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Abstract. The Ice Cloud Imager (ICI) will be hosted on the
second generation of the EUMETSAT Polar System (EPS-
SG). By measuring at microwave and sub-millimetre wave-
lengths, ICI will provide unparalleled global observations of
ice clouds. EUMETSAT’s official ICI level-2 product will
offer retrievals of ice mass column properties. This study ex-
plores whether the capabilities of ICI can be extended to re-
trieve vertical profiles of ice mass.

Using a retrieval database of ICI simulations, we trained
a quantile regression neural network (QRNN) to retrieve ice
water content (IWC) and profiles of the mean mass diameter
of ice hydrometeors. Our retrieval setup is fast and simpler
to implement than previous ICI profile retrieval approaches,
and the study is more comprehensive in scope than earlier ef-
forts. Comparisons between our retrieved and database pro-
files demonstrate that ICI observations are sensitive to IWC
within the range of 10−2 and 1 g m−3, and performance is
strongest between altitudes of 3 and 14 km. Our results also
show that ICI observations are sensitive to mean mass diam-
eter values up to 600 µm, although successful retrievals of up
to 800 µm are observed. To assess the vertical resolution of
the retrievals, we computed approximations of averaging ker-
nels on the model predictions. We estimate the resolution of
IWC profiles to be ∼ 2.5 km. Retrievals of mean mass diam-
eter achieve an estimated resolution of 2.5 km at an altitude
of 5 km, with reduced resolution at higher altitudes.

No operational product currently provides ice mass ver-
tical information derived from passive microwave observa-
tions. However, this study demonstrates that ICI can fill
this gap thanks to the presence of both microwave and sub-
millimetre channels, with the sub-millimetre wavelengths
providing particularly high sensitivity to cloud ice. Further-
more, the relatively broad swath of ICI observations lead to
a higher spatial and temporal coverage than radar and lidar
products can achieve. The global and long-term dataset that

ICI will offer could therefore act as a valuable complement
to CloudSat or EarthCARE-based retrievals. Future efforts
could explore the inclusion of the Microwave Imager (MWI)
observations to improve retrievals at low altitudes – a natu-
ral next step given that MWI is to be launched on the same
platform as ICI.

1 Introduction

Atmospheric ice plays an important role in the hydrologi-
cal cycle. Although it constitutes only a small fraction of
Earth’s total water reservoirs, it has a significant impact on
the energy transfer between Earth’s surface and the atmo-
sphere. This energy exchange is driven by the release of la-
tent heat upon formation of cloud ice, through precipitation,
and through changes in humidity. Ice clouds are also modula-
tors of outgoing longwave radiation, and have been shown to
have a net warming effect on the planet (Matus and L’Ecuyer,
2017; Deutloff et al., 2025). While the global mean ice wa-
ter path (IWP) has remained relatively stable over time, there
have been significant regional changes over recent decades
(Pfreundschuh et al., 2025). Due to its effect on atmospheric
processes, its radiative impact, and the observed regional
changes, a strong understanding of atmospheric ice is essen-
tial.

However, our knowledge of atmospheric ice remains lim-
ited. This has broad ramifications, with cloud feedbacks
named as the greatest uncertainty in equilibrium climate sen-
sitivity estimations (IPCC, 2021). Such uncertainties are par-
tially attributed to a long-standing struggle to represent ice
clouds in climate models. Better information on atmospheric
ice could help to address this challenge. For example, the
mass of ice is strongly related to the cloud radiative forcing.
The vertical distribution of ice mass is particularly valuable
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information. This information helps to characterise the trans-
fer of energy and water, and to estimate the radiative impact
at different layers of the atmosphere. The vertical distribution
of ice has also been shown to impact radiative heating rates
(Mather et al., 2007; Hartmann and Berry, 2017), which drive
convective systems and large-scale circulation. Additionally,
data on the mass-weighted diameter of ice cloud particles
could help to constrain model parameterizations of micro-
physical cloud processes. Therefore, to increase our confi-
dence in climate model predictions, we need more reliable
data on ice mass.

Consistent, global information on atmospheric ice must
come from satellites. While numerous satellites measure ice
clouds, the sensitivity of the sensors varies. Many satellites
provide data on the entire amount of ice mass contained in
a vertical column of the atmosphere (Platnick et al., 2003),
characterised by the ice water path (IWP). Only a few ex-
isting satellite missions provide data on the vertical distribu-
tion of ice mass. Active sensors are currently the most reli-
able sources of vertical information, enabling radar and lidar-
based retrievals of variables such as the ice mass per unit vol-
ume of air, defined as ice water content (IWC, kg m−3) (Deng
et al., 2015; Cazenave et al., 2019). EarthCARE is among the
newest active satellite missions employing active sensors for
atmospheric observations, and will serve as a basis for re-
trieval products providing high-quality and high-resolution
IWC data (Illingworth et al., 2015).

Compared to active sensors, the number of passive sen-
sors capable of retrieving vertical information is limited. In
the context of ice cloud observations, passive satellite sen-
sors can be divided into two categories: infrared/optical and
microwave. Infrared sensors are generally limited to cloud
top information, and thus their measurements are not optimal
for deriving vertical information. However, developments in
machine learning retrieval methods have enabled successful
retrievals of IWC from geostationary infrared measurements
(Amell et al., 2024). Meanwhile, microwave radiation is typ-
ically able to penetrate through cloud, and therefore does
provide information on cloud layers, including the vertical
extent. Unlike passive thermal infrared measurements, mi-
crowave radiances are not directly related to the physical
cloud top temperature, which is needed for long-wave flux
estimates, and must be estimated from retrieved vertical in-
formation. However, the retrieval of cloud ice information
from microwave measurements is associated with another
challenge: most microwave sensors measure at too low fre-
quencies to be truly sensitive to the presence of cloud ice. In
fact, until 2024 there existed an observational gap between
infrared and microwave wavelengths – the sub-millimetre re-
gion (Wu et al., 2024). Radiation in this region has a partic-
ularly high sensitivity to ice mass, making it critical for the
improvement of atmospheric ice observations (Evans et al.,
2002).

The observational gap in the sub-millimetre region is now
being bridged with the upcoming launch of the Ice Cloud Im-

ager (ICI) and the recently launched Arctic Weather Satellite
(AWS; Eriksson et al., 2025). Although AWS is the first to
measure at sub-millimetre wavelengths (325 GHz), and will
therefore provide ice-sensitive measurements, ICI will be the
first operational passive microwave and sub-millimetre sen-
sor specifically designed for the retrieval of ice mass quanti-
ties. The ICI radiometer will be hosted on the EUMETSAT
(the European Organisation for the Exploitation of Meteoro-
logical Satellites) Polar System – Second Generation (EPS-
SG) series of satellites. Using observations at frequencies be-
tween 183 and 664 GHz, ICI will officially offer retrievals of
IWP, mean mass height Zm, and mean mass diameter Dm
(Eriksson et al., 2020).

Although ICI is set to provide a novel dataset of ice mass
column variables, the challenge of obtaining vertical infor-
mation from passive sensors remains. However, ICI will
measure across 13 channels, each with varying sensitivity
to different atmospheric layers. This implies that ICI obser-
vations indirectly contain vertical information. Although ac-
tive sensor measurements provide this information directly,
ICI offers several advantages over current products based on
active sensor data. Firstly, ICI will have a combined life-
time of around 22 years, contrasted with EarthCARE’s esti-
mated lifetime of 3 years. To examine trends in atmospheric
ice, a long-term dataset is desirable. Secondly, ICI will ob-
serve with a wider swath than EarthCare. As a result, ICI
measurements will contain additional horizontal informa-
tion, and global coverage will be reached in a shorter time-
frame. Therefore, although passive microwave sensors will
not provide information at a spatial resolution comparable to
active sensors, ICI could act as a complementary source of
data to EarthCARE and similar future missions.

Importantly, there does not yet exist a global retrieval
product offering vertical profiles derived from passive mi-
crowave observations. However, there have been multiple
studies demonstrating that it is possible to derive such in-
formation. Evans et al. (2012) developed an algorithm to
retrieve profiles of IWC and Dm from microwave and sub-
millimetre observations, and applied it to flight campaign
measurements from the Compact Scanning Submillimeter-
wave Imaging Radiometer (CoSSIR). There have also been
several studies performed in connection to ICI. Using neural
networks, Wang et al. (2016) retrieved vertical mass profiles
of individual hydrometeor types from ICI simulations over
Europe. Liu et al. (2018) have developed an algorithm for
retrievals of both liquid and frozen water contents. Retrieval
tests were conducted on simulations of ICI performed along
one A-train orbit. The benefits of using sub-millimetre obser-
vations for the derivation of vertical information have been
explored by Pfreundschuh et al. (2020), where passive-only
retrievals were compared with a combined active-passive ap-
proach, using simulations that assumed airborne geometry.
The retrievals were later validated using real observations in
Pfreundschuh et al. (2022).
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The aforementioned studies all indicate that ICI’s poten-
tial extends past column-integrated variables. However, such
studies have been limited either in geographic extent or to
airborne sensors. Properly assessing ICI’s capability requires
global retrievals over the full range of possible atmospheric
states and meteorological conditions.

In this study, we address the question: how well can verti-
cal information be retrieved from ICI observations? To assess
this question, we explore the feasibility of retrieving IWC
profiles and profiles of mean mass diameter,DIWC

m , from ICI
observations. We train a machine learning model on state-of-
the-art ICI simulations, producing probabilistic retrieval esti-
mates. The same simulated observations will be used for the
operational ICI level-2 (L2) product offered by EUMETSAT.
The simulations were generated as part of a EUMETSAT
study, have been validated by May et al. (2024), and have
facilitated a characterisation of retrieval performance for the
official ICI L2 variables. By using these same simulations
when exploring the retrieval of vertical profiles, we can gain
a clearer expectation of the performance of a possible IWC
and DIWC

m global retrieval product.
In Sect. 2, we present the ICI sensor, and Sect. 3 presents

the simulation framework used to generate the ICI retrieval
database. In Sect. 4, the retrieval approach is described. The
retrieval results are presented and discussed in Sect. 5, with
retrievals of IWC covered in Sect. 5.1 and retrievals ofDIWC

m
covered in Sect. 5.2. Section 5.4 contains a discussion of
observation information content, and estimations of retrieval
resolution are presented in Sect. 5.5.

2 The Ice Cloud Imager

ICI will be launched as part of the EPS-SG series of satel-
lites. ICI will be hosted on board the Metop-SG B satellite,
which will primarily host microwave instruments intended
for imaging. The Metop-SG B satellite will have three suc-
cessive launches, where each separate satellite has an esti-
mated lifetime of around 7.5 years. In total, the ICI sen-
sors will deliver continuous observations for∼ 22 years. The
launch of the first ICI is currently estimated to be 2026.

The ICI instrument is a conically scanning radiometer,
measuring at an incidence angle of 53± 2°. A swath of width
∼ 1700 km is observed. The relatively wide swath width will
enable ICI to achieve close to global coverage within a 24-
hour period of observations. Further details on the ICI instru-
ment are available in Bergadá et al. (2016) and Eriksson et al.
(2020).

ICI will observe using 13 channels. The effective foot-
print size at 3 dB for all channels is approximately 16 km.
The channels span a frequency range of 183 to 664 GHz.
Nine channels, centred at frequencies of 183.31, 325.15 and
448.0 GHz, are designed to cover the water vapour absorp-
tion lines. These channels will measure at vertical polarisa-
tion. The four remaining channels, two each at frequencies

of 243.2 and 664.0 GHz, will measure at both vertical and
horizontal polarisation. Due to reduced atmospheric attenu-
ation at these frequencies, these channels will allow for ob-
servations at lower altitudes. The variation in transmission
between channels and across a range of atmospheric scenar-
ios is shown in Fig. 1. As a result of the wide range of fre-
quencies covered by the channels, and therefore the varying
degrees of attenuation experienced at each of the frequen-
cies, ICI observations will be sensitive to ice mass located at
multiple atmospheric layers.

Also onboard the Metop-SG B satellite will be the Mi-
crowave Imager (MWI) (Lupi et al., 2016). Like ICI, MWI
is a conically scanning radiometer measuring at an incidence
angle of 53°. It will observe across frequencies ranging from
18.7 to 183 GHz, allowing for higher sensitivity to precipita-
tion.

3 Retrieval approach

3.1 Retrieval theory

Retrieving geophysical variables from remote sensing obser-
vations can be challenging, especially when the inverse prob-
lem is non-linear and ill-posed, as is the case for ICI. For an
ill-posed problem, a single observation can map onto multi-
ple descriptions of the atmospheric state. Retrieving a single
estimate of a geophysical quantity is therefore unrealistic in
this context. It is more suitable to approach the problem from
a probabilistic standpoint, and retrieve the posterior probabil-
ity density function (PDF) of the desired variable.

There are multiple retrieval methods that take such an
approach, such as the optimal estimation method (OEM;
Rodgers, 2000) or Bayesian Monte Carlo Integration
(BMCI), as used in Evans et al. (2002). However, the draw-
back of both these methods is the assumption of Gaussian
statistics. In the case of OEM, both the uncertainties and the
retrieved distribution are assumed to follow a Gaussian dis-
tribution. In BMCI, the retrieved distribution may take any
form, but the observational error is still assumed to follow a
Gaussian distribution. Both methods have been used to great
success in a range of remote sensing retrievals. In fact, the
operational ICI retrievals at EUMETSAT will use BMCI.

Machine learning offers an alternative approach where
neither assumptions on the retrieval distribution nor the error
distributions are required. However, many machine learning
approaches provide only a single estimate of a quantity, with-
out any associated uncertainty. To better suit the ill-posed
nature of our inverse problem, a quantile regression neural
network (QRNN) can be used. As described in Pfreundschuh
et al. (2018), QRNNs minimise a quantile loss function. The
result is the prediction of a sequence of quantiles, allow-
ing for the estimation of a discrete cumulative distribution
function (CDF). The retrieved CDF can then be easily trans-
formed into a PDF. The retrieved PDF or CDF allows for rep-
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Figure 1. Transmission to space of ICI channels as a function of altitude. The shaded regions indicate the range of transmission values across
various atmospheric scenarios, where the upper bound corresponds to a tropical atmosphere and the lower bound corresponds to a subarctic
winter atmosphere. The dotted line represents an optical thickness of 1. Channels are shown in the legend according to their frequency in
GHz.

resentation of the uncertainties associated with the retrieval.
By extension, if the training data are distributed as the a pri-
ori, then the obtained PDF or CDF describes the a posteriori
knowledge.

Pfreundschuh et al. (2018) were the first to apply QRNNs
to atmospheric remote sensing retrievals. They performed a
comparison of QRNN and BMCI, retrieving column water
vapour from simulated passive microwave observations, and
cloud top pressure from MODIS (The Moderate Resolution
Imaging Spectroradiometer; Platnick et al., 2003) observa-
tions. The study demonstrated that QRNN achieves accuracy
comparable to BMCI, both in terms of predictions and of es-
timates of a posteriori distributions. In fact, QRNN outper-
forms BMCI when fewer data are available, indicating that a
smaller database suffices for QRNN. Additionally, they esti-
mated that QRNN can perform retrievals at least an order of
magnitude faster than BMCI.

The quantile regression approach has also been applied
to the retrieval of ice mass profiles. Amell et al. (2024) re-
trieved IWP and IWC with a convolutional neural network
(CNN) using quantile regression. The retrievals were exten-
sively validated and shown to perform well. While the re-
trieval model used in Amell et al. (2024) leverages horizon-
tal spatial information, it does not require explicit a priori
assumptions on vertical correlations beyond those implicitly
captured in the reference data. This contrasts with Pfreund-
schuh et al. (2020, 2022), where OEM-based retrievals of
IWC relied on the assumption of exponentially decaying ver-
tical correlations.

3.2 Retrieval model implementation

The retrievals performed in this study use a QRNN to pre-
dict quantiles of column integrated ice mass quantities (IWP,
Dm, and Zm) and ice mass profiles (IWC and profiles of
mean mass diameter DIWC

m ). Each layer of a profile quan-
tities is predicted independently, i.e. it is treated as a separate
output of the QRNN. The inputs to the retrieval model are

antenna temperatures Ta for all 13 ICI channels, and ancil-
lary data in the form of surface type, surface temperature,
and surface pressure. Following the approach taken in May
et al. (2024), measurement noise was added to all simulated
Ta, using 75 % of the NE1T estimates provided in Eriks-
son et al. (2020). Each noise value was generated using a
random Gaussian noise generator with standard deviation of
0.75NE1T. A new noise value was randomly generated each
time a training sample passes through the network, serving
as data augmentation. Further details on the neural network
architecture are given in Appendix A.

We select QRNN for our retrievals of IWC from ICI obser-
vations based on its demonstrated advantages. Pfreundschuh
et al. (2018) have highlighted the benefits of QRNNs – pro-
viding computational efficiency while maintaining the accu-
racy and uncertainty estimation capabilities of BMCI. Given
these benefits, along with the successful use of QRNNs
for retrieving column ice mass variables from ICI observa-
tions (May et al., 2024), QRNNs can serve as a replace-
ment for BMCI in ICI retrievals. Additionally, the flexibil-
ity of QRNNs suits the retrieval of ice mass profiles, since
each profile level can be retrieved independently, negating
the need for vertical correlation assumptions. Only a sin-
gle neural network is used, without additional pre- or post-
processing steps, which is a relatively straightforward ap-
proach. While studies such as Wang et al. (2016) have suc-
cessfully taken a more advanced approach, designing a re-
trieval algorithm for ICI based on multiple neural networks,
our approach aims to simplify the analysis of retrieval per-
formance. As a result, focus is directed to the potential of ICI
data, avoiding the need to disentangle any possible impacts
of a more complex approach.

The retrieval model allows for the estimation of PDFs for
each output variable. However, it remains useful to repre-
sent the retrieval with a single estimate. A straightforward
approach is to use either the mean or the median of the PDF.
Alternatively, a random sample of the PDF can act as the
single estimate. This latter approach is generally only useful
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when computing aggregated statistics, and less so when the
aim is to look at individual cases. In the results shown in this
study, the mean of each retrieved PDF is taken as the single
estimate.

The retrievals performed in this study will inevitably have
some degree of error. Potential errors in the predictions
largely stem from two sources. The first type of error is
the epistemic uncertainty. This uncertainty is associated with
how well constructed the model is, and can originate from a
lack of training data or poorly chosen model hyperparame-
ters. As a result, the epistemic uncertainty can be interpreted
as potentially avoidable, or reducible, error. This error is not
modelled by QRNNs, and alternate approaches must be taken
to estimate it, although this is challenging. The main consid-
eration to mitigate this error is to include a large amount of
data, which is a key motivation behind the high number of
simulations within our retrieval database.

The second error source is the aleatoric uncertainty. This
arises from the nature of the ill-posed problem and is a re-
flection of the difficulty in determining the atmospheric state
from the observations. Although this error is irreducible, it
can be represented in the training data and, by extension,
the retrieved PDF. We reflect the natural variability of the at-
mospheric state through the randomisation of variables such
as surface emissivity and particle model, as discussed in
Sect. 4.2 and validated in May et al. (2024). Uncertainties as-
sociated with the model inputs will also propagate through to
the aleatoric uncertainty. Measurement noise is added to all
simulated observations during training and is therefore repre-
sented in the CDF. The same approach could be taken for the
ancillary input data, such as the ERA5 surface characteristics
(see Sect. 4.2), but this requires good error characterisation
and is therefore more challenging. Therefore, our retrieved
CDFs represent the majority, but not all, of the aleatoric un-
certainty associated with the retrieval, where this uncertainty
is dominated by natural variability and observation noise.
Given the accuracy of present day machine learning algo-
rithms, the aleatoric uncertainty captured in the CDF domi-
nates the total uncertainty.

4 ICI retrieval products

In order to perform inversions of ICI observations, the re-
trieval model used in this study must be trained on a retrieval
database, i.e. a dataset of ICI observations and associated ice
mass products. The challenge in creating a retrieval database
lies in the fact that, at the time of finalising the ICI retrieval
algorithm, there were no operational sub-millimetre missions
measuring atmospheric ice. Therefore, no real observations
exist that could facilitate the creation of an empirically-based
retrieval database. A database of simulated observations is
therefore a necessity.

4.1 Operational level-2 product

EUMETSAT will offer a L2 product containing ICI re-
trievals: MWI-ICI-L2. Although the L2 product contains re-
trievals based on both ICI and MWI observations, retrievals
are performed separately for each instrument. ICI observa-
tions will be used to retrieve IWP, mean mass diameter Dm,
and mean mass height Zm. Dm and Zm are conditional on
the presence of ice (IWP> 0). The primary output of the
MWI-based retrievals is the liquid water path (LWP) (Mat-
tioli et al., 2019).

Details of the retrieval algorithm on the ICI side are
provided by the EUMETSAT Satellite Application Facility
(SAF) supporting nowcasting (NWC-SAF) within the algo-
rithm theoretical basis document (ATBD), found at Rydberg
(2018). Within the algorithm, several pre-processing steps
are taken prior to the inversion, such as the remapping of
Level-1b (L1b) data and a bias correction scheme. Such steps
were developed inside a EUMETSAT study and results are
presented in detail in Eriksson et al. (2020).

4.2 Retrieval database

High-quality data are a requirement to perform accurate and
reliable inversions. A framework was therefore developed
with the aim to produce state-of-the-art all-sky simulations.
The simulations were generated as part of a EUMETSAT
study, in order to produce a retrieval database for use in op-
erational L2 retrievals at EUMETSAT.

An additional requirement is that the number of simulated
observations is high enough to statistically represent the true
variability. To ensure a robust inversion model, it is desirable
that one observation matches multiple states. A high number
of simulations helps to achieve this outcome. In light of these
requirements, the design of the framework needed to balance
computational efficiency with the need for detailed radiative
transfer calculations. This section provides an overview of
the inputs, outputs, and process of the database generation
framework. For further details, an in-depth description of the
simulation environment is presented in May et al. (2024).
This includes the multiple considerations taken to meet the
above requirements. A total of approximately 9.4 million
cases are simulated. A single case represents observations
for each of the 13 channels, with all observations remapped
to the same on-ground footprint.

The process of generating the database began with the gen-
eration of three-dimensional atmospheric states. The use of
three-dimensional states was motivated by the need for infor-
mation in both the along- and across-track direction, which
allows for the inclusion of the two-dimensional antenna re-
sponse later in the scheme. To ensure that the database re-
flects global variability, the coverage corresponds to Cloud-
Sat (Stephens et al., 2002) overpasses during the years 2009
and 2010. CloudSat overpasses offer only two-dimensional
coverage: height and along-track. To expand the coverage
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into three-dimensional space, the algorithm of Barker et al.
(2011) was implemented. This requires additional data of
two-dimensional coverage in the along- and across-track
directions. MODIS was chosen to fulfil this need, due to
its presence on the NASA A-Train constellation and there-
fore the possibility to colocate observations with Cloud-
Sat. Within the Barker et al. (2011) scheme, the colocated
MODIS observations are used to extend CloudSat radar re-
flectivities into the across-track direction. The radar reflectiv-
ities are converted to IWC using a look-up table, according to
the method described in Ekelund et al. (2020). The decision
to construct fields of radar reflectivities, rather than to simply
use the IWC data available in CloudSat retrieval products,
was taken to avoid incorporating retrieved data from other
sources into the database. Furthermore, we could ensure con-
sistency between the microphysical assumptions used in the
computation of IWC and the assumptions used during the ra-
diative transfer calculations. The resulting three-dimensional
field of IWC is supplemented with ancillary data from ERA5
(Hersbach et al., 2020); this data consists of atmospheric gas
quantities, weather conditions, surface classifications, and
liquid water content (LWC) profiles. Approximately 5× 104

three-dimensional fields were generated, each measuring ap-
proximately 2000 km in the along-track direction and 50 km
in the across-track direction relative to the CloudSat sub-
satellite path. The fields are henceforth referred to as atmo-
spheric scenes.

Both the conversion of radar reflectivities to IWC and the
subsequent radiative transfer simulations are sensitive to the
characterisation of ice hydrometeors. We defined six dis-
tinct particle models for use in the simulations. Each particle
model consists of a habit and particle size distribution (PSD).
The habits were selected as a representative sample from the
ARTS single scattering database (Eriksson et al., 2018). Ta-
ble 2 in May et al. (2024) provides an overview of the six
particle models, including the choice of habit and the PSD
used for each model. One of the particle models is selected
to be used in simulations within one atmospheric scene. Not
all particle models are applied equally often. Instead, they
are randomly chosen according to a pre-defined probability,
which varies between particle model. The choice of the prob-
abilities is motivated in Sect. 3.3 of May et al. (2024).

Due to the presence of vertically and horizontally po-
larised channels in ICI, it is necessary to consider the ori-
entation of ice particles. Typically, totally random orienta-
tion (TRO) is assumed when simulating at microwave fre-
quencies. However, this approach tends to significantly un-
derestimate polarisation differences. To better reflect reality,
the effects of orientation were mimicked using an approxi-
mation of azimuthally random orientation (aARO) following
a scheme developed by Barlakas et al. (2021) and later ex-
panded upon by Kaur et al. (2022). The scheme applies a
scaling factor to the extinction values arising from a TRO as-
sumption. The range of scaling factors for each particle mod-
els are given in Table 2 in May et al. (2024). The scaling fac-

tors were chosen according to findings in Kaur et al. (2022),
but increased slightly to account for ICI’s sub-millimetre fre-
quency channels potentially producing higher polarisation
differences.

Radiative transfer simulations are then performed within
the three-dimensional atmospheric scenes. The Atmospheric
Radiative Transfer Simulator (ARTS) (Buehler et al., 2025)
is used to perform the calculations, producing monochro-
matic pencil beam brightness temperatures as the output. To
perform the forward model calculations, ARTS requires the
input of gas absorption models, with the specific sources of
each absorption model given in Sect. 3.4 of May et al. (2024).

At the frequencies that ICI will measure at, the contri-
bution of the surface to the calculations can be significant.
Two surface emissivity models are used: Tool to Estimate
Sea-Surface Emissivity from Microwaves to sub-millimetre
waves (TESSEM2) (Prigent et al., 2017) and Tool to Esti-
mate Land-Surface Emissivities at Microwave Frequencies
(TELSEM2) (Wang et al., 2017). However, TELSEM2 has
certain limitations at high frequencies, as a constant emis-
sivity is assumed above 183 GHz (and as low as 85 GHz for
some surface types). To account for this limitation, a proba-
bilistic model was developed for snow and sea ice surfaces.
Within the model, emissivities are sampled from a multi-
variate Gaussian distribution, where the distributions are em-
pirically derived, based on emissivities from Hewison et al.
(2002), Harlow (2009), Harlow and Essery (2012), and Mun-
chak et al. (2020).

Radiative transfer simulations were performed using the
DISORT (Discrete Ordinate Radiative Transfer) scattering
solver. The reader is directed to Sect. 3.4 of May et al. (2024)
for details of the simulations performed. The application of
the spectral response function is described in Sect. 3.5 of
May et al. (2024). The spectral radiances obtained from the
all-sky simulations are subsequently converted to brightness
temperatures using the inversion of the Planck function. The
resulting brightness temperatures span both the along- and
across-track directions of the scene. However, if a single pen-
cil beam calculation is used to represent an ICI observation,
there will be an overestimation of the decrease in radiance
caused by the presence of ice (Barlakas and Eriksson, 2020).
To avoid this, and thus capture the beam-filling effect (Davis
et al., 2007), the two-dimensional field of brightness temper-
atures Tb was integrated over the ICI sensor field of view:

Ta =

∫
�

Tb(�)G(�)d�. (1)

� is the solid angle and G(�) is the normalised antenna
gain function provided by EUMETSAT. Ta is the observed
antenna temperature. As a result of the inclusion of the two-
dimensional antenna pattern, each Ta takes information from
the whole ICI footprint and therefore includes horizontal
information. All channels are assumed to share the same
ground-level footprint as the 183 GHz channel, ensuring that
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the final Ta data are consistent with the remapping to be ap-
plied in the operational L2 algorithm.

4.3 Database for research purposes

In the course of generating the retrieval database presented in
May et al. (2024), we also created an additional “extended”
database for research purposes by storing, or reconstructing,
variables used during the simulations. This includes the vari-
ables of interest for this study: vertical profiles of IWC and
mean mass diameter, DIWC

m . We note that the definition of
IWC used in this study includes all ice mass in a vertical col-
umn, i.e. both cloud ice and precipitating ice. By preserving
this information, the extended database is a useful resource
for the exploration of the further retrieval possibilities of ICI.

The input data to the simulations are not given on the same
altitude grid for each scene. In order to later retrieve IWC at
consistent altitude intervals, it was necessary to remap the
original IWC data onto the same grid. Each vector of IWC
was linearly interpolated onto a fine grid. The interpolated
data was then averaged within 500 m bins. The result is 40
IWC data points, equally spaced between 0 and 20 km, for
each simulation case. The same approach was also taken for
temperature profiles. The retrieval model is trained on the
500 m vertical resolution IWC data, and the retrieved profiles
maintain this same resolution. In other words, the retrieval
model includes 40 individual IWC values as part of its output
for each input observation.

The mean mass diameter, DIWC
m , is defined as the ratio of

the fourth and the third moments of the PSD, as per Delanoë
et al. (2014):

DIWC
m =

∫
∞

0 N(deq)d
4
eqddeq∫

∞

0 N(deq)d3
eqddeq

. (2)

In the above equation, deq refers to the equivalent volume
diameter, i.e. the diameter of a sphere of ice with the same
mass as the particle. N(deq) is the PSD. It is noted that the
Dm provided in the L2 product, and retrieved in May et al.
(2024), is the column integrated mean mass diameter. DIWC

m
in Eq. (2) is a vertical profile of mean mass diameter, and is
the focus of this study.

Although profiles ofDIWC
m were not stored during the gen-

eration of the retrieval database, it is possible to reconstruct
the PSD. This requires IWC and temperature profiles stored
in the database, and knowledge of the particle model used for
each simulation. While this information is available, the IWC
data stored during database generation are antenna weighted
values. As such, our calculations of DIWC

m are somewhat ap-
proximate, though not to a large extent and will likely have
a very minimal impact. DIWC

m profiles were constructed and
are retrieved at the same 500 m resolution as the IWC pro-
files.

5 Results and discussion

5.1 Retrieval of ice water content

The first step in evaluating the retrievals is to compare the
retrieved values with the “true’, or target, values across the
range of IWC. The mean of each retrieved IWC CDF is taken
as the single retrieval estimate, and compared against its cor-
responding simulated database case.

Overall retrieval performance, as shown in Fig. 2, is eval-
uated in two ways. Firstly, we compute the mean, median,
and quantiles across the set of retrieved CDF means. These
statistics are shown as a function of the true value. Secondly,
to provide an overall metric of the retrieval accuracy across
the range of possible values, we calculate the median frac-
tion error (MFE) of the retrievals. Note that this is a metric
applied post-retrieval, and is not used as a neural network
loss function. The MFE accounts for the orders of magnitude
spanned by IWC, and is defined by Brath et al. (2019) as

MFE(x)=median
(

exp10

(∣∣∣∣log10
xretrieval

xtrue

∣∣∣∣)− 1
)
. (3)

Retrieval performance was examined at individual atmo-
spheric layers. Figure 2 presents a representative sample of
the layers, at altitudes 3.25, 7.25, and 9.25 km. At 3.25 km
(Fig. 2a), the mean and median follow the identity line
between 10−2

≤ IWC≤∼ 3× 10−1 g m−3, but display de-
creased sensitivity to the true IWC as IWC increases. Re-
trieval variability, i.e. the spread between the 16 % and 84 %
quantiles, is highest for IWC< 10−2 g m−3. The same trends
are visible in the MFE.

Performance improves when increasing in altitude to
7.25 km (Fig. 2b) and, to an even greater extent, to 11.25 km
(Fig. 2c). The most notable differences are the lower vari-
abilities achieved across the entire IWC range. This is re-
flected in a lower MFE, except at very low IWC. In fact,
at 11.25 km, the median and the mean remain sensitive to
the true IWC to as low as 1 mg m−3. At high IWC, the im-
provement in performance is the most significant. Both the
mean and the median now follow the identity line up to the
maximum IWC, around 5 g m−3 for 7.25 km and 3 g m−3 for
11.25 km. In other words, at 7.25 and 11.25 km, retrievals
are sensitive to IWC an order of magnitude greater than at
3.25 km.

Other altitudes were also examined (not shown here), with
similar trends observed. Performance decreased further at
altitudes lower than 3.25 km, where overall variability in-
creased and less sensitivity to the true IWC was observed
at both low and high IWC. Performance also began to de-
crease above 14 km. In these high-altitude cases, signifi-
cant overestimation at high IWC was seen, corresponding
to MFE≥ 400 %. This suggests that our IWC retrievals are
relatively inaccurate at altitudes greater than 14 km.

The variation of performance with altitude is not an un-
expected result, and there are several factors that may con-
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Figure 2. IWC retrieval performance for altitudes of 3.25, 7.25, and 11.25 km is shown in panels (a), (b), and (c), respectively. The mean of
the retrieved CDF is taken as a point estimate, and the mean, median, 16th quantile, and 84th quantile of the retrieved distribution mean are
plotted as a function of the true value. The bias and the correlation coefficient r are calculated for all true cases with IWC > 10−3 g m−2,
taking the retrieval mean as the single estimate.

tribute to the poorer retrieval performance at some altitudes.
For higher atmospheric layers, uncertainty may arise from a
struggle to constrain the altitude from the observations. In
order to constrain the altitude of ice, a channel must also ex-
perience water vapour absorption at the same altitude. How-
ever, due to the low amount of water vapour at high altitudes
> 14 km, there is little variation in the transmitted signal and
the altitude information is lost. Additionally, the PSDs used
in the database simulations have relatively small ice crystals
at low temperatures. Therefore, at the low temperatures ex-
perienced at high altitudes, the impact on ICI radiances will
be relatively weak due to the implemented PSDs.

At lower altitudes, signal attenuation and surface interfer-
ence will lessen the impact of ice on ICI’s signal and thus
degrade performance. The influence of attenuation in clear-
sky conditions varies between channels, as shown in Fig. 1.
The degradation in retrieval performance seen at 3.25 km can
therefore be understood in terms of the number of channels
actively providing information. In clear-sky conditions, the
higher frequency channels (448 and 664 GHz) exhibit almost
no transmission around 3 km, regardless of the atmospheric
scenario. Additionally, transmission in the 183 and 325 GHz
channels will be very low for a significant number of the re-
trieval cases. Even the presence of a thin cloud will lead to
a substantial further increase in attenuation, particularly at
664 GHz. Although the 664 GHz channel is less affected by
atmospheric absorption than the 448 GHz channel – allow-
ing it to sense lower altitudes in clear-sky humid conditions
– its higher frequency results in greater scattering by cloud
ice crystals. As a result, the 664 GHz channel will experience
a loss of signal at lower altitudes than the 448 GHz channel
in cloudy conditions, degrading the performance of the IWC
retrieval.

At 7.25 km, the number of active channels is higher, cor-
responding with the improved performance relative to the
lower altitudes. However, in some atmospheric scenarios, the
water vapour channels will experience relatively low trans-
mission. Attenuation will be particularly high at 448 GHz.
Increasing in altitude to 11.25 km improves retrieval perfor-
mance further, corroborated by the fact that all channels dis-
play high transmission at this altitude.

Although the 243 GHz channel remains active at low alti-
tudes, this also means that its measurements are sensitive to
the surface. This surface interaction can obscure the presence
of cloud ice in the measured signal and lead to challenges for
the retrieval model. There may also be an impact from un-
certainties in the modelling of emissivities. May et al. (2024)
highlighted that ICI IWP retrievals tend to perform worse
at higher latitudes. This result was partially attributed to the
presence of snow and sea-ice surfaces, since the emissivi-
ties of such surfaces remain poorly modelled. Since most of
the ice mass lies at lower altitudes in high-latitude regions,
there could be an intertwined effect of low-altitude ice clouds
above snow and sea-ice, which in turn contributes to higher
variability in the retrievals.

As a result of the aspects discussed above, we can deduce
that the measurements obtain a vertical resolution varying
with altitude. This is explored further in Sect. 5.4 by exam-
ining the structure of the averaging kernels. For IWC, the
vertical resolution is shown to be ∼ 2.5 km.

To further evaluate the performance of the IWC retrievals,
individual scenes were examined. Examples of these in-
dividual scenes are presented in Figs. 3 and 7. Overall,
retrievals of IWC agree with the database in terms of
magnitude. In most scenes examined, both high and low
IWC appear to be accurately retrieved within the range of
1 mg m−3< IWC< 1 g m−3. Some underestimation does oc-

Atmos. Meas. Tech., 18, 7243–7266, 2025 https://doi.org/10.5194/amt-18-7243-2025



E. May and P. Eriksson: The Ice Cloud Imager: retrieval of frozen water mass profiles 7251

Figure 3. A comparison of IWC profiles, with database IWC shown
in panel (a), and the corresponding retrieved IWC shown in panel
(b). The retrieved IWC is plotted using the retrieval mean as the sin-
gle estimate for each case. Panel (c) shows the difference between
the retrieval and the database, relative to the database value. Only
data points with either database or with retrieved IWC ≥ 1 mg m−3

are shown. Database IWC with zero values were replaced with
1 µg m−3 to allow calculation of relative differences. Panel (d)
shows a retrieval performed using noise-free radiances as input.
Panel (e) shows the difference between the retrieved 0.99 quantile
and the 0.01 quantile, relative to the retrieved mean. The scene cor-
responds to a CloudSat overpass on 28 January 2009 at approxi-
mately 17:30 UTC.

cur within the cloud structures, but this generally occurs for
regions of lower-IWC (e.g. at −14° latitude in Fig. 7), or for
finer cloud features (e.g. at−21° latitude in Fig. 7). These re-
sults are consistent with the retrieval performance discussed
previously.

Larger scale cloud structures are clearly present in both
the retrievals and the database. The overall cloud structures
appear to be more vertically diffuse in the retrievals. This
diffusivity is especially visible in panels (c) of Figs. 3 and
7, where IWC is overestimated both above and below the
clouds. It should be noted that this difference is calculated
as relative to the true IWC values, which amplifies the differ-
ence if the true IWC is very small. Nonetheless, this is further
evidence that the effective resolution of the retrieval model
(∼ 2.5 km) is coarser than the retrieval resolution of 500 m,
explored further in Sect. 5.4. Several smaller features are cap-
tured in both the retrievals and the database, and those not

captured in the retrievals appear to be cases with relatively
low IWC. However, the retrievals sometimes produce ubiqui-
tous low-level ice clouds with an IWC of ∼ 0.01 g m−3, such
as in Fig. 3. These low-level clouds appear as regions of high
overestimation in Fig. 3c. However, they do not appear in
Fig. 7. Such clouds were not found to be a general feature in
all scenes examined, but did occasionally appear. Although
no systematic investigation was carried out, we found that
rain was present underneath the low-level cloud retrievals for
the case shown in Fig. 3, which may explain their occurrence.
The occurrence of these low-level clouds is explained by re-
trievals at low altitudes tending towards an a priori distribu-
tion as IWC decreases, as shown in Fig. 2b. As a result, oc-
casional retrievals of up to 0.01 g m−3 do occur, even when
the true IWC is significantly lower.

Also observed in Figs. 3 and 7, and other examined scenes
is a “striping” effect. This arises because the model is trained
to retrieve each profile individually. As a result, the retrievals
ignore correlations between neighbouring profiles, which are
present in reality. The striping is therefore a statistical arte-
fact due to fluctuations in noise between profiles. In Fig. 3d,
the retrieval is performed on noise-free radiances. The strip-
ing effect is no longer present, illustrating that instrument
noise does have an impact on the retrievals. The influence
of noise is stronger at low IWC, where the cloud signal is
only slightly higher than the noise. A less noisy instrument
would therefore improve the detection of IWP and IWC in
thin clouds, where the cloud signal is of comparable magni-
tude to the noise. However, we note that the retrievals shown
in Figs. 3b and 7b are represented by the mean of the re-
trieved CDF. Therefore, even in the presence of striping, it is
highly likely that the “true” values are contained in the full
uncertainty estimation provided by the QRNN.

The striping effect is also observed in Liu and Adams
(2024), when performing nadir-only IWC retrievals from
sub-millimetre observations. The effect was subsequently re-
moved after the inclusion of multi-angle observations within
their algorithm. Although ICI will not offer multi-angle ob-
servations, and our study focuses on an assessment of ICI’s
capabilities rather than algorithm development, the results of
Liu and Adams (2024) suggest potential for future develop-
ments of an ICI IWC product. For example, knowledge of
neighbouring observations could be incorporated into the re-
trieval. The flexibility of a machine learning approach offers
an advantage in this case. One avenue could involve provid-
ing the neural network with Ta from neighbouring swath po-
sitions, allowing the model to adjust its prediction accord-
ingly.

Making use of the retrieved quantiles can also provide
insight into retrieval performance. In Fig. 3e, we show the
spread between the 1st and 99th quantiles relative to the dis-
tribution’s mean, considering only data points with a mean
> 1 mg m−3. The spread represents the uncertainty associ-
ated with the retrieval, as discussed in Sect. 3.2. The most
problematic cases in this scene, such as the ubiquitous low-
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level clouds, are associated with the largest uncertainties. The
high uncertainties here suggest a potential technique for flag-
ging and rejecting such cases by an end-user, and they high-
light the value of a retrieval model that provides uncertain-
ties. However, we stress that the removal of high-uncertainty
cases would impact overall statistics.

Many IWC scenes were examined. The scenes consis-
tently showed the same trends described above: general
agreement in cloud structure and IWC magnitude, slight ver-
tical diffusivity, and the striping artefacts.

In Figs. 4 and 5, one-dimensional distributions and two-
dimensional zonal means of IWC are shown. The compar-
ison between database and retrieval distributions allows us
to evaluate whether there is a systematic over- or under-
estimation of IWC in a particular IWC range, latitudinal re-
gion, or layer of the atmosphere. Furthermore, the retrievals
are only useful if both they and the database cases are statisti-
cally consistent with reality. In the absence of a ground truth
to compare to, the same distributions were calculated using
IWC data from the DARDAR (raDAR/liDAR) 3.1 product
(Cazenave et al., 2019).

In Fig. 4a, the overall distribution of database IWC is pre-
sented for several altitudes. The corresponding distribution
for retrieved IWC is shown in Fig. 4b. For IWC< 1 g m−3,
the distribution of the retrievals exhibit good agreement with
the database distributions for all altitudes shown. As ex-
pected, agreement between retrievals and database varies
with altitude. The highest altitude shown (15.25 km) shows
the weakest agreement with the database, most notably at the
higher and lower ends of the IWC range.

The region of greatest disagreement occurs around the
highest IWC (around 5 g m−3), where the retrievals extend to
slightly higher IWC than the database. This outcome is some-
what expected since the probability density of IWC in this
region is very low and, as previously discussed, fewer cases
corresponds to a less constrained model. Retrieving cases of
high IWC that are absent in the database is not ideal, since
this is an extrapolation outside the variability covered by the
database. However, the probability density within this region
is so low that the disagreement appears to originate from just
several cases of over-estimation. In contrast, the overall neg-
ative bias observed at high IWC in Fig. 2 indicates that such
unrealistic overestimations are rare, and underestimations are
far more common.

When comparing both retrievals and database to DAR-
DAR in Fig. 4c, generally good agreement is observed up to
1 g m−3. There do exist more low-IWC cases in the database
than in the DARDAR product. However, despite the fact that
the ICI retrieval database and DARDAR both derive IWC
from CloudSat overpasses, there are differences in the re-
trieval schemes that will produce differences. As discussed
in May et al. (2024), DARDAR may fail to identify particu-
larly high cases of ice mass (Bolot et al., 2023). DARDAR
also demonstrates high variability between product versions
(Cazenave et al., 2019). Pfreundschuh et al. (2025) showed

Figure 4. Distribution of IWC. Panel (a) shows the distribution of
IWC in the retrieval database. Not all altitudes are represented. In-
stead, every fifth altitude is shown, where each altitude corresponds
to a 500 m layer. In panel (b), the distribution of retrieved IWC is
shown, corresponding to the same layers as shown in panel (a). The
overall distribution of all IWC cases in the database and the corre-
sponding retrieved values are shown in panel (c). A distribution of
IWC calculated from the DARDAR product from the year 2010 is
shown for comparison.

that significant differences even exist between DARDAR and
2C-ICE (Deng et al., 2015). 2C-ICE is an equivalent product
that, like DARDAR, also derives information from CloudSat
and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations). Therefore, the differences observed
between our data and DARDAR are not necessarily a cause
for concern.

Zonal means of IWC from DARDAR, the database, and
the retrievals are presented in Fig. 5. Good agreement is seen
between database and retrieved IWC. The zonal means are
also generally consistent with DARDAR. Expected features,
such as the tendency for ice mass to be located at higher
altitudes nearer the equator, are visibly present in all three
datasets. It is noted that the database and retrieval zonal
means appear noisier than DARDAR. However, fewer cases
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Figure 5. Zonal mean of IWC present in DARDAR (a), in the retrieval database (b), and the retrieved cases (c). IWC is taken from the
DARDAR 3.1 product from the year 2010.

are used in the calculation of the database zonal mean than
for the DARDAR zonal mean, and even fewer for the re-
trieval zonal mean.

5.2 Evaluation of column integrated ice water content

It is already established that ICI can provide reliable esti-
mates of IWP (Eriksson et al., 2020; May et al., 2024). When
exploring the potential of using ICI observations to retrieve
IWC, the extent to which an integrated IWC profile retrieval
accurately represents IWP can therefore serve as an indica-
tion of the IWC retrieval’s success.

Four IWP datasets are available to compare: the database
IWP, retrieved IWP, the vertical integral of database IWC,
and the vertical integral of retrieved IWC. The latter two
datasets are henceforth referred to as

∫
IWC. Database

∫
IWC

and database IWP are unlikely to be exactly equal. Dur-
ing generation of the database, IWC was calculated on a
finer vertical grid so to achieve accurate IWP values. How-
ever, as discussed in Sect. 4.3, the IWC was then interpo-
lated on to a 500 m grid. Database

∫
IWC is calculated us-

ing the 500 m resolution IWC. This likely leads to small dif-
ferences between database IWP and database

∫
IWC. Since

the retrievals are trained on the 500 m resolution IWC data,
database

∫
IWC should be used as the best point of compari-

son.
Retrieved IWP and retrieved

∫
IWC are plotted as a

function of database IWP in Fig. 6a. Good agreement
is seen between retrieved IWP and retrieved

∫
IWC for

IWP≥ 10 g m−2. Overall distributions of IWP from the
four alternative IWP datasets are presented in Fig. 6b.
Strong agreement is seen between the four datasets for
IWP> 0.01 kg m−2. Notably, at high IWP, retrieved

∫
IWC

aligns more closely with the database IWP than the retrieved
IWP does.

The distribution of retrieved
∫

IWC does exhibit disagree-
ment at the lowest IWP values, characterised by a peak in
density at IWP ∼ 3 g m−2, followed by a sharp decline. This
feature arises from the preprocessing of IWC data before
training the retrieval model. In reality, low IWP cases are

Figure 6. Comparison of IWP calculated from retrieved IWC to
database IWP. In panel (a), the mean, median, 16th and 84th per-
centiles are shown. Panel (b) shows the overall distribution of IWP
obtained in four different ways: Database IWP, retrieved IWP, the
column integral of database IWC, and the column integral of re-
trieved IWC. The distribution of IWC from the DARDAR 3.1 prod-
uct is also shown in panel (b). Panel (c) shows Zm calculated from
database IWC and from retrieved IWC, with a direct retrieval of
Zm shown as comparison. Panel (d) shows Dm calculated from
database IWC and DIWC

m , Dm calculated from retrieved IWC and
DIWC

m , and a direct retrieval of Dm. The legend in panel (d) ap-
plies to both panels (c) and (d). Distributions of Zm and Dm are
calculated only for cases corresponding to IWP> 10−2 kg m−2.

dominated by near-zero IWC cases. However, prior to train-
ing, cases of IWC< 1 mg m−3 were randomised between
10−3 and 1 mg m−3. IWC profiles randomised within this
range achieve IWP values distributed around a mean of ap-
proximately 3 g m−2. Retrievals of such cases will tend to-
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Figure 7. A comparison of IWC profiles, with database IWC shown
in panel (a), and the corresponding retrieved IWC shown in panel
(b). The retrieved IWC is plotted using the retrieval mean as the sin-
gle estimate for each case. Panel (c) shows the difference between
the retrieval and the database, relative to the database value. Only
data points with either database or with retrieved IWC ≥ 1 mg m−3

are shown. Database IWC with zero values were replaced with
0.001 mg m−3 to allow calculation of relative differences. Panel (d)
shows IWP across the scene. “IWP True” is the IWP in the retrieval
database, “IWP Retrieval” is the retrieved IWP, and “

∫
IWC” is the

integral of IWC, i.e. IWP, calculated for retrieved IWC cases in a
given profile. The scene corresponds to a CloudSat overpass on 22
January 2009 at approximately 04:15 UTC.

wards this same a priori value. This tendency is visible in
Fig. 7d, where IWP and retrieved

∫
IWC agree well, above

the threshold of IWP ∼ 3 g m−2.
Considering the results surrounding the striping artefacts

in Sect. 5.1, it is reasonable to ask whether the impact of in-
strument noise on IWC retrievals also has an effect on

∫
IWC.

To test this,
∫

IWC was also calculated from profile retrievals
performed on noise-free input data. Only small variations
were observed, occurring for cases with IWP close to or be-
low ICI’s lower sensitivity limit (10 g m−2). This is expected,
since instrument noise has the greatest impact when the cloud
signal is similar in size to the noise, i.e. in low-IWC cases
that dominate the integral only when IWP is small. Regard-
less of the impact of noise, it is not reasonable to expect to
reliably derive low-IWP cases from retrieved IWC, since ICI
is largely insensitive to these cases. Elsewhere, the strong
agreement of retrieved

∫
IWC with both retrieved IWP and

database IWP indicate that our retrievals of IWC are accu-
rate enough to be used to derive IWP within the sensitivity
range of ICI.

As a secondary test, we also compare the column variable
Zm in Fig. 6c, which can be calculated from IWC accord-
ing to Eriksson et al. (2020). Three distributions are shown:
database-derived values, retrieval-derived values, and a direct
retrieval of the column variable. Deriving Zm from retrieved
IWC is consistent with Zm derived from database IWC. Dif-
ferences occur mainly at the lowest and highest altitudes, in
line with our conclusion that IWC can be most accurately es-
timated between altitudes of 3 and 14 km. The frequency of
these cases is, however, very low. Direct retrievals of Zm ex-
hibit the same limitations at the highest and lowest altitudes.

5.3 Retrieval of Dm profiles

Retrieval performance for DIWC
m at altitudes of 3.25, 7.25,

and 11.25 km is presented in Fig. 8. As a metric of retrieval
performance, we use the root mean square error (RMSE),
since DIWC

m does not vary over orders of magnitude as IWC
does. At 3.25 km (Fig. 8a) there is a negative bias present
across almost the entire range of DIWC

m , except for ex-
tremely low DIWC

m (<∼ 50 µm). Below 50 µm, sensitivity to
the true DIWC

m is lost, and an a priori average is retrieved.
At DIWC

m > 600 µm, the negative bias amplifies and sensitiv-
ity again decreases. The behaviour seen in the 3.25 kmDIWC

m
retrievals is similar to that seen in retrievals of column Dm
(Fig. 9 of May et al., 2024).

At an altitude of 7.25 km, presented in Fig. 8b, perfor-
mance is significantly better than at 3.25 km. In partic-
ular, there is less negative bias observed, especially be-
tween 200 and 600 µm. The overall variability of the re-
trievals at 7.25 km is also notably lower. Moving to 11.25 km
(Fig. 8c), the upper limit of possible DIWC

m values decreases
to∼ 600 µm. Within the range ofDIWC

m spanned at 11.25 km,
the retrievals display better accuracy than at the lower alti-
tudes, and no bias is seen between 200 and 350 µm.
DIWC

m retrieval performance was checked for all individ-
ual altitudes (not shown). A decrease in performance was
observed for altitudes above 14 km, with a marked decrease
in the correlation coefficient and an overall underestimation
ofDIWC

m at all sizes. Across all altitudes examined, including
those shown in Fig. 8, the RMSE is highest at lowDIWC

m . The
performance plots in the upper panels of Fig. 8 indicate a de-
crease in performance at high DIWC

m , reflected by a modest
increase in RMSE. Nonetheless, RMSE does not reach the
values observed for low DIWC

m , because although the abso-
lute differences increase, the relative differences are smaller.

If comparing the performance ofDIWC
m retrievals and IWC

retrievals, it should be noted that DIWC
m does not vary over

orders of magnitude. Furthermore, there is limited informa-
tion available on the full hydrometeor shape and size distri-
butions, and this likely has an impact on the DIWC

m retrieval
performance. Still, the DIWC

m retrieval exhibit the same trend
– lower performance at low and high latitudes – as the IWC
retrievals. The reasons are largely the same: higher signal at-
tenuation occurring at low altitudes which reduces the num-
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Figure 8.DIWC
m retrieval performance for altitudes of 3.25, 7.25, and 11.25 km is shown in panels (a), (b), and (c), respectively. The mean of

the retrieved CDF is taken as a point estimate, and the mean, median, 16th quantile, and 84th quantile of the retrieved distribution mean are
plotted as a function of the true value. The bias and the correlation coefficient r are calculated for all true DIWC

m cases, taking the retrieval
mean as the single estimate.

ber of active channels (supported by Fig. 1), a lack of sig-
nal variability leading to an inability to constrain the altitude
of upper layer retrievals, and generally fewer data available.
However, in the case of the DIWC

m retrievals, there is a po-
tential avenue for improvement. The 3.25 km retrievals show
the lowest sensitivity and highest variability for a given true
value at high DIWC

m . This can be explained by the fact that,
in this range, a further increase in particle size does not yield
a significantly different brightness temperature. However, in-
cluding some of the higher-frequency MWI channels in the
retrievals could increase sensitivity to larger crystals, lead-
ing to overall improvements to the low-altitude high-DIWC

m
cases. This sensitivity to larger crystals partially arises as a
consequence of better sensitivity at lower altitudes, where
higherDm occurs. This increased sensitivity could also trans-
late to improvements in retrievals of high IWC at low alti-
tudes.

An example scene of DIWC
m is presented in Fig. 9. Within

the range ofDIWC
m shown, the retrievals are similar in magni-

tude to the database values. The retrievals capture the cloud
structures well. Although the structures retrieved in Fig. 9 ap-
pear somewhat less accurate than in the IWC cases, and there
is a general underestimation at higher altitudes in Fig. 9, the
latitudes spanned in Fig. 9 are much higher. Therefore, some
of the performance here can be explained by generally poorer
retrieval performance at high latitudes, as observed for IWP
retrievals in May et al. (2024).

There is a failure to capture some areas of relatively low
DIWC

m , i.e. DIWC
m < 100 µm. For example, the database scene

has numerous small patches of low DIWC
m that lie above the

main cloud structures. However, these are not visible in the
retrievals. This is most visible in Fig. 9c. Cases ofDIWC

m = 0,
which correspond to zero IWC, are retrieved as very low
DIWC

m . This is due to little sensitivity to such cases and there-

Figure 9. A comparison of DIWC
m profiles, with database DIWC

m
shown in panel (a), and the corresponding retrieved DIWC

m shown
in panel (b). The retrievedDIWC

m is plotted using the retrieval mean
as the single estimate for each case. Panel (c) shows the differ-
ence between the retrieval and the database, relative to the database
value. Only data points with either database or with retrieved IWC
≥ 1 mg m−3 are shown. Panel (d) shows the retrieval performed on
noise-free input data. The scene corresponds to a CloudSat overpass
on 22 January 2009 at approximately 19:15 UTC.

fore a tendency towards the a priori mean of∼ 10 µm, as seen
in Fig. 8.

The vertical diffusivity of cloud structures appears more
pronounced for the DIWC

m retrievals than for IWC. This sug-
gests that DIWC

m retrievals may have worse vertical resolu-
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tion than IWC retrievals. This can also be seen in Fig. 9c,
e.g. overestimation above the cloud tops and around −50°
latitude. We again stress that IWC spans orders of magnitude
and differences are amplified by extremely low IWC values,
whereasDIWC

m does not. Therefore, even a seemingly modest
overestimation in DIWC

m hints at poorer vertical resolution.
The striping effect is also present here, for the same reasons
as discussed for IWC, i.e. performing retrievals case-by-case.
Notably, the noise appears to have an even greater impact on
the retrievals than for IWC. This is evident when compar-
ing Fig. 9b and d, where the striping is particularly strong in
Fig. 9b and entirely absent in Fig. 9d.

As done for IWP and Zm in Sect. 5.2, we also compare
distributions of Dm, which can be calculated from IWC and
DIWC

m according to Eriksson et al. (2020). Distributions are
presented in Fig. 6d. The distribution of direct retrievals of
Dm shows good agreement to the database-derived distribu-
tion. For Dm calculated using retrieved DIWC

m , the distribu-
tion agrees in shape with the database-derived distribution,
but shows larger discrepancies than forZm. Agreement is rel-
atively good in the mid-range of Dm. For Dm< 100 µm and
Dm> 700 µm, poorer agreement is seen. This negative bias is
attributed to a general underestimation of DIWC

m across most
of its range. For example, cases of the integrated retrieved
Dm∼ 50 µm were found to arise due to a strong underestima-
tion of DIWC

m at several altitudes in a profile, typically at low
altitudes. These would be cases of relatively low DIWC

m that
lie close to or below the 16th quantile in Fig. 8, thus substan-
tially lowering the column integral. Since DIWC

m > 700 µm is
nearly always underestimated, the negative bias at high Dm
is likewise expected. Furthermore, unlike Zm which depends
only on retrieved IWC, Dm is derived from both retrieved
IWC and retrieved Dm,IWC profiles, amplifying any retrieval
inaccuracies. Cases of the integrated retrieved Dm∼ 50 µm
were also typically associated with low IWC, which are re-
trieved less accurately. Another plausible reason for the dif-
ferences is that the IWC and DIWC

m errors are correlated at
each altitude. However, this information is not provided by
QRNN.

Although the results presented in this section indicate that
DIWC

m can reliably be retrieved, the performance metrics are
based on comparisons between database quantities and in-
versions of database radiances. This does not guarantee an
equally low RMSE or overall accuracy as seen in Fig. 8 when
applied to real ICI data. It is possible that the use of prede-
fined PSDs in the simulations may lead to an underestimation
of the true variability of DIWC

m , and that the retrieval metrics
reflect this. While simulations were found to be statistically
consistent with observations in May et al. (2024), the extent
to which real ICI retrievals will capture the full variability of
DIWC

m can only be evaluated after ICI’s launch.

5.4 Vertical resolution

Some retrieval uncertainty will arise due to the physical lim-
itation of passive sensors. Although our database contains
IWC and DIWC

m at 500 m levels, ICI observations do not
necessarily contain enough information to resolve such fine
cloud structure in the retrievals. A retrieval at a given 500 m
level is therefore likely to be influenced by a priori informa-
tion from surrounding levels.

Retrieval error correlation matrices are presented in
Fig. 10. Although the retrieval errors are not strictly Gaus-
sian, the correlation structure still captures the influence of
surrounding layers on the retrievals. Both IWC (Fig. 10a) and
DIWC

m (Fig. 10b) exhibit a band of positive correlations that
extend several layers on either side of the diagonal. Within
the mid-altitude range, the error correlations for both IWC
andDIWC

m generally drop below e−1 within 2 to 2.5 km. This
implies that retrievals at adjacent layers cannot be resolved
fully independently, indicating that ICI’s effective resolution
is larger than 500 m.

While the error correlation matrices provide a qualitative
insight into the relationships between vertical layers, averag-
ing kernels offer a way of quantifying ICI’s effective resolu-
tion. In this section, we compute the approximate averaging
kernels associated with the retrievals. The vertical resolution
of a retrieved profile can be estimated from the averaging ker-
nel matrix A, defined as the sensitivity of a retrieval x̂ to the
true state x:

A=
∂x̂

∂x
. (4)

Following Rodgers (2000), a retrieval estimate can be mod-
elled as an operation on the difference between the true state
and the a priori estimate with A:

x̂ = xa+A(x− xa). (5)

Rows of A are the averaging kernels which characterise the
sensitivity of a retrieval at a given level to the surrounding
levels. The retrieval resolution at a given level is provided by
the full width at half maximum (FWHM) of the averaging
kernel.

QRNN does not provide A as an output. However, Ryd-
berg et al. (2009) showed how a mean A can be derived from
an ensemble of cases, necessitated also by the fact that BMCI
does not provide A either. The average A is estimated over a
set of data through:

A=
(
(1X1XT )−11X1X̂T

)T
, (6)

with

1X̂= (x̂1− xa, . . ., x̂n− xa), (7)

and

1X= (x1− xa, . . .,xn− xa). (8)
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Figure 10. Error correlation matrix for retrievals of IWC, in panel (a), and retrievals ofDIWC
m , in panel (b). The error cross-correlation matrix

between IWC andDIWC
m is shown in panel (c). The errors are calculated as the difference between the retrieved value and the database value.

The correlation matrices are computed over all IWC andDIWC
m data that correspond to a database IWP> 0.1 kg m−2, i.e. the same threshold

used for the averaging kernel calculations in Sect. 5.4. The black contour line indicates the approximate altitude below which the correlation
coefficient falls below e−1, or ∼ 37 %. Each grid cell, or matrix element, is 500 m in width and height.

Table 1. Definition of the five cloud cases used for the calculation of averaging kernels.

Case Definition IWP [g m−2] Zm [km]

All-cloud n/a > 100 [5, 12]

All-cloud (extended) n/a > 10 [5, 12]

Multi-layer ≥ 2 layers separated by gap of IWC < 1 mg m−3. > 10 [5, 12]

Top-heavy 2
3 of mass in upper 1

3 of cloud. > 10 [5, 12]

Bottom-heavy 2
3 of mass in lower 1

3 of cloud. > 10 [5, 12]

The above theory is valid for linear retrievals, and therefore
the chosen subset of data should be near-linear. Although our
retrievals of IWC are not strictly linear, Fig. 9 in Grützun
et al. (2018) indicates that Jacobians of IWC and snow wa-
ter content (SWC) do not display strong variability and are
therefore suitable for this purpose. In contrast, Fig. 8 of
Grützun et al. (2018) shows that LWC and rain water con-
tent (RWC) are highly state dependent, and thus far more
non-linear. However, to ensure near-linearity, we select only
a subset of IWC data corresponding to IWP> 0.1 kg m−2 and
5 km<Zm< 12 km. This case corresponds to the first row
(All-cloud) in Table 1.

A log-transformation was applied to the IWC data and
cases of IWC≤ 0.01 g m−3 were set to a random value be-
tween 0.01 and 0.01 g m−3, with the threshold of 0.01 g m−3

chosen to correspond to the lower sensitivity limit of the
retrievals as observed in Fig. 2. DIWC

m data was filtered ac-
cording to the same criteria as for IWC. Cases of DIWC

m = 0
were replaced with DIWC

m = 10−4 µm. However, it was nec-
essary to calculate a pseudo-inverse during the computation
of Eq. (6) for DIWC

m , since (1X1XT ) was found to be ill-
conditioned. The pseudo-inverse was calculated using a sin-
gular value decomposition (SVD), keeping only the largest
elements that contribute to 90 % of the variability. For both
IWC andDIWC

m , the analysis was also performed on different
subsets of the data, i.e. varying the IWP and Zm criteria. The

results were found to be relatively stable, achieving close to
the same mean resolution.

The IWC averaging kernels for each level, the measure-
ment response, and the estimated vertical resolution are pre-
sented in Fig. 11. The measurement response is calculated
as the sum of each averaging kernel, and can be interpreted
as the fraction of the retrieval that is derived from the data.
A measurement response of zero implies that the retrieval is
derived only from a priori information. Figure 11b shows the
measurement response for IWC. Between 5 and 15 km, the
measurement response is close to, or exceeds 1.0, indicating
that retrievals are derived largely from the data itself. Below
the peak at 5 km, the measurement response decreases with
decreasing altitude. This is due to strong signal attenuation
and complex surface interactions occurring at low altitudes,
causing the retrievals to be heavily influenced by a priori in-
formation. At high altitudes, the measurement response is
close to zero, likely due to the low IWC present in this re-
gion, and a difficulty in constraining the altitude, as discussed
in Sect. 5.1. In light of this result, the retrieval of accurate
IWC estimates from real ICI observations is expected to be
feasible between altitudes of 3 and 14 km.

Although Fig. 11 represents IWC retrievals at all latitudes,
results were also checked for different latitudinal regions (not
shown here). As expected, high latitudes produced a greater
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Figure 11. Averaging kernels for retrieved IWC are shown in panel (a). In panel (b), the corresponding measurement response is given as a
function of altitude. The estimated retrieval resolution, estimated from the FWHM of the averaging kernels, is shown in panel (c).

IWC measurement response at low altitudes due to the lower
average altitude of clouds, and vice versa in tropical regions.

The resolution of IWC retrievals, shown in Fig. 11c, is
found to vary with altitude. However, between 6 and 15 km,
the resolution is relatively stable at around 2.5 km. Above
17 km, the resolution increases dramatically. ICI is not ex-
pected to be sensitive to ice clouds within this region, and
thus retrievals at such altitudes are highly dependent on a pri-
ori information from the lower levels, leading to very large
resolution estimates. Between the altitudes of 1 and 5 km,
the resolution is smaller than 2.5 km. However, we note that
the averaging kernels do not necessarily peak at the correct
altitude. In other words, information is drawn from higher al-
titudes due to the weak sensitivity occurring at lower layers
of the atmosphere. This is reflected by the low measurement
response within this range. In turn, this likely contributes to
the higher uncertainty observed in Fig. 2b. The low IWC res-
olution at low altitudes is therefore somewhat artificial, and
not an indicator of success.

It is unlikely that the same vertical resolution can be
achieved by all types of cloud observed by ICI. To assess
the dependence of both the response and the resolution on
cloud structure, averaging kernels were computed for three
simple cloud classes. The cloud definitions (multi-layer, top-
heavy, and bottom-heavy) are shown in Table 1. The resulting
measurement response and vertical resolutions are shown in
Fig. 12. The measurement response and resolution of an all-
cloud case is also shown, calculated with an extended range
of IWP for fairer comparison. This case is presented as “All-
cloud (extended)” in Table 1.

We note that stable calculation of averaging kernels re-
quires a large enough subset of data. Although more cloud-
types exist, further filtering quickly reduces the sample size,
leading to unstable estimates. Additionally, adjusting defini-
tions, e.g. the mass fractions, leads to differences in the re-
sults. Various definitions and filtering restrictions were tested
and we found that overall qualitative trends can be described,
but exact values can vary and should therefore not be taken
as definitive estimates.

Figure 12. Measurement response, panel (a), and vertical reso-
lution, panel (b), for three cloud types. The resolution is shown
only for altitudes at which the measurement response exceeds 0.5.
The cloud-type definitions are provided in Table 1. “All-cloud (ex-
tended)” refers to the same cases in Table 1.

In multi-layer clouds, the measurement response resem-
bles the all-cloud case at 5–8 km but decreases above 8 km,
resulting in a bottom-heavy shape. Lower clouds with gener-
ally higher IWC increase the attenuation of higher-frequency
channels that would otherwise be sensitive to the thin up-
per cloud. As a result, the measurement response deteriorates
at higher altitudes. Vertical resolution is generally poorer,
which is expected as information is drawn from neighbour-
ing layers when an individual cloud layer is thinner than the
effective resolution. Bottom-heavy clouds also show a down-
ward shift of the measurement response shifts to lower alti-
tudes, since the majority of the information contained in the
radiances originates in the lower portion of the cloud. Reso-
lution is, on average, slightly poorer in the lower portion of
the cloud. For top-heavy clouds, response behaviour is simi-
lar to the all-cloud case, but poorer resolution was seen in the
upper cloud layers, i.e. at 5–10 km. In summary, the 2.5 km
effective resolution represents an average, but it is condition
dependent. In cloud-specific cases, high-IWC regions pro-
duce higher responses but broader kernels, whereas low-IWC
regions show the opposite behaviour.
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Figure 13. Averaging kernels for retrieved DIWC
m are shown in panel (a). In panel (b), the corresponding measurement response is given as

a function of altitude. The estimated retrieval resolution, estimated from the FWHM of the averaging kernels, is shown in panel (c).

DIWC
m averaging kernels are shown in Fig. 13a. Similarly

to IWC, averaging kernels outside the 5 to 15 km range did
not peak at the correct altitude, but rather several km above
or below that altitude. Although these averaging kernels did
give reasonable measurement response and resolution re-
sults, the results can be misleading. These altitudes are there-
fore omitted from all panels of Fig. 13.

The measurement response, shown in Fig. 13b, exhibits
the same multimodal behaviour as seen for the IWC case.
However, the measurement response is lower than that of
IWC at altitudes greater than 11 km. Figure 13c shows the
resolution ofDIWC

m retrievals. The resolution at 5 km is com-
parable to that of IWC, achieving a resolution of 2.5 km.
However, the resolution is found to degrade with increasing
altitude, resulting in a resolution of over 10 km at an altitude
of 15 km. This corresponds with significant decrease in mea-
surement response at the same altitude, and the decrease in
performance at altitudes over 14 km as discussed in Sect. 5.3.

5.5 Information content aspects

The degrees of freedom (DoFs) of the observations can offer
further insight into the vertical information available for a re-
trieval. DoFs do not provide a precise measure of the resolu-
tion, nor are they accompanied by the altitude levels at which
the information is derived. Nonetheless, a higher DoF value,
or higher number of independent pieces of information, im-
plies that information can be retrieved at a greater number of
distinct altitudes. This connotes a better vertical resolution.

However, a higher information content can also indicate an
ability to independently constrain different variables. The er-
ror cross-correlation matrix between IWC and DIWC

m , shown
in Fig. 10c, provides evidence that information is available to
constrain the two variables separately. Although some posi-
tive correlation is observed between variables at similar alti-
tudes, the overall correlation is weak. This suggests that total
DoF of an ICI observation can likely be decomposed into
contributions relating to individual variables as well as sepa-
rate altitudes.

Figure 8 of May et al. (2024) presents the DoFs of ICI
observations as a function of IWP and water vapour (WV).
For high-IWP and high-WV conditions, i.e. deep convective
clouds, ICI observations achieve a DoF of between 8 and 10.
The atmospheric column of interest can be assumed to be
around 10 km thick, i.e. a retrieval domain between 5 and
15 km. The total DoFs represent information available for all
variables. This includes IWC, DIWC

m , and – to a lesser extent
– humidity, LWC, and rain. Taking these factors into account,
the maximum DoF suggests a potential vertical resolution of
about 2 to 3 km for IWC and DIWC

m , which supports the re-
sults presented in Sect. 5.4.

Grützun et al. (2018) calculates the reduction of degrees of
freedom (1DOF) as a quantification of the number of pieces
of information obtained from an ICI measurement, where
the maximum possible 1DOF is 11, i.e the number of ICI
channels, neglecting polarisation. The mean total informa-
tion content for ICI is estimated at 6.19. When the informa-
tion content is decomposed into contributions from individ-
ual variables, 1DOF for IWC was estimated to be approxi-
mately 4. Based on this, Grützun et al. (2018) speculated that
it may be possible to estimate IWC profiles containing inde-
pendent information at four distinct altitudes. It is important
to note that Grützun et al. (2018) defines IWC as the cloud
ice mass density, whereas the density of frozen precipitation
is defined separately as SWC. In contrast, our definition in-
cludes all frozen hydrometeors – both in-cloud and precipi-
tating. Considering only altitudes between 5 and 15 km, the
four distinct levels hypothesised by Grützun et al. (2018) im-
ply a vertical resolution of ∼ 2.5 km.

To represent the microphysical properties of cloud ice hy-
drometeors, Grützun et al. (2018) used the particle mean
mass. An information content of 2.70 was estimated for
mean mass, which is again consistent with our slightly higher
resolution estimate for DIWC

m . They also found that simul-
taneously measuring mean mass and mass density reduces
the information content of the mean mass retrieval, due to
correlations between the two variables. This finding – that
microphysical characteristics can be derived using informa-
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tion partly independent from that used for IWC, albeit with
some loss in the total information content when both are re-
trieved together – supports the low cross-correlation found in
Fig. 10c.

Similar findings are reported by Pfreundschuh et al.
(2020), where DoFs are calculated from the trace of the aver-
aging kernel matrix. In the example cases presented, the total
DoF did not exceed 10, despite the use of both MWI and ICI
observations in the measurement vector. Decomposing the
DoF into contributions from particle size and particle con-
centration dimensions showed that different retrieval quan-
tities contribute separately to the total information content.
Together, the results from Grützun et al. (2018) and Pfreund-
schuh et al. (2020) suggest that the vertical resolution of our
DIWC

m profile retrievals arise from some independent infor-
mation, rather than just constraints from the IWC retrieval.

We can therefore conclude that, by virtue of the multiple
frequencies at which ICI measures, there can be enough in-
formation in an observation to constrain the retrievals of both
IWC andDIWC

m to some extent independently. As a result, ICI
may have capabilities going beyond single-frequency cloud
radars. Despite the fact that a radar has a high number of
DoFs relative to passive instruments, such as ICI, each inde-
pendent piece of information corresponds to a single altitude
level. Therefore, since radar’s high DoFs are only associated
with high vertical resolution, this information content does
not necessarily translate into an ability to retrieve multiple
variables at a given altitude. In fact, decomposing the DoFs
of radar into contributions from individual retrieval quanti-
ties shows that a single variable dominates (Pfreundschuh
et al., 2020). Consequently, a priori assumptions must play
a significant role if both IWC and DIWC

m are to be retrieved
from radar measurements. If retrievals of ice mass are de-
rived from both radar and lidar observations, as is the case
for DARDAR and 2C-ice, then the total available informa-
tion across an entire column may increase. However, lidar is
not available for the entire column, particularly in the case of
high IWC. Therefore, at a given altitude, the number of inde-
pendent pieces of information will not necessarily be higher.

5.6 Sensitivity analysis

The uncertainty in the retrievals could arise from three
sources. Firstly, there are physical limitations which may
affect the sensitivity of the observations to the atmospheric
state. Secondly, there are limitations in our knowledge of the
physical system, which take the form of assumptions made
in the radiative transfer calculations. Finally, there will al-
ways be inherent uncertainty due to noise. It is difficult to
identify exactly to what extent the uncertainties arise from
each of these sources. However, one approach is to retrain
the retrieval model under different conditions and compare
the retrieval performance.

The primary physical limitation is the true vertical resolu-
tion. Since the true resolution is likely closer to 2.5 km than

Figure 14. IWC retrieval performance for all altitudes for alterna-
tive model runs. In panel (a), the original model is compared against
a model trained on a version of the database with vertical reso-
lution reduced to 2 km, denoted “New (2 km)”. In panel (b), the
original model is compared to a model trained (and retrieved) only
on cases simulated using the “AA1” particle model, denoted “AA1
model”. For comparison, the original model was also used to re-
trieve only cases simulated with the “AA1” particle model, and the
performance is denoted in the plot as “Original model (AA1)”.

to 500 m, as shown in Sect. 5.4, we hypothesised that some
retrieval inaccuracy arises from the model’s difficulty in dis-
tinguishing between neighbouring layers, and retrieving on
a coarser altitude grid may help to avoid these issues. To
examine this possibility, IWC profiles in the database were
averaged over 2 km layers. The model was then retrained to
retrieve IWC profiles at a 2 km resolution.

A comparison of retrieval performance between the two
models – original 500 m resolution and new 2 km resolution
– is presented in Fig. 14a. Very little difference can be seen
between the two models, aside from a small improvement of
the mean and lower quantile at low IWC. Improvements as
a result of using a lower resolution model may be expected
in cases of multiple layers of clouds separated by a thin re-
gion of little to no ice. If this layer is thinner than the effec-
tive resolution of the observations, the 500 m model would
not be able to resolve this layer. Instead, information from
the surrounding cloud layers would leak into the retrieval at
this altitude and overestimation would occur. Upon check-
ing individual retrieved profiles for both the 500 m and 2 km
models (not shown), this was confirmed to occur. An exam-
ple is presented in Fig. 15b. However, in the case of a single
cloud layer, with few small details to resolve, both models
will largely behave the same, e.g. in Fig. 15a. Since cases
with a single cloud layer were found to be far more com-
mon in the database, improvements to layered-cloud profiles
have a minimal effect on the overall performance statistics,
explaining the similar performance of both models.

At low-to-moderate IWC, the 2 km model shows reduced
underestimation. Upon investigation of individual profiles,
this appears to occur when the true IWC profile contains a
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Figure 15. Example IWC profiles for the original 500 m resolu-
tion retrieval model and the 2 km resolution retrieval model. Dashed
lines represent the truth, i.e. IWC profiles from the ICI retrieval
database, where the 2 km resolution profile is simply an average
of the original profile over 2 km layers.

sharp but narrow peak. An example is shown in Fig. 15c. The
500 m resolution retrieval model fails to retrieve this feature.
However, averaging over 2 km layers smooths out the peak,
lowering the reference IWC. Therefore, even if the two re-
trieval models predict the same IWC at a given altitude, the
retrieval error of the 2 km model is smaller due to the lower
reference IWC. In this case, the improvement in the lower
quantile achieved by the 2 km model does not in fact indicate
better model accuracy relative to the truth.

A risk of using a high-resolution model when the effec-
tive resolution of the observations is lower is overfitting, i.e.
the model “guesses” small IWC details that are not present
in reality. Since the 500 m model does not overestimate IWC
compared to the 2 km model, this does not appear to be the
case. Therefore, the main conclusion of this sensitivity anal-
ysis is that, despite some small differences, the two models
achieve very similar performance across the range of IWC.
Although retrieving at a coarser resolution is more in-line
with the physical limitations of the observations, there seems
to be no benefit to retrieving at a courser resolution, since
using a finer grid of 500 m does not harm performance. Any
small advantages shown by the 2 km model are not common
enough to have a significant impact on the overall statis-
tics, and do not influence the mean or median in any one
direction. This suggests that the true resolution, estimated at
around ∼ 2.5 km, is already inherently captured by the re-
trieval model.

Furthermore, the error correlations in Fig. 10a offer fur-
ther explanation as to the similar performance seen for both
the 500 m and 2 km resolution models. Since errors are seen
to be correlated over distances more than 2 km, retrievals at a
500 m resolution are not giving totally independent informa-
tion, and therefore the precision is not improved by retrieving
at 2 km. As a result, the two models likely have similar verti-
cal smoothing and therefore comparable retrieval accuracy.

The choice of particle model used in a simulation may
also impact the retrieval of IWC from the given simulation.

The sensitivity of IWP retrievals to the particle model was
investigated in May et al. (2024), where it was suggested
that the retrieval model could somewhat distinguish between
particle model, but assumed some mean level of extinction
that translated to over- or under-estimation of IWP. Drawing
from the conclusions made in May et al. (2024), it is there-
fore reasonable to expect that some inaccuracy in the IWC
retrievals may arise if the retrieval model assumes a mean
particle model.

To explore this possibility, a model (denoted “AA1
model’) was trained with only simulations generated using
the AA1 particle model. This corresponds to 30 % of the
cases used to train the original model. At low IWC, the per-
formance of the AA1 model is similar to the original model,
as shown in Fig. 14b. There are small differences, but these
could be attributed to the use of a smaller dataset to train the
AA1 model and a smaller dataset on which the inversions
were performed.

At higher IWC, the AA1 model shows better performance
compared to the original model, i.e. less variability for a
given true value and lower MFE. The mean and median shift
closer to the identity line, and the quantiles become more
symmetric around the line. The particle models “Snow” and
“AA2’, defined in see Table 2 of May et al. (2024), are likely
to cause an underestimation of IWC when the actual model
is AA1. A further discussion of this possibility is given in
Sect. 5.5 of May et al. (2024). The improved performance of
the AA1 model therefore suggests that the increased spread
in retrievals for a given IWC, seen for the original model,
partially stems from the model’s difficulty in reliably distin-
guishing between particle models.

5.7 Limitations

The retrieval results presented in this article are performed
and compared to a subset of the retrieval database. Since the
database relies on information from CloudSat and MODIS, it
is therefore important to consider how the limitations of this
data may impact future retrievals on real ICI data. Specifi-
cally, whether the sensitivity range of these instruments may
lead to a difficulty in detecting certain cloud types.

For instance, CloudSat-based retrieval products also typi-
cally incorporate CALIPSO lidar data in order to better char-
acterise high clouds, such as thin cirrus. Since lidar infor-
mation is not used for the ICI retrieval database, many thin
cirrus cases may therefore be absent in the database and, by
extension, the retrievals. However, even if such cases were
included in the database, they would likely not be retrieved
reliably. We find that ICI’s lower sensitivity limit to IWC is
around 10 mg m−3. In contrast, radar-only based retrievals in
DARDAR include cases down to 1 mg m−3 (Cazenave et al.,
2019). In future iterations of the database, EarthCARE is ex-
pected to replace CloudSat. Although EarthCARE will offer
higher sensitivity than CloudSat, the lower sensitivity limit of
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ICI will likely still lead to an underestimation of the number
of thin cirrus cases if used operationally.

If considering retrievals of IWP, DARDAR tends to sat-
urate at an upper limit of 10 kg m−3, whereas our retrieved
IWP CDFs extend up to ∼ 40 kg m−3. Similarly, 2C-ICE has
also been shown to achieve higher IWP on average (Pfre-
undschuh et al., 2025). Extending to retrievals of IWC, the
same trend between ICI and DARDAR is demonstrated in
Fig. 4. Therefore, it does not appear that ICI is limited by the
CloudSat data in terms of saturation in high-IWC regions.
However, it must be acknowledged that multiple scattering in
high-IWC regions will decrease the radar signal. In turn, this
leads to fewer high-IWP cases in the database. Although ICI
observations may be able to detect higher IWC than radar,
and higher values are certainly seen in comparison to DAR-
DAR, fewer high-IWC cases will be available for the retrieval
model to train on.

There are also caveats to a machine learning approach. A
key challenge is understanding exactly how the model de-
rives its predictions. In contrast, methods such as OEM ex-
plicitly provide the relationship between observations and
the state variables, e.g. through the Jacobian. These relation-
ships must instead be approximated if neural networks are
implemented, as described in Sect. 5.4. Additionally, neu-
ral networks cannot represent correlations between multiple
outputs that exist in reality, such as those between layers of
IWC. Developing an approach to sample from retrieved dis-
tributions such that correlations are captured is therefore a
potential avenue for future research.

6 Summary and conclusions

The motivation behind this study was to explore ICI’s poten-
tial as a source of vertical ice mass information. The study
focuses on two key questions: How well can ice mass pro-
files be derived from ICI observations? Can ICI act as com-
plementary to existing products, such as those derived from
radar and lidar measurements?

In this study, we retrieved IWC and profiles of mean mass
diameter DIWC

m from ICI observations. The retrievals were
performed using a QRNN trained on simulated ICI obser-
vations. These same simulations also constitute the ICI re-
trieval database to be used at EUMETSAT for operational ICI
retrievals. As such, they represent the state-of-the-art in ra-
diative transfer calculations at microwave and sub-millimetre
wavelengths. By using the same data intended for operational
L2 column variable retrievals, we demonstrate that an ICI L2
product containing information on the vertical ice mass in-
formation is also achievable.

The results of this study show that IWC and profiles of
mean mass diameter DIWC

m can be reliably retrieved from
ICI observations. IWC retrievals were shown to be reliable
within the range of 0.01 and 1 g m−3. DIWC

m retrievals per-
formed well within the range of 25 to 600 µm. Retrievals at

altitudes of 3.25, 7.25 and 11.25 km are presented in this pa-
per, with the highest performance observed at 11.25 km. For
both IWC and DIWC

m , retrieval performance was observed to
vary with altitude, attributed primarily to variation in sig-
nal attenuation across altitudes. Outside of the range of 3
to 14 km, retrievals are deemed to be inaccurate due to re-
duced sensitivity of the observations to ice mass at these
more extreme altitudes. Some instability was observed be-
tween neighbouring profiles, arising as an artefact of retriev-
ing each profile individually. This effect was removed when
performing the same retrievals on noise-free radiances, re-
vealing that instrument noise has a discernible effect on re-
trievals, particularly for low IWC.

A comparison of our IWC retrievals to the DARDAR
product displayed statistical consistency. Furthermore, inte-
gration of the IWC retrievals produced IWP that is statisti-
cally consistent both with DARDAR and with IWP as ex-
pected from the ICI L2 product. These findings suggest that
the IWC retrievals presented in this study are reliable and,
in the future, could serve as a complementary data source
to EarthCARE. Furthermore, ICI could prove even more ef-
fective than a radar at retrieving DIWC

m due to ICI’s broader
frequency range, as discussed in Sect. 5.5. Zm, derived us-
ing retrieved IWC, showed good agreement with direct re-
trievals of Zm. Larger differences were observed when com-
paring direct retrievals of Dm with Dm derived from IWC
and Dm,IWC, highlighting a need to still retrieve column val-
ues in parallel to profiles.

The retrievals were performed at a resolution of 500 m,
though the effective resolution of the retrievals is believed to
be poorer. Averaging kernels were derived for the first time
for this type of observations. The methodology of Rydberg
et al. (2009) was applied, providing only mean averaging
kernels for relatively large ensembles of retrievals performed
on simulated data. Since averaging kernels are a highly use-
ful tool for characterising retrievals, improved approaches for
deriving this information would be beneficial. Averaging ker-
nels were approximated over a subset of the data, allowing
the effective resolution of the IWC retrievals to be estimated
at around 2.5 km. The effective resolution ofDIWC

m retrievals
is comparable to IWC at low altitudes (a resolution of 2.5 km
at an altitude of 5 km), but resolution was found to become
poorer with altitude. The retrieval error correlation matrices
also suggest an effective vertical resolution of around 2 to
2.5 km, which is consistent with our estimations derived from
averaging kernels. The IWC averaging kernel analysis was
applied to several basic cloud-types, where higher-IWC re-
gions of cloud were found to yield a higher response func-
tion but broaden the kernels. Multi-layer clouds achieved a
slightly poorer resolution than 2.5 km. However, retrieving
IWC at a resolution of 500 m was not found to weaken the
performance of the retrievals in a significant sense. In con-
trast, microphysical assumptions in the database simulations
were identified as contributing to a reduction of performance,
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although their contribution was found to be more pronounced
at the upper end of ICI’s sensitivity range to IWC.

A significant step in this research will be the launch of
ICI, allowing for the retrieval of profiles from real ICI data.
In this study, we aim to identify potential sources of uncer-
tainty within the retrievals, but the use of real observations
may reveal additional limitations. In particular, it allows us
to better validate our database simulations, which affect the
quality of our retrievals. For example, we will be able to as-
sess the success of the surface emissivity scheme used in the
database generation scheme, presented in May et al. (2024).
In turn, this comparison may allow us to better understand
the uncertainties associated with low altitude IWC andDIWC

m
retrievals. Excitingly, with the launch of ICI also comes the
possibility to validate our retrievals with existing products.
While ICI will not be colocated with any radar/lidar measure-
ments, it will be possible to compare to machine learning-
based retrieval products using geostationary sensors (Amell
et al., 2024). Our use of a probabilistic machine learning
model also provides a method for quantifying retrieval un-
certainties. This is particularly valuable to applications such
as climate model verification, especially in light of the fact
that ICI will offer observations spanning 22 years. Finally,
the launch of ICI also signals the launch of MWI. There
will therefore also be the possibility to incorporate data from
MWI into ICI retrievals. This will be particularly beneficial
for retrievals at low altitudes, where the largest Dm can be
found.

The launch of AWS (Eriksson et al., 2025) marked an
important milestone, providing the first operational sub-
millimetre observations of atmospheric ice. Preliminary
comparisons of AWS- and ICI-based retrievals of column
variables indicate that AWS performs comparably well for
IWP (not shown). Since it is possible to retrieve ice mass pro-
files from ICI’s measurements, it can likely also be achieved
with AWS. However, AWS shows weaker retrieval perfor-
mance for Zm and Dm. This can be attributed to the fact
that AWS lacks channels at 448 and 664 GHz. Therefore, it is
unlikely that the same quality of profile retrievals would be
achieved. Nonetheless, AWS offers many of the same ben-
efits we anticipate from ICI in the assessment and valida-
tion of our simulation framework, including testing of profile
retrievals on real satellite data. Given that AWS is already
launched, these opportunities are possible immediately. Both
ICI and AWS offer exciting potential for ice mass retrievals,
contributing to a better understanding of atmospheric ice in
Earth’s climate system.

Appendix A: Neural network architecture

The QRNN implemented in this study takes the following
inputs:

– Antenna-weighted brightness temperatures Ta for each
of the 13 ICI channels. Measurement noise is generated

by randomly sampling from a zero-mean Gaussian dis-
tribution with variance of 75 % of the NE1T estimates
for ICI (Eriksson et al., 2020). New noise values are
sampled for each input Ta in each batch of data and each
epoch during training. This prevents the model from en-
countering the same noisy values more than once during
training.

– Surface type classification, surface temperature, and
surface pressure are included as ancillary data.

The QRNN outputs predictions for 83 independent vari-
ables. These variables consist of column integrated variables
– IWP, Dm, and Zm – along with 40 levels of IWC and 40
levels of DIWC

m , both at a 500 m resolution. For each of the
83 output variables, the model is trained to predict 17 uni-
formly spaced quantile levels τ ∈ [0.01,0.99].

A log-linear transformation was applied to the IWP and
IWC data to account for the wide range of magnitudes
spanned by these variables. IWP and IWC values less
than 1.0 kg m−2 were transformed into logarithmic space.
Cases of IWP< 10−4 kg m−2 were replaced with a ran-
dom sample between 10−6 and 10−4 kg m−2. Cases of
IWC< 10−6 kg m−3 were replaced with a random sample
between 10−9 and 10−6 kg m−3. The remainder of the out-
put data were linearly normalised according to the range of
IWP covered in the training set.
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