the validation set, while the others are used for
training. The procedure is repeated for all the k folds, each
time considering a different fold for validation. The dataset
where the k fold cross-validation is performed is split into
training and validation sets. This step is used to tune the hy-
perparameters, to avoid overfitting and unnecessarily com-
plex models. The cross-validation dataset differs from the
test set of unseen observations. This is used to evaluate the
actual performance of the model with the chosen hyperpa-
rameters.

3.1 Dataset imbalance

Many industry and science-related problems are inherently
characterized by data imbalance. Imbalanced datasets in clas-
sification problems are those datasets that have output quanti-
ties skewed toward a specific class. In the case of binary clas-
sification problems, the majority class is over-represented
compared to the minority class (Chawla et al., 2004).

The classification of imbalanced datasets significantly
challenges the algorithmic approach for several reasons.
First, one often wants to predict the minority class. However,
the imbalance exposes the classifier to the majority class
more frequently during training. For this reason, the minority
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Figure 5. Illustration of the dendrogram depicting the feature ex-
traction procedure through hierarchical clustering, based on the cor-
relation score among the considered input features. The more cor-
related the clusters, the shorter the vertical branch extent is. The
Ward’s distance linkage score represents the correlation-based dis-
tance between clusters in our dataset’s space. The black horizon-
tal line depicts the suggested level by cross-validation at which the
dendrogram should be cut to obtain an optimal number of clusters
from which input features can be selected. Different colors depict
the clusters obtained according to this cut level. The variables in
bold are selected for the final version of the model. The choice is
based on permutation importance estimation in Fig. 6.

class can be confused with noise and can be challenging to
predict in areas of the data space where both classes overlap
(Haixiang et al., 2017). Second, the use of conventional per-
formance metrics, such as accuracy, may reflect the structure
of the dataset rather than the classifier’s predictive skill. Per-
formance metrics more suitable for imbalanced problems are
the Receiver Operating Characteristics (ROC) curve (Chawla
et al., 2004) or the Critical Success Index (CSI) (e.g. de Laat
et al., 2017). When correcting for the majority and minority
class proportion, the ratio between the minority and majority
class can be set freely depending on the application, and it
is not necessary to exactly balance the two classes (Haixiang
et al., 2017).

Table 1 showcases the imbalance between HIWC and no-
HIWC sampled pixels by DARDAR. Given the large num-
ber of no-HIWC pixels, we undersample the original DAR-
DAR dataset. This has a two-fold effect: first, undersampling
a large training dataset is more computationally efficient
(Chawla et al., 2004). Second, carefully choosing the under-
sampling technique reduces the correlation between samples.
Indeed, samples of the same DARDAR trajectory correlate
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Permutation importance on the training dataset
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Figure 6. The permutation importance of a variable represents the
decrease of the model’s performance score (CSI) achieved when
that variable is shuffled randomly with respect to the output tar-
get. (a) shows the permutation importance of 16 input variables
achieved during training applied to four out of five folds in one
instance of cross-validation. Similarly, (b) shows the permutation
importance of the manually selected input features on an example
of a training instance during cross-validation. The box plots depict
the distribution obtained when shuffling the variable 50 times ran-
domly. In each box, the green line depicts the median of the distri-
bution, the blue box depicts the interquartile range (IQR), delimited
by the 25th and 75th percentiles (first quartile, Q1 and third quar-
tile, Q3, respectively), and the whiskers spread to the last data point
within Q1 — 1.5IQR and Q3 + 1.5IQR. Any data point beyond the
whiskers is shown as an outlier with a white dot.

in time and space. Correlated samples may induce a bias in
the training and validation procedure. This problem is also
mentioned by Haggerty et al. (2020) in the case of aircraft
measurements.

The undersampling is performed as follows:

— for the DARDAR trajectories with at least one HIWC
sample, all HIWC samples belonging to that trajectory
are taken, maintaining a buffer distance of 10 pixels if
multiple consecutive pixels are flagged with HIWC;

— for DARDAR trajectories with no HIWC samples, pix-
els are sampled randomly among binned ranges of
brightness temperature in the 10.8 um channel, cloud
optical thickness, and distance to the closest convective
cells to cover a variety of HIWC-free conditions suffi-
ciently.

Undersampling produces a new proportion between the
classes depicted in Table 1. Although still imbalanced, a
more aggressive undersampling was tested but led to under-
mining the subsequent model learning due to a too strong
reduction of the variability of the majority class and, conse-
quently, its representativeness. Finally, the test dataset con-
tains five not undersampled DARDAR trajectories with at
least one HIWC pixel.
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3.2 Feature selection and random forest algorithm

The full list of input features considered for the potential ICI
detection from SEVIRI is shown in Table 2.

The high-dimensional dataset produced when considering
all the input predictors induces the so-called “curse of dimen-
sionality” (James et al., 2021). In such cases, irrelevant or
redundant predictors may act as noise and may lead to ineffi-
cient and inaccurate learning (Chawla et al., 2004). Further-
more, a high number of features can affect the variance-bias
trade-off characterizing statistical learning methods: having a
large set of features, even if relevant, may lead to an increase
of variance that eventually outweighs the bias reduction pro-
duced by a more sophisticated model (James et al., 2021).

In our case, many features considered for the learning pro-
cess are correlated by design, e.g. the variables originating
from the same geostationary retrieval or the area of the con-
vective cells expressed in km? and in the number of pixels.
These redundant features may act as noisy features and exac-
erbate the curse of dimensionality. Therefore, a feature selec-
tion approach is chosen to reduce the dimensionality of the
input data. This approach selects a subset of input features
that optimizes the classifier’s performance.

First, to perform the feature selection, the input features’
correlation coefficient is determined for all the possible per-
mutations of input predictor couples. This allows building
a correlation matrix converted into a correlation-based dis-
tance (Ward’s distance linkage score on the vertical axis of
Fig. 5), which is considered a dissimilarity measure between
the predictors. This distance creates a fictitious space within
which input predictors are represented as data points. Then,
the input feature subsets are obtained using hierarchical clus-
tering, which is a bottom-up approach that assigns, as the first
step, one cluster to each sample in the dataset’s space. In our
case, the samples are the input predictors. Eventually, it pro-
gressively identifies affine clusters and merges them until all
sampled points end up in a single cluster, corresponding to
the full dataset (James et al., 2021).

The dendrogram depicts the bottom-up clustering, start-
ing with a cluster containing all the input features at the
top and then progressively splitting into multiple branches,
each representing one cluster. Feature selection can be im-
plemented by cutting the dendrogram at a certain level of the
distance score on the vertical axis. In our case, the cutting
level is initially determined through cross-validation to pro-
duce 16 clusters. The cutting level line crosses the dendro-
gram’s branches multiple times. Features that can be reached
from the same cut point following the branches belong to
the same cluster. Features belonging to the same cluster are
redundant in the sense that they give access to similar infor-
mation to the statistical model through the learning process.
Therefore, one feature per cluster is selected to obtain a sub-
set of features suitable for learning with imbalanced data.

Furthermore, the permutation importance score allows the
estimation of the importance of the selected features by hi-
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Table 3. Performance metrics comparison of the random forest
ICI retrieval presented in this paper vs. the previously developed
ICI retrievals. Although the training and verification techniques
differ, as well as the retrieval’s applicability, these results are re-
ported to place this work in the current research context. The met-
rics shown correspond to the median value of POD, FAR, CSI,
and AUC found in Fig. 8. Both HIWC =IWC > O.ngf3 and
HIWC =IWC > I.Ogm_3 performance are referred to the model
trained as described in Sect. 3. The > 1.0g m~3 results in a lower
occurrence of HIWC, thus this version is adapted with a HIWC
probability threshold of 0.7. (Yost et al., 2018) and (Haggerty et al.,
2020) developed both daytime and nighttime retrievals, but the met-
rics reported here refer to daytime only.

POD FAR CSI AUC

de Laat et al. (2017) 059 052 036 -
Yost et al. (2018) 0.75 0.35 - 075
Haggerty et al. (2020) 0.86 0.51 - 085

This paper (HIWC =TWC > 0.5gm™3)  0.83 051 045 06l
This paper (HIWC =IWC > 1.0gm’3) 071 040 044 0.61

erarchical clustering. This evaluation requires setting a sta-
tistical model and a statistical performance metric that one
wishes to optimize, which, in our case, are a random forest
and the CSI, respectively. The method consists of shuffling
the values of each predictor in the dataset to produce a cor-
rupted dataset, which is fitted to the model chosen. The per-
formance score is then compared with the score of the orig-
inal dataset. The predictors may be correlated if the model
maintains an overall constant predictive skill, but no predic-
tor appears to be important according to the permutation im-
portance score estimation. In this case, applying the permu-
tation to one of them does not lead to a significant perfor-
mance decrease because the model can access the same in-
formation via the correlated feature. This behavior can be
seen in Fig. 6. In panel (a), the initial choice of 16 input vari-
ables reveals that a few features are important according to
the permutation score achieved. This is denoted by the box-
plot collapsing into a single line, which indicates that all the
simulations carried out led to the same decrease in perfor-
mance score, thus producing no distributions. Few outliers
present for some variables, as for example D_A-1_2, D_A-
1_3, IR_016, and ictau, indicates that only a minority of sim-
ulations led to a change in performance score. In this case,
the model performs well during the training, which can be
an indication of correlated features. Shrinking to seven vari-
ables (panel b) does not hinder the model’s performance, but
all input features become important. This further suggests
that panel (a) contains correlated features. The input features
are selected manually based on the achieved permutation im-
portance score obtained in the cross-validation, commonly
used predictors in previous ICI detection retrievals, and the
physical knowledge of the ICI phenomenon. From the pre-
dictors’ list in Table 2, BTD_062_108 is selected because it
is a proxy for updraft speeds (Bravin et al., 2015; Grzych

Atmos. Meas. Tech., 18, 7129-7152, 2025



7138 M. Arico et al.: Machine learning retrieval for ice crystal icing detection
a) DARDAR profile 2015/06/11 11:15 UTC
14000 c) Predicted HIWC mask on DARDAR trajectory
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Figure 7. The HIWC conditions retrieval validation based on DARDAR trajectories. (a) shows the IWC cloud cross-section profile with
the associated HIWC flags assigned with the criteria described in Sect. 2. (b) depicts the corresponding HIWC probability predicted by the
random forest. (¢) displays the DARDAR trajectory in the respective MSG image and the prediction of HIWC conditions converted from the

probabilistic prediction.

et al., 2015; Yost et al., 2018), VISO06 and ictau are cho-
sen for their ability to highlight optically thick and highly
reflective deep convective clouds, while the convection met-
rics Cpl00_3, D_A-1_3, Cp50_2, D_A-1_2 are selected to
account for convective cells density around each pixel and
how big and distant the convective cells are from each pixel
at different life-cycle stages. It must be noted that the VIS006
and ictau variable choices prevent the retrieval from work-
ing in nighttime mode. The selected variables are denoted in
italics in Table 2.

A random forest approach is selected to tackle this prob-
lem because it is among the most popular approaches to deal
with imbalanced classification problems, guarantees inter-
pretability, and can handle large datasets (Haixiang et al.,
2017). Finally, the 5-fold cross-validation procedure also led
to the random forest hyperparameters choice of 1000 trees
inside the forest, 5 minimum allowed samples that can be
included in each node at the end of the tree, and a probabil-
ity threshold of 0.5 to convert from the probabilistic into the
deterministic forecast.
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4 Retrieval application and validation

4.1 Retrieval performance test through DARDAR
profiles

The statistical metrics chosen to assess the retrieval’s per-
formance are well established in the atmospheric science
literature (Wilks, 2019). Their definitions can be found in
Sect. Al.

The retrieval test dataset contains five randomly selected
DARDAR trajectories with at least one HIWC pixel. These
trajectories are left out of the training and cross-validation
procedure. In Fig. 7, we present an example of the DARDAR
trajectory used to test the potential ICI detection. Panel (a)
shows the cloud’s IWC profile where one can see two areas
of HIWC conditions: the first, around 37° N, originating from
two adjacent deep clouds, and the second, in the proximity
of 47° N latitude, composed by a set of three vertically de-
veloped clouds that produce three nearby but distinct HIWC
areas. Clouds at 37° N are characterized by a notable vertical
extent of HIWC conditions with IWC reaching the maximum
value of 0.8 gm™> within the cruise levels and by cloud tops
extending up to 10410 m. The clouds composing the system
at 47° N have more extended HIWC conditions. The central
cell is by far the most active in terms of HIWC, with a peak
IWC value of 1.1gm™3 and the cloud top at 11940 m al-
titude. The corresponding MSG-based HIWC probability is
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displayed in panel (b). This is plotted only for icy cloud pix-
els according to the CiPS mask and it is characterized by
a sharp transition from low to high HIWC probabilities. One
can also see that the clouds around 37° N have a lower HIWC
probability when compared to clouds at 47° N, even though
still above the threshold of 0.5. This can be attributed to a
relatively higher density of stage 3 convective cells detected
by Cb-TRAM near the trajectory.

To assess the overall robustness of the presented approach,
the training and subsequent testing are repeated 100 times,
each time with another random selection of 5 DARDAR tra-
jectories as test data. The repeated tests generate the distri-
bution in the performance metrics shown in the box plots of
Fig. 8. The large variability may suggest the need for further
data, as the method seems very sensitive to the training and
test datasets used. The median values of POD = 0.83, FAR =
0.51, CSI=0.45, and AUC = 0.61 are similar to previous
retrieval performances, depicted in Table 3. For our retrieval,
POD is the least spread metric with 75 % of the tests lying
above 0.79, denoting a high probability of detecting positive
events correctly. On the other hand, FAR spreads over a much
larger range, which is also reflected in the CSI and AUC vari-
ability. Focusing on the AUC, this metric lags behind when
compared to Yost et al. (2018) and Haggerty et al. (2020)
retrievals. The model has been tested with HIWC =IWC >
1.0gm™3. The original version is used, trained with sam-
ples labeled as HIWC if IWC > 0.5 gm ™3 and adapted with a
higher probability threshold of 0.7, to compensate the lower
occurrence of HIWC when those are defined with the higher
threshold of 1.0 gm_3. Table 3 shows that, in this case, FAR
is reduced significantly, at the expenses of a decreased POD.
CSI and AUC do not vary compared to the test settings con-
sistent with training settings.

The relatively low AUC in both test settings can be linked
to the sharp transition from low to high HIWC probability.
The sharp probability transition means that acceptable POD
can only be achieved if one allows a substantial FAR, sud-
denly leading the ROC curve to shift from below to above
the chance line and eventually producing a low AUC. This
sharp transition of predicted HIWC probability can also be
observed in Fig. 10, where the two-dimensional HIWC prob-
ability mask is shown.

To explain the high FAR incidence, one can observe Fig. 9.
Focusing on the convective system between 33 and 36° N lat-
itude, HIWC conditions within the cruise levels are present in
the DARDAR dataset in the southern and northernmost parts
of the system. In contrast, the inner parts are characterized
by HIWC conditions only below the cruise levels. However,
the MSG-based HIWC probability stays above the thresh-
old throughout the horizontal extent of the cloud, though
with a small dip in the middle section. This is reflected in
panel (c), where HIWC conditions are predicted for the en-
tire cloud rather than just the two extremes, giving rise to a
high FAR. de Laat et al. (2017) and Haggerty et al. (2020)
also observed a relatively high FAR. Haggerty et al. (2020)
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Performance metrics over different selections of training, validation, and test datasets.
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Figure 8. Performance metrics variability in the repeated training
and test procedure. The box plots represent the obtained perfor-
mance scores over 100 iterations. The main central box depicts
the interquartile range (IQR), which is the range between the 25th
(first quartile, Q1) and 75th percentiles (third quartile, Q3) of the
distribution. Whiskers are defined by the last data points lying
within Q1 — 1.5IQR and Q3 + 1.5IQR. Anything lying outside the
whiskers is considered an outlier.

concludes that most FAR pixels are associated with HIWC
conditions occurring at altitudes different than the ones sam-
pled by the aircraft. This is also the case for Fig. 9. How-
ever, in this instance, cruise levels are chosen according to
the altitude at which ICI events occur in the Lufthansa ICI
database. Nonetheless, the best trade-off to retrieve cloud
properties remains challenging to find. Cloud properties vary
within the cloud structure, while passive sensors can only
detect cloud top characteristics or column-integrated quanti-
ties. The HIWC conditions detection presented is compared
with previously developed retrievals to put this work in the
current research context. However, these retrievals have dif-
ferent characteristics. Namely, this method differs by data
sources, input features, clouds’ microphysical characteris-
tics retrievals, and detection approaches. Furthermore, our
retrieval is tested and validated in the Europe domain, and
not globally as in e.g. de Laat et al. (2017).

4.2 Lufthansa case studies

The Lufthansa ICI database is presented in Sect. 2.4 and con-
tains 10 case studies in Europe out of the 100 cases available
globally. Three events are encountered at night, but night-
time scenes are discarded because of the absence of visible
channels and optical thickness data. ICI events are correctly
detected by the HIWC mask in four out of the seven remain-
ing daytime scenes.

The criterion for correct detection considers the last avail-
able aircraft position, labeled as ICI position, and whether
the predicted HIWC probability is larger than our thresh-
old of 0.5. This criterion is applied irrespective of the time
difference between the aircraft measurements and the satel-
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a) DARDAR profile 2015/08/08 12:00 UTC

14000

c) Predicted HIWC mask on DARDAR trajectory
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Figure 9. As in Fig. 7 for a different DARDAR trajectory example.

lite acquisition time, which could be up to 7min and 30s.
The three scenes in Fig. 10 are a subset of the processed
scenes, selected according to the smallest time delta between
the aircraft measurement and the satellite acquisition time.
Appendix A contains the remaining Lufthansa case studies.

In Fig. 10a and c have large areas of HIWC high probabil-
ity, often exceeding 0.7-0.8. The mask generally has a sharp
transition from 0.5 to 0.7 HIWC probability and seldom ap-
proaches 1.0 (a few small areas in panel (c). The HIWC mask
is almost completely absent in panel (e), with small patches
of 0.5 HIWC probability around the Cb-TRAM stage 3 con-
vective cell seen in panel (f). The HIWC binary mask shown
in panels (b), (d), and (f) is compared with the detected Cb-
TRAM convective cells and the ECMWF ERAS reanalysis
wind field at 300 hPa. The model data in panels (b), (d),
and (f) have an hourly resolution; therefore, scenes (b) and
(f) have simultaneous satellite images and wind fields, while
for scene d), the wind field refers to 11:00 UTC.

The HIWC masks generally differ from the Cb-TRAM
convective cells and the ice optical thickness from APICS.
The HIWC masks often stay around detected convective cells
with high optical thickness and cold cloud tops, highlighting
the need for a dedicated HIWC detection product. In partic-
ular, it is possible to observe that the masks propagate down-
stream of the detected convective cells, even though the wind
is not used as an input feature. In panel (b), the wind field
is relatively weak in correspondence with the biggest HIWC
mask patches. The HIWC mask tends to follow the wind field
for the convective cells between 45 and 46.5°N latitude, but
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this behavior is less evident for the big HIWC patch at 48° N
latitude. Instead, panel (d) depicts strong wind fields and a
large HIWC mask propagating downstream of the main con-
vective cores detected by Cb-TRAM.

From the correctly detected events, airplanes flew inside
the HIWC mask before the aircraft’s final location, where
ICI was reported. This might indicate that aircraft have to
fly within ICI conditions for some time to guarantee enough
exposure to such conditions for ice to accrete inside the en-
gines. This would also be consistent with one of the failed
detections presented in App. A, where the flight flew through
the HIWC mask before the final position that falls right out-
side the mask. For the failed detection in Fig. 10e, we spec-
ulate that the HIWC mask is missing due to the absence of
large convective cells in panel (f). Although ICI events are
almost exclusively attributed to convection in the literature
(Grzych, 2010; Bravin et al., 2015), ICI events have also been
reported in different conditions, such as within extra-tropical
cyclones (Gayet et al., 2012). Panel (f) could suggest that
this retrieval would fail when Cb-TRAM cannot detect deep
convective cells.

4.3 Nighttime performance

The retrieval is here tested during nighttime. In this scenario,
the random forest model does not have access to visible chan-
nel information and cloud optical thickness. Furthermore, it
has been trained exclusively with day-time samples. Never-
theless, it can access infrared channels and convection related
variables.
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HIWC mask validation with Lufthansa ICI events
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Figure 10. (a), (c), and (e) show the HIWC probability mask with the respective aircraft’s positions before and during the in-service ICI
events. The ICI event time is shown in the text box with its time delta compared to the actual satellite acquisition time. (b), (d), and (f) show
the respective HIWC binary masks, converted using the 0.5 HIWC probability threshold. The mask is combined with Cb-TRAM stage 3
convective cells and horizontal wind field at 300 hPa from ECMWF ERAS reanalysis data and ice cloud optical thickness from APICS.
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Figure 11. (a) VIS006 and (d) ictau samples distributions in the
training dataset, for HIWC (orange) and no-HIWC (blue). Negative
values in both distributions arise because of the curve smoothing for
plot purposes. The real sample locations are visible in (b) and (d).

In night-time mode, we decided to use instrumental values
to fill the missing information required by the random forest
approach. In Fig. 11, the distribution in the training dataset of
VIS006 and ictau for HIWC and no-HIWC is shown. These
distributions allowed us to select a bias-free value with which
we filled the missing information in nighttime mode. In par-
ticular, this bias-free value is selected such that it favors nei-
ther HIWC prediction, nor non-HIWC, i.e. the instrumen-
tal value should be in a range where HIWC and no-HIWC
training samples distributions overlap. The values are set to
VIS006 = 80 % and ictau = 50.

The significance of this choice is shown in Fig. 12. The
mask in panel (a), where we set VIS006 = 0 % and ictau = 0,
is absent because the HIWC probability never exceeds 0.5. In
panel (b), the bias-free choice of VIS006 = 80 % and ictau =
50 leads to a smooth transition of HIWC probability bewteen
areas without detected HIWC and areas where HIWC is de-
tected. Panel (c) displays instead a sharp transition to high
HIWC probabilities, as soon as this is detected by overcom-
ing the 0.5 probability threshold. We observe that the con-
stant instrumental values with which we fill missing informa-
tion modulate the HIWC probability mask significantly. The
choice made for panel (b) is the best to achieve realistic re-
sults even with missing solar information. This demonstrates
the good performance of the model even during nighttime.
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4.4 Validation with in-situ measurements:
HAIC-HIWC II campaign

Finally, the algorithm was validated with a case study of the
HIWC-HAIC II flight campaign (Strapp, 2016). However,
Cb-TRAM is not available for the tropical regions covered by
this campaign (see Sect. 2.1.3). Therefore, to cover this do-
main, alternative data are retrieved. Deep convective systems
are provided by the TOOCAN database (Fiolleau and Roca,
2013, 2019). To prove the adaptability of the method to any
equivalent product than the ones presented in the Sect. 2.1,
cloud optical thickness was retrieved via the Optimal Cloud
Analysis data record (EUMETSAT, 2022). The aforemen-
tioned data are displayed in Fig. 13.

Figure 14 shows the corresponding computed HIWC
mask. Although convection is widespread throughout the do-
main in Fig. 13b, the HIWC mask is relatively limited in
extent in Fig. 14a. It features HIWC probabilities higher
than 0.9 for convective cells around 40°W and 9°N, and
40°W and 3°S, while HIWC probabilities closer to the
flight (52° W and 6°N) are relatively lower, peaking at 0.7.
Panel (b) shows a good agreement between the measured
HIWC and the HIWC probability mask. IWC > 0.5gm™>
sampled points mostly fall within the mask, whose values in-
crease together with the measured IWC. The retrieval shows
promising results even outside the domain where it was
trained, and using input data equivalent to the ones discussed
in Fig. 2.1. Given the results obtained with this case study,
we speculate that only little calibration would be required to
adapt the retrieval to input parameters coming from different
data sources.

5 Conclusions and outlook

In this study, our goal is to assess the feasibility of a detec-
tion retrieval for potential ICI conditions, based exclusively
on remote sensing data and a random forest approach as a
machine learning technique. A combination of passive re-
mote sensing measurements from geostationary satellites is
used to detect areas with HIWC conditions at passenger air-
craft cruise levels. These conditions are chosen as an indi-
cator for potential ICI formation. Cruise levels are consid-
ered because, even if ICI events are possible during the as-
cent and descent of an aircraft, passive remote sensing plat-
forms are more sensitive to cloud tops and column-integrated
quantities. For the training phase, HIWC conditions are lo-
cated from active measurements of IWC from polar-orbiting
satellites, i.e. the DARDAR dataset, which is taken as ground
truth. The results obtained by testing this approach with
DARDAR trajectories lead to median values of the perfor-
mance metrics POD = 0.83, FAR =0.51, CSI =0.45, and
AUC =0.61. This method outperforms the approach pre-
sented by de Laat et al. (2017), who validated their algorithm
globally with DARDAR data, and it achieved comparable
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2016/06/14 04:15 UTC. HIWC probability mask with Lufthansa ICI event

a) VIS 0.6 um: 0.0 %, Tjc: 0 0 b) VIS 0.6 um: 80.0 %, T;:: 50.0 c) VIS 0.6 um: 100.0 %, Tic: 100.0
6°E 7.5°E 9°E10.5°E 6°E 7.5°E 9°E10.5°E 13.5°E 6°E 7. 5°E 9°E10 5°E 13.5°E
51°N 51°N ICI ;event detected 51°N 51°N T - 51°N

by retrieval

Previous aircraft positions 49.5°N  49.5°N|
(1 BASRI0) mln)

b 4
|ageN 48°N |ageN 48°N
465N 46.5°N "‘ 46.5°N  46.5°N

45°N 45°N b N 45°N 45°N

49.5°N  49.5°N

43.5°N  43.5°N 1 43.5°N  43.5°N|
ICI event not detected

by retrieval

6°E 7.5°E 9°E 10.5°E12°E

4
6°E 7.5°E 9°E 10.5°E12°E 6°E 7.5°E 9°E 10.5°E12°E

|

0.5 0.6 0.7 0.8 0.9
HIWC probability

200 220 240 260 280 300 320 340
IR 10.8 um TOA brightness temperature [K]

Figure 12. ICI retrieval nighttime mode demonstration example for a Lufthansa ICI event. (a) shows the HIWC mask setting instrumental
values that favor no-HIWC prediction (see Fig. 11). (b) depicts the HIWC mask with bias free instrumental values. (¢) shows the HIWC
mask with instrumental values favoring HIWC predictions.
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HAIC-HIWC flight campaign scene.
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Figure 13. Satellite scene for the HAIC-HIWC II campaign case study. We considered flight 23, flying from French Guyana the 26 May 2015.
(a) shows the SEVIRI visible channel at 0.6 um wavelength reflectivity. (b) depicts the cloud optical depth from Optimal Cloud Analysis
(EUMETSAT, 2022) and deep convective cells from the TOOCAN database (Fiolleau and Roca, 2019).
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2015/05/26 13:30 UTC
HIWC probability mask validation with HAIC-HIWC campaign flight.
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Figure 14. HIWC mask validation with flight 23 of the HAIC-HIWC II flight campaign. The flight crossed a HIWC region IWC >
0.5 gm_3 ) from 13:37 to 13:45 UTC peaking at 13:41 UTC with IWC =3.3 gm_3. HIWC measurements are depicted in blue shades, while
no-HIWC are shown in grey shades. Markers with red borders depict the flight position within the satellite scanning times. Flight waypoints
are corrected for parallax effect, shifted to the corresponding satellite grid coordinates.

results to Haggerty et al. (2020). However, Haggerty et al.
(2020) used multiple input sources, such as ground-based
weather radar and numerical weather prediction, in addition
to geostationary satellite images. In this study, we used only
the latter.

The validation of the retrieval is also supported by a
database of ICI case studies reported by Lufthansa during op-
erational conditions. The retrieval correctly detects four out
of seven events, assuming a correct detection whenever the
aircraft’s final position is within the HIWC mask. From the
observation of the case study examples, the HIWC mask sur-
rounds convective cells in areas with optically thick clouds
and glaciated cloud tops. Moreover, the mask often follows
the wind field downstream of convective cells, which is phys-
ically reasonable but not necessarily expected, as the wind
field is not explicitly included as an input feature. The failed
HIWC conditions detection in the scene without convective
cells highlights the importance of convection signatures to
obtain a high probability HIWC conditions signal. This is
coherent with past literature, where deep convection and ICI
events are often found to be correlated. However, in differ-
ent conditions, such as in extra-tropical cyclones, the failed
detection example indicates that the retrieval could have less
chance to detect HIWC conditions when there is no deep con-
vection.

The retrieval demonstration use during nighttime and
the comparison with in-situ measurements from the HAIC-
HIWC campaign show the adaptability of this algorithm to
different conditions, accepting missing optical information
during nighttime, and different data sources for convection
and cloud microphysical properties.

Integrating the ICI retrieval with cloud microphysical
properties retrievals would enable scientific studies about
the possible ice formation pathways during ICI events, es-
pecially exploiting the temporal resolution of geostationary

Atmos. Meas. Tech., 18, 7129-7152, 2025

satellites, as these are not yet understood (Leroy et al., 2017).
For example, one could correlate potential ICI areas with
retrieved ice particles’ effective radius and updraft speeds
that can be either taken from reanalysis data or satellite im-
ages. A fully operational ICI detection product would re-
quire additional development, as it uses visible channels and
optical thickness that prevent this retrieval from detecting
HIWC conditions at night. Future development would in-
clude a more flexible way to select input predictors accord-
ing to availability. Furthermore, the training dataset could be
enlarged, considering the overlap between MSG-3 and DAR-
DAR between 2013-2017. To conclude, the retrieval shows
promising performance in detecting potential ICI conditions,
using exclusively geostationary satellite imagery as input.
This would allow a flexible extension to other geostationary
satellite platforms, and its operational implementation would
enable airlines to avoid HIWC conditions to mitigate ICI ef-
fects on the fleet.

Appendix A:
A1l Validation metrics

The metrics chosen to assess the retrieval’s performance fol-
low the ICI detection retrievals literature (de Laat et al., 2017,
Yost et al., 2018; Haggerty et al., 2020) to enable compari-
son:

— the probability of detection (POD) is defined as the
number of correctly predicted positive events (true pos-
itives, TP) over actual positive events (TP + FN, where
FN stands for false negatives)

TP

POD = ———
TP +FN

(AL)
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— the false alarm rate (FAR) is defined as the ratio between
the falsely predicted positive events (false positive, FP)
to all predicted positive events (FP + TP):

FP

FAR = ———
FP+TP

(A2)

— the critical success index (CSI) is an index that balances
POD and FAR. It is defined as:

TP

CSl= ——
TP + FN + FP

(A3)

— the ROC curve is used to display the variation of two
performance metrics simultaneously. They are the POD
and the FAR. The ROC curve is useful for classifiers be-
cause it explores every possible probability threshold to
convert probabilistic into deterministic forecasts. In this
way, different classifiers can be compared, no matter the
chosen threshold. The chance line is depicted as a diag-
onal. The model lacks predictive skill if the ROC tends
to the chance line. Ideally, the ROC should be a step
function. The area under the curve, AUC, measures the
overall performance of a classifier across multiple prob-
ability thresholds. The chance line has an AUC of 0.5,
while an ideal ROC curve approaches 1.0 AUC (James
et al., 2021).

A2 Lufthansa case studies

The Lufthansa ICI cases not discussed in the paper are re-
ported here for completeness. Figures A1-A4 are daytime
cases. Figure AS is a nighttime case.

HIWC mask validation with Lufthansa ICI events
Scene 2016/05/23 17:15 UTC
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Figure A1l. As in Fig. 10a and b for additional Lufthansa ICI case studies.
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HIWC mask validation with Lufthansa ICI events
Scene 2016/05/29 16:45 UTC
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Figure A2. As in Fig. 10a and b for additional Lufthansa ICI case studies.

HIWC mask validation with Lufthansa ICI events
Scene 2016/06/01 13:45 UTC
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Figure A3. As in Fig. 10a and b for additional Lufthansa ICI case studies.
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HIWC mask validation with Lufthansa ICI events
Scene 2016/06/30 13:15 UTC
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Figure A4. As in Fig. 10a and b for additional Lufthansa ICI case studies.

2016/10/23 19:15 UTC. HIWC probability mask with Lufthansa ICI event
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Figure AS. As in Fig. 12 for additional Lufthansa ICI case studies.
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Scene 2016/05/29 16:45 UTC
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Figure A6. Convection related metrics for the Lufthansa ICI case of Fig. A2 associated with discontinuities.

2016/06/25 16:00 UTC. HIWC probability mask with Lufthansa ICI event
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Figure A7. As Fig. 12, where the nighttime instrumental value approach was applied to a daytime scene, to verify its effect where cloud

optical properties would be otherwise available.

A3 HIWC mask discontinuities

Some HIWC probability masks display a discontinuity, as
in Figs. A2 and A3. Those discontinuities may be explained
with the convection related metrics. Those metrics, such as
the distance to the closest convective cell and the areas of
the closest convective cell, present such discontinuities, as
in Fig. A6. Convective pixels in the surrounding radius of
100 km introduces rounded discontinuities, as in panel (a),
while distance and area extent of the closest convective cells
introduce linear discontinuities, as in panel (b) and (c). Those
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discontinuities may be further emphasized by the random
forest approach, which does not enforce smooth outputs, but
only takes the majority vote from single decision trees. We
speculate that the discontinuities might be more pronounced
when the other supporting input features, such as visible
channels and optical thickness, lie in a region where the
split between HIWC and no-HIWC is not clear (see Fig. 11).
Thus, this artifact might be more pronounced during night-
time, though this evidence was not found in Lufthansa ICI
cases in Figs. 12 and AS. However, this statement is sup-
ported by Fig. A7, where the nighttime demonstration ap-
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proach (Fig. 12) was applied to a daytime scene (Fig. 10a).
There, the rounded artifacts due to distance-related convec-
tion metrics are emphasized by the artificial unavailability of
solar channels information that we introduced as demonstra-
tion.

A4 HAIC-HIWC II flight campaign additional case
study

Figures A8 and A9 shows an additional case study of the
HAIC-HIWC flight campaign. In this case, a HIWC proba-
bility mask higher than 0.5 is close to the flight, and it over-
laps with its trajectory only where highest IWC is measured.

2015/05/16 18:00 UTC
HAIC-HIWC flight campaign scene.

a) Visible channel 0.6 um b) Convection and cloud optical thickness
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Figure A8. As in Fig. 13 for flight 15 of the HAIC-HIWC II flight campaign.

2015/05/16 18:00 UTC
HIWC probability mask validation with HAIC-HIWC campaign flight.
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Figure A9. As in Fig. 14 for flight 15 of the HAIC-HIWC II flight campaign. The flight stayed in a HIWC region during the satellite scan
nominal times (18:00-18:15 UTC), with a IWC maximum value of 2.93 gm_3 and a median of 1.10 gm_3.
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