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Abstract. Smartphone pressure observations have demon-
strated significant potential to complement traditional pres-
sure monitoring. However, challenges remain in correcting
biases and further leveraging these observations for prac-
tical applications. In this study, we used tropical cyclones
(TCs) Lekima in 2019, Hagupit in 2020 and In-fa in 2021
as examples to conduct bias correction on labeled smart-
phone pressure data from the Moji Weather app. We pro-
pose a quality control procedure utilizing random forest ma-
chine learning models. By applying this quality control ap-
proach to the selected TCs, we discovered that the perfor-
mance of the method for labeled data significantly surpassed
that for unlabeled data developed in a previous study, reduc-
ing the mean absolute error from 3.105 to 0.904 hPa. The
bias-corrected smartphone data were then supplemented with
weather station data for sea-level-pressure analyses and com-
pared with the analyses that used only weather station data.
The significantly higher spatial resolution and broader cov-
erage of the smartphone data led to notable differences be-
tween the two analysis fields. Additionally, we compared the
minimum sea-level pressure of TCs derived from smartphone
data, weather station observations and the best-track dataset
from the Shanghai Typhoon Institute (STI) of the China Me-
teorological Administration. We found that the best track
published by STI consistently underestimated the minimum
sea-level pressure, with a median difference of 0.51 hPa in
the three TC cases.

1 Introduction

Meteorological observation data are crucial for the efficacy
of early warning systems; however, their discontinuity and
inconsistency in time and space often pose challenges. The
problem is more severe in many underdeveloped and de-
veloping regions due to the lack of funding, technology
and infrastructure, as well as backward network construction
(Dinku, 2019; Heaney et al., 2016; Thomson et al., 2017).
Smartphones with built-in sensors may offer a solution to
this problem, as the number of smartphone users has grown
to more than 50 % of the population in developing coun-
tries, such as China and Mexico (Newzoo, 2023), and as high
as 46 % in some underdeveloped parts, such as sub-Saharan
Africa (GSMA, 2022). Sensors in smartphones can monitor
pressure (Kim et al., 2015; Mass and Madaus, 2014), temper-
ature (Overeem et al., 2013) and radiation (Mei et al., 2015),
among which pressure monitoring is more commonly avail-
able (Kim et al., 2015). On the one hand, the results of pres-
sure measurements are not easily affected by local observing
conditions (Mass and Madaus, 2014). This implies the er-
rors are generally stable and systematic (Price et al., 2018),
leading to high-quality surface observations with high spa-
tiotemporal resolution. On the other hand, surface pressure
contains important meteorological information and reflects
the deep structure of the atmosphere (Mass and Madaus,
2014). Therefore, the smartphone pressure data are valuable
and worth studying as a meteorological data source.

While smartphones can provide pressure data with higher
spatiotemporal resolution than traditional weather observa-
tion networks, they have unique data quality issues. Al-
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though pressure records from smartphones and weather sta-
tions are highly correlated statistically, noticeable offsets ex-
ist between individual smartphones (Price et al., 2018; Hintz
et al., 2019). Smartphones can produce pressure measure-
ments that differ from those of the surface stations when
users are at high levels in buildings (Li et al., 2021). Tra-
ditional quality control methods include the elimination of
outliers and screening for statistical, spatial and altitude con-
sistency, which usually leads to a sharp reduction in data vol-
ume to about 10 % to 40 % of the original dataset (Madaus
and Mass, 2017; Hintz et al., 2019). Recently, machine learn-
ing models have been applied to the correction and validation
of pressure data. These models rely on the geographical sim-
ilarity of error distribution (Li et al., 2021; McNicholas and
Mass, 2021) for data without user identification and on the
relatively stable performance of individual smartphones (Mc-
Nicholas and Mass, 2018) for data with user identification.
(In the rest of this paper we refer to them as “unlabeled data”
and “labeled data”, respectively; further explanation can be
found in Sect. 2.1.) These methods have their limitations be-
cause, even when the models are applied to the same descrip-
tive variables, differences in results may occur among differ-
ent regions. This variation is attributed to the dependence on
sensor performance across different regions and the accuracy
of location information.

Another important question is what additional informa-
tion smartphones provide. Due to their high spatiotemporal
resolution, quality-controlled or corrected smartphone pres-
sure data are often used to characterize convective systems
at small or mesoscales. Hintz et al. (2019), Li et al. (2021),
and McNicholas and Mass (2018) found pressure changes
of 1 hPah−1 at sea level, 0–0.5 hPamin−1 and 1.5 hPa per
15 min at the surface, respectively, within the convective sys-
tems they studied. During tropical cyclone (TC) Michael in
2018 in the United States, smartphone pressure data mea-
sured the low-pressure value at the TC center more ac-
curately than the conventional Meteorological Assimilation
Data Ingest System (McNicholas and Mass, 2021). However,
the value was still more than 10 hPa higher than the actual
minimum pressure, partly due to the low density of smart-
phone pressure data along the track of TC Michael; the clos-
est smartphone observation was 5 km away from the TC cen-
ter. Given the dense population in China, it is interesting to
determine if the smartphone pressure observations could pro-
vide a better estimate of TC minimum pressure, an important
parameter of TC intensity.

The unlabeled smartphone pressure data from China have
recently been studied for quality control and application to
mesoscale analysis (Li et al., 2021). The labeled data, which
can provide higher-quality observations and enable personal-
ized and more accurate analyses, have not been examined in
China, especially in densely populated areas. In this study,
we present a machine-learning-based method for the bias
correction (BC) of labeled smartphone pressure data col-
lected by the Moji Weather app. We evaluate the performance

of the approach by comparing the results with those from un-
labeled data.

As one of the major weather service applications in China,
the Moji Weather app has more than 700 million users
and more than 600 million daily weather queries (Moji,
2023a, b). The quality of the unlabeled pressure data pro-
vided by Moji Weather has been verified by Cao et al. (2022)
and Li et al. (2021). We anticipate that the evaluation of the
labeled data from Moji Weather in this study will provide a
broader understanding of the smartphone pressure data. In
addition, by using the three TC events – Lekima in 2019,
Hagupit in 2020 and In-fa in 2021 – as examples, we inves-
tigate how the higher spatiotemporal resolution of the smart-
phone pressure data benefits TC intensity analysis.

This paper is organized as follows. In Sect. 2, we present
the data and methods used in this study. Taking TC Lekima in
2019 as an example, Sect. 3 compares the results of corrected
labeled and unlabeled pressure data and tests their impact on
mesoscale pressure analysis fields. In Sect. 4, we compare
the corrected smartphone pressure data with the best-track
data released by the Shanghai Typhoon Institute (STI) of the
China Meteorological Administration (CMA) for three TCs
from 2019 to 2021. Conclusions and discussion are provided
in Sect. 5.

2 Data and methods

2.1 Data and quality control

The data used in this study include sea-level-pressure obser-
vations from weather stations, smartphone pressure measure-
ments, TC best-track data and supplementary data for ma-
chine learning models. More details on these data are pro-
vided below:

1. Sea-level-pressure data at 1 h intervals from weather
stations are obtained from CMA. There are 11 585,
13 200 and 16 208 atmospheric pressure observation
stations in China for the years of 2019 (Fig. 1), 2020
and 2021, respectively.

2. Smartphone pressure data at 1 min intervals are pro-
vided by the Moji Weather company. The data include
time, latitude and longitude acquired by the weather
app when running in the foreground or background,
as well as pressure measured by built-in sensors. The
data are provided by users who have signed a data-
sharing agreement, and each pressure record carries an
encrypted user ID that helps to distinguish the source of
the data. However, we clearly understand that user IDs
are sometimes not available, so we also made a dataset
with user IDs removed for comparative experiments. In
the rest of this paper, we refer to data without user ID
as “unlabeled data” and correspondingly data with user
ID as “labeled data”. We strictly adhere to the princi-
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ple of privacy protection, which ensures all research is
conducted at the population level, involving only the
analysis of data volume and pressure values. In other
words, no information regarding any individual’s spe-
cific movements is exposed. All research data in this
study have been legally verified to comply with all pro-
visions of the Personal Information Protection Law of
the People’s Republic of China issued on 20 August
2021 (https://www.gov.cn/xinwen/2021-08/20/content_
5632486.htm, last access: 7 February 2025), which was
confirmed by the legal department of the Moji Weather
company.

In 2019, a total of 83 386 957 users contributed to the
pressure observations within the area of 15–55°N and
70–140°E. Eastern China – a TC-prone area – had a
higher user density than western China, and the dis-
crepancy is larger in the urban areas (Fig. 2a). The den-
sity variation implies that the detected TC tracks usu-
ally pass through areas with dense observations. The
number of individual user observations was relatively
small, averaging fewer than 125 over an entire year
(10.4 per month) in most urban areas (Fig. 2b), com-
pared to 774 over 16.5 months (46.9 per month) in Mc-
Nicholas and Mass (2021). This may limit the complex-
ity and performance of the correction models for each
individual user. The relatively small number of observa-
tions from individual users may be attributed to differ-
ences in the information collection system and user us-
age habits. However, a relatively large number of users
can somewhat compensate for this shortcoming. Users
with more than 100 and 1000 observations accounted
for approximately 17.6 % and 2.5 % of the 83 386 957
samples, contributing 88.9 % and 42.6 % to the total
data volume, respectively (Fig. 2c and d). To strike a
balance between providing more data for each user’s
correction model and maximizing the total amount of
data retained, we selected users with more than 100 ob-
servations for the correction. The total number of these
users is 14 676 104.

The quality control of smartphone pressure data is per-
formed in three steps. (1) Following the practice of
Kim et al. (2015) and Madaus and Mass (2017), pres-
sure values outside the normal range (890–1080 hPa)
are considered outliers and eliminated. (2) Reference
sea-level pressure at the location of the smartphone
is estimated by spatial interpolation of weather station
data, and smartphone pressures deviating by more than
15 hPa from the reference are discarded to eliminate
data from low-quality sensors or at a high altitude. (3)
Latitude, longitude and pressure are retained to four
decimal places, and only one record of duplicate data for
the same hour is retained. By doing so, the adverse ef-
fect of excessive data duplication on the machine learn-
ing correction model could be largely avoided.

Due to the different temporal resolutions of smartphone
and weather station datasets, we aligned the weather sta-
tion pressure with the smartphone pressure at 20 min
intervals centered on the hour and discarded any other
smartphone data during the quality control procedure.
For unlabeled data, considering that there are indis-
tinguishable observations of the same latitude, longi-
tude and time, especially in urban high-rise areas, we
created “smartphone sites” by calculating the number,
mean pressure and standard deviation of the overlapping
smartphone observations. Furthermore, we performed
BC on the smartphone pressure data using a machine
learning scheme. This is crucial for more accurately
estimating the extremely low pressures, such as those
found at the center of TCs. The methods and the results
will be discussed in detail in Sect. 3.

3. The tropical cyclone best-track data used are provided
by STI (Lu et al., 2021; Ying et al., 2014) (https://tcdata.
typhoon.org.cn/en/zjljsjj.html, last access: 7 February
2025, China Meteorological Administration, 2025).
Since most smartphone pressure observations are lo-
cated on land, this study focuses on the TC centers
that have made landfall and their minimum sea-level
pressures (MSLPs), with a temporal resolution of 3 h.
The best-track MSLP of the TC is obtained through
the wind–pressure relationship, using the mean surface
wind generated by satellite image analysis as input. Af-
ter landfall, the MSLP is typically derived from in situ
observations recorded by weather stations (Ying et al.,
2014).

4. To meet the requirements of machine learning mod-
eling for unlabeled data, we also used the dataset of
China’s National Land Use and Cover Change (CN-
LUCC; https://www.resdc.cn/DOI/doi.aspx?DOIid=54,
last access: 7 February 2025) (Xu et al., 2018; Wang
et al., 2022) with 1 km resolution, provided by the Data
Center for Resources and Environmental Sciences, Chi-
nese Academy of Sciences (RESDC; http://www.resdc.
cn, last access: 7 February 2025). Since the data ob-
tained from the same smartphone site in urban high-rise
buildings can exhibit a significant degree of uncertainty,
whereas the opposite holds true for rural areas, it is help-
ful to introduce land-use types into machine learning
models for describing the acceptability of uncertainty
for unlabeled data.

2.2 Spatial coverage ratio

In order to compare the spatial distribution of smartphone
pressure observations under different conditions, this study
defines the “spatial coverage ratio” of observations as fol-
lows. A region of any size is divided into a grid of 0.1°×0.1°.
The proportion of the number of grid boxes containing smart-
phone observations to the total number of grid boxes in the
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Figure 1. Spatial distribution of 11 585 weather stations providing
pressure observations in this study in 2019. The smaller black box
represents study domain A, covering 30 to 31°N and 120 to 121°E
in Sect. 3.1, and the larger black box represents study domain B,
spanning 27.3 to 33.3°N and 117.2 to 123.2°E in Sects. 3.2–3.3.
Publisher’s remark: please note that the above figure contains dis-
puted territories.

region is defined as “smartphone coverage ratio”. The same
methodology applies to the weather stations to define “sta-
tion coverage ratio”.

2.3 TC cases

Three TC cases, namely Lekima in 2019, Hagupit in 2020
and In-fa in 2021, were selected from all landfalling TCs in
China during 2019–2021. All three TCs passed through Zhe-
jiang Province and Jiangsu Province (Fig. 3), both of which
are densely populated regions. We focus on the super TC
Lekima in 2019 in Sect. 3 to show the performance of the BC
method. The method was also applied to Hagupit in 2020 and
In-fa in 2021 for the TC MSLP analysis presented in Sect. 4.

TC Lekima was over the Chinese mainland from 9 to
11 August 2019. At the time of landfall, the MSLP from
STI best-track data reached approximately 930 hPa. It then
rose to 978 hPa when moving to the urban area of Hangzhou,
Zhejiang Province. In this study, we take the area of 30–
31°N, 120–121°E as study domain A and take an expanded
area of 27.3–33.3° N, 117.2–123.2°E as study domain B
(Figs. 1–3). Both domains cover the center of Lekima with
a large number of smartphone observations. In domain B,
between 10:00 LST on 9 August and 11:00 LST on 11 Au-
gust 2019, 4 800 405 users in the research area contributed to
the observations. The maximum number of observations is
approximately 850 000 in a 0.1°× 0.1° grid box. Compared
to Lekima, Hagupit and In-fa experienced higher MSLPs.

Table 1. Descriptive features of the two machine learning models.

Unlabeled data Labeled data

Longitude Longitude
Latitude Latitude
Month Month
Date Date
Moment Time
Land-use type Day of the week
Gridded pressure Smartphone pressure
Observations number
Pressure standard deviation

Moreover, In-fa traveled a longer distance over land than
both Lekima and Hagupit did, contributing to greater tem-
poral variations in the coverage ratios for both smartphones
and weather stations.

3 Evaluation of MSLP correction by smartphone

3.1 Comparison with the BC method for unlabeled
data

The methods for using machine learning to conduct the BC
of smartphone data can be broadly categorized into two
approaches: one for labeled data and the other for unla-
beled data. Both methods use the differences from the ref-
erence sea-level pressures – in this study interpolated from
weather station pressure data – as the variable to be cor-
rected. The labeled data approach trains a model for all the
pressure observations of each individual user (McNicholas
and Mass, 2018), while the unlabeled data approach trains a
model for all the smartphone sites in each grid element (Li
et al., 2021) on a 0.1° (longitude)× 0.1° (latitude) grid in
this study (Fig. 4). The performances of the two methods in
the extreme-low-pressure environment of Lekima were com-
pared over the area of 30–31°N and 120–121°E (domain A
in Figs. 1–3). All pressure data during the TC landfall (from
00:00 LST on 9 August 2019 to 00:00 LST on 12 August
2019) were utilized as the test dataset, while the remaining
data in 2019 were applied as the training dataset. Two ran-
dom forest models for labeled and unlabeled data were built.
Their descriptive variables and parameter settings are sum-
marized in Tables 1 and 2, respectively.

Smartphone pressures corrected by both models vary in
trends similar to the surface pressure, with a general posi-
tive correlation between the pressures from smartphones and
weather stations (Fig. 5). However, the corrected pressure
with the unlabeled data approach clearly exhibits a signifi-
cantly higher bias with a value of 4.521 hPa in contrast to
0.405 hPa for the labeled data approach. Moreover, the mean
absolute error (MAE) and root mean square error (RMSE)
from the BC on labeled data are also significantly lower,
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Figure 2. Spatial distribution of (a) the number of users contributing to smartphone pressure observations, (b) the average number of
observations by users, (c) the number of users with more than 100 observations and (d) the number of users with more than 1000 observations
in China during 2019. The data grid for the plots is 0.5°× 0.5°. Users are assigned to locations where they have made their most frequent
observations. The black boxes are the same as in Fig. 1. Publisher’s remark: please note that the above figure contains disputed territories.

Figure 3. The tracks of TC Lekima in 2019, Hagupit in 2020 and In-
fa in 2021 (marked every 3 h), with colors representing the MSLP
at the TC center, according to STI best-track data. The gray shading
indicates the elevation of the land surface. The black boxes are the
same as in Fig. 1. Publisher’s remark: please note that the above
figure contains disputed territories.

Figure 4. Schematic diagrams of models for (a) unlabeled data (to
train a model for each “area” divided by dotted lines) and for (b)
labeled data (to train a model for each “user” identified by differ-
ent colors). In order to protect user privacy, the information in (a)
and (b) is randomly generated and does not contain any user’s real
location information.

demonstrating that the labeled data approach for the BC of
smartphone pressure performs superiorly in the low-pressure
environment of TC Lekima.

Li et al. (2021) showed that the BC approach for unlabeled
data successfully corrected the pressure data in a hailstorm
case. We suspect that its poor performance for TC Lekima
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Figure 5. Probability distribution of the test data showing the correlation between the bias-corrected smartphone pressure and the reference
sea-level pressure for (a) unlabeled data and (b) labeled data in domain A. The coloring represents the probability distribution using a base
of 10 in every 0.1 hPa grid box. The dashed black line represents a perfect correlation.

Table 2. Hyperparameter settings of the two machine learning mod-
els.

Unlabeled data Labeled data

max_depth 9999 9999
max_samples 0.7 0.7
min_samples_leaf 1 1
max_features log(M + 1) M

n_estimators 100 30

All parameters are from the function “RandomForestRegressor” of the scikit-learn
machine learning library in Python (Pedregosa et al., 2011).
max_depth: the maximum depth of the tree (also known as “the base estimator”).
max_samples: the proportion of samples to draw from the training set to train each
tree when bootstrapping.
min_samples_leaf: the minimum number of samples required to be at a leaf node.
max_features: the number of features to consider when looking for the best split.
M: the number of features used by the model.
n_estimators: the number of trees in the forest.

could have been related to the lack of strong TC samples in
the training set. During non-TC periods, the most abnormal
pressure observations occur when users are at high levels in
tall buildings, resulting in low-pressure observations that re-
quire substantial corrections in the unlabeled data approach.
These “fake” observations can reach the level of surface pres-
sure at the center of a TC. When the training data lack strong
TC samples, the machine learning model may use the high-
altitude observations to correct the smartphone pressure near
the ground during a TC, which can eventually lead to in-
correct adjustment, resulting in values significantly higher
than the reference sea-level pressure. In general, the unla-
beled data approach can not discriminate between true and
false low pressure. In contrast, however, the labeled data ap-
proach trains the machine learning model with the user’s own
historical observations (Fig. 4b), which are less uncertain in
terms of altitude than observations from different users in a
neighborhood. A single source of error makes machine learn-

ing models less prone to confusion between true low pres-
sures and those falsely caused by high altitudes, thereby bet-
ter adapting to unanticipated extreme conditions, such as su-
per TCs.

Since the bias-corrected labeled data resulted in better cor-
relation with the surface station data, they will be used in the
subsequent analysis of all TC cases unless otherwise speci-
fied as unlabeled data.

3.2 Other quality control steps

In the previous section, we assumed that the pressure data
from weather stations were accurate. However, the observa-
tions from weather stations are known to contain errors from
unreliable stations. In this section, we use an expanded area
covering 27.3–33.3°N and 117.2–123.2°E as the research
domain (domain B in Figs. 1–3) because it includes a larger
area of complex terrain. Considering that more stations in
this larger region are located at high altitudes, which might
introduce large errors in the interpolation of surface sea-level
pressure, we selected only weather stations with altitudes
of less than 100 m. The reference values at the smartphone
locations were then generated from these selected stations.
Applying the BC procedure for labeled data described in
Sect. 3.1 to the large domain, the bias of smartphone data was
reduced from 2.943 to −0.311 hPa. The low bias, primarily
due to the observations at high altitudes (caused by users
in tall buildings), has been greatly reduced (Fig. 6a and b).
Furthermore, MAE decreases from 3.105 to 0.904 hPa and
RMSE from 4.207 to 1.698 hPa.

Eliminating outliers. The reference pressure generated by
interpolating observations from the weather stations might
be quite different from the true value given the large hori-
zontal pressure gradient in TCs. This problem becomes more
prominent for the expanded study domain that includes larger
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Figure 6. Same as Fig. 5, but only for labeled data (a) before BC, (b) after BC, (c) after outlier removal and (d) after interquartile check for
domain B.

areas of complex terrain. Therefore, further actions of quality
control are necessary. Station observations at any given time
were considered outliers if the deviation from the mean pres-
sure over domain B, or over the 20 nearest stations, is 3 times
greater than the standard deviation in the same area. For this
method to work, a sufficient number of observations from a
single station is required. We thus selected 1070 weather sta-
tions that provided more than 70 % of the observations. The
procedure was also applied to the bias-corrected smartphone
data, which reduced the bias of smartphone observations to
−0.269 hPa (Fig. 6b and c). To further reduce the bias, we
applied the interquartile range method described below.

Interquartile check. For smartphone pressure observations,
in every 0.5°× 0.5° grid box we calculated the difference
between the upper quartile and the lower quartile as the in-
terquartile range (IQR). The smartphone observations that
were 1 IQR higher than the upper quartile or lower than the
lower quartile were considered outliers and removed. The
quartile range method eliminated 13.8 % of the smartphone
pressure data, reducing the bias from −0.269 to −0.146 hPa
(Fig. 6c and d). The quality control procedure enabled the
retention of the high-spatial-resolution characteristics while
significantly improving the quality of the smartphone pres-
sure data.

The workflow diagram shown in Fig. 7 summarizes the
process of quality control and BC from the raw smartphone
pressure data to the final data we used in the study.

3.3 Spatial distribution of smartphone pressure data

Using the smartphone pressure data after all quality control
steps, we analyzed the horizontal distribution of sea-level
pressure by combining both weather station pressure and
smartphone pressure data in Domain B. The weather station
observations are sparsely distributed throughout the region
(Fig. 8a), whereas the substantially denser smartphone data
cover the entire plain areas as well as some low-elevation
areas (Fig. 8b). As a result, the smartphone pressure data re-
veal more details on the pressure distribution of TC Lekima.
However, while the smartphone observations are densely dis-
tributed in the low-altitude areas, some weather station data
from the high-mountain areas of southern Zhejiang, southern
Anhui and northern Fujian are not represented in the smart-
phone data.

To examine the benefit of the high-resolution smartphone
data in pressure analysis, we generated a sea-level-pressure
analysis field based on only weather station observations
(Fig. 9a) as well as one combining the weather station and
smartphone observations (Fig. 9b).
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Figure 7. The workflow for smartphone pressure data quality control and bias correction.

Figure 8. Distribution of (a) meteorological stations that measure pressure and (b) smartphone pressure observations in Domain B at
14:00 LST on 10 August 2019. The red “+” indicates the location of the TC center from the best track.

While the difference between the two analysis fields is
widespread, the largest difference appears in the northwest of
the Lekima center, where the analysis field with smartphone
observations has lower sea-level pressure (Fig. 9c). The rea-
son lies in the fact that the terrain in this area is complex and
weather stations are sparse. In comparison, more smartphone
observations are available, particularly in the valleys. Inter-
estingly, the region of lower pressure coincides well with the
southward extension of the spiral rainband as indicated by the
radar reflectivity. This seems to suggest the analysis incorpo-
rating the smartphone data can reveal the mesoscale structure
missed by the weather station analysis.

4 Improvement of TC MSLP estimate

Since the limited spatial resolution of weather stations makes
it difficult to capture the true MSLP of landfalling TC, the
MSLP in the best-track data usually differs somewhat from
the lowest sea-level pressure observed by weather stations
(Bai et al., 2021). The MSLP in the best track released by STI
is mainly based on wind intensity (Fig. 10). Compared with
weather stations, both the spatial coverage ratio and the res-
olution of smartphone observations are higher in areas with
a relatively dense population, which may provide more ac-

curate TC MSLP information. In this section, we explore
whether smartphone pressure data can improve the estimate
of MSLP in TCs using the three TC cases.

We selected the periods of relatively intensive observa-
tions, which spanned 6, 3 and 31 h, respectively, for Lekima,
Hagupit and In-fa, to compare the MSLP estimate with those
from the station and best track. The lowest station pressure
and unlabeled smartphone pressure within a 1.2°× 1.2° area
of the TC center were taken as station MSLP, and unlabeled
MSLP and the smartphone pressure, with the error margin of
the lowest 10 % within the same area, were used as labeled
smartphone MSLP (Fig. 10). The unlabeled MSLP clearly
exhibits a significantly positive bias compared with both la-
beled and station MSLP, which is consistent with the pre-
vious conclusions. Most of the time, the station MSLP falls
within the range of the labeled MSLP, and both are higher
than that in the best track. The difference between the sta-
tion MSLP and the best track is up to a substantial value of
2.76 hPa in Hagupit. Considering the small errors and devia-
tions, as well as the generally high spatial resolution and cov-
erage ratio of smartphone observations, it can be concluded
that the best track generally tends to underestimate the TC
MSLP.

The improvement of the MSLP estimate by smartphone
observations depends on the location of the TC center. For
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Figure 9. In Domain B at 14:00 LST on 10 August 2019, sea-level-pressure analysis field based on (a) meteorological station observations
and (b) meteorological station and smartphone observations; (c) pressure difference between (b) and (a) and (d) between the corrected
smartphone pressure and reference sea-level pressure. The gray shadings represent areas where radar reflectivity is higher than 30 dBZ, and
the red “+” indicates the location of the TC center from best track. The arrows represent the wind field at the 925 hPa level from ERA5.

instance, at 05:00 LST on 27 July 2021, during TC In-fa
(Fig. 11a), when the TC center was positioned in an area
with fewer stations but notably more smartphone observa-
tions, the smartphones estimated a lower pressure than that
reported by the best track. In another instance (Fig. 11b),
TC Lekima’s center was located on a small island (denoted
with “X”) in Lake Taihu, where there are no weather stations
and measurements can only be made by smartphone. This
highlights the advantages of crowdsourcing, which leverages
the mobility and flexibility of individuals. Moreover, this in-
stance happened to fall in a period when some stations with
lower maintenance levels failed to measure and upload data
steadily (Fig. 11c), which shows that smartphone pressure
observations are valuable for filling some of the gaps created
by unstable weather stations.

Naturally, the smartphone’s improvement in estimating
MSLP heavily depends on smartphone and station coverage
ratios. In the total of 40 time levels in our study, 39 exhibited
a relatively higher smartphone coverage ratio compared to
the station coverage ratio, indicating the advantages of smart-

phones in observing the pressure distribution around the TC
center (Fig. 12). The larger number of smartphone observa-
tions around the TC center enabled a more accurate represen-
tation of the true pressure distribution. Overall, our analysis
indicated that the STI MSLP underestimated the MSLP in
29 out of 40 instances, with a median difference of 0.51 hPa
and an average of 0.81 hPa. This result highlights the limita-
tion imposed by the low station coverage ratio, which may
have caused the discrepancy between the STI MSLP and the
smartphone MSLP.

5 Conclusion and discussion

In this study, we conducted bias correction of labeled smart-
phone pressure data in China using a machine learning
scheme. Further, we analyzed the spatial distribution of sea-
level pressure in three landfall TCs. The MSLP derived from
smartphone observations was compared with that from the
best-track data from STI.
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Figure 10. Variation in the MSLP and smartphone coverage ratio during (a) TC Lekima from 14:00 LST on 10 August to 05:00 LST
on 11 August 2019, (b) TC Hagupit from 20:00 LST on 4 August to 02:00 LST on 5 August 2020 and (c) TC In-fa from 05:00 LST on
27 July to 23:00 LST on 29 July 2021. Green, blue and orange dots represent the MSLP from weather stations, STI best track and unlabeled
smartphones, with a temporal resolution of 3, 3 and 6 h, respectively. Red shaded areas represent the lowest 10 % of labeled smartphone
pressures. Gray bars represent smartphone coverage ratio. All the statistics were done in the area of 1.2°× 1.2° around the TC center.

Figure 11. Distributions of weather station and smartphone observations from two examples during (a) TC In-fa and (b) TC Lekima in
the area of 1.2°× 1.2° surrounding the TC center. The coloring represents the difference between the pressure observations and the STI
best-track MSLP. (c) Changes in the number of weather stations providing pressure observations from 2019 to 2021 at 119°14′–120°29′ E,
30°22′–31°11′ N (the geographical scope of Huzhou, Zhejiang Province).
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Figure 12. Comparison of smartphone MSLP with STI best-track MSLP for different spatial coverage ratios (defined in Sect. 2.2) for
smartphones and weather stations (a) and PDF distribution (b). The squares, triangles and circles represent TC Lekima in 2019, TC Hagupit
in 2020 and TC In-fa in 2021, respectively. The colors represent the difference between smartphone MSLP and STI MSLP indicated in the
upper-left corner of (a).

We described two bias correction procedures, one for la-
beled and one for unlabeled data, which primarily differ in
their methods of aggregating data samples in each situation.
Upon applying these approaches to data from TC Lekima in
2019, we found that the labeled data approach resulted in
smaller errors and deviations compared to the unlabeled data
approach. Due to the high spatial resolution and extensive
coverage, smartphone pressure data can supplement weather
station pressure observations and improve pressure analysis
in TCs.

Using data from TC Lekima in 2019, Hagupit in 2020 and
In-fa in 2021, we compared the MSLP of TCs derived from
smartphone data, weather station observations and the best-
track dataset from STI. The smartphone and station MSLPs
are generally in agreement, but the STI tends to underes-
timate the TC MSLP. Considering the higher resolution of
smartphone observations, particularly in areas with sparse
weather station coverage, and their minor errors after bias
correction, it can be concluded that the smartphone pressure
data can help estimate the intensity of TCs on land more ac-
curately.

The conclusions of the three TCs provide valuable insights
into the potential of smartphone pressure data for weather
observation and forecasting. While the selection range of eli-
gible TCs is relatively narrow due to the limited data amount
of smartphone pressure observations, there is great potential
for further research and application in this area. It is impor-
tant to note that the research and application of smartphone
pressure data are still in their early stages. However, by fo-
cusing on other types of weather systems and expanding the
range of smartphone data collection, we can develop the uti-
lization value of the limited smartphone data in more dimen-
sions. Additionally, although waiting for data accumulation
is an essential aspect of future research, the increasing use of
smartphones offers promising potential for data collection.

Although the average number of user observations is cur-
rently low, there is potential for improvement. Kim et al.
(2015) found that the amount of smartphone pressure data
generated by weather apps decreased significantly after the
publicity period ended, indicating that the enthusiasm of the
public to participate in mobile weather observation needs to
be fundamentally improved. By helping the public under-
stand the role of smartphone data in weather observation,
forecasting and warning, we can increase enthusiasm for mo-
bile weather observation. Citizen science projects such as
PressureNet (2024) and Zooniverse (2024) provide good ex-
amples of how to engage the public in weather data collec-
tion, and these practices should be implemented more widely
in other countries and regions.

In conclusion, while there are challenges in the utilization
of smartphone pressure data, there is great potential for fur-
ther research and application. By addressing these challenges
and engaging the public in mobile weather observation, we
can improve the spatial and temporal resolution of the data
to enhance their value for weather forecasting and warning
systems. The future of smartphone pressure data in meteo-
rology is promising, and with continued research and public
engagement, we can unlock its full potential.

Code availability. The code used during the study is publicly ac-
cessible and linked through the persistent URL https://github.com/
geq-pku/smartphone-pressure.git (last access: 13 February 2025;
https://doi.org/10.5281/zenodo.14851532, Qiao, 2025).

Data availability. Smartphone data are available from the Moji
Corporation upon request (ruijing.chen@moji.com). Surface ob-
servation data and radar data are available from the Chi-
nese Meteorological Administration upon request (datacen-
ter@cma.gov.cn). Tropical cyclone best-track data are available
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on the website https://tcdata.typhoon.org.cn/en/zjljsjj.html (China
Meteorological Administration, 2025; Lu et al., 2021; Ying
et al., 2014). Land-use and land-cover data are available at
https://doi.org/10.12078/2018070201 (Xu et al., 2018).
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