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Abstract. This study proposed a new quality control method
via physical constraints and data-driven collaborative artifi-
cial intelligence (PD-BX) to reduce wind speed measurement
errors caused by the complex environment along high-speed
railway lines, achieving enhanced accuracy and reliability.
On the one hand, based on the special structure in railway as-
sembly, the physical constraint model of the railway electri-
cal catenary supports and anemometers was experimentally
established. The performance of the physical model in the
wind field was simulated based on FLUENT software, and
the environmental change characteristics of the anemome-
ter in the railway area were analyzed. On the other hand, to
solve the constrained error mapping expression under differ-
ent wind conditions, a data-driven model of hyperparameter
optimization (BO-XGBoost) is introduced to perform error
compensation on physical relationships. Through the PD-BX
method, the RMSE of the railway anemometer was reduced
by 2.497 from 2.790 to 0.293, achieving quality control of
wind observations along the high-speed railway lines and
providing reliable results for improving the accuracy of the
high-speed railway early warning system.

1 Introduction

Since the opening of the Tōkaidō Shinkansen in Japan in
1964, the construction scale of high-speed railways world-
wide has continued to expand, and safety issues related to

high-speed railways have increasingly garnered widespread
international attention. In high-speed railway operations,
strong winds are one of the major meteorological disasters
threatening the safety of high-speed train operations (Liu
et al., 2022; Wang et al., 2021). Before the introduction
of Japan’s strong-wind alarm system, equipped with wind
speed prediction capabilities in 2006, over 30 incidents of
train derailments and overturns caused by strong winds had
been recorded. In 1986, a passenger train on Japan’s San’in
line was overturned by strong winds, resulting in six deaths
and six injuries. Similarly, in 1981, a train in India was
overturned by strong winds, resulting in over 800 casualties
(Yao et al., 2020). In response to these tragic accidents, rail-
way departments in multiple countries have developed var-
ious prediction and warning systems. The German railway
company’s nowcasting system can predict peak wind speeds
up to 2 min in advance; Italy has established a probabilis-
tic model for wind speed and direction based on data from
high-speed railway lines and nearby weather stations; France
can provide predictions for wind speed within the next 4 min;
Japan’s strong-wind alarm system can issue warnings and
forecasts for high winds up to 10 min in advance (Liu et al.,
2021). These systems rely on wind speed and direction mea-
surements along high-speed railway lines, which impose el-
evated requirements.

Ultrasonic wind measurement is the optimal option for
railway systems. Ultrasonic anemometers measure wind
speed by utilizing the effect of wind on the propagation speed
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of ultrasonic waves in the air. Compared to traditional me-
chanical wind measurement methods, an integrated design
is featured by devices. There are no moving parts during
measurement, no mechanical wear, and no risk of compo-
nent detachment. Additionally, a long service life, fast re-
sponse, great measurement accuracy, excellent resolution,
and the ability to measure high-frequency pulsations in wind
speed are characteristics of these devices. Furthermore, ran-
dom error identification technology is used to ensure low
measurement errors even under strong winds. This results
in smoother outputs and lower maintenance costs (Pirhalla
et al., 2020; Salas et al., 2022). Therefore, ultrasonic wind
measurement is the preferred choice for railway wind mea-
surement, and numerous ultrasonic wind speed devices are
installed along railway lines to mitigate the adverse effects
of extreme weather on train operations (Zhang et al., 2019).
During the wind measurement process, catenary support un-
avoidably obstructs wind speed instruments, leading to mea-
surement errors, false alarms, missed alarms, and prolonged
speed restrictions. These issues may have significant impacts
on operational safety and efficiency. The thorough investiga-
tion of the issue of shadow obstruction of the anemometer is
therefore crucial to ensure the safety protection of high-speed
trains.

Application research on the ultrasonic anemometer has en-
compassed several crucial areas. Indoor environments have
been significantly improved through computational fluid dy-
namics (CFD) and anemometer optimization, measuring air
movement, energy transfer, ventilation, and pollutants within
buildings (Antonini et al., 2019; Arens et al., 2020). In ad-
dition, recent research successfully reduced the deviation
caused by wind interference during unoccupied aerial vehi-
cle (UAV) flights by establishing a wind speed and wind di-
rection function model and achieved a breakthrough in the
field of UAV flight (Cho et al., 2019; Ghirardelli et al., 2023;
Li et al., 2023). In atmospheric turbulence research, scholars
have integrated ultrasonic anemometers into wind profilers,
capturing turbulence characteristics under different terrains,
weather conditions, and wind directions through improved
parameter algorithms, aiding in a more comprehensive un-
derstanding and analysis of atmospheric turbulence (Mauder
et al., 2020).

Although ultrasonic anemometers have been extensively
studied, certain measurement errors still exist. Not only
do these errors come from the structure of the ultrasonic
anemometer, but they may also be caused by the external
special measurement environment (Ghahramani et al., 2019;
Shan et al., 2023). Common error elimination methods in-
clude (1) employing high-quality and high-precision sensors
and components to improve measurement accuracy (Knöller
et al., 2024; White et al., 2020); (2) validating the accuracy of
ultrasonic anemometers through on-site calibration and com-
parative studies with other wind measurement devices (Lv et
al., 2024; Osterwalder et al., 2020); and (3) enhancing data
processing algorithms, such as data filtering, machine learn-

ing, and interpolation techniques, to improve measurement
accuracy (Yang et al., 2024b). Among these, machine learn-
ing models have been increasingly utilized to compensate for
the shadow effect of ultrasonic anemometers, owing to their
advantages of low cost, remarkable accuracy, and wide ap-
plicability. Machine learning also has shown excellent qual-
ity control results for wind observations when dealing with
errors caused by the external environment (Liao et al., 2020).
This method involves collecting measurement data contain-
ing shadow effects, segmenting data, selecting appropriate
machine learning models for training, evaluating model per-
formance through cross-validation and performance metrics,
and applying trained models to actual measurements of ul-
trasonic anemometers to correct errors caused by shadow ef-
fects in real time (Thielicke et al., 2021).

Due to the bulky items of experimental objects in the high-
speed railway system, wind tunnel experiments are costly
and challenging to conduct. With its capability to simulate
various physical fields, fluid–structure interaction, and air-
flow diffusion, CFD technology has seen its application ex-
panding continuously as the technology matures, gradually
becoming one of the primary approaches for research in the
railway domain (Lin et al., 2020). Compared to traditional
wind tunnel tests, CFD technology is not limited by similar-
ity criteria and wind tunnel scales. It allows for the simulation
of flow fields of any size and shape, addressing some prob-
lems that traditional wind tunnel tests cannot solve, such as
simulating structures and high Reynolds number flows (Gol-
shan et al., 2020). Additionally, CFD technology enables the
visualization of flow fields through powerful post-processing
capabilities, facilitating an intuitive perception of flow field
distribution characteristics (Calzolari and Liu, 2021). The
gradual maturity of CFD technology has provided a stable
and efficient method for the safety and efficiency of high-
speed railway operations (Lu et al., 2024).

The current investigation into high-speed-railway strong-
wind conditions employing CFD technology primarily fo-
cuses on the airflow around the surface of the train. It in-
cludes the aerodynamic effects of crosswinds between the
train and the rails (Liu et al., 2020; Szudarek et al., 2022),
the impact of wind barriers on crosswind obstruction (Deng
et al., 2021; Liu et al., 2018), and the changes in airflow gen-
erated by train movement (Liang et al., 2020). These studies
play an essential role in ensuring the safety of high-speed
trains. However, there is a lack of literature on the applica-
tion of anemometers in high-speed railways. Only the physi-
cal adjustment of the layout improves the accuracy of railway
anemometers (Zhang et al., 2019). Besides, the anemome-
ter is an indispensable device in railway operations. It is
widely distributed along the railway, and almost all wind
speed monitoring along the railway relies on it. The inter-
vals between anemometers are generally only a few kilome-
ters or even hundreds of meters, and severe wind monitoring
covers the entire section. According to Chinese rail speed
limit regulations, if the wind speed continuously exceeds the
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alarm threshold for 10 s, an alarm will be triggered. More-
over, when the instantaneous wind speed reaches the criti-
cal overturning wind speed, the train may derail or overturn
within 1 to 2 s (Chen et al., 2024). Faced with practical prob-
lems such as insufficient accuracy of railway anemometers
for high-wind monitoring and delayed high-wind warnings,
it is urgent to take measures to improve the precision of wind
speed measurement along high-speed railways.

This study proposes the PD-BX method, which is dedi-
cated to improving the accuracy of railway anemometers.
A physical constraint model was established with the cate-
nary support and anemometer. Subsequently, CFD technol-
ogy was utilized for the quantitative assessment of the envi-
ronmental change characteristics of the railway area. Based
on the results of BO-XGBoost model compensation for
anemometer measurement errors, the goal is to improve the
accurate monitoring and control of wind speed during high-
speed rail operation. In addition, error analysis was con-
ducted to assess the impact of wind observations on enhanc-
ing the operational safety of high-speed trains in extreme
weather conditions. This article provides a scientific basis for
ensuring the reliability and stability of the transportation sys-
tem.

2 Methodology

2.1 Two-dimensional ultrasonic anemometers

Two-dimensional ultrasonic anemometers typically utilize
the time-of-flight (TOF) method for wind measurement. TOF
is a ranging technique that determines the distance between
the sensor and an object by analyzing the time interval be-
tween the transmission and reception of ultrasonic pulses.
This method offers superior accuracy and resolution, en-
abling the detection of minute wind speed variations. It also
facilitates elevated sampling frequencies for real-time moni-
toring of wind speed changes (Stellinga et al., 2021).

As shown in Fig. 1, the time the sensor emits pulses along
the wind direction is denoted as t1, and the time it receives the
backscatter pulses is denoted as t2. The relationship between
t1 and t2 is expressed as the following equations:

t1 =
d/cosθ
k+V cosθ

, (1)

t2 =
d/cosθ
k−V cosθ

, (2)

where k is regarded as the propagation speed of the pulse
signal in a windless state. d is the pulse channel length. θ
is the angle between the plane and the pulse channel. V is
the wind speed. The receiving time difference of the acoustic
signal can be regarded as 1t = |t1− t2|. Since k� V , the
final wind speed V can be obtained after simplification:

V =
1t

2d cosθ
· k2. (3)

Figure 1. Diagram of the TOF principle, illustrating the acoustic
sensor, ultrasonic pulse channel, and wind direction.

According to the formula above, the shadow effect is a pri-
mary factor contributing to errors in anemometer readings.
The accuracy of the time difference method will decrease if
foreign objects obstruct the pulse path.

2.2 Computational fluid dynamics

CFD serves as a tool for quantifying physical constraints, al-
lowing for an intuitive perception of flow field distribution
characteristics through flow field visualization (Yang et al.,
2024a, 2023). In this article, CFD is utilized as a method for
simulating wind fields in railway environments.

An appropriate model is crucial for numerical simulations.
Assuming the experiment is performed in a standard state at
a temperature of 25 °C, the flow is considered to be a fluid
with a density of 1.1614 kg m−3 and a dynamic viscosity of
1.5898× 10−35 m2 s−1. Based on laboratory measurements,
the inlet flow velocity of air is set to be greater than 13 m s−1.
According to the formula for calculating the Reynolds num-
ber Re,

Re=
VL

µ
, (4)

where V is the average velocity at the inlet of the airflow. L
is the characteristic length. µ is the dynamic viscosity of the
air. According to the classification of fluid flow, the flow state
under extreme high-wind conditions is turbulent. The numer-
ical solutions for the turbulent kinetic energy k and dissipa-
tion rate ε are solved by the k-ε model (Eqs. 5–6).

∂ρUjk

∂xj
=

∂

∂xj

[(
µ+

µt

σk

)
∂k

∂xj

]
+Pk− ρε+Pkb, (5)

∂ρUjε

∂xj
=

∂

∂xj

[(
µ+

µt

σε

)
∂ε

∂xj

]
+
ε

k
(Cε1Pk+Cε1Cε3Pεb)−Cε2, (6)

where µt represents the turbulent viscosity coefficient of the
gas, Pk denotes the turbulent kinetic energy induced by ve-
locity gradients, and Pkb stands for the steady-state kinetic
energy. The following are the other empirical parameters in
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this paper: {1.2≤ Cε1 ≤ 1.6, 1.6≤ Cε2 ≤ 2, 0.08≤ Cε3 ≤
0.1, 0.9≤ σk ≤ 1.1, 1.2≤ σε ≤ 1.4}.

2.3 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is a powerful ma-
chine learning algorithm, particularly excelling in data mod-
eling and prediction tasks (Liang et al., 2024; Ma et al., 2021;
Sagi and Rokach, 2021). The specific principles of XGBoost
are introduced in Fig. 2.

The estimated output ŷ of a gradient-boosting tree model
can be represented as the sum of the predicted scores fk(xi)
of all trees.

ŷi =
∑m

k=1
fk(xi), fk ∈ 0 (7)

The XGBoost algorithm employs a learning process utilizing
m trees (where fk denotes the kth tree). Herein, a 0 desig-
nates the space of regression trees, and xi denotes the fea-
tures of the ith sample. For each leaf node j , a predictive
score fk(x), also referred to as leaf weight, is generated. The
leaf weight ωj represents the regression value of all samples
at leaf node j within the tree. If a tree has T leaf nodes, it
can be denoted as j ∈ {1,2, . . .T }.

The objective function plays a crucial role in machine
learning problems, and its optimization process continues
until the reduction of the objective function reaches a finite
state. To approximate the function set used in the model, the
following regularized objective function is defined:

φ =

n∑
i=1

l
(
yi, ŷi

)
+ γ T +

1
2
λ

T∑
j=1

ω2
j , (8)

where φ denotes the value of the loss function, n represents
the given data samples, and l(yi, ŷi) signifies the degree of
fit between the training loss function of the model and the
training data. γ T + 1

2λ
∑
ω2
j denotes the regularization term

for the complexity of the tree. Within this context, γ refers to
the degree of tree splitting, and λ represents the regulariza-
tion hyperparameter.

2.4 Bayesian optimization of hyperparameters

The process of selecting hyperparameters in XGBoost can
lead to suboptimal model choices due to various parame-
ter combinations. Bayesian optimization of hyperparameters
(BO) efficiently explores complex parameter spaces, adapts
over iterations, handles noisy functions, and requires fewer
evaluations for global optimization (Si et al., 2020; van de
Schoot et al., 2021; Xiong et al., 2023). To obtain the opti-
mal parameter combination, this study integrated BO for pa-
rameter tuning of the XGBoost model. The hyperparameter
optimization problem of the XGBoost model via Bayesian
theory can be defined as

fXGBoost(x)x ∈ Rd . (9)

In Eq. (9), x represents the hyperparameters of the XGBoost
model. The XGBoost model possesses a complex structure
and lacks gradient information. fXGBoost(x) denotes the ob-
jective function used to evaluate the performance of the
model. R represents the hyperparameter space within the
XGBoost model. d indicates the dimensionality of the hy-
perparameters to be optimized in the XGBoost model.

2.5 Evaluation metrics

The mean squared error (MSE), root mean squared error
(RMSE), mean absolute error (MAE), and coefficient of de-
termination (R2) are widely implemented metrics for eval-
uating the performance of predictive models. These perfor-
mance measures are utilized for analyzing and evaluating
the prediction results of machine learning models in exper-
iments.

MSE=
1
n

n∑
i=1
(yi − xi)

2 (10)

RMSE=

√√√√√ n∑
t=1
(yi − xi)

2

n
(11)

MAE=

n∑
i=1
|yi − xi |

n
(12)

R2
= 1−

∑
(yi − xi)

2∑
(yi − x)2

(13)

In Eqs. (10)–(13), yi represents the ith actual value, xi repre-
sents the ith predicted value, n is the number of data points,
and x is the mean of xi .

3 The proposed quality control method

As the study considers the nonlinear relationship of wind
speed, it adopts the PD-BX approach to mitigate errors stem-
ming from the anemometer obstruction by the catenary pil-
lars. As shown in Fig. 3, this method of PD-BX establishes
a grid model of the railway anemometer and constructs the
physical constraint relationship between the catenary pillar
and the anemometers. In the second step, FLUENT is har-
nessed to analyze the influence range of the physical rela-
tionship and establish a mapping relationship between simu-
lated data and actual wind speed. Finally, after segmenting
the dataset, high-quality calibration of the high-speed rail
anemometer model is achieved through data-driven hyper-
parameter optimization, utilizing the BO-XGBoost model.
Through the comparison of various evaluation indicators, the
model has been validated to significantly enhance the accu-
racy of wind observations. This method provides valuable
insights for the design and optimization of similar systems in
the future.
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Figure 2. Diagram illustrating the XGBoost algorithm.

Figure 3. Flowchart of the PD-BX method. This method consists of three steps, including physical constraint establishment, data-driven
model implementation, and intelligent algorithm hyperparameter optimization.

3.1 Physical modeling

Wind speed and direction are typically monitored by an
anemometer installed on the bracket attached to the over-
head contact line of the high-speed railway. Figure 4 depicts a
structural diagram of a well-established railway anemometer
model, illustrating its intricate design and functional compo-
nents. The support core of the model is a fixed panel firmly
connected to the overhead catenary struts, providing a sta-
ble foundation for the entire system. Protruding from the
fixed panel frame is a 1200 mm longitudinal support bar. Re-
inforcing wings are mounted on the connecting end of the
support rod to bolster its resistance from external forces and

ensure smooth system operation. In addition, the integration
of the transverse support rod completes the interconnected
support system of the anemometer model, further enhanc-
ing the elasticity and reliability of the anemometer model
along the high-speed railway corridor. The vertical rod, per-
pendicular to the horizontal rod, is installed at both ends
of the bracket. The anemometer is installed on the bracket,
with the right anemometer positioned above 4 m and the
left anemometer below 4 m. The horizontal distance between
them is 1000 mm. This configuration allows the anemome-
ter to monitor ambient wind speed without being affected by
gusts generated by high-speed trains.
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Figure 4. The railway anemometer, including physical representations, models, parameters, and simulated results. All model and physical
object dimensions in this figure are based on a 1 : 1 scale modeling by Creo software.

3.2 Parameter settings of CFD

In the study, the railway anemometer is positioned within
a rectangular wind field 10 times its size. The windward
boundary of the anemometer is distinctly delineated as the
entrance boundary, while the leeward boundary is marked
as the exit boundary. The remaining four boundaries are
designated as slip boundaries, with all boundaries of the
anemometer precisely defined as fixed boundaries. Hexahe-
dral non-uniform mesh division is implemented for all sur-
faces within the model, with most meshes possessing a mass
coefficient surpassing 0.5. As a result of the wind accelera-
tion effect, the inlet boundary is assigned an airflow veloc-
ity range of 13–30 m s−1, while wind direction is confined
within 0–360°. All experiments utilize the k-ε model to sim-
ulate the turbulent environment.

3.3 Configurations of BO-XGBoost

Through Bayesian optimization theory, the hyperparameters
of the XGBoost model have been optimized to mitigate the
error of the railway anemometer. Before training begins,
the search space for each hyperparameter is defined. Within
this space are set the ranges of learning_rate, (0.01, 0.3);
max_depth, (3, 10); min_child_weight, (1, 5); n_estimators,
(50, 200); and subsample, (0.5, 1.0). Initial hyperparameter
values are randomly chosen during the first iteration. Once
the iterative algorithm commences, evaluation metrics are in-
putted. These metrics are combined with historical evolution
results and the search space. Subsequently, the BO-XGBoost
algorithm yields the optimization outcomes for each hyper-
parameter. Then, new hyperparameter values are received
and the next iteration is initiated. This process continues until
the error results meet a predetermined threshold.

Table 1. Measurement results of the anemometer under different
humidity and wind speed conditions in the flow field.

Humidity 10 m s−1 15 m s−1 20 m s−1 25 m s−1 30 m s−1

0 % 9.93 14.87 19.84 24.81 29.80
20 % 9.91 14.78 19.77 24.74 29.69
40 % 9.87 14.72 19.68 24.66 29.56
60 % 9.84 14.68 19.64 24.59 29.47
80 % 9.79 14.61 19.59 24.45 29.38
100 % 9.77 14.58 19.54 24.41 29.30

4 Results and discussions

4.1 Physical constraint visualization and analysis

This experiment employs CFD technology to visualize the
constraint relationships of the physical model and conduct
an in-depth analysis of these relationships. Cloud diagrams,
vortex diagrams, and vector diagrams are utilized as the pri-
mary analytical tools to conduct a comprehensive study of
blocking factors, the genesis of formations, and the intensity
of the impact. This facilitated a detailed investigation into
the specific impact mechanisms affecting the performance of
railway anemometers, thereby furnishing a profound scien-
tific basis for further improving and calibrating wind obser-
vations in real-world conditions.

First, the experiment simulated the operation of the
anemometer under different weather conditions to test the ac-
curacy of wind speed measurements in extreme outdoor en-
vironments. Temperature and air pressure did not affect the
wind speed measurements, while humidity affected the re-
sults as shown in Table 1. The measurement results of the
anemometer decrease with the increase in humidity, with an
error of about 0.2 %. This indicates that other meteorological
conditions, aside from wind speed, have minimal impact on
wind speed measurements.

As depicted in Fig. 5, the depth and size of the blue shad-
ing correspond to the extent of wind speed obstruction. The
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Figure 5. Cloud maps of the railway anemometer from various angles, with a wind speed threshold set at 15 m s−1. The experimental layout
includes both the left and right sides, with spatial height divided into maps below and above 4 m, all presented from an overhead perspective
angle.

blue rectangles indicate the positions where the anemome-
ters are deployed. Below the plan view, detailed illustrations
of the frontal and lateral paths of the anemometers’ sonic
waves within the dashed frames are presented. The wind re-
sistance of the anemometer can be intuitively perceived from
the cloud images in various wind directions. Concerning the
magnitude of the shadow effect caused by the catenary struts,
the shadow effects on the left and right anemometers are most
pronounced at wind directions of 210 and 150°, respectively.
Moreover, when contrasting shadow effects caused by dif-
ferent elements, including sensors and support rods of the
anemometer, shadows primarily appear in yellow-green with
relatively minor obscuring effects. In contrast, the shadow
of the catenary pillar is predominantly blue, leading to sig-
nificant obstruction. Due to the prevalent shadow effects on
the anemometer, simulated values generally tend to be lower
than the actual flow velocity in the wind field, highlighting
the substantial requirement for error compensation in railway
anemometers.

Various wind-direction-related results are shown in Fig. 6.
It demonstrates a consistent trend when simulating observed
values of the instrument under different wind speeds, indicat-

ing a linear relationship between the observed values of the
wind speed anemometer and the environmental wind speed
at the same angle. The dashed box in light pink indicates that
the primary obstruction factor for the wind speed anemome-
ter is the catenary pillar, which is mainly distributed be-
tween 0–225 and 135–180°, with the most significant ob-
struction occurring at 165 and 195°. Additionally, the RMSE
of the observed values increases with the rise in wind speed,
indicating a growing necessity for error correction of rail-
way anemometers under extreme wind conditions. Com-
pared with the simulation in this article and the wind tun-
nel experiment conducted by Assen (Nanjing) Environment
Technology Co., Ltd., the error rate is less than 0.5 %.

Figure 7 presents wind speed vector maps and vortex maps
under extreme shadowing conditions with a wind direction
of 165° and a wind speed of 15 m s−1. From Fig. 7b–c, it
is evident that the anemometer below 4 m is obstructed by
its support rods and sensors, with dense vector lines forming
a distinct light-shadowed area, resulting in accuracy devia-
tions of the anemometer. In Fig. 7a–c, anemometers posi-
tioned above 4 m are significantly obstructed by the catenary
pillars, with vector lines diverging backward on both sides of
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Figure 6. Wind speed observations. Measurement values of the
wind speed anemometer at the main wind speed alarm thresholds
are indicated by light green and pink colors, representing observa-
tions from anemometers located below and above 4 m, respectively.

the center of the pillar’s back, forming large vortices. This
renders this position static and severely impedes the flow of
the wind field, which is the main cause of errors in the wind
speed anemometer. Furthermore, the vortex maps in Fig. 7d–
e illustrate the wind vortices around different structural com-
ponents of the anemometer, with sensor pins obstructed to
varying degrees. In Fig. 7d, the sensor pins of the anemome-
ter above 4 m appear deep blue, providing further evidence
of significant shadow effects at this location.

4.2 Error compensation

To ensure the accuracy of high-speed railway wind measure-
ments, various classical machine learning algorithms were
employed to optimize the average measurement results of
the anemometer. In this study, wind speed samples were uti-
lized as the dataset, with simulated instrument wind speed
and direction serving as input variables and environmental
wind speed as the predicted variable. Four-fifths of the to-
tal samples were allocated for the training set and one-fifth
for the test set. These sets were then inputted into the BO-
XGBoost, XGBoost, random forest (RF), and support vec-
tor regression (SVR) error correction models to compen-
sate for errors caused by obstructions of the wind speed and
wind direction anemometer. The comparison between the
BO-XGBoost model and other models is shown in Fig. 8,
where BO-XGBoost is distinguished by its smaller numeri-
cal errors, reduced outliers, and superior evaluation metrics.

In Fig. 8a, the numerical comparison of the model’s cor-
rected error against the original data is presented. All four
groups of models exhibit significant improvements. The
red line segments illustrate the errors post-revision by the
BO-XGBoost model, which are closer to the 0 scale line
compared to the other three sets of models. This indicates
fewer erratic fluctuations and better numerical outcomes. In

Table 2. Different algorithm correction error indicators.

Indicators MSE RMSE MAE R2

BO-XGBoost 0.086 0.293 0.183 0.997
XGBoost 0.180 0.424 0.242 0.993
RF 0.141 0.375 0.216 0.995
SVR 0.200 0.451 0.229 0.992

Fig. 8b, the BO-XGBoost model demonstrates a narrower er-
ror distribution, indicating reduced forecast volatility. The
median error closely approximates 0, suggesting a close
alignment between the predicted and actual wind speeds. Ad-
ditionally, upon comparing the error metrics post-correction
by different models as outlined in Table 2, it is evident that
the BO-XGBoost model tends to yield lower MSE, RMSE,
and MAE values, while R2 approaches 1, indicative of its
superior compensatory effect.

The comparison is shown in Fig. 9 of BO-XGBoost model
results. In Fig. 9a, the elliptical markers cover angular ranges
approximately from 140 to 170 and 190 to 220°. Addition-
ally, the rectangular markers predominantly indicate angle
intervals around 30, 75, 240, and 285°. Furthermore, demon-
strating the superiority of the BO-XGBoost model, Fig. 9b
presents a smoother wind speed spectrum, with some spots
falling within the reasonable range of railway wind speed er-
ror requirements.

The red line in Fig. 10 corresponds to the particular depic-
tion of wind speed within the dashed line outlined in Fig. 9a.
The red curve exhibits significantly lower values compared
to the ambient wind speed. Conversely, the compensated blue
curve closely matches the ambient wind speed. This under-
scores a notable compensatory effect of the BO-XGBoost
model in this context. Additionally, owing to the height-
ened interference from the contact wire pillars observed in
Fig. 10a–d, the simulated values are comparatively smaller
compared to Fig. 10e–h. The compensation provided by the
BO-XGBoost model effectively addresses various obstruc-
tive elements, aligning the wind speed with the environ-
mental wind speed and successfully suppressing abnormal
fluctuations. This highlights the superiority of the railway
anemometer in handling wind speed data in complex envi-
ronments.

5 Conclusions

This study utilized the PD-BX method to address the shadow
effect induced by catenary supports. The experimental pro-
cedure involved quantifying physical constraints based on
FLUENT and error compensation employing intelligent
models implemented by BO-XGBoost.

During the constraint quantification process, the situation
was observed when the anemometer was obstructed from
various wind directions. The impact was then subdivided into
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Figure 7. Multiple wind speed images depicting wind direction at 165° and wind speed of 15 m s−1. The results of the fluid dynamics
visualization are indicated at the bottom of the figure. Panels (a)–(c) depict streamline maps, while panels (d) and (e) display vorticity maps.
Additionally, the height is indicated at the top right of the figure.

Figure 8. Comparison of error corrections for different models. Panels (a) and (b) show the numerical comparison of the errors and the
corresponding violin plots.

Figure 9. Comparison of the average observation results of two anemometers before and after compensation by BO-XGBoost. In panel (a),
the ovals and rectangles depict the angular intervals affected by the catenary pillar and structural elements in the anemometer.

external obstacles and self-shadowing factors. On the one
hand, the research results indicate that the primary cause of
anemometer errors is the catenary pillar. In the wind direc-
tion intervals of 135–180 and 180–225°, the catenary pillar
generates a significant shadowing effect on the anemometer.
This effect is primarily due to the formation of a large vortex
on the leeward side of the catenary support, which obstructs
fluid flow. On the other hand, the shadow cast by the sup-

port column and sensor inside the anemometer serves as a
secondary obstruction factor.

Besides, the BO-XGBoost showed better compensation
results than other models in comparison. It can effectively
compensate for anemometer errors induced by shadow fac-
tors in certain complex railway environments. The final sim-
ulated wind speed RMSE was reduced from 2.79 to less than
0.3, underscoring the outstanding performance of the model
in rectifying wind speeds from railway anemometers. Future
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Figure 10. The specific value of anemometer compensation. Red represents the simulated data, and blue represents the BO-XGBoost revised
data.

research will undertake experiments to investigate the ob-
struction errors of railway anemometers resulting from other
factors in complex high-speed rail environments. Addition-
ally, measuring wind direction for high-speed rail will be a
primary focus. This endeavor will enhance our understand-
ing of the potential impact of high-speed rail systems on wind
speed and direction instruments.
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