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Abstract. Accurate and precise Kpp estimates are essen-
tial for radar-based applications, especially in quantitative
precipitation estimation and radar data quality control rou-
tines. The accuracy of these estimates largely depends on the
post-processing of the radar’s measured ®pp, which aims
to reduce noise and backscattering effects while preserving
fine-scale precipitation features. In this study, we evaluate
the performance of several publicly available Kpp estima-
tion methods implemented in open-source libraries such as
Py-ART (the Python ARM (atmospheric radiation measure-
ment) Radar Toolkit) and wradlib and the method used in
the Vaisala weather radars. To benchmark these methods, we
employ a polarimetric self-consistency approach that relates
Kpp to reflectivity and differential reflectivity in rain, pro-
viding a reference self-consistent Kpp (K{3p) for compari-
son. This approach allows for the construction of the refer-
ence Kpp observations that can be used to assess the accu-
racy and robustness of the studied Kpp estimation methods.
We assess each method by quantifying uncertainties using C-
band weather radar observations, where the reflectivity val-
ues ranged between 20 and 50 dBZ.

Using the proposed evaluation framework, we were able
to define optimized parameter settings for the methods that
have user-configurable parameters. Most of these methods
showed a significant reduction in the estimation errors after
the optimization, with respect to the default settings. We have
found significant differences in the performance of the stud-
ied methods, where the best-performing methods showed
smaller normalized biases in the high reflectivity values (i.e.,
> 40 dBZ) and overall smaller normalized root-mean-square
errors across the range of reflectivity values.

1 Introduction

The specific differential phase (Kpp) plays an important role
in many weather radar applications, particularly in hydrom-
eteor classification (Holler et al., 1994; Vivekanandan et
al., 1999; Liu and Chandrasekar, 2000; Zrni¢ et al., 2001;
Keenan, 2003; Lim et al., 2005; Tessendorf et al., 2005;
Marzano et al., 2007; Dolan and Rutledge, 2009; Park et
al., 2009; Snyder et al., 2010; Al-Sakka et al., 2013; Dolan
et al., 2013; Thompson et al., 2014; Bechini and Chan-
drasekar, 2015; Grazioli et al., 2015; Wen et al., 2015; Besic
et al., 2016; Ribaud et al., 2019) and quantitative precip-
itation estimation (QPE) (Sachidananda and Zrni¢, 1987,
Chandrasekar et al., 1990; Ryzhkov and Zrni¢, 1995, 1996;
May et al., 1999; Bringi and Chandrasekar, 2001; Bringi et
al., 2006; Matrosov et al., 2006; Giangrande and Ryzhkov,
2008; Bringi et al., 2011; Cifelli et al., 2011; Wang et al.,
2013; Figueras i Ventura and Tabary, 2013; Chen and Chan-
drasekar, 2015; Chen et al., 2017; Thompson et al., 2018;
Zhang et al., 2020), and is used in data assimilation for nu-
merical weather prediction models (Thomas et al., 2020; Du
et al.,, 2021) and in hydrological applications (Brandes et
al., 2002; Ryzhkov et al., 2005a; Vulpiani et al., 2012; Li et
al., 2023; Cremonini et al., 2023). Compared to radar power
variables; i.e., the reflectivity factor at horizontal polariza-
tion (Zy) and differential reflectivity (Zq4;), Kpp offers ad-
vantages in terms of accuracy, resilience, and reliability due
to its immunity to radar miscalibration, attenuation (Bringi
and Chandrasekar, 2001; Illingworth, 2004; Ryzhkov and Zr-
nic, 2019), and partial beam blockage (Zrni¢ and Ryzhkov,
1996). It has also proven successful in hydrometeor classifi-
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cation routines (Lim et al., 2005; Park et al., 2009; Grazioli et
al., 2015; Tiira and Moisseev, 2020), especially in the detec-
tion of graupel (Dolan and Rutledge, 2009; Oue et al., 2015)
and small melting hail (Kumjian et al., 2019), and in the den-
dritic growth zone and the processes within (Kennedy and
Rutledge, 2011; Andri¢ et al., 2013; Schneebeli et al., 2013;
Moisseev et al., 2015; Kumjian and Lombardo, 2017). The
ability of Kpp to accurately estimate heavy rainfall, differen-
tiate hydrometeor types, and overcome attenuation in precip-
itation makes it an invaluable operational and research radar
variable.

Despite its advantages, accurate estimation of Kpp from
the radar-measured differential phase (®pp) remains chal-
lenging. Mathematically, Kpp is half of the range deriva-
tive of ®pp, which measures the phase shift between hor-
izontally and vertically polarized signals as they propagate
through precipitation. This phase shift (®pp) is influenced by
hydrometeor concentration, shape, orientation, and composi-
tion (Kumyjian, 2018). However, ®pp is not typically smooth
and does not monotonically increase along the rain path; it
contains fluctuations due to noise (¢) and the backscattering
differential phase (épgv) (Ryzhkov and Zrni¢, 1996; Ryzhkov
and Zrnic, 1998). Excessive filtering of ®pp to remove €
can lead to the loss of fine-scale precipitation features, af-
fecting the accuracy of Kpp estimates, especially in light
precipitation (Huang et al., 2017). In heavier precipitation,
dyv causes spikes in ®pp, especially at higher radar frequen-
cies, further complicating accurate Kpp estimation (Bringi
and Chandrasekar, 2001).

To address these challenges, various methods have been
developed to post-process ®pp and derive Kpp (Hubbert et
al., 1993; Hubbert and Bringi, 1995; Ryzhkov et al., 2005c;
Wang and Chandrasekar, 2009; Otto and Russchenberg,
2011; Maesaka et al., 2012; Vulpiani et al., 2012; Schnee-
beli and Berne, 2012; Giangrande et al., 2013; Schneebeli et
al., 2014; Huang et al., 2017; Reinoso-Rondinel et al., 2018;
Wen et al., 2019). Basic approaches include median filters
and moving windows, while more advanced methods use re-
gression techniques and self-consistency constraints based
on Zy or Zg;. Many of these methods are now available in
open-source Python libraries such as the Python ARM (at-
mospheric radiation measurement) Radar Toolkit (Py-ART;
Helmus and Collis, 2016) and wradlib (Heistermann et al.,
2013). For this study, some of the most popular methods
based on Maesaka et al. (2012), Vulpiani et al. (2012), Gi-
angrande et al. (2013), and Schneebeli et al. (2014) were
selected for analysis. Additionally, the Kpp product imple-
mented by Vaisala in the IRIS software (Vaisala, 2017),
based on Wang and Chandrasekar (2009), was also included
in our analysis. Each algorithm has its own data require-
ments, mathematical approach, and optimizing parameters,
raising the question of which method performs optimally un-
der varying parameter settings and rainfall intensities.

Recent studies show that Kpp estimates can vary signifi-
cantly depending on the algorithm and the optimizing param-
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eters used. Reimel and Kumjian (2021) evaluated the errors
in several methods using synthetic Kpp profiles and found
that no single algorithm was optimal across all rainfall con-
ditions. Instead, performance varied according to the com-
plexity of the rain profile and the parameters selected. They
identified kdp_maesaka (Py-ART’s implementation of the
Maesaka et al., 2012, method) and phase_proc_lp (Py-ART’s
implementation of the Giangrande et al., 2013, method)
as particularly versatile. However, Reimel and Kumjian
(2021) used synthetic data, which may miss some of the
effects present in radar observations of rainfall (e.g., Sgv).
More recently, Li et al. (2023) compared kdp_maesaka and
phase_proc_Ip in an extreme summer rainfall event, finding
that fine-tuning the methods played a key role in retrieving
the most accurate Kpp estimate. Despite these insights, the
performance of and uncertainties in most methods of rainfall
observations remain largely unexplored.

The goal of this study is to evaluate the performance of
publicly available Kpp estimation methods on real rainfall
observations and quantify their uncertainties as a function of
reflectivity intensities. To achieve this, we employ a bench-
marking Kpp, herein K}, computed from measured Zy and
Z4r, and use self-consistency relations in rain. In rainfall ob-
servations, the polarimetric radar variables are not indepen-
dent, but one can be computed in terms of the others via the
self-consistency relations (Aydin et al., 1987; Scarchilli et al.,
1993). These relations have proven successful in hydrome-
teor classification (Aydin and Giridhar, 1992) and radar cal-
ibration correction (Gorgucci et al., 1992) routines. For in-
stance, Aydin and Giridhar (1992) showed that the hydrome-
teors can be classified based on their proximity to clusters
around self-consistency curves between polarimetric vari-
ables. At nearly the same time, Gorgucci et al. (1992) noted
the self-consistency of Zy, Z4r, and Kpp in rainfall and pro-
posed a method to calibrate Zy and correct Zy-rainfall esti-
mates, benchmarking against Kpp-rainfall estimates. There-
after, several methods linking the polarimetric variables via
self-consistency relations have been widely used to calibrate
Zy (Goddard et al., 1994; Scarchilli et al., 1996; Vivekanan-
dan et al., 2003; Ryzhkov et al., 2005b; Gourley et al., 2009).
In this study, K, is computed using the consistency relation
linking Kpp to Zy and Zg;, which was first noted by God-
dard et al. (1994) and described in Gourley et al. (2009), re-
quiring thorough selection and filtering of Zy and Zg,. K35p
computed from quality controlled Zy and Z4 measurements
provides a solid benchmark against which to compare the
methods’ performance, to select optimal parameters, and to
quantify the associated uncertainties.

This paper is organized as follows. Section 2 describes
the radar and disdrometer data, shows the evaluation frame-
work, and introduces the Kpp estimation methods. Section 3
presents and discusses the parameter optimization and per-
formance evaluation of the methods, and Sect. 4 summarizes
the findings.
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Figure 1. Map showing the locations of FMI’s Vantaa radar (VAN)
and Hyytidld’s research station where the drop size distribution
(DSD) data were collected. The shaded area is a circle with a
250 km radius corresponding to the spatial coverage of the radar.

2 Data and methods
2.1 Radar and disdrometer data

This study evaluates the performance of Kpp estimation
methods using real rainfall data. The dataset was collected
from the Finnish Meteorological Institute (FMI) C-band Van-
taa radar, located near Helsinki, Finland (see Fig. 1). The
radar recorded various quantities, including Zy, Zgr, Ppp,
Kpp, the cross-correlation coefficient (pgy), and the hy-
drometeor classification product available in IRIS (Vaisala,
2017) and based on the methodology described by Chan-
drasekar et al. (2013). The spatial resolution of the radar
is 500 m in range and 1° in azimuth, with scans performed
every 5min, and the data were collected with an elevation
angle of 0.7°. The dataset spans June to September during
the years 2017 to 2019, capturing precipitation events with
variable rainfall intensities and spatial extents. The raw radar
dataset as well as the post-processed Kpp estimates are avail-
able from the link provided in Aldana (2024).

To ensure data quality, only periods when the Vantaa radar
had calibration errors within 1dB were selected. The cal-
ibration was verified by (i) identifying periods where so-
lar flux estimates from Vantaa radar estimates aligned con-
sistently with Dominion Radio Astrophysical Observatory
(DRAO) estimates (Huuskonen and Holleman, 2007; Tap-
ping, 2013; Holleman et al., 2022) and (ii) selecting radar
scans within the periods where Zpy-calibration offsets were
within 1dB, following the absolute calibration procedure
outlined by Gourley et al. (2009). Z4, bias was estimated
and corrected during these periods by computing the offset
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between observed and self-consistent Zg, derived from ob-
served Zy, as described in Hickman (2015), and by comput-
ing the average for several cases.

The performance of the Kpp estimation methods is bench-
marked against the self-consistent K}, computed from mea-
sured Zy and Zy; and by using self-consistency relations in
rain. The self-consistency relations, which link the polari-
metric radar variables, were derived by fitting radar vari-
ables computed using the open-source library, PyTMatrix
(Leinonen, 2014). PyTMatrix provides a simple interface for
T-matrix electromagnetic scattering calculations (Waterman,
1965; Mishchenko et al., 2000), requiring the user to pro-
vide drop size distribution (DSD) data and setting parame-
ters such as temperature, the radar wavelength band, and the
raindrop shape model. The parameters used for the T-matrix
calculations were 10°C, C-band, and Thurai et al. (2007),
respectively, and the DSD data provided were collected by
an optical Parsivel disdrometer (Moisseev, 2024) located in
Hyytidld, Finland (see Fig. 1).

The Parsivel disdrometer records the number of particles
and their velocity at 1 min intervals, sorting the data into 32
bins depending on the particle’s size (i.e., equivalent vol-
ume diameter) and 32 additional bins depending on the parti-
cle’s fall velocity. From the number of particles and the size
and velocity classes, the Parsivel disdrometer computes the
precipitation type, which was used to filter out non-liquid
particles. Observations were further limited to times when
the 30 min average 2 m temperature exceeded 2 °C to ensure
liquid rain. Following the filtering procedure suggested by
Leinonen et al. (2012) to reduce statistical errors, only those
measurements with at least 100 counts in two consecutive
bins and positive counts in at least four consecutive bins were
retained. The disdrometer dataset, covering June to Septem-
ber from 2014 to 2019, provided a robust basis for deriving
average summer-season DSD parameters such as the mean
volume diameter (Dg) and intercept (Ny) and shape (u) pa-
rameters. These parameters showed strong agreement with
those reported by Leinonen et al. (2012) in a climatologi-
cal study of Finland. From the derived DSD parameters (N,
Dy, and p), the polarimetric radar variables were computed
and used to derive the self-consistency relation, defining the
framework to evaluate the Kpp estimation methods.

2.2 Kpp evaluation framework

The performance of the Kpp estimation methods is evalu-
ated using K7J;, as a benchmark. This quantity is calculated
from each radar-measured tuple (Zy, Zg4;), following a rela-
tionship of the form (Goddard et al., 1994; Illingworth and
Blackman, 2002; Gourley et al., 2009)

Kifp =2 x 107 x (a1 +a2 x Zae +a3 x Zg+ar x 73,) . (1)

where zpg= 100-1%Zn represents Zyg in linear units
(mm6 m™3), and Zg is in decibels (dB). The coefficients
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used in this relation are a; = 6.78, ap = —2.65, a3 = 0.562,
and a4 = —0.0624. The coefficients align well with those
reported by Gourley et al. (2009), which employed the
raindrop shape models by Brandes et al. (2002) and Thurai
and Bringi (2005).

To ensure the accuracy and robustness of the K, esti-
mates used in the method assessment, it was crucial to qual-
ity control the Zy and Zg4, data. Radar observations of rain
are often affected by non-meteorological measurements, res-
onance effects, and hail contamination (Bringi and Chan-
drasekar, 2001; Kumjian, 2013; Ryzhkov and Zrnic, 2019).
To address these issues, the following filtering steps were ap-
plied.

— Noise filtering. A minimum threshold of 0.97 was ap-
plied to ppy.

— Non-meteorological observation filtering. The hydrom-
eteor classification product from IRIS (Vaisala, 2017),
based on Chandrasekar et al. (2013), was used to ex-
clude gates classified as non-meteorological.

— Spv reduction. Gates with Z4; > 3.5 dB were excluded
(Bringi and Chandrasekar, 2001; Gourley et al., 2009).

— Non-liquid rain filtering.

— Only radar scans from the warm months (June—
September) were selected.

— Gates not classified as rain by the hydrometeor clas-
sification product were excluded.

— Hail contamination was addressed by removing
gates with Zg > 50 dBZ.

— Observations from the melting layer and above
were suppressed by masking gates further than
70 km (see last dashed ring in Fig. 2) from the radar
in the radial direction. The distance was manually
set by identifying gates with melting layer signa-
tures (Giangrande et al., 2008; Boodoo et al., 2010).

In addition to addressing noise and non-liquid rain mea-
surements, K}, estimates are affected by attenuation in Zy
and differential attenuation in Zg;, particularly in cases of
heavy rainfall, of extended propagation paths through rain
(hereafter rain paths) (Zrni¢ and Ryzhkov, 1996; Carey et al.,
2000; Bringi and Chandrasekar, 2001; Kumyjian, 2013), and
when the radar’s antenna radome is wet (Blevis, 1965; Kurri
and Huuskonen, 2008). To mitigate these effects, radar scans
when there was rain on top of the radar within the past 20 min
were discarded. Then, for the remaining cases, attenuation
in heavy precipitation or extended rain paths was addressed
by flagging the radar gates when suspected attenuation of
at least 1dB was detected. The attenuation in range gates
was inferred using a standard method that linearly relates the
losses in Zy and Zg; to increases in A®pp (Ryzhkov and
Zrnié, 1995; Carey et al., 2000; Bringi and Chandrasekar,
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2001; Gourley et al., 2009). A®pp corresponds to the total
span of ®pp along the radial within a rain path. A rain path
was defined as a set of consecutive gates with rain features
extending at least 20 km in the radial direction. For C-band
radar, a minimum threshold of 12° in A ®pp indicates atten-
uation of at least 1 dB (Carey et al., 2000). In this study, a
threshold of 10° was used, meaning that gates within rain
paths featuring A®pp > 10° were flagged as attenuated.

An example of the filtering procedure applied to a radar
scan is shown in Fig. 2. This figure demonstrates the effects
of the filtering process and the attenuation considered on the
chosen data samples.

Following the filtering process, the dataset comprised
652 624 quality controlled gates from 70 radar scans. Fig-
ure 3 presents a histogram of the data proportions across
different Zy values, showing the highest percentage of data
between 30 and 35 dBZ, with a sharp decrease from 35 to
50dBZ. The stacked bars indicate the percentages of attenu-
ated and non-attenuated gates, with the ratio of attenuated to
non-attenuated data increasing with greater Zy.

2.3 Kpp estimation methods

This section provides an overview of the Kpp estima-
tion methods selected for this study. The selection crite-
ria focused on the availability of these methods in widely
used open-source libraries, such as Py-ART (Helmus and
Collis, 2016) and wradlib (Heistermann et al., 2013).
At the time of this study, Py-ART version 1.17.0 in-
cluded the following methods: kdp_maesaka, kdp_vulpiani,
phase_proc_lp, and kdp_schneebeli. wradlib version 2.0.3
included kdp_from_phidp and phidp_kdp_vulpiani. How-
ever, phidp_kdp_vulpiani was excluded from our analysis,
as it is based on the same method proposed by Vulpi-
ani et al. (2012) that is already represented in Py-ART by
kdp_vulpiani. Additionally, kdp_iris, a method based on
Wang and Chandrasekar (2009) and implemented by Vaisala
in the IRIS software (Vaisala, 2017), was included. Table 1
summarizes the key features of the selected methods, and a
brief description of the methods is provided below.

a. kdp_maesaka. Developed by Maesaka et al. (2012)
and available in Py-ART, this method estimates non-
negative Kpp from liquid-precipitation measurements.
It addresses the issue of negative Kpp estimates ob-
served in exclusively liquid-precipitation regions when
using classical methods based on iterative filtering and
local linear regression. Maesaka et al. (2012) identified
that negative Kpp were caused by noise in ®pp during
weak precipitation and by gy during heavy precipita-
tion. The method restricts Kpp to positive values and
assumes that ®pp is a monotonically increasing func-
tion with range, which is already unfolded.

b. kdp_vulpiani. Developed by Vulpiani et al. (2012) and
available in Py-ART, this method estimates Kpp for
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Radar: Vantaa, elevation angle: 0.7 deg, timestamp: 2019-07-16 02:35:00
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Figure 2. Example of a Vantaa radar scan during a precipitation event on 16 July 2019 at an elevation angle of 0.7°. Panel (a) shows measured
Zy; panel (b) shows filtered Zy with masked gates in gray; panel (c) shows the same as panel (b) but with attenuated gates marked in red
and non-attenuated gates marked in blue. Dashed rings represent radial distances of 10, 30, 50, and 70 km from the radar.
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Figure 3. Proportion of data across Zy intervals of 5 dBZ. Atten-
uated data are represented by red bars, and non-attenuated data are
represented by blue bars. The legend indicates the total number of
gates with suspected attenuation of at least 1 dB (red) and less than
1dB (blue).

any type of precipitation. It uses a multistep moving-
window range derivative approach to obtain Kpp. It
calculates a Kpp profile from the range derivative of
a noise-reduced, offset-corrected, and unfolded ®pp
profile. At each window, Kpp is compared to thresh-
olds representing unrealistic Kpp values within precip-
itation, correcting possible aliasing with the minimum
threshold.

c. phase_proc_Ip. Developed by Giangrande et al. (2013)
and available in Py-ART, this method estimates non-
negative Kpp from liquid-precipitation measurements.
It uses a linear-programming (LP) method to enforce
monotonic behavior in ®pp, restricting Kpp to posi-
tive values. It extracts iy from ®pp, and it uses self-
consistency constraints to bound Kpp estimates based
on measured Zy. The method requires quality con-
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trolled Zy and allows user-defined thresholds to exclude
hail and the setting of the environmental 0 °C level to
exclude mixed-phase particles.

d. kdp_from_phidp. Implemented in wradlib (Heistermann

et al., 2013) and based on Vulpiani et al. (2012), this
method estimates Kpp for any type of precipitation. It
computes range-wise differentiation of ®pp over a user-
defined window size length, defaulting to seven gates
for a range resolution of 1 km. Unlike kdp_vulpiani, it
allows the selection of the method for range gate differ-
entiation, albeit without supporting multiple iterations,
prioritizing speed over phase unfolding and noise issues
in CI)DP.

. kdp_schneebeli. Developed by Schneebeli et al. (2014)
and available in Py-ART, this method estimates Kpp for
any type of precipitation. It selects the best-averaged
Kpp profile from forward and backward propagation
Kalman-filtered estimates. The Kalman filters are ap-
plied twice to each range gate state (accounting for
forward and backward propagation) multiple times, re-
calculating the covariance matrices each time to yield
unique states, and the best estimate is selected.

f. kdp_iris. Implemented in the Vaisala software IRIS

(Vaisala, 2017) and based on Wang and Chandrasekar
(2009), this method estimates Kpp for any type of pre-
cipitation. It computes Kpp adaptively through piece-
wise regression and a regularization framework that
minimizes both smoothness in ®pp and regression er-
rors. The regularization adapts based on range varia-
tions in Kpp and pgy measurements, preserving steep
®pp changes in high-intensity precipitation while re-
ducing variations in low-intensity precipitation.

Atmos. Meas. Tech., 18, 793-816, 2025
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Table 1. List of the Kpp methods studied, with key features.

M. Aldana et al.: Benchmarking K pp in rainfall

Method Source Data Precipitation =~ Mathematical approach Tested parameters
pre-requisites type (constraints)
kdp_maesaka Py-ART  Unfolded ¢pp Liquid Variational Clpf
kdp_vulpiani Py-ART  Pre-filtered YVpp  Any Moving window windsize, n_iter
phase_proc_lp Py-ART  Unattenuated Zyy  Liquid Linear programming (Kpp(Zy)) self_const, coef, window_len
kdp_from_phidp  wradlib  No NaN values Any Moving window winlen, dr
kdp_schneebeli Py-ART  Pre-filtered YVpp  Any Kalman filter -
kdp_iris IRIS - Any Adaptive regression -
3 Results Clpf, which regulates the low-pass filter in ®pp. The low-

3.1 Parameter optimization of methods

All the methods except kdp_iris are available in open-source
libraries and feature user-configurable parameters to im-
prove the Kpp estimates. However, two methods are ex-
cluded from the optimization: kdp_schneebeli and kdp_iris.
In kdp_schneebeli, the error covariance matrices of the mea-
surements (rcov) and state transitions (pcov) require a large
ensemble of stochastic simulated rainfall fields to be de-
rived. Since such information is not available to us, we
use the method with default settings. In kdp_iris, the end
user has no effect on the derivation of Kpp. Instead, at
the FMI, we use the Kpp product as it comes from the
IRIS software (Vaisala, 2017). Therefore, the optimization
focuses on the kdp_maesaka, kdp_vulpiani, phase_proc_lp,
and kdp_from_phidp methods, and in this section, we quan-
tify the errors under varying parameter settings and select the
optimal values.

First, a qualitative analysis is provided using of Kpp vs.
Zy scatterplots, illustrating the relationship between esti-
mated Kpp (y axis) and Zy (x axis) and benchmarking
against K, (dashed black line). Then, the errors in each
method as a function of parameter setting and Zy are pro-
vided. To achieve this, the dataset was divided into six 5 dB
intervals ranging from 20 to 50 dBZ; we then computed the
root-mean-square error (RMSE) and mean error (herein bias)
for each interval and normalized by the mean K5, from each
interval. The optimal parameters were selected based on the
smallest averaged normalized RMSE (herein NRMSE) in the
last three Zp intervals (i.e., 35-50 dBZ), prioritizing the ac-
curacy of Kpp estimates in high-intensity precipitation.

The settings tested for kdp_maesaka, kdp_vulpiani,
phase_proc_lp, and kdp_from_phidp are summarized in Ta-
ble 2, which indicates the tested values, the default value(s)
used in the implementation, and the optimal value(s) found
in this study.

3.1.1 Py-ART’s Maesaka method

Py-ART’s implementation of the Maesaka et al. (2012)
method, kdp_maesaka, features the optimizing parameter
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pass filter controls the degree of smoothing of ®pp, with
higher Clpf values producing smoother ®pp profiles. In
kdp_maesaka, the default value of Clpf is 1.0, and this value
is scaled by the range resolution of the radar to match the
resolution of the constraints applied to ®pp. The scaling is
proportional to the fourth power of the range resolution of
the radar, and if we were to compare to the values used in
Maesaka et al. (2012), a value of 1.0 corresponds to 1019 for
the Vantaa radar’s range resolution of 500 m. In Maesaka et
al. (2012), Clpf values from 10° to 10'3 were tested on one
rainfall case using a 250 m range resolution X-band radar.
Their results show that values closer to 10! suppressed fine-
scale precipitation features while producing a smooth and
clean Kpp, whereas values closer to 10° preserved fine-scale
features while including substantially more noise. These re-
sults lead us to test values from 10® to 10", corresponding
to 1072 and 10° in kdp_maesaka and accounting for the Van-
taa radar’s range resolution. Figure 4a—h show scatterplots of
Kpp estimates using kdp_maesaka as a function of Zy for
different Clpf values. All scatterplots show overall accurate
and precise Kpp estimates within the Zy range of 0-30 dBZ.
This result implies that the subset of Clpf values studied pro-
duces sufficiently smoothed ®pp to reduce the impact of
noise in light precipitation. However, the effects of excessive
smoothing are observed in the range of 40-50 dBZ, where
Kpp noticeably underestimates K. By comparing the scat-
terplots from Clpf= 1072 to Clpf= 10> in the Zy interval
of 40-50 dBZ, the underestimation of Kpp is stronger with
increasing Clpf.

To capture the influence of Clpf on the errors when esti-
mating Kpp as a function of precipitation intensity, Fig. Sa
and b show NRMSE and the normalized bias of Kpp es-
timates with varying Clpf. The smaller and more consis-
tent NRMSEs in regions of Zy > 35dBZ in Fig. 5a indicate
that kdp_maesaka reaches stable solutions for all Clpf values
tested. However, Clpf of 10° showed the largest variability
when transitioning from lowest to highest Zy among the val-
ues tested, producing the largest NRMSE for Zy > 35dBZ
and the lowest otherwise. The underestimation of Kpp using
10 is evidenced in Fig. 5b for Zy > 35 dBZ, where the re-
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Table 2. Summary of the parameter settings for each of the optimized methods.

Method Parameter(s) tested Tested values  Default  Optimal
kdp_maesaka Clpf [10—2, 10~1, 100, 10!, 102, 103, 10%, 105] 100 1072
kdo vulpiani windsize {2,6,10, 14} 10 10
p_Vip n_iter {2,6,10, 14} 10 2
phase_proc_Ip window_len {5,10, 15,20, 25, 30, 35, 40} 35 5
. winlen {3,7,11} 7 11
kdp_from_phidp {0.5,1,2,4} 1.0 2
kdp_maesaka
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Figure 4. Scatterplots of estimated Kpp from kdp_maesaka as a function of reflectivity and for various values of Clpf. Panels (a)—(h) show
results with Clpf values from 102 to 10°. The dashed black line corresponds to K.

sults were the most negatively biased. The biases from the
remaining parameters were equally consistent and smaller.

Our results show that larger values of Clpf lead to larger
errors due to oversmoothing of ®pp. Overall, kdp_maesaka
performs consistently when precipitation intensities reach
35dBZ. The Clpf yielding the smallest 35-50 dBZ averaged
NRMSE was 1072,

3.1.2 Py-ART’s Vulpiani method

Py-ART’s implementation of the Vulpiani et al. (2012)
method, kdp_vulpiani, features two optimizing parameters:
windsize (the number of gates used for estimating Kpp) and
n_iter (the number of re-estimations of Kpp per window).
Higher values of these parameters result in smoother ®pp
profiles. Reimel and Kumjian (2021) found various param-
eter combinations that worked well depending on precipita-
tion complexity, leading us to test combinations from 2 to
14 for both parameters. Figure 6a—p show scatterplots com-
paring the performance of kdp_vulpiani for different val-
ues of windsize and n_iter when estimating Kpp. Figure 6a

https://doi.org/10.5194/amt-18-793-2025

shows the scatter of Kpp using the largest settings tested,
whereas Fig. 6p shows the results for the smallest. Each row
holds windsize constant, while each column holds n_iter con-
stant. In the scatterplot from Fig. 6a with windsize = 14 and
n_iter = 14, the data are predominantly clustered under Kp
for Zy >35dBZ, indicating underestimation of Kpp. For
Zy < 35dBZ, this parameter setting produces accurate and
precise results. The scatterplots for smaller setting values,
i.e., towards Fig. 6p, are slightly more accurate, albeit signif-
icantly less precise; the scatterplot from Fig. 6p with wind-
size =2 and n_iter =2 shows a wider spread of Kpp data
for all Zy values, although with slightly enhanced clustering
of data around K]S)CP for Zy > 35 dBZ. These results indicate
a trade-off between precision and accuracy when varying
windsize and n_iter from 14 to 2. In particular, larger settings
favored precision while degrading accuracy, and smaller set-
tings favored accuracy with degraded precision.

To further analyze the trade-off between accuracy and pre-
cision when varying windsize and n_iter in kdp_vulpiani,
Fig. 7a-b show the NRMSE and normalized bias of Kpp es-
timates with varying windsize and n_iter as a function of Zy.

Atmos. Meas. Tech., 18, 793-816, 2025
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Figure 5. Panel (a) shows RMSE normalized by the interval-averaged K, of kdp_maesaka relative to K}, as a function of reflectivity and
for various values of Clpf; panel (b) shows the same as panel (a) but for the normalized bias metric.

Figure 7a shows that a windsize of 2 yielded the worst perfor-
mance, implying that the gain in accuracy by including fine-
scale fluctuations in ®pp is not enough to compensate for the
increased errors due to the inclusion of outliers. On the other
hand, a windsize of 14 shows good performance across the
entire Zy range. However, the predominantly negative nor-
malized bias of a windsize of 14 relative to the smaller coun-
terparts in Fig. 7b indicates that the larger windsize leads to
more underestimation of Kpp than lower windsize values.
The consistent errors when varying n_iter in Fig. 7a indicate
that this parameter setting does not impact the performance
of kdp_vulpiani as strongly as windsize does, especially in
low Zy. However, results from Fig. 7b suggest that smaller
n_iter significantly reduces the underestimation of Kpp esti-
mates when the windsize is large. Our results strongly resem-
ble those reported in Reimel and Kumjian (2021), indicat-
ing that a smaller number of iterations and moderate window
sizes significantly enhance the performance of kdp_vulpiani.
In particular, among the RMSE heat maps of kdp_vulpiani
shown in Reimel and Kumjian (2021), windsize =10 and
n_iter =2 produced the best results, coinciding with the
smallest 35-50 dBZ averaged NRMSE in this study.

3.1.3 Py-ART’s linear programming method

Py-ART’s implementation of an LP method proposed in Gi-
angrande et al. (2013), phase_proc_lp, allows the user to
tune the window length to smooth ®pp, window_len, and
two intertwined parameters constraining the Kpp output via
self-consistency relations: self_const and coef. The former is
the weight of the self-consistency constraint and the latter is
the exponent in the self-consistency relation linking Kpp to
Zy, which is given in Giangrande et al. (2013) as aZI’fI but
is expressed in phase_proc_lp as (10%-1XZH)coef /gelf const.
Since information about the expected Kpp was known be-
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forehand, given by K, we provided the method with the
optimal values of self_const = 10* and coef=0.914. In this
way, the parameter optimization of phase_proc_lp was fo-
cused solely on window_len variations.

The parameter window_len defines the window length for
smoothing of the LP-processed ®pp field before Kpp is esti-
mated. The default setting of this parameter is 35, indicating
a smoothing window length of 17.5km for a range resolu-
tion of 500 m. To include finer-scale precipitation features
(e.g., ~2.5km), phase_proc_lp was tested with window_len
values ranging from 5 to 40. Figure 8a—h show scatterplots
comparing the performance of phase_proc_lp for different
settings of window_len estimating Kpp. Each panel from
Fig. 8a to h shows Kpp estimated using window lengths
from 5 to 40 in intervals of 5. The scatterplot from Fig. 8a
with window_len = 5 shows data points predominantly clus-
tered around K{J,, across the entire Zy range, indicating
strong correlation between Kpp and Kls)cp. Even in high Zy
ranges (i.e., >35dBZ), the tight correlation between Kpp
and K5, holds, indicating high accuracy and precision of
Kpp in the presence of heavy precipitation. The accuracy
and precision of Kpp relative to K3 decreases progressively
when window_len increases, indicated by the spreading and
downward shifting of the Kpp estimates relative to K. Es-
pecially for the range Zy >35dBZ, the scatterplots from
Fig. 8e to h, with window_len from 25 to 40, respectively,
show substantial underestimation of Kpp relative to K,
indicating stronger oversmoothing of ®pp for larger values
of window_len. Comparing the scatterplots, window_len =35
undoubtedly shows the best performance of phase_proc_lp.
This result agrees with phase_proc_lp window_len experi-
ments by Li et al. (2023) in an extremely heavy precipita-
tion event, where small window_len yielded the best per-
formance. Compared to the phase_proc_lp experiments by
Reimel and Kumjian (2021), our results suggest that smaller
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Figure 6. Scatterplots of estimated Kpp from kdp_vulpiani as a function of reflectivity and for various values of windsize and n_iter.
Panels (a)—(p) show results with (windsize, n_iter) tuple values from (14, 14) to (2, 2), decreasing windsize with increasing rows. The dashed

black line corresponds to K]S)CP.

window_len produce overall more accurate Kpp estimates.
However, the influence of the self-consistency constraints
proposed in Giangrande et al. (2013) plays a key role in this
aspect; if optimal self-consistency constraints are not pro-
vided or do not match theoretical expectations, the preci-
sion and accuracy in Kpp significantly decreases, and larger
window_len values compensate for this by oversmoothing
dpp (see Appendix A for results of the performance of
phase_proc_lp with very little influence of self-consistency
constraints).

To further investigate the effects of window_len on the
performance of phase_proc_lp, Fig. 9a—b show the NRMSE
and normalized bias of Kpp estimates with varying win-
dow_len as a function of Zy. In agreement with the pat-
terns observed in the scatterplots in Fig. 8, window_len =5
produced the best performance compared to other parame-
ter settings. Interestingly, even in light precipitation (e.g.,
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Zy < 30dBZ), smaller values of window_len produced the
best NRMSE metrics, indicating that larger window_len do
not further improve the precision of phase_proc_lp. Instead,
larger window_len enhanced the bias of Kpp relative to K35,
as shown in Fig. 9b. The parameter window_len=35 pro-
duced undoubtedly the best metrics for phase_proc_lp, and
it was selected as the optimal parameter.

3.1.4 wradlib’s Vulpiani method

wradlib’s implementation of the Vulpiani et al. (2012)
method, kdp_from_phidp, features two optimizing parame-
ters: winlen (the number of gates used to reconstruct ®pp)
and dr (the gate length resolution in km). We tested winlen
values from 3 to 11 and dr values from 0.5 to 4. Figure 10a-1
show scatterplots of Kpp estimates using kdp_from_phidp
when varying the settings of winlen and dr. Each row of

Atmos. Meas. Tech., 18, 793-816, 2025
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for various values of windsize and n_iter; panel (b) shows the same as panel (a) but for the normalized bias metric.
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scatterplots holds winlen constant, while decreasing dr from
left to right. Similarly, each column of scatterplots holds
dr constant, while decreasing winlen from top to bottom.
The scatterplot in Fig. 10a, with winlen=11 and dr=4,
shows Kpp clustered predominantly around 0°km~! across
the entire Zy range, indicating substantial oversmoothing
of ®pp. Even for Zy > 30 dBZ, the noticeable underestima-
tion of Kpp relative to K, indicates that kdp_from_phidp
is not able to capture signatures of heavy precipitation for
large winlen and dr settings. Moving towards the scatter-
plot in Fig. 10d, a smaller dr enhances the accuracy of
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kdp_from_phidp, particularly for Zy > 30dBZ. However,
the gain in accuracy comes together with a loss in precision in
Kpp estimates, indicated by the wider spread of the data. In
addition, decreasing dr makes kdp_from_phidp more prone
to the inclusion of outliers, illustrated by data points with
Kpp > 1°km™!, even for Zy <20dBZ. The scatterplots in
Fig. 10e-h follow the same behavior as in the first row ex-
cept for a wider spread of data, suggesting that decreasing
winlen while holding dr constant overall reduces the preci-
sion of kdp_from_phidp. When moving from Fig. 10e to h,
the accuracy of Kpp estimates increases while precision de-
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creases with decreasing dr. In the last row, i.e., from Fig. 10i
to 1, Kpp estimates are the most scattered for the same dr,
indicating a loss in precision of kdp_from_phidp when re-
ducing winlen. The scatterplot in Fig. 101 with the smallest
parameter settings tested (winlen=3 and dr=0.5) resem-
bles a scatterplot of random noise with no significant clus-
tering of data, suggesting extremely poor correlation relative
to K{Jp. Comparing the scatterplots row-wise and column-
wise, decreasing winlen or dr significantly degrades the pre-
cision of the method. However, the effect on the accuracy is
more complex; simultaneously setting winlen and dr to large
values leads to substantial underestimation of Kpp, whereas
small values lead to noisy Kpp. These results suggest that
the effects of varying winlen and dr on the performance
of kdp_from_phidp are strongly intertwined, requiring more
analysis of the trade-off between accuracy and precision of-
fered by variations in these parameters.

To analyze the trade-off between accuracy and precision
when using winlen and dr in kdp_from_phidp, Fig. 11a-
b show the NRMSE and normalized bias of Kpp estimates
with varying winlen and dr as a function of Zy. Even though
Fig. 11a has been clipped at 5.0, it is important to note the
significantly high values when using the smallest dr (97.6,
135.4, and 278.6 for winlen of 11, 7, and 3, respectively). The
predominantly higher NRMSE values with the smallest dr in-
dicate that the precision of kdp_from_phidp reduces signifi-
cantly with dr < 1 for any winlen tested. An exception occurs
in the Zy interval (45, 50] dBZ, where the smallest dr yield
the best metrics due to slight improvements in the accuracy.
Despite the limited amount of data within this Zy interval
(see Fig. 3), the clustering of Kpp around K, in Fig. 10 and
the small normalized biases in Fig. 11b suggest that accuracy
improved slightly for the smallest dr. The smaller NRMSE
with high dr in Fig. 11a is counterbalanced by the predomi-
nantly larger negative bias for larger dr in Fig. 11b. This im-
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plies that larger dr values in kdp_from_phidp lead to the un-
derestimation of Kpp for all winlen tested. As a conclusion,
combining large winlen with smaller dr produces the best
performance for heavier precipitation (i.e., Zg > 30dBZ),
whereas combining large winlen with larger dr produces
the best results for light precipitation. Overall, small values
of winlen reduce the precision significantly in the method
without improving accuracy. The parameter setting with the
smallest 35-50 dBZ averaged NRMSE was winlen =11 and
dr=2.

3.2 Performance assessment of methods relative to K]S)cP

The performance of the methods is analyzed qualitatively
in Sect. 3.2.1 and quantitatively in Sect. 3.2.2. For these
analyses, we used the parameter-optimized kdp_maesaka,
kdp_vulpiani, phase_proc_lp, and kdp_from_phidp and in-
cluded kdp_schneebeli and kdp_iris.

3.2.1 Qualitative assessment

We qualitatively assessed the precision and accuracy of the
estimated Kpp using scatterplots of Kpp vs. Zy for each
method. Figure 12 shows six scatterplots comparing the
performance of kdp_maesaka, kdp_vulpiani, phase_proc_Ip,
kdp_from_phidp, kdp_schneebeli, and kdp_iris at estimat-
ing Kpp. Each scatterplot illustrates the relationship be-
tween estimated Kpp (y axis) relative to Zyg (x axis)
against benchmarking K5, (dashed black line). For the
parameter-optimized methods in Fig. 12a-d, the opti-
mal parameter selected is indicated in the panel title to-
gether with the method’s name. Comparing the scatterplots,
phase_proc_lp demonstrates the highest accuracy and pre-
cision, evidenced by the data narrowly clustered around
KJp across the entire Zy range. The kdp_from_phidp

Atmos. Meas. Tech., 18, 793-816, 2025
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and kdp_schneebeli methods show the least accuracy
and precision, with a broader spread and more outliers,
particularly when Zy <30dBZ. For higher Zy values,
even though kdp_from_phidp shows better precision but
worse accuracy than kdp_schneebeli, these two methods
strongly underestimate Kpp, evidenced by the predomi-
nant clustering of Kpp estimates below 0.5°km~!. The
kdp_maesaka method shows less scattering of Kpp esti-
mates compared to kdp_from_phidp and kdp_schneebeli,
indicating higher precision and accuracy, particularly for
Zy < 30dBZ. However, for Zyg > 30dBZ, the performance
of kdp_maesaka deteriorates rapidly, as shown by the
broader spread and significant underestimation of Kpp rel-
ative to K. The kdp_vulpiani and kdp_iris methods show
moderate performance, with better accuracy and precision
than kdp_from_phidp, kdp_schneebeli, and kdp_maesaka
but worse performance than phase_proc_lp. Between the
kdp_vulpiani and kdp_iris methods, kdp_vulpiani shows bet-
ter correlation of Kpp estimates with K, for Zy > 35 dBZ,
indicating higher accuracy in heavier precipitation. How-
ever, kdp_iris shows less scattering across the entire Zg
range, indicating overall higher precision than kdp_vulpiani.
The kdp_vulpiani, kdp_from_phidp, kdp_schneebeli, and
kdp_iris methods include negative Kpp values, which should
not be expected in rain observations. These negative esti-
mates predominantly show up in lighter precipitation (i.e.,
Zy <30dBZ), indicating that they are most likely pro-
duced by noise in ®pp. However, the inclusion of nega-
tive Kpp estimates is useful, for instance, in the detection
of snow crystals, allowing kdp_vulpiani, kdp_from_phidp,
kdp_schneebeli, and kdp_iris to be used in a wider range of
applications compared to kdp_maesaka and phase_proc_lp.
The relatively high accuracy and precision of kdp_iris and
kdp_vulpiani, together with the inclusion of negative Kpp
estimates, leave these two methods as candidates well-suited
for QPE and calibration and hydrometeor classification rou-
tines.

3.2.2 Quantitative assessment

The quantitative assessment of the methods was achieved
through the metrics of NRMSE and normalized bias and
complemented with statistics from the Wasserstein distance
(WD) (Ramdas et al., 2015). The WD measures the similar-
ity between two cumulative distributions, given in this study
by the Kpp estimated by each method and K{J;,. On the one
hand, NRMSE and normalized bias computed as a function
of Zy, allow the assessment of the relative accuracy and pre-
cision of the methods based on precipitation intensities. The
WD, on the other hand, estimated from each radar scan in-
dependently and with statistics over the entire set of scans,
allows the assessment of the relative consistency and robust-
ness of the methods.

Figure 13a-b show the NRMSE and normalized bias of es-
timated Kpp for each method. Overall, phase_proc_Ip shows
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the best performance, as evidenced by the lowest NRMSE
values in Fig. 13a and moderately low bias in Fig. 13b across
all Zy intervals. In contrast, kdp_schneebeli shows the worst
performance among the methods, indicated by the highest
NRMSE values and moderately high bias across all Zy in-
tervals. The kdp_from_phidp method shows substantially
higher NRMSE values than kdp_maesaka, kdp_vulpiani,
phase_proc_lp, and kdp_iris but is significantly smaller than
kdp_schneebeli, particularly for the smallest Zy values. The
relatively small bias of kdp_from_phidp when NRMSE val-
ues are substantially high is explained by the positive-to-
negative symmetrical spread of Kpp estimates around the
x axis, indicating poor precision. Additionally, the persis-
tently negative and large normalized bias of this method rel-
ative to the other methods indicates that kdp_from_phidp un-
derestimates Kpp the most. The kdp_maesaka, kdp_vulpiani,
and kdp_iris methods have moderate NRMSE values, per-
forming better than kdp_schneebeli and kdp_from_phidp but
not as well as phase_proc_lp. Among these three meth-
ods, kdp_maesaka has the smallest NRMSE values for
Zy <35dBZ but the largest when Zy >40dBZ. The rel-
atively large positive bias of kdp_maesaka when Zpg < 30
is a direct consequence of the exclusion of negative Kpp
estimates. However, the persistently larger negative bias of
kdp_maesaka relative to kdp_vulpiani and kdp_iris when
Zy > 30dBZ indicates stronger underestimation of Kpp and
thus less accuracy. These results indicate that in comparison
to other methods, kdp_maesaka performs slightly better in
light precipitation (i.e., Zy < 30dBZ) but worse in heavier
precipitation. Between kdp_vulpiani and kdp_iris, kdp_iris
shows overall smaller NRMSEs and normalized bias, indi-
cating higher accuracy and precision than kdp_vulpiani.

Complementary to the NRMSE and normalized bias met-
rics, we evaluated the consistency and robustness of the
methods using the Wasserstein distance (WD). The WD
was computed for each radar scan independently using the
wasserstein_distance module from SciPy (Virtanen et al.,
2020). Then, the statistics from the estimated WD values
for all scans were visualized and analyzed using boxplots.
Figure 14 consists of two panels comparing the WD box-
plots of the methods. Figure 14a compares the WD for all
methods, including kdp_schneebeli, which presented a sig-
nificantly large WD. Figure 14b presents the same data as (a)
but excludes kdp_schneebeli to better compare the remain-
ing methods. Each boxplot summarizes the statistics of esti-
mated WDs by showing the median (dashed black line), in-
terquartile ranges (IQR), 1.5x IQR (whiskers), and outliers
(crosses). The insights provided by the boxplots in this anal-
ysis are twofold. First, a WD median closer to 0 indicates
higher similarity between the cumulative distributions of a
method’s estimated Kpp and that from K, ultimately in-
dicating higher accuracy. Second, a narrower IQR indicates
less variability in a method’s performance between scans, in-
dicating higher consistency.
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Figure 12. Scatterplot of estimated Kpp from each parameter-optimized method relative to KIS)CP as a function of reflectivity. Panels (a)-
(f) show kdp_maesaka, kdp_vulpiani, phase_proc_lp, kdp_from_phi_dp, kdp_schneebeli, and kdp_iris, respectively. The dashed black line
corresponds to Kfp.
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Figure 13. Panel (a) shows the bias of estimated Kpp from each parameter-optimized method relative to K]s)CP as a function of reflectivity;
panel (b) shows the same as panel (a), but the bias is normalized by interval-averaged K{J;,. The numbers on top of the bars indicate the
values of the metric exceeding the y-axis limit selected.
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Figure 14. Panel (a) shows the boxplot of the WD computed for each parameter-optimized method; panel (b) shows the same as panel (a)
but excluding kdp_schneebeli for better visualization of the better-performing methods. The boxplots display the WD median (dashed black
line), IQRs (boundaries of the box), 1.5x IQR (whiskers), and the outliers (black crosses).

In Fig. 14a, the x axis lists six methods: kdp_maesaka,
kdp_vulpiani, phase_proc_lp, kdp_from_phidp,
kdp_schneebeli, and kdp_iris. The y axis measures
the WD values ranging from 0 to 2. The boxplot for the
kdp_schneebeli method shows the largest WD, with a median
of 0.33, an IQR from 0.18 to 0.45, and several outliers. The
other methods (kdp_maesaka, kdp_vulpiani, phase_proc_Ip,
kdp_from_phidp, and kdp_iris) have median WD values
ranging from 0.0 to 0.1, with smaller IQRs and fewer
outliers. In Fig. 14b, the kdp_schneebeli method is excluded,
allowing for a clearer comparison of the kdp_maesaka,
kdp_vulpiani, phase_proc_Ip, kdp_from_phidp, and kdp_iris
methods. The y axis is rescaled to range from 0.0 to 0.2
for better visualization. The phase_proc_lp method has the
lowest WD median at 0.01, with a narrow IQR from 0.008
to 0.018. The kdp_from_phidp method has a significantly
larger WD median of 0.098 and an IQR from 0.077 to 0.122.
The kdp_maesaka and kdp_iris methods have WD medians
of 0.026 and 0.041, respectively, with moderate IQRs and
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few outliers. The kdp_vulpiani method has a moderate WD
median of 0.049 but a noticeably wider IQR from 0.033
to 0.096 when compared to kdp_maesaka, phase_proc_lp,
kdp_from_phidp, and kdp_iris.

The large WD median of kdp_schneebeli indicates that
it performs worse compared to the other methods, over-
shadowing the performance differences among the remain-
ing methods. Additionally, the large IQR of kdp_schneebeli
implies that the method does not perform consistently, thus
reducing its reliability. The phase_proc_lp method demon-
strates the best and most consistent performance, with the
lowest WD median and narrowest IQR. These results ad-
ditionally indicate that the distribution of Kpp estimated
from phase_proc_lp is the closest to KJjp. It is important
to remember here that phase_proc_lp is supported by self-
consistency relations constraining the Kpp estimates based
on Zy observations, ultimately enhancing its accuracy and
stability. The moderate IQR and significantly larger WD
median of kdp_from_phidp indicate that its performance is

Atmos. Meas. Tech., 18, 793-816, 2025



808

consistent, albeit less accurate relative to the other meth-
ods. The kdp_vulpiani method, in turn, has a moderate WD
median but relatively larger IQR, indicating better accu-
racy than kdp_from_phidp, although less consistency. The
kdp_maesaka and kdp_iris methods show similar consis-
tency and accuracy, evidenced by their relatively low WD
medians and moderate IQRs. These findings suggest that
while kdp_schneebeli is the least accurate and consistent,
the performance among the remaining methods varies, with
phase_proc_lp presenting the highest robustness, provided
that the method with quality controlled Zy and optimized
self-consistency settings is used.

3.3 Consistency analysis of Kpp retrievals

Each method has a unique combination of mathematical ap-
proaches, data requirements, and constraints (see Table 1),
indicating uniqueness in the Kpp fields produced. The sim-
ilarity or dissimilarity of these outputs is not clearly visi-
ble from the metrics computed or from the scatterplots dis-
played in Sect. 3.2. To answer this question, we study the
consistency among methods using the Kpp vs. Kpp correla-
tion plots shown in Fig. 15. Each scatterplot in Fig. 15 shows
the relationship between Kpp estimated by a method (y axis)
with respect to Kpp estimated by a different method (x axis),
and the Pearson correlation coefficient (R) is shown in the
upper-left corner of each scatterplot. The axes range from
—0.5t0 3.0°km™! to include negative Kpp estimates. This
part of the analysis does not require any ground-truth frame-
work, allowing the use of the entirety of the radar dataset, i.e.,
including the attenuated observations (see red data in Fig. 3).

In Fig. 15, the scatterplot of kdp_iris against kdp_vulpiani
shows the best correlation among the methods, illus-
trated by the data significantly clustered along the di-
agonal and corroborated by the highest R of 0.66. The
kdp_iris and kdp_vulpiani methods correlate similarly with
phase_proc_lp, indicated by the second-highest R of 0.65
for both. In relation to kdp_maesaka, the consistencies of
kdp_iris and kdp_vulpiani are rather moderate, whereas in
relation to kdp_from_phidp and kdp_schneebeli, they are
significantly poorer. Among the methods, kdp_schneebeli
correlates the least with any of the other methods, evi-
denced by the data widely spread along the axes and show-
ing negligible clustering along the diagonal. In particular,
kdp_schneebeli against kdp_from_phidp shows the worst
consistency, with R =0 and the majority of the data clus-
tered around the x and y axes. The phase_proc_lp method
correlates moderately with kdp_maesaka, with an R =0.41,
although the scatterplot does not exhibit any particular pat-
tern or clustering of data along the diagonal. Relative to
kdp_from_phidp, phase_proc_lp shows significantly lower
R despite the clear data correlation off of the diagonal.
However, the small R value becomes evident when ob-
serving the dense clustering of data around 0°km~! for
phase_proc_lp. This result indicates that the consistency be-
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tween kdp_from_phidp and phase_proc_lp is highly influ-
enced by the negative Kpp estimates in kdp_from_phidp
that are mapped to 0°km™! in phase_proc_lIp. Overall, the
scatterplots show that kdp_from_phidp underestimates Kpp
relative to the other methods. The kdp_maesaka method
shows no significant correlation with any method, with the
largest R being 0.41 relative to both phase_proc_lp and
kdp_vulpiani.

4 Conclusions

In this study, we conducted a comprehensive evaluation of
several Kpp estimation methods using C-band weather radar
data, with a focus on their performance in rainfall observa-
tions. We employed a self-consistency framework that links
Zy and Zg, observations, with Kpp as the basis for our eval-
uations. This approach allows for the construction of the ref-
erence Kpp observations that can be used to assess the accu-
racy and robustness of the Kpp estimation methods studied.
The use of the self-consistency framework requires rather
strict quality control, which is described in the paper. In this
way, our study focuses on the performance of the methods in
highly idealized rainfall observations.

Some (four out of six) of the Kpp estimation methods have
user-configurable parameters. Using the evaluation frame-
work proposed, we were able to define optimized parameter
settings. Most of the methods showed significant improve-
ment in the performance after the optimization.

By comparing the relative performance of the estimation
methods over the range of rain intensities, as characterized
by the radar Zy values, we have found significant differences
in the performance of the methods evaluated. Overall, imple-
mentations of the Giangrande et al. (2013), Vulpiani et al.
(2012), and Wang and Chandrasekar (2009) methods exhib-
ited the lowest NRMSE and normalized biases over the range
of Zy values studied, from 20 to 50 dBZ.

Our comparative analysis revealed that while the imple-
mentation of the Giangrande et al. (2013) method stands out
for its high accuracy and precision, its performance is heavily
dependent on the self-consistency constraint provided. With-
out proper optimization of the self-consistency relation, link-
ing of Zy and Kpp, and quality control of Zy, even the best
window length setting for this method can lead to subopti-
mal results, i.e., higher RMSE and Kpp underestimation at
higher Zy values. It should be noted, however, that the ref-
erence framework and the Giangrande et al. (2013) method
use self-consistency relations to determine Kpp, and, there-
fore, the uncertainties are correlated, and part of the reported
performance is caused by this dependence. The implementa-
tions of Vulpiani et al. (2012) and Wang and Chandrasekar
(2009) showed good performance and do not require the use
of other radar variables, which potentially make them less
sensitive to radar data quality issues, such as calibration and
attenuation.
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Figure 15. Correlation between the Kpp estimation methods. Each scatterplot shows the relationship between two different methods without
repetition, and no method is compared to itself. The x and y axes represent the Kpp estimated by a method, in units of ° km~!. Each panel
shows the Pearson correlation coefficient between the two methods compared.

An additional qualitative comparison of the performance
of the methods was carried out by computing correlations
of derived Kpp values from the dataset that also included
attenuated radar observations. The correlation between Kpp
values estimated using different methods is not very high.
The highest correlation values (0.65-0.66) were observed be-
tween the Giangrande et al. (2013), Vulpiani et al. (2012),
and Wang and Chandrasekar (2009) methods. This indi-
cates that uncertainty between different precipitation esti-
mates could stem from the differences in the Kpp methods
used.

https://doi.org/10.5194/amt-18-793-2025

The study is based on a self-consistency framework that
limits its use to the cases where no significant attenuation
is observed. Additionally, the scope of our study is lim-
ited to the Finnish climatology and a single radar frequency,
namely C-band radar observations. Despite these limitations,
our findings offer valuable guidance for the use of Kpp esti-
mation methods in rainfall observations. These results have
significant implications for both operational radar networks
and hydrometeorological research, where the accuracy, pre-
cision, and stability of Kpp estimates are crucial.
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Appendix A: Influence of the self-consistency constraint
on phase_proc_lp

Figure A1 shows the same scatterplots as Fig. 8, with Kpp
estimated from phase_proc_lp using self_const of 10° in-
stead of 10*. The motivation behind this was to study the
performance of phase_proc_lp with little influence from
self-consistency constraints. In Giangrande et al. (2013),
the non-negativity condition in Kpp estimates is ensured
by restricting the b vectors: b>0. In addition, to pro-
duce more realistic Kpp estimates, they introduced the self-
consistency relation Kpp(Zy) = aZIb{ to bound the estimates
based on observed Zy, requiring that the user provide qual-
ity controlled data. The restriction of the b vectors becomes
b> aZ?b , which in phase_proc_lp is implemented as b >
(100‘1 X£H )c"ef/ self_const. Therefore, a self _const value that
is 2 orders of magnitude larger was used in this study to
test the performance of phase_proc_lp with a significantly
reduced influence of self-consistency constraints. The scat-
terplots show Kpp data clustered around K5, up to 35 dBZ.
Beyond this threshold, precision and accuracy decay signifi-
cantly regardless of the window length. However, in scatter-
plots with larger window lengths, Kpp data are less scattered
across the entire Zy range and are only slightly less accurate
after 35 dBZ.

M. Aldana et al.: Benchmarking K pp in rainfall

To further investigate the effects of the self-consistency
constraint on phase_proc_lp, Fig. A2a-b show the
normalized RMSE and bias of Kpp (estimated with
self_const = 106) relative to KISDCP. Interestingly, the normal-
ized RMSE in Fig. A2a behaves inversely to the normalized
RMSE in Fig. 9, whereas normalized bias shows similar
behavior for both. The opposite behaviors in normalized
RMSE results indicate that window length has a strong
impact on the performance of phase_proc_lp, depending on
whether adequate self-consistency settings were provided; if
so, smaller window lengths yield better performance by cap-
turing fine-scale precipitation features, especially in heavy
precipitation. In the opposite case, larger window lengths
yield better performance by oversmoothing ®pp, thus re-
ducing the impact of noise at the expense of losing fine-scale
precipitation features. The oversmoothing effect from larger
window lengths in Kpp is also implied from the normalized
bias shown in Fig. A2b; larger window lengths produced
the largest absolute biases at both extremes of the Zy
range. In addition, even though the normalized bias shows
similar behavior for self const= 10° and self_const = 104,
the latter produces larger differences between window
lengths, indicating that the high accuracy and precision of
phase_proc_lp predominates in smaller window lengths,
provided that there are adequate self-consistency constraints
and quality controlled Zy.
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Data availability. The raw radar data and Kpp dataset can
be accessed via the link at https://doi.org/10.57707/fmi-
b2share.4126c5db27d24ddeae10d5¢3163ff95a  (Aldana, 2024).
This includes the raw radar data and the Kpp-processed data used
to analyzed the Kpp estimation methods. The data have been
processed using Python and include the following.

- The radar folder includes several subfolders, such as yyyy/m-
m/dd/iris/raw/VAN. The VAN subfolder includes the .raw
radar with plan position indicators (PPIs) observed by
Vantaa radar at an elevation angle of 0.7 for a spe-
cific time: yyyymmddHHMM_VAN.PPI3_B.raw. This data
can be read with Py-ART (Helmus and Collis, 2016,
https://doi.org/10.5334/jors.119).

- The folder Kpp_data includes five .hdf5 files storing tables
containing information about date (in pandas numerical value).
It requires transformation to a date—time object), Z (in dBZ),
Zgr (in dB), attenuated gate (Boolean), theoretical or self-
consistent Kpp (in °km~!), or computed Kpp (in °km—1)
from a given method for different settings. The method is in-
dicated in the name of the file as kdp_method_scatter.hdf5,
where the method can be one of the following.

- iris_sch refers to table containing Kpp from
the iris software (used in the Finnish Meteoro-
logical Institute) and Kpp computed from Py-
ART’s implementation of Schneebeli et al. (2014,
https://doi.org/10.1109/TGRS.2013.2287017). These
two methods were computed together because only one
Kpp output was retrieved. They do not feature any
user-configurable parameters to test.

https://doi.org/10.5194/amt-18-793-2025

- mae refers to table containing Kpp computed from
Py-ART’s implementation of Maesaka et al. (2012,
http://www.meteo.fr/cic/meetings/2012/ER AD/extended _
abs/QPE_233_ext_abs.pdf). The columns correspond to
Kpp computed by varying the parameter Clpf.

- vulpiani refers to a table containing Kpp computed
from Py-ART’s implementation of Vulpiani et al.
(2012, https://doi.org/10.1175/JAMC-D-10-05024.1). The
columns correspond to Kpp computed by varying the pa-
rameters windsize and n_iter.

- pplp refers to table containing Kpp computed from
Py-ART’s implementation of Giangrande et al. (2013,
https://doi.org/10.1175/JTECH-D-12-00147.1). The
columns correspond to Kpp computed by varying the
parameter windowlen.

- wradlib refers to table containing Kpp computed
from wradlib’s implementation of Vulpiani et al.
(2012, https://doi.org/10.1175/JAMC-D-10-05024.1). The
columns correspond to Kpp computed by varying the pa-
rameters winlen and dr.

The disdrometer dataset to obtain the DSD parameters can be ac-
cessed via the link provided in Moisseev (2024, https://hdl.handle.
net/21.12132/3.69dddc0004b64b32).

Author contributions. MA conducted the investigation process,
collected the data, and performed the formal analysis of the data
and visualization; MA, SP, and DM designed the methodology; SP,
AL, MK, and DM formulated the research goals and aims; AL and
DM provided data; MA prepared the paper draft; and MA, SP, AL,
MK, and DM reviewed, commented on, and edited the paper.
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