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Abstract. Satellite-based observations of carbon dioxide
(CO2) are sensitive to all processes that affect the propaga-
tion of radiation in the atmosphere, including scattering and
absorption by atmospheric aerosols. Therefore, accurate re-
trievals of column-averaged CO2 (XCO2) benefit from de-
tailed information on the aerosol conditions. This is particu-
larly relevant for future missions focusing on observing an-
thropogenic CO2 emissions, such as the Copernicus Anthro-
pogenic CO2 Monitoring mission (CO2M). To fully prepare
for CO2M observations, it is informative to investigate ex-
isting observations in addition to other approaches. Our fo-
cus here is on observations from the NASA Orbiting Car-
bon Observatory-2 (OCO-2) mission. In the operational full-
physics XCO2 retrieval used to generate OCO-2 level 2 prod-
ucts, the aerosol properties are known to have high uncer-
tainty, but their main objective is to facilitate CO2 retrievals.
We evaluate the OCO-2 product from the point of view of
aerosols by comparing the OCO-2-retrieved aerosol proper-
ties to collocated Moderate Resolution Imaging Spectrora-
diometer (MODIS) Aqua Dark Target aerosol products. We
find that there is a systematic difference between the aerosol
optical depth (AOD, τ ) values retrieved by the two instru-
ments such that τOCO−2 ∼ 0.4τMODIS. A similar difference
is found when comparing OCO-2 with the Aerosol Robotic
Network (AERONET). This results in 16.5 % of cases be-
ing misclassified as low AOD (good quality) by the OCO-
2 quality filtering. We also find a dependence of the XCO2
on the AOD difference, indicating an aerosol-induced effect
in the XCO2 retrieval. Furthermore, comparing with the To-

tal Carbon Column Observing Network (TCCON), we find a
small AOD-dependent bias in XCO2. In addition, we find a
weak but statistically significant correlation between MODIS
AOD and XCO2, which can be partly explained by natural
covariance and co-emission of aerosols and CO2. Due to the
co-emission, using an AOD threshold in the quality filtering
leads to a sampling bias, where high XCO2 values are more
often removed. To mitigate the effect of this on the anthro-
pogenic CO2 emission monitoring, we investigate the effect
of the AOD threshold on the fraction of acceptable XCO2
data. We find that relaxing the MODIS AOD threshold from
0.2 to 0.5, which is the goal for the CO2M, increases the frac-
tion of acceptable data by 14 percentage points globally and
by 31 percentage points for urban areas.

1 Introduction

Anthropogenic emissions of carbon dioxide (CO2) will be
monitored operationally in this decade using atmospheric
measurements to support the Global Stocktake and pro-
vide independent information for tracking national emis-
sion reductions outlined in the Paris Agreement (Janssens-
Maenhout et al., 2020). While ground-based greenhouse gas
measurements are mainly available in developed countries
– with limited coverage and representativeness – satellite-
based XCO2 information will be irreplaceable in areas
where ground-based measurements are not made. An es-
sential monitoring component will be the Copernicus An-
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thropogenic CO2 Monitoring Mission (CO2M; Meijer et al.,
2023). The key purpose of the observations is to provide
means for an independent verification of nationally reported
emissions, and therefore the focus and the challenge of
CO2M will be to make accurate and precise observations of
anthropogenically polluted environments.

The existing satellite XCO2 products from JAXA’s Green-
house Gases Observing Satellite (GOSAT; Yokota et al.,
2009), NASA’s Orbiting Carbon Observatory-2 (OCO-2;
Crisp et al., 2004), and the Chinese TanSat (Yang et al., 2018)
are focused on global CO2 observations and have been de-
veloped to inform flux inversion models for quantifying the
large-scale sources and sinks of CO2 (e.g., Houweling et al.,
2015; Crowell et al., 2019). In assimilating satellite data to
inverse model systems, the reliability of data has been pre-
ferred at the cost of not achieving full global coverage; thus,
the observations of potentially deteriorated quality are fil-
tered in the post-processing. One of the known factors af-
fecting XCO2 retrieval accuracy and precision is atmospheric
aerosol: scattering and absorption by aerosols affect the light
path of radiation and complicate the interpretation of the sig-
nal (Butz et al., 2009; Guerlet et al., 2013; Connor et al.,
2016; Lamminpää et al., 2019; Rusli et al., 2021). Therefore,
retrievals made in aerosol-loaded conditions are mostly fil-
tered out (e.g., O’Dell et al., 2018). In the advent of CO2M
and other missions targeting anthropogenic signals, the fo-
cus of flux estimation is shifting from using satellite data
from pristine, aerosol-free scenes to the need to also observe
aerosol-contaminated, polluted atmospheres. The goal is to
enable reliable quantification of local and regional anthro-
pogenic CO2 emissions, but this poses new challenges for
satellite retrievals.

In the NASA Atmospheric CO2 Observations from Space
(ACOS) retrieval algorithm for OCO-2 observations, the
aerosol properties are retrieved as part of the full-physics re-
trieval and are known to have high uncertainties, in particu-
lar for high aerosol loads (O’Dell et al., 2018). The potential
to improve the co-retrieval of aerosols and XCO2 has been
emphasized in recent studies (Lamminpää et al., 2019; Sang-
havi et al., 2020). A systematic, statistical study on the long
data record of OCO-2 observations in quantified aerosol con-
ditions can increase understanding of the potential aerosol
effects on CO2 retrievals and support preparations for the
CO2M observations. Reliable information on atmospheric
aerosols can be obtained from ground-based instruments and
from satellite-based instruments (and algorithms) specialized
to detect aerosols, such as the Moderate Resolution Imaging
Spectroradiometer (MODIS; Levy and Hsu, 2015). In the lat-
ter case, the favorable orbital configuration of OCO-2 and
Aqua satellites as part of the A-train constellation ensures
optimal coverage for collocated observations. This enables
an expansion of the evaluation beyond the traditional ap-
proaches that are centered around ground-based validation
sites (e.g., the Total Carbon Column Observing Network,

TCCON; Wunch et al., 2011) from which only a small frac-
tion represent an urban environment.

In this paper, we evaluate the OCO-2 level 2 product from
the point of view of aerosols by comparing the OCO-2-
estimated aerosol properties to the MODIS/Aqua Dark Tar-
get aerosol product. We study how well the current ACOS
quality filtering works in different aerosol conditions, focus-
ing in particular on heavy aerosol conditions and urban envi-
ronments. The focus of this paper is on the statistical analysis
of a global multiyear dataset. For complementarity, we also
use all available TCCON data as a subset of the study and to
estimate aerosol and CO2 co-emission.

2 Data

2.1 OCO-2

NASA’s Orbiting Carbon Observatory-2 (OCO-2) is an at-
mospheric carbon dioxide (CO2) observing mission with a
diffraction-grating spectrometer on board a polar-orbiting
satellite. OCO-2 makes passive observations of backscat-
tered solar radiation in the near-infrared and shortwave in-
frared wavelengths. It has a ground pixel size of approxi-
mately 1 km× 2 km and covers a swath width of 10 km, with
a 16 d revisit time.

We use OCO-2 daily Lite files (V10r) (OCO-2 Science
Team et al., 2020), produced by the OCO-2 project at the
Jet Propulsion Laboratory, California Institute of Technol-
ogy, and obtained from the OCO-2 data archive maintained
at the NASA Goddard Earth Science Data and Information
Services Center (O’Dell et al., 2018; Wunch et al., 2017;
Taylor et al., 2023). The aerosol parameters of the ACOS
algorithm include five scatterers, which are two cloud types
(water and ice), two tropospheric aerosol types, and a strato-
spheric aerosol type (sulfate). The two most representative
types of tropospheric aerosols out of five possible types (dust,
sea salt, sulfate aerosol, organic carbon, and black carbon)
are drawn from collocated 3-hourly aerosol fields from the
Goddard Earth Observing System Model, Version 5, Forward
Processing for Instrument Teams (GEOS-5 FP-IT; see Crisp
et al., 2021). From the large number of data products pro-
vided by the ACOS Level 2 full-physics (L2FP) retrieval al-
gorithm, we use mainly the estimates of the CO2 column-
averaged dry-air mole fraction (XCO2), the total aerosol op-
tical depth (AOD) values, and the XCO2 quality flag.

2.2 MODIS

We use the level 2 (L2) Moderate Resolution Imaging Spec-
troradiometer (MODIS) Collection 6.1 atmospheric aerosol
product from the Aqua platform (MYD04_L2) as reference
aerosol data (Levy and Hsu, 2015). The MODIS Dark Target
(DT) algorithm (Levy et al., 2013) is available over ocean and
dark (e.g., vegetated) land surfaces, while MODIS Deep Blue
(DB) (Hsu et al., 2004) covers land areas including bright
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surfaces. As we are mainly interested in the effect of aerosols
on XCO2 over urban areas, we concentrate on MODIS re-
trievals over land surfaces and use mainly the 10 km MODIS
DT product over land; results for DB are shown in Ap-
pendix A. While the global aerosol optical depth (AOD) pat-
terns are somewhat different between DT and DB, we find
that the global statistics and conclusions regarding the con-
nection to XCO2 retrievals are largely the same. Collocation
with the higher-spatial-resolution MODIS 3 km aerosol prod-
uct (MYD04_3K; Remer et al., 2013) was tested for 1 year
(2018). The results did not differ significantly from the cor-
responding subset when using the 10 km DT product (not
shown). Due to the considerably larger computational burden
of the 3 km data, the full dataset was processed only with the
10 km product. Previous studies have shown that the 3 and
10 km products perform very similarly on the global scale
(Gupta et al., 2018; He et al., 2017). For more detailed case
studies the use of the MODIS 3 km product could be benefi-
cial, but that is beyond the scope of this exercise.

Both Aqua and OCO-2 are in the A-train satellite constel-
lation following similar orbital tracks, allowing fair collo-
cation between the instruments. MODIS data used in this
study were obtained from the NASA Level 1 and Atmo-
sphere Archive and Distribution System Distributed Active
Archive Center (LAADS DAAC) (LAADS-DAAC, 2024). A
total of 5 years of data from 2015 to 2019 were processed.
Due to the large size of the original MODIS L2 aerosol data,
the data were pre-processed before collocating with OCO-
2 data to create daily files which contain a reduced num-
ber of original data fields and cloud-screened pixels only.
The MODIS quality flag was applied to remove the poor-
quality pixels (MODIS quality flag 0). We also tested using
more stringent quality filtering, keeping only the best-quality
MODIS data (quality flag 3). Although this reduced the num-
ber of matches with OCO-2 by nearly 30 % and reduced the
global average AOD by 0.02, it did not affect the conclusions
of our work. Note that the MODIS quality flag is systemat-
ically applied throughout the results in this paper, while the
use of the OCO-2 quality flag varies. In the rest of the paper,
when the use of quality flag or quality filtering is discussed,
this refers to the OCO-2 quality flag.

2.3 TCCON

For ground-based reference XCO2 measurements, we em-
ploy the Total Carbon Column Observing Network (TC-
CON), which consists of high-resolution Fourier transform
spectrometers that make observations of direct sunlight in the
near-infrared wavelengths. TCCON provides precise and ac-
curate retrievals of the total column CO2 abundance (Wunch
et al., 2011). In this study, we use data from 26 TCCON sta-
tions to quantify the AOD dependence of XCO2 (Table A4).

2.4 AERONET

The Aerosol Robotic Network (AERONET) is used as
ground-based reference data for AOD. AERONET is a net-
work of over 600 stations (currently) using standardized
methodology and equipment to measure aerosol optical, mi-
crophysical, and radiative properties (Holben et al., 1998).
The AERONET sun photometer measurements are routinely
used as reference measurements for satellite aerosol re-
trievals due to their high accuracy (absolute error in AOD
of the order of 0.01–0.02; Eck et al., 1999; Sinyuk et al.,
2020). In this work we use AERONET Version 3 level 2.0
data at 500, 675, and 870 nm to evaluate the OCO-2 total
AOD (Giles et al., 2019). We consider AERONET data col-
located with OCO-2 glint and nadir observations for Septem-
ber 2014–February 2023.

3 Methods

3.1 Collocation of MODIS and OCO-2 data

The OCO-2 and MODIS data are collocated using the OCO-
2 daily (Lite) files and reduced daily MODIS files. The col-
location is done by selecting the nearest MODIS pixel for
each OCO-2 pixel within a 0.2°× 0.2° area and within 1 h
of the OCO-2 overpass (to remove possible overlapping or-
bits of the same day at high latitudes). To further reduce the
data size, the collocated dataset includes only OCO-2 data
points for which a MODIS match is found. This reduces the
number of data points to about 14 % of the original OCO-2
data points for the 5 years considered (2015–2019). Table A1
shows the number of original OCO-2 data points and the
number of collocated data points with a MODIS match for
each year (2015–2019). Using the MODIS DT-land retrieval
removes oceans and bright surfaces such as deserts and
snow-covered areas, and the MODIS cloud mask and quality
filtering may further reduce the number of data points. This
reduces the coverage of the collocated dataset with respect to
the original OCO-2 data, especially at high latitudes. We note
that although both data products are cloud-screened, possible
mutual cloud-contaminated pixels can cause erroneous high
AOD values, which may affect the obtained correlation coef-
ficients. Figure A1 shows the fraction of OCO-2 pixels with
a MODIS match for 1°× 1° grid cells and the fraction of
good-quality pixels (OCO-2 quality flag) for the collocated
data. The collocated dataset in NetCDF format is available
as open data (Virtanen, 2024).

3.2 Collocation with TCCON

OCO-2 v10 XCO2 observations were collocated with TC-
CON using the following criteria. Spatially, all satellite ob-
servations within 1° in latitude and 1.5° in longitude from
a given TCCON site were collected, and, for each observa-
tion, a corresponding TCCON XCO2 value was assigned as
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the mean of TCCON XCO2 retrievals within ±60 min from
each OCO-2 observation. The effect of different prior pro-
files in OCO-2 v10 and TCCON retrieval algorithm version
GGG2020 (Laughner et al., 2024) was taken into account by
adjusting the OCO-2 XCO2 value, following Mendonca et al.
(2021). In practice, this adjustment was very small, given the
similarity of the prior profiles. The different vertical sensitiv-
ity of the TCCON and OCO-2 retrievals was taken into ac-
count by adjusting the retrieved, collocated TCCON XCO2
values (Mendonca et al., 2021).

3.3 Collocation with AERONET

Each nadir or glint-mode OCO-2 observation close to an
AERONET site is matched with the ground-based observa-
tions using the following criteria. Spatial collocation uses a
distance threshold of 0.1° around all available AERONET
sites and temporal collocation averages AERONET observa-
tions within ± 30 min of the satellite overpass. The OCO-
2 observations within the 0.1° radius are included in the
comparison individually (no spatial averaging). We note that
the comparison statistics are typically affected by the spa-
tial and temporal collocation parameters (see, e.g., Virtanen
et al., 2018). Different sampling radii and time windows were
tested with a subset of data, with minor effects on the results.
With the abundance of AERONET sites, we could afford a
smaller sampling area than that used for TCCON data. A
simple average of AOD values at 675 and 870 nm is used
to evaluate the effect of wavelength difference (see Fig. 3).
While this simple approach may not be the most accurate,
it is sufficiently accurate for our purposes. A more accurate
method for the wavelength scaling using the Ångström expo-
nent from AERONET was tested for a subset of data, and we
did not find significant differences in the results.

3.4 Aggregation of collocated data

Analyzing collocated data of this size (∼ 10 million points
for a year) requires some aggregation before plotting. Two
approaches have been applied: (1) data fields are aggregated
to an AOD vs. AOD grid; i.e., data points falling in certain
MODIS AOD bin and a certain OCO-2 AOD bin are aver-
aged (e.g., Fig. 7). For MODIS, we use AOD at 550 nm and
for OCO-2 the total AOD data field. The number of data
points in each AOD matrix grid cell is also recorded (e.g.,
Fig. 4). (2) In the second approach the data are aggregated to
a regular lat–long grid (e.g., Fig. 1). Optionally, the OCO-2
quality flag (QF) can be applied in the aggregation, removing
low-quality pixels. Aggregation is done using all available
collocated data over 5 years (2015–2019).

3.5 Linear trend correction for XCO2

For the multiyear dataset we use a simple detrending of
OCO-2 XCO2 values to compensate for the steady increase
in CO2 levels in order to focus more on the details of XCO2

variability and possible retrieval biases. A reference date is
set at 1 January 2015, and a linear increase of 2.4 ppm yr−1

is assumed and corrected for in the data (10-year global av-
erage; NOAA Global Monitoring Laboratory, 2024). We call
this process linear trend correction, and when applied to the
XCO2 data in this work, we denote this by the abbreviation
LTC. While this approach allows meaningful aggregation of
XCO2 data over several years, it does not take into account
the (spatially varying) seasonal variation of XCO2.

3.6 XCO2 anomaly

The OCO-2 XCO2 anomaly is calculated for each good-
quality OCO-2 pixel in the collocated dataset as the differ-
ence from a local, temporally varying median value. This
median is calculated from the good-quality pixels in the same
OCO-2 orbit within 500 km from the pixel considered. The
idea is that the yearly increase in CO2 and the seasonal
variation are large-spatial-scale effects which are captured
by the 500 km portion of an orbit. When the median value
is subtracted, the remaining “anomaly” part is assumed to
contain information on local sources and sinks, while the
trend and seasonal effects are removed. This is an alterna-
tive way to de-trend the data, instead of applying the simple
LTC. Unlike LTC, the anomaly method also effectively de-
seasonalizes the data. It also allows studying the covariance
of AOD values and local XCO2 anomalies caused by possi-
ble CO2 sources and sinks. While most of the results shown
in this work have been processed with the linear trend cor-
rection, the corresponding XCO2 anomaly results are also
shown where appropriate to support the analysis.

4 Results

In this section, we explore the relationships and implications
of 5 years of global collocated MODIS and OCO-2 data, with
a particular focus on how AOD differences impact XCO2 re-
trievals. We will first consider the differences between collo-
cated MODIS and OCO-2 AOD data to establish the variabil-
ity in aerosol estimates across different regions (Sect. 4.1).
This provides the foundation for understanding how regional
variations in AOD influence XCO2 retrievals, particularly in
polluted areas.

Building on this, we examine the extent to which high-
AOD cases, identified using MODIS, remain in the quality-
filtered OCO-2 dataset (Sect. 4.2). This is particularly rele-
vant for urban regions where aerosol and CO2 emissions are
correlated, making accurate detection and handling of high-
AOD cases essential for reliable monitoring of anthropogenic
CO2 emissions. In Sect. 4.3, we explore the statistical rela-
tionship between AOD and XCO2 using TCCON data as a
reference and considering both real atmospheric co-emission
effects and aerosol-induced retrieval biases. In this context,
in order to remove the effect of increasing XCO2 values
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over the 5 years, we apply the simple linear trend correction
(LTC) described in the Methods section. As an alternative de-
trending option for XCO2 we use anomaly data (see Sect. 3),
which is useful in also removing the seasonal effect, ideally
preserving local-scale spatial variability.

Finally, Sect. 4.4 examines how using different AOD
thresholds for quality filtering impact data coverage, with
a focus on the correlation between AOD and CO2 emis-
sions. Since high-AOD cases often correspond to high-CO2-
emission regions, limiting retrievals to low AOD introduces
a sampling bias by disproportionately removing these high-
emission cases. Relaxing the AOD threshold increases cover-
age, particularly in urban areas, complementing the previous
analyses by ensuring a more representative dataset for moni-
toring anthropogenic CO2 emissions.

4.1 Spatial AOD comparison

Figure 1a shows MODIS DT AOD at 550 nm aggregated to a
1°× 1° lat–long grid for 2015–2019 for quality-filtered col-
located data (the MODIS quality flag is always applied; here
we use also the OCO-2 quality flag) over land. High-AOD
areas due to anthropogenic aerosol emissions are seen in par-
ticular in parts of Asia, and elevated aerosol loads due to dust
are seen over various desert areas around the globe. MODIS
Dark Target observations are not available over bright sur-
faces such as large deserts and snow-covered areas, which
explains the gaps seen on the map. Figure 1b shows the AOD
difference between OCO-2 and MODIS. Note that the OCO-
2 AOD is retrieved at 755 nm, while the MODIS AOD is ob-
tained at 550 nm; the effect of the wavelength difference will
be discussed below. The largest differences in AOD appear
to be concentrated largely in the high-AOD areas in parts
of Asia, where OCO-2 AOD is lower than MODIS AOD.
Also, for several areas with low MODIS AOD, OCO-2 shows
higher values (positive AOD difference), e.g., in parts of
Brazil and Australia. These positive difference values are re-
lated to the MODIS DT algorithm permitting small negative
AOD values (Sayer et al., 2014). In short, the negative values
mean that the AOD is low, but the exact value is not cer-
tain. While the negative values are unphysical, they are kept
in the data in order to avoid a positive bias in the data. The
AOD difference is also positive for the Sahel region where
the MODIS DT values in the collocated dataset are low. The
Sahel area is known to have occasional high AOD caused by
desert dust. Some of these cases are removed by the OCO-2
quality filtering. The MODIS DT algorithm has lower AOD
values compared to the MODIS Deep Blue algorithm in this
region. The AOD map and AOD difference map for MODIS
DB are shown in Fig. A2. We see that MODIS DB shows
higher AOD than OCO-2 more often than MODIS DT. A
limited collocation test made with the MODIS 3 km aerosol
product for the year 2018 shows slightly enhanced coverage
but otherwise very similar AOD patterns as the 10 km DT
product.

Figure 1. Collocated OCO-2 v10 and MODIS/Aqua DT-land
dataset 5-year 1°× 1° aggregate maps for quality-filtered data.
(a) MODIS AOD at 550 nm. (b) AOD difference (OCO-
2−MODIS). (c) Correlation between MODIS and OCO-2 AOD
values for 1°× 1° grid cells.

Figure 1c shows the Pearson correlation coefficient R be-
tween MODIS AOD at 550 nm and OCO-2 total AOD for
1°× 1° grid cells for 5 years. The data are rather noisy, but
regions with particularly low correlation are seen, including
Australia, the Sahel, the western USA, and the arid regions
of central Asia. These areas are characterized by bright sur-
faces, indicating that the surface reflectance treatment in the
algorithms might explain some of the differences in AOD.
We note that MODIS DB shows roughly similar patterns
(Fig. A2c), including low correlation over bright surface ar-
eas. Good correlation is observed in Europe, at northern
high latitudes, and over tropical rainforests. Figure 2a shows
a global time series comparison for MODIS and OCO-2
AODs. The correlation coefficient calculated from monthly
temporal bins (R = 0.53) is similar to the average spatial
correlation in Fig. 1c (R = 0.49). We note that possible mu-
tual cloud contamination of collocated data points could lead
to erroneous high AOD values for both instruments, possi-
bly leading to higher correlation values than without cloud
contamination. However, data from each satellite are cloud-
screened with their respective cloud masks, and the vast ma-
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jority of data are in the low-AOD region, reducing the prob-
ability of large bias.

Here we point out that the MODIS AOD is evaluated at
550 nm wavelength, while the OCO-2 total AOD value corre-
sponds to 755 nm, and the two are hence not directly compa-
rable. We do not expect to see a one-to-one correspondence
between the two. The sensitivity of AOD to the wavelength
depends on the aerosol size distribution and other proper-
ties. In general, for typical ambient aerosols, it is expected
that the AOD is smaller at 755 nm, as suggested by the data.
One way to scale the AOD obtained at one wavelength to
another wavelength is to use the Ångström exponent. While
MODIS-based estimates of the Ångström exponent exist,
they are not reliable over land (Levy et al., 2010). To ob-
tain a rough idea of how the wavelength difference might
affect the AOD comparison on a global scale, we have used
the Ångström exponent from collocated MERRA-2 monthly
climatology (Global Modeling And Assimilation Office, last
access: 22 April 2024) to scale the OCO-2 AOD values to
550 nm, which can be considered a reference wavelength
used in many satellite aerosol products. The result suggests
that the low bias in OCO-2 AOD compared to MODIS is
only slightly reduced by the scaling (Fig. A3). A bivariate lin-
ear fit for OCO-2 AOD (at 755 nm) as a function of MODIS
AOD (at 550 nm) gives a slope of 0.3, while a fit using OCO-
2 AOD scaled to 550 nm gives a slope of 0.4 (without the
OCO-2 quality filtering).

The use of MERRA-2 data potentially induces high uncer-
tainty to the spectral conversion. We use this method merely
to get a rough estimate of the effect of the wavelength dif-
ference on the AOD difference. This is done only in a sta-
tistical sense for the global dataset, understanding that the
high uncertainties involved with the scaling do not allow for a
more detailed comparison. The main conclusion drawn from
this is that while the slope of OCO-2 AOD against MODIS
AOD is 0.3 before spectral scaling, it is 0.5 after the scal-
ing; i.e., the wavelength difference explains some, but not all,
of the difference. The spectral conversion was repeated with
a smaller subset of data using the Ångström exponent from
AERONET, and the results largely agreed with the global
dataset.

Comparison of OCO-2 AOD with AERONET shows sim-
ilar results (Fig. 3). A linear fit of OCO-2 AOD against
AERONET AOD at 500 nm gives a slope of 0.3, while a
fit against AERONET AOD scaled to 770 nm gives a slope
of 0.53. The slope is further increased when a more recent
version of the OCO-2 algorithm is used. The similarity of
these results supports the assumption that MODIS AOD can
be used as reference data in evaluating the OCO-2 perfor-
mance. The MODIS aerosol products have been extensively
validated, with a typical correlation coefficient of R ∼ 0.9
against AERONET (Levy et al., 2013; Sayer et al., 2014;
Wei et al., 2019). We do not repeat the MODIS AOD prod-
uct validation against AERONET in this work, but we have
compared the MODIS part of the collocated OCO-2–MODIS

dataset to AERONET with similar sampling as used for
OCO-2. This differs from the typical validation in that the
sampling is not optimal for MODIS but limited to the pixels
collocated with OCO-2. As expected, this sampling leads to
slightly reduced validation metrics against AERONET (R ∼
0.8, small bias), but the metrics are still better than for OCO-
2. Hence, we are confident that although the MODIS AOD
product certainly has higher uncertainty than AERONET, it
helps to extend the evaluation of OCO-2 AOD to the global
scale.

The OCO-2 quality filtering applied to the collocated
dataset heavily affects the AOD comparison shown in Fig. 1.
Because the cases where OCO-2 retrieves large AODs are
removed by the quality filtering, the aggregated MODIS DT
AOD values are much lower than they would be for unfil-
tered MODIS data. The quality filtering also causes a sam-
pling bias between MODIS and OCO-2 AOD data, since not
all cases with high MODIS AOD are removed. Statistics for
AOD in different subsets are shown in Tables A1 to A2. The
correlation is better for unfiltered data (Table A2).

Finally, we note that the OCO-2 retrieval algorithm ACOS
is not an aerosol retrieval algorithm and the total AOD value
included in the product is only one of more than 50 com-
ponents in the full-physics retrieval. Incorrect AOD values
in the ACOS retrieval may be compensated for by other re-
trieval parameters, and a difference between MODIS and
OCO-2 AOD values does not necessarily indicate erroneous
XCO2 retrieval. Our focus here is not to evaluate the AOD
component of ACOS retrieval as such but to study the sta-
tistical relationships using MODIS AOD as independent ref-
erence data. We also note that the collocation between the
MODIS 10 km AOD product and the OCO-2 observations
at higher spatial resolution (approximately 1×2 km2) affects
the comparison. The collocation approach applied here, us-
ing the closest MODIS pixel for each OCO-2 data point,
is the simplest possible. The simple approach was chosen
to enable processing the large dataset efficiently, and more
sophisticated collocation for detailed case studies is consid-
ered elsewhere. However, we made a limited test with the
MODIS 3 km aerosol product for the year 2018 to study the
effect of aerosol data resolution. This increased the number
of matches with OCO-2 by 38 % with little effect on the re-
sults: the average XCO2 value of the collocated dataset in-
creased by 0.02 ppm and the average MODIS AOD increased
by 0.01 for the unfiltered dataset.

The expected error envelope for MODIS DT AOD is
±0.05+ 0.15τA for reference (AERONET) AOD τA (Levy
et al., 2010, 2013), indicating a high relative uncertainty at
low AOD values. However, the absolute value of AOD (or the
absolute difference between MODIS and OCO-2) at very low
levels is not crucial for the accuracy of the XCO2 retrieval,
since the effect of aerosols is expected to be small for low
AODs. In addition, the cases where OCO-2 severely over-
estimated AOD are not seen in the quality-filtered dataset,
as the cases with OCO-2 AOD over 0.2 are removed by the
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Figure 2. Temporal bin plots (3-week mean values) for the global, quality-filtered collocated OCO-2–MODIS dataset. Shaded areas show
the interquartile range. Correlation coefficients R are calculated from the temporal bin values. Comparison of (a) MODIS and OCO-2 AOD,
(b) MODIS AOD and OCO-2 XCO2, and (c) OCO-2 AOD and XCO2. The positive correlation suggests that there is temporal covariance
between AOD and XCO2.

Figure 3. Comparison between OCO-2 and AERONET for all collocated data through February 2023. (a) AERONET AOD at 500 nm.
(b) AERONET AOD scaled to 770 nm by simple average. (c) OCO-2 version B11.

standard quality filtering (O’Dell et al., 2018). Hence, from
the point of view of the aerosol effect on the XCO2 retrievals,
the most important areas are those with an AOD difference
below −0.2 (blue areas in Fig. 1b), where OCO-2 AOD is
significantly lower than MODIS AOD. In the following we
will separate the data into different AOD difference subsets
to study this in more detail.

To conclude, in this section we consider the differences
between the collocated MODIS DT AOD product and the
OCO-2 total AOD component. We find that the AOD dif-
ference depends on region. OCO-2 tends to overestimate the
aerosol load in regions with low MODIS AOD. More impor-
tant for the XCO2 retrievals, OCO-2 tends to severely under-
estimate AOD in the high-MODIS-AOD regions (including
areas with high anthropogenic emissions), which may have
an effect on the XCO2 retrievals in these regions.

4.2 Effect of AOD discrepancy in OCO-2 quality
filtering

In this section we will compare the OCO-2 total AOD com-
ponent to MODIS AOD statistically for the full collocated
dataset using, for example, density scatter plots. Specifically,
we address the question of how well the OCO-2 quality fil-
tering works from the point of view of aerosols. The OCO-2
quality filter uses an AOD threshold of 0.2, among several

other tests, to remove heavy aerosol conditions. We use col-
located MODIS AOD data to assess the performance of the
OCO-2 AOD filter.

Figure 4 shows joint histograms of 5 years of collocated
OCO-2 and MODIS AOD data (over 40 million collocated
data points). In panel (a) we show all data, without OCO-
2 quality filtering. In panel (b) we have applied filtering
using the OCO-2 quality flag (O’Dell et al., 2018), which
identifies potentially bad-quality retrievals affected by, e.g.,
clouds or high aerosol loads, and removes the results with
OCO-2 AOD higher than 0.2. The dashed red line shows
bin-averaged OCO-2 AOD data for MODIS AOD bins (50
bins with width 0.02; see also Fig. A3a for a box plot). We
see that OCO-2 AOD is systematically low with respect to
MODIS AOD (mean MODIS AOD is 0.15, mean OCO-2
AOD is 0.12), except for the lowest MODIS AOD values
where OCO-2 has higher AOD. The overestimation at the
low AOD end may be related to the water and ice aerosol
components included in the OCO-2 total AOD. These two
AOD components are included in the ACOS retrieval to ac-
count for possible residual cloud contamination, while the
MODIS aerosol retrieval does not have corresponding ele-
ments. Preliminary study shows elevated water and ice AOD
values at low MODIS AOD values, but a more detailed study,
beyond the scope of this work, would be required to confirm
this. The dashed green line shows a bivariate linear fit, which
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closely follows the binned mean values with a slope of 0.33
for the unfiltered data. Naturally, the quality filtering affects
the binned averages at the high-MODIS-AOD end, where a
larger fraction of the data with high OCO-2 AOD is removed.
This causes deviation of the binned averages from the linear
behavior and is reflected in the lower slope (0.18) for the lin-
ear fit.

The Pearson correlation coefficient for the unfiltered data
is 0.60, which is reduced to 0.52 for the data filtered with
the OCO-2 quality filter. The large spread of the data reflects
the fact that the ACOS algorithm is not optimized for AOD
retrieval, as discussed above. Considering this, the obtained
correlation with MODIS AOD can be considered acceptable.
Note that in the collocated dataset the MODIS data are of-
ten the limiting factor (Table A1), already removing data
over bright surfaces and in proximity to clouds. Applying
the OCO-2 quality filter further reduces the collocated data
to 56 % of the original collocated data points. We note that
only 15 % of the original data are removed by the total AOD
threshold of 0.2, while 29 % are removed by other quality
tests. The lower correlation coefficient of the quality-filtered
dataset reflects the imbalance between OCO-2 and MODIS
in the AOD distribution of data points removed by the OCO-
2 quality filter.

The dotted black lines in Fig. 4 at the AOD threshold
of 0.2 divide the AOD matrix into four quarters, Q1–Q4.
The threshold 0.2 corresponds to the current limit for good-
quality retrievals in OCO-2 over land. We note that since the
wavelength-corrected linear relation between the two instru-
ments is roughly AODMODIS ∼ 2.5 AODOCO−2, a more ap-
propriate AOD threshold for MODIS could be 0.5. For sim-
plicity we use the same limit of 0.2 for both instruments,
but in Sect. 4.4 we study the effect of filtering the data
with an AOD threshold of 0.5 applied to MODIS data. The
first quarter (Q1) with AOD from both instruments below
0.2 contains most of the data (68.5 %). The second quar-
ter (Q2) contains data with τOCO−2 ≤ 0.2 and τMODIS > 0.2
(16.5 %). These data points are assumed to have low AOD
in the OCO-2 retrievals, but according to MODIS there can
be quite heavy aerosol loads, which might affect the XCO2
retrievals. Q3 contains data points with AOD above 0.2 for
both instruments (10.8 %). These data points are removed
when the OCO-2 quality filtering is applied, which is ap-
propriate considering that heavy aerosol conditions should
be avoided in XCO2 retrievals. The last quarter (Q4) in-
cludes data points for which τOCO−2 > 0.2 and τMODIS ≤ 0.2
(4.1 %). These data are removed by quality filtering, but
based on low MODIS AOD values Q4 could contain good-
quality retrievals.

Table 1 shows the fraction of data in different quarters
of the AOD matrix and the total number of data points in
the collocated MODIS–OCO-2 dataset and two subsets. The
numbers are respectively shown for quality-filtered (good-
quality) and for the unfiltered (all data) cases. The global
dataset includes all available OCO-2 data from 2015–2019

which have a matching MODIS aerosol retrieval (14 % of
all OCO-2 data points, over 40 million data points in total;
see Table A1). The urban dataset is limited to areas of dense
human habitation using the urban area mask from https://
www.naturalearthdata.com/ (last access: 22 April 2024) (Ver.
4.1.0) (NaturalEarth, 2024; Schneider et al., 2009), illus-
trated in Fig. A5; these results are discussed in more de-
tail in Sect. 4.3. The OCO-2–TCCON dataset contains col-
located MODIS–OCO-2–TCCON data for the 26 TCCON
sites listed in Table A4. The fraction of data in Q2 is consid-
erably higher for the urban subset, reflecting the higher AOD
differences between the two instruments over urban areas.
We see that the quality filtering using the OCO-2 quality flag
also removes some of data from Q1 and Q2. The ∼ 24 mil-
lion good-quality data points for the global dataset compose
about 56 % of the total collocated data, which is about 66 %
of data originally in the two lower quarters Q1 and Q2.

As already noted, the MODIS DT aerosol product contains
a considerable fraction (∼ 20 %) of negative AOD values.
While these are obviously unphysical, they are kept in the
analyses in order to not disturb the AOD distribution (Sayer
et al., 2014). These data are not shown in Fig. 4, but in the
statistics we include the negative MODIS AOD data points
in Q1 and Q4, depending on the corresponding OCO-2 AOD
value.

Figure 5 shows maps of the fraction of data in the two
AOD matrix quarters (Q1 and Q2) for the good-quality data
per 1°× 1° grid cell. The map for the Q1 fraction reveals
that for the vast majority of land regions, average AOD is
less than 0.2 for both instruments; however, large areas in
Southeast Asia and central Africa have a low fraction of data
in the low-AOD quarter and correspondingly a higher frac-
tion of data in Q2. Therefore, these areas are more sensitive
to effects caused by high aerosol loads in the XCO2 retrieval.
Figure A5 shows the fraction of data in Q1 for the urban sub-
set.

To conclude this section, we have found that the quality-
filtered OCO-2 data contain a large fraction of data with high
MODIS AOD, potentially affecting the XCO2 retrieval qual-
ity. These data are more frequent in densely populated areas
with high aerosol and CO2 emissions. Hence, for monitoring
anthropogenic CO2 emissions with satellites, it is crucial that
the high-AOD cases are carefully detected and treated in the
satellite retrievals.

4.3 Connection between XCO2 and AOD

In this section we consider the possible aerosol effects in the
OCO-2 XCO2 retrieval. Figure 6a shows aggregated OCO-2
XCO2 values over the globe for the collocated dataset. Visual
comparison with the AOD map in Fig. 1 shows some spatial
correlation between high AOD and high XCO2 values. This
spatial correlation between high XCO2 and high AOD val-
ues may affect the XCO2 statistics in two ways: first, a larger
fraction of data is removed by the OCO-2 quality filtering
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Figure 4. Number of collocated data points (logarithmic color scale) for each “AOD grid cell” (50× 50 cells of AOD width 0.02). (a) All
data and (b) good-quality data only. The dashed red line shows average OCO-2 AOD for each MODIS AOD bin. The green line shows a
bivariate linear fit. The dotted black lines divide the data into four “AOD quarters” (Q1–Q4; see text). The text insets show the fraction of
data in each quarter. The dashed black line shows the 1 : 1 line. The normalized AOD histograms respectively show the distribution of data
for OCO-2 (left-hand histograms) and MODIS (bottom histograms). The lower right text inset shows the number of data points, correlation
coefficient (R), and average AOD values for MODIS (x-av) and OCO-2 (y-av), respectively.

Table 1. Fraction of data in different AOD quarters for different subsets of the collocated MODIS–OCO-2 datasets. The “global” set includes
all collocated data, the “urban” subset is limited to urban areas (see text), and the “TCCON” subset is further collocated with TCCON stations.

All data Good quality

Fraction of data (%) Nall Fraction of data (%) NQF NQF/Nall

XCO2 dataset Q1 Q2 Q3 Q4 (×106) Q1 Q2 Q3 Q4 (×106) (%)

Global 68.5 16.5 10.8 4.1 42.7 84.0 16.0 0.0 0.0 23.8 55.9
Urban 52.9 34.2 11.5 1.5 0.9 63.8 36.2 0.0 0.0 0.5 61.1
TCCON 77.0 17.9 3.2 1.9 1.0 83.5 16.5 0.0 0.0 0.7 65.9

over the high-XCO2-load areas. Second, considering Fig. 5
for the quality-filtered data shows that areas with a large frac-
tion of data in Q2 typically have high XCO2 values. These
heavy aerosol conditions suggested by MODIS data, which
remain in the quality-filtered OCO-2 dataset, may affect the
XCO2 retrieval quality. Figure 6b shows the correlation be-
tween MODIS AOD and OCO-2 XCO2 for 1°× 1° grid cells.
We see particularly high correlation values for the Sahel re-
gion, parts of Southeast Asia, and the western USA.

The sampling of the data (e.g., seasonal variation) affects
the observed spatial features. The spatiotemporal sampling
of the collocated dataset is not even but is affected by, e.g.,
solar zenith angle, cloudiness, and snow cover. In particu-
lar, the Northern Hemisphere high-latitude areas have a rela-
tively strong seasonal cycle of XCO2 (Lindqvist et al., 2015),
which is not fully captured in this aggregated dataset, as the
winter months are scarcely sampled. Figure 2b and c show
global time series of collocated OCO-2–MODIS data, re-
vealing a moderate (R = 0.18) temporal correlation between
MODIS AOD and OCO-2 XCO2. We also emphasize that
the OCO-2 swath is very narrow and repeats over the same
areas, leaving relatively large gaps without data. The crude
map presentation with a 1°× 1° lat–long grid in Fig. 6 arti-

ficially fills the gaps and smooths the data, while the patchy
structure of the data is still seen in the northern high-latitude
areas. Therefore, these maps serve only as a rough reference
indicating spatial variance in retrieved XCO2 values, and one
should not draw far-reaching conclusions from it. More de-
tailed analyses are made based on the statistics from the spa-
tiotemporally collocated subsets of the full dataset in the fol-
lowing.

Figure 7 shows the retrieved XCO2 values aggregated to
the AOD matrix (see Fig. 4 for the number of data points).
When aggregating 5 years of data we first apply a simple
linear trend correction in an attempt to remove the effect of
increasing CO2 values, as described in the Methods section.
Figure 7a clearly shows, when considering all data points (no
quality filtering), that the retrieved XCO2 values are corre-
lated with the relative AOD values. In AOD Q4, where OCO-
2 AOD is biased high compared to MODIS, we get lower
XCO2 values (1.3 ppm lower than the total average). In Q2,
where OCO-2 AOD is biased low compared to MODIS, we
get higher XCO2 values (0.4 ppm higher than the total aver-
age). When quality filtering is applied (Fig. 7b) the total av-
erage is increased by 0.2 ppm, and the Q2 average is 0.5 ppm
above the total average. Table 2 shows average XCO2 values
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Figure 5. Fraction of data in Q1 (both AODs< 0.2) and Q2 (OCO-2
AOD below 0.2, MODIS AOD above 0.2) for 5 years of data.

Figure 6. Linear-trend-corrected OCO-2 XCO2 data from the col-
located OCO-2 and MODIS dataset for 5 years (2015–2019). (a)
Quality-filtered XCO2 (LTC) data aggregated to 1°× 1° grid cells.
(b) Correlation between MODIS AOD and OCO-2 XCO2 for
1°× 1° grid cells (quality filter not applied).

for Q1 and Q2 for the quality-filtered data. Table A2 summa-
rizes the average XCO2 values in different AOD quarters for
the unfiltered data.

As a first guess, the striking connection between XCO2
and the relative AOD values between the two instruments
in Fig. 7a could potentially be explained by the light path
length used in the ACOS full-physics retrieval. The top-of-
atmosphere radiance measured by OCO-2 contains informa-

tion on the total amount of CO2 along the light path, and
inversion of this information to XCO2 values requires knowl-
edge of the light path length, which is affected by aerosols.
If the aerosol load is overestimated in the retrieval (Q4), the
light path is also overestimated, and the measured CO2 ab-
sorption is divided into a distance that is too long, leading
to underestimation of XCO2. Similarly, if AOD is underes-
timated (Q2), the light path is also underestimated, causing
overestimation of XCO2. While the potentially bad-quality
XCO2 retrievals in Q3 and Q4 are removed by the quality
filtering, the possible aerosol effects in Q2 remain in the
quality-filtered OCO-2 data. However, for Q2 the interpre-
tation turns out to be more complicated when the reference
XCO2 data from TCCON are considered, as discussed below.

The correlation between XCO2 and AOD can be a sign of
a retrieval bias caused by aerosols, or it can be caused by
real correlation between aerosols and CO2 emissions. It is
entirely plausible that there is a natural correlation between
AOD and XCO2, stemming partially from anthropogenic (or,
in case of fires or volcanoes, natural) co-emission of CO2 and
aerosols. However, the striking feature in Fig. 7 is the de-
pendence of XCO2 on the relative AOD values between the
two instruments. This dependence of XCO2 on the AOD dif-
ference implies that possible biases in the aerosol treatment
have an effect on the XCO2 retrievals. In the following we
will study these two possible causes of the observed corre-
lation between XCO2 and MODIS AOD in more detail. On
one hand, to investigate the natural correlation, we will focus
more on urban areas, where anthropogenic emissions are pre-
sumably more pronounced. On the other hand, we will con-
sider the reference XCO2 from 26 TCCON sites collocated
with both OCO-2 and MODIS.

We have created an urban subset of the collocated data us-
ing a MODIS-based urban area mask (NaturalEarth, 2024).
Figure A5 shows the urban areas (and fraction of data in
Q1 for these areas). The data are reduced to slightly below
1 million data points (2 % of all data), with a mean XCO2
value 1.3 ppm higher than for the global data for the quality-
filtered case. Similarly to the global case, lower XCO2 val-
ues in Q4 and higher values in Q2 are seen for the unfiltered
data (Table A2). For the urban areas there is a much higher
fraction of high-MODIS-AOD data (Q2+Q3) than globally:
36.2 % (45.7 %) compared to 16.0 % (27.3 %) for filtered
(unfiltered) data (Table 1). Average MODIS AOD for urban
areas is 0.18 (0.24), while for the global dataset it is 0.08
(0.15). Interestingly, for OCO-2 the corresponding values are
0.07 (0.11) and 0.07 (0.12), respectively, and the high-OCO-
2-AOD fraction (Q3+Q4) is about the same for urban and
global datasets (Table 2 and Table A2). It should be noted
that earlier versions of the MODIS DT aerosol retrieval had
some issues over urban areas (Gupta et al., 2016), and more
detailed studies on the reliability of the reference AOD val-
ues in urban areas might be useful.

Finally, there is a column for the XCO2 anomaly in Ta-
ble 2. The OCO-2 XCO2 anomaly is calculated for each
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Figure 7. OCO-2 XCO2 retrievals for 5 years aggregated to the AOD matrix. Linear trend correction (LTC) has been applied to the XCO2
values. (a) All data and (b) only good-quality data. The text insets on the scatter plot show the fraction of data in each AOD quarter and the
mean XCO2 value. The lower right-hand text inset shows the number of data points (N ), correlation coefficient (R), average AOD values for
MODIS (x-av) and OCO-2 (y-av), and average XCO2 (c-av). The normalized histograms show the distribution of AOD data along each axis.

Table 2. XCO2 statistics for different good-quality datasets for the two AOD quarters (Q1 and Q2; see text).1XCO2 is calculated with respect
to the reference value 398.1 ppm (the total global average value). Three datasets are used: global, urban, and one collocated with TCCON.
For the collocated TCCON data two XCO2 values are given from OCO-2 (labeled TCCON(1)) and from TCCON (labeled TCCON(2)). The
XCO2 anomaly is calculated with respect to the OCO-2 median value within 500 km. MODIS AOD is calculated at 550 nm and OCO-2 total
AOD at 755 nm; R is the correlation coefficient.

Dataset XCO2 (LTC) 1XCO2 XCO2 anom. AOD

(quality-filtered) Q1 Q2 Total Q1 Q2 Total Q1 Q2 Total MODIS OCO-2 R

Global 397.9 398.5 398.0 −0.14 0.48 −0.04 −0.03 0.05 −0.01 0.08 0.07 0.52
Urban 399.1 399.7 399.3 1.11 1.72 1.33 0.00 0.11 0.04 0.18 0.07 0.52
TCCON(1) 399.4 399.9 399.5 1.37 1.88 1.46 −0.01 0.12 0.01 0.09 0.06 0.45
TCCON(2) 399.1 399.9 399.2 1.10 1.86 1.22 0.09 0.06 0.45

good-quality OCO-2 pixel in the collocated dataset as the
difference from the median XCO2 value calculated within
500 km for the corresponding OCO-2 orbit. This is an al-
ternative way to de-seasonalize and de-trend the data, in-
stead of applying the simple LTC. The idea is to study co-
variance of AOD values and local XCO2 anomalies caused
by possible CO2 sources and sinks. We see that the average
XCO2 anomaly is negative (−0.03 ppm) in Q1 for the global
dataset, indicating that average XCO2 is lower in low-AOD
areas. Also, the anomaly is higher in Q2, further supporting
the idea that the local XCO2 positive anomaly (source) is
connected to higher AOD. For the urban areas the positive
anomaly in Q2 is enhanced (0.11 ppm).

In order to further investigate to what extent the observed
relation between AOD and XCO2 is related to possible re-
trieval issues on the one hand and to the natural covariance
of AOD and XCO2 on the other hand, we have collocated the
5-year OCO-2–MODIS dataset with the ground-based data
from 26 TCCON sites (see Table A4). From Table 2 we see
that the TCCON XCO2 is 0.8 ppm higher in Q2 than in Q1,
suggesting that there is a real positive correlation between
AOD and XCO2. For the OCO-2 XCO2 values in the col-

located TCCON dataset the difference between Q1 and Q2
is 0.5 ppm for the quality-filtered data. The XCO2 values
are systematically higher in Q2 than in Q1 for all subsets,
suggesting a positive correlation between MODIS AOD and
OCO-2 XCO2. In particular, the difference between Q2 and
Q1 is highest for the TCCON XCO2 data, which suggests
that there is actually a stronger correlation between MODIS
AOD and XCO2 than suggested by the OCO-2 data.

Figure 8 shows joint histograms of XCO2 and MODIS
AOD with bivariate linear fits. In addition to the global
dataset, the urban and TCCON subsets are shown. There is a
small but statistically significant correlation between XCO2
and AOD, and this correlation is strongest when using the
TCCON XCO2 data. The linear fit also shows a higher posi-
tive slope for TCCON. This suggests that there is a real corre-
lation between AOD and XCO2, and this correlation is partly
masked by aerosol effects in the OCO-2 retrievals. Figure 9
shows combined bin-averaged plots and linear fits for the dif-
ferent subsets, also as a function of OCO-2 AOD and AOD
difference. The linear fit slopes and correlation coefficients
are summarized in Table A3. For OCO-2 AOD the slopes are
also positive (and steeper). Disentangling the effects of the
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Table 3. Correlation and bivariate linear regression slopes for
XCO2 vs. AOD for different subsets and for AOD from different
instruments (p values < 10−6 for all cases). For the collocated TC-
CON dataset, XCO2 values from OCO-2 (TCCON(1)) and TCCON
(TCCON(2)) are used.

XCO2 (LTC) MODIS AOD 550 OCO-2 AOD AOD difference

Dataset R Slope R Slope R Slope

Global 0.10 1.80 0.16 10.46 −0.06 −1.24
Urban 0.16 2.30 0.04 2.38 −0.17 −2.66
TCCON(1) 0.12 2.15 0.18 15.33 −0.09 −1.72
TCCON(2) 0.17 2.86 0.25 19.89 −0.13 −2.32

AOD difference between MODIS and OCO-2 and the de-
pendence of XCO2 and AOD makes interpretation of Fig. 9c
complicated, but it is shown for completeness.

We have extended this analysis to smaller spatial and
temporal subsets of data, studying seven geographic areas:
Southeast Asia, northern Asia, North America, South Amer-
ica, Europe, and Australia (Fig. A7). SE Asia and Africa
show a positive correlation between XCO2 and AOD, while
Europe and, in particular, northern Asia have a negative cor-
relation (not shown). Using temporal subsets, we find a pos-
itive correlation between XCO2 and AOD for each year in
2015–2019, with little interannual variability. A positive cor-
relation is also found for all seasons. Some seasonal vari-
ability is observed, with the highest slope of XCO2 vs. AOD
in MAM.

Figure 10 shows plots similar to Fig. 8, also using OCO-2
AOD and the AOD difference on the x axis and the XCO2
difference between OCO-2 and TCCON on the y axis, and
reveals negative correlation coefficients and a negative slope
for the linear fits. Figure 10a shows a weak but statistically
significant correlation between MODIS AOD and the OCO-2
XCO2 bias with respect to TCCON. OCO-2 slightly overesti-
mates XCO2 for low AOD values and underestimates at high
AOD values. As with Fig. 9c, the interpolation of Fig. 10c is
complicated, since there are two aerosol-related dependen-
cies affecting the data. First, the AOD difference between
OCO-2 and MODIS depends on the MODIS AOD in a non-
trivial way as shown in Fig. 4, with an OCO-2 low bias at one
end and high bias at the other. Second, the XCO2 bias also
depends on MODIS AOD.

A post-process correction based on systematic compar-
isons with the TCCON data is routinely applied to OCO-2
XCO2 data (O’Dell et al., 2018). Even when using the bias-
corrected data, our comparison with TCCON reveals a resid-
ual bias which depends on the MODIS AOD. These observa-
tions further support the suggested correlation between AOD
and XCO2, which is partly masked by aerosol effects in the
satellite retrievals. Table 3 summarizes the observed correla-
tion coefficients and linear fit slopes for XCO2 as a function
of AOD for the different datasets.

Disentangling the effects of AOD and XCO2 differences
in the comparison is not straightforward. One should also
note that the TCCON sampling may affect the results. For
example, not all of the included TCCON sites have data for
the whole 5-year period. In particular, some sites with higher
AOD and XCO2 values are included only towards the end
of the time period. We also see that the TCCON sites are not
representative for the globe in the sense that the average value
of OCO-2 XCO2 for the TCCON subset is 1.5 ppm higher
than the global average for data collected with MODIS (Ta-
ble 2). Most of the TCCON sites are located in the Northern
Hemisphere, with large gaps between the sites. A more de-
tailed analysis considering individual TCCON sites would
be required to confirm the observed dependencies, and this is
the subject of a separate study.

To conclude this section, we find that there is a linear rela-
tionship between OCO-2 XCO2 and MODIS AOD (Fig. 8a).
We also find a linear relation between the OCO-2 XCO2 bias
and MODIS AOD (Fig. 10a). In addition, we find a relation
between the AOD difference between OCO-2 and MODIS
and the OCO-2 XCO2 values, as shown in Fig. 7a. Aerosols
are related to OCO-2 XCO2 retrievals in two ways: there is a
real correlation between XCO2 and AOD due to co-emission
of aerosols and CO2. There is also an aerosol-related bias
in the OCO-2 retrievals, which acts in the opposite direc-
tion as the co-emission but with a smaller magnitude, thus
partly masking the co-emission effect. However, we are un-
able to directly relate the AOD difference observed between
OCO-2 and MODIS to the XCO2 difference observed be-
tween OCO-2 and TCCON for the quality-filtered data. This
is due to the nontrivial AOD difference observed between
OCO-2 and MODIS, further complicating the entanglement
caused by the two competing aerosol effects.

4.4 Alternative AOD thresholds in anticipation of the
CO2M

Satellite XCO2 retrievals are known to have higher uncer-
tainty in high aerosol conditions (Connor et al., 2016; O’Dell
et al., 2018). Setting an AOD threshold for good-quality re-
trievals is always a trade-off between coverage and quality of
the data. While for OCO-2 a strict AOD threshold is used to
ensure good-quality retrievals, for the coming CO2M good
coverage over polluted regions is also crucial for monitor-
ing CO2 emissions. In the latter case it is also important to
avoid possible sampling bias caused by excluding high-AOD
areas from analysis, considering the co-emission of anthro-
pogenic aerosols and CO2. The CO2M mission will include
a dedicated aerosol instrument, the Multi-Angle Polarime-
ter (MAP), and is expected to be better equipped to deal
with high aerosol conditions. In the upcoming CO2M mis-
sion the required AOD threshold for good-quality retrievals
is designed to be 0.5 (ESA, 2024). In this section we esti-
mate how the selected AOD threshold affects the coverage
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Figure 8. Dependence of XCO2 (LTC) on MODIS AOD for different subsets (quality-filtered data). The dashed red line shows binned mean
XCO2 values for MODIS AOD bins. The green line shows a corresponding bivariate linear fit. The box plot shows the interquartile range for
an AOD bin, while the whiskers show 9th and 91st percentiles. The text inset in the lower right corner shows similar information as in Fig. 4,
with the addition of a 95 % confidence range for the correlation coefficient R in parentheses. (a) Global collocated dataset. (b) Urban data
subset. (c) Collocated MODIS–OCO-2–TCCON dataset, showing OCO-2 XCO2 values (with TCCON priori adjustment). (d) Collocated
MODIS–OCO-2–TCCON dataset, showing TCCON XCO2 values (60 min average centered at the OCO-2 overpass time).

Figure 9. Dependence of bin-averaged XCO2 (linear-trend-corrected, quality-filtered) on AOD for three subsets of OCO-2 data and TCCON
(solid lines). (a) XCO2 vs. MODIS AOD. (b) XCO2 vs. OCO-2 total AOD. (c) XCO2 vs. AOD difference (OCO-2−MODIS). The dashed
lines are simple linear regression lines. The dotted parts of the bin average lines correspond to AOD bins with less than 1 % of all data.

of satellite XCO2 retrievals, in particular in urban areas with
high co-emission of aerosols and CO2.

Here we use the collocated, quality-filtered OCO-2–
MODIS dataset as a proxy for CO2M data. This dataset in-
cludes high-MODIS-AOD pixels, although the OCO-2 qual-
ity filter including an AOD threshold of 0.2 has been ap-
plied. We assume that the OCO-2 quality filtering ensures
that the XCO2 data are of good quality, even for higher-
MODIS-AOD cases, as CO2M data are expected to have
AOD up to 0.5. This assumption is supported by a compar-
ison of quality-filtered OCO-2 XCO2 data against TCCON,

where additional collocated MODIS AOD thresholds had a
minimal effect on the retrieval quality (not shown). We fur-
ther assume that the MODIS AOD in the collocated dataset
is representative of “true” AOD and can be used to study the
AOD threshold, even though the OCO-2 quality filtering has
removed many of the original pixels. With this collocated
dataset, we can test the effect of relaxing the MODIS AOD
threshold from 0.2 to 0.5. We emphasize that this does not
mean that we extend the OCO-2 coverage (or propose relax-
ing the OCO-2 AOD threshold); the MODIS AOD threshold
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Figure 10. XCO2 vs. AOD for the collocated quality-filtered TCCON–OCO-2–MODIS dataset (2015–2019). The XCO2 value from TCCON
(ttccon-match-60min) is aggregated for a 1 h time window centered at the OCO-2 overpass time. The XCO2 difference is OCO-2 minus
TCCON, and the AOD difference is OCO-2 minus MODIS.

used here is an additional constraint on the quality-filtered
OCO-2 data.

Table 4 shows the fraction of collocated quality-filtered
data for two different MODIS AOD bins using either 0.2
or 0.5 as the threshold for maximum AOD (at 550 nm). For
the global dataset relaxing the MODIS AOD threshold from
0.2 to 0.5 increases the fraction of acceptable data by 14.4
percentage points, while the average XCO2 is increased by
0.08 ppm. For the urban areas the increase in coverage is as
high as 30.8 percentage points, while the increase in XCO2
is 0.14 ppm. This finding supports the idea that being able to
perform reliable XCO2 retrievals at higher aerosol loads is
crucial for capturing anthropogenic CO2 emissions.

Figure 11 shows the fraction of data in the two consid-
ered MODIS AOD bins zoomed in to Southeast Asia, which
stands out as a high-AOD area. Here the two MODIS AOD
bins partly overlap: M1 is −0.2–0.2 and M2 is −0.2–0.5.
M1 contains 59 % of the data, while M2 contains 94 % of the
data in this area. We see that large areas have a low fraction
of data in M1, while for M2 only a few heavy-AOD areas
have a low fraction of data within the bin. The high values
over India and eastern China indicate that in these areas re-
laxing the MODIS AOD threshold from 0.2 to 0.5 increases
the fraction of acceptable data considerably.

In conclusion, here we have used the quality-filtered OCO-
2 data as a proxy for the coming CO2M data, which can
be further filtered by using AOD thresholds from collocated
MODIS data. We find that if CO2M can handle AODs up to
0.5, this will significantly increase the coverage, in particu-
lar in urban areas, compared to a case where AOD only up
to 0.2 could be allowed. We also find that due to the corre-
lation found between AOD and XCO2, including data with
higher AOD increases the mean XCO2 values, especially for
the urban pixels.

5 Conclusions

In this work, we have compiled and analyzed a 5-year dataset
of collocated aerosol and XCO2 satellite observations from
MODIS/Aqua and OCO-2, focusing on the relationships be-

tween aerosols, XCO2 retrieval quality, and data coverage
in polluted areas. The primary aim was to understand how
aerosols influence XCO2 retrievals and how quality filter-
ing decisions impact data availability and quality, particu-
larly in urban regions with high emissions. We have shown
that the total AOD value in ACOS full-physics retrieval dif-
fers considerably from the MODIS Dark Target AOD over
land for a large fraction of the data. The observed difference
depends on location and conditions, but on average OCO-2
tends to overestimate at low aerosol loads and underestimate
at higher AODs. This discrepancy highlights potential limita-
tions in OCO-2 aerosol modeling that could influence XCO2
retrievals. We found that the AOD difference is connected to
the retrieved XCO2 in the unfiltered dataset: XCO2 values
are lower when OCO-2 overestimates AOD and higher when
AOD is underestimated.

We have found evidence of covariance of AOD and XCO2,
partly reflecting co-emission of anthropogenic CO2 and
aerosols from anthropogenic sources. A comparison with
TCCON revealed a weak but statistically significant depen-
dence of the XCO2 bias on the AOD such that at high AOD
OCO-2 tends to underestimate XCO2. This aerosol bias acts
in the opposite direction as the observed covariance between
AOD and XCO2, partly masking the correlation.

The observed correlation between AOD and XCO2 means
that removing data under high AOD conditions not only
excludes regions with elevated aerosol loads but also dis-
proportionately removes observations of high XCO2. The
current OCO-2 quality filtering, which excludes data with
AOD> 0.2, effectively mitigates retrieval errors associated
with aerosol effects but at the cost of reduced coverage in
polluted regions. These regions, such as urban areas with el-
evated CO2 emissions, are critical for understanding anthro-
pogenic contributions. Relaxing the AOD threshold to 0.5 in-
creased the number of accepted data points globally by 14.4
percentage points, with a substantial improvement of 30.8
percentage points over urban areas. This adjustment would
enable more comprehensive sampling of high-emission ar-
eas, especially in regions like Asia, where constant elevated
aerosol loads often lead to significant data loss.
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Figure 11. Difference in using a MODIS AOD threshold 0.2 or 0.5 in Asia. Panels (a) and (b) show the fraction of data in M1 or M2,
respectively, for each 1°× 1° grid cell.

Table 4. Difference between using 0.2 or 0.5 as the MODIS AOD threshold (quality-filtered data).

Dataset Fraction of data [%] XCO2 [ppm]

AOD< 0.2 AOD< 0.5 1 AOD< 0.2 AOD< 0.5 1

Global 84.0 98.3 14.4 397.9 397.9 0.08
Urban 63.8 94.6 30.8 399.1 399.3 0.14
TCCON(1) 83.5 98.1 14.6 399.4 399.4 0.03
TCCON(2) 83.5 98.1 14.6 399.1 399.2 0.07

The correlation between AOD and XCO2, combined with
the observed XCO2 bias at high AOD, underscores the chal-
lenge of separating real atmospheric covariance from re-
trieval artifacts. While our study does not directly link OCO-
2 AOD underestimation to the observed XCO2 bias, these
results highlight the critical need to refine aerosol handling
in future XCO2 retrieval algorithms, particularly in polluted
regions. The focus in this paper has been on the global mul-
tiyear statistics of AOD and XCO2 in the collocated satel-
lite dataset. The comparison with ground-based TCCON data
has been done only statistically, combining all sites, to give a
first reference point for independent data. Future work should
focus on detailed site-specific studies, including comparisons
with ground-based TCCON data, to disentangle retrieval bi-
ases from real atmospheric correlations.

Relaxing AOD thresholds could mitigate the significant
sampling bias observed in high-emission regions but requires
careful calibration to balance data quality and coverage. The
upcoming CO2M mission, with its dedicated aerosol instru-
ment and higher AOD threshold, represents a key opportu-
nity to address these challenges and to ensure that obser-
vations provide robust support for the Global Stocktake and
other climate initiatives.
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Appendix A: Appendix data

Table A1. Number of data points and average AOD and XCO2 values for the 5 years of collocated OCO-2 and MODIS DT-land data
considered in this work. The second column (“OCO2”) shows the number of original OCO-2 data points (in millions) for each year. The next
column (“MOD”) shows the fraction of OCO-2 data which have a matching MODIS AOD observation. The fourth column (“QF”) shows
the fraction of collocated data after the OCO-2 quality filter has been applied (with respect to all collocated data). Also shown are the yearly
average OCO-2 XCO2 value and AOD value for each instrument, as well as the correlation coefficient (R) between the collocated AOD data
for the unfiltered and filtered data, respectively.

Year All data (unfiltered) Good quality (filtered)

OCO2 Fraction AOD XCO2 AOD XCO2

N [106] MOD QF MOD OCO2 R [ppm] MOD OCO2 R [ppm]

2015 52.2 M 16.3 56.2 0.15 0.12 0.54 398.3 0.08 0.07 0.54 398.5
2016 67.1 M 13.6 57.2 0.15 0.11 0.64 401.6 0.08 0.07 0.53 401.8
2017 55.4 M 13.1 57.7 0.14 0.12 0.62 404.4 0.08 0.07 0.52 404.5
2018 66.9 M 13.6 56.4 0.15 0.12 0.63 406.0 0.09 0.07 0.52 406.2
2019 66.4 M 13.1 52.0 0.15 0.12 0.61 408.8 0.08 0.07 0.50 409.2

Total 308.0 M 13.9 55.9 0.15 0.12 0.60 403.8 0.08 0.07 0.52 404.0

Table A2. XCO2 statistics in different datasets without OCO-2 quality filtering. For TCCON collocation XCO2 is obtained from OCO-2
(TCCON(1)) and TCCON (TCCON(2)). Anomaly data are not available for the unfiltered case; instead, 1XCO2 is calculated with respect
to the reference value of 398.1 ppm (the total global average value for good-quality data). Linear trend correction (LTC) has been applied.
The p values are < 10−6 for all cases.

Not filtered Fraction of data 1XCO2 (ref: 398.1) [ppm] AOD

Dataset Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 MOD OCO-2 R N

Global 68.5 16.5 10.8 4.1 −0.37 0.25 0.22 −1.46 0.15 0.12 0.60 42.7 M
Urban 52.9 34.2 11.5 1.5 0.88 1.70 0.77 −2.74 0.24 0.11 0.63 876 k
TCCON(1) 77.0 17.9 3.2 1.9 1.11 1.52 1.85 −1.18 0.12 0.08 0.51 1.0 M
TCCON(2) 77.0 17.9 3.2 1.9 1.02 1.88 2.55 0.77 0.12 0.08 0.51 1.0 M
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Table A3. Statistics for correlation between AOD and XCO2 as well as bivariate linear regression slopes for different subsets of the quality-
filtered collocated MODIS–OCO-2 5-year (2015–2019) dataset. The first three slopes (columns 3, 5, and 7) are for XCO2 as a function of
AOD (or AOD difference), while the last column gives the fitted slope for OCO-2 AOD as a function of MODIS AOD. The p values are
smaller than 10−6 for all cases.

XCO2 vs. XCO2 vs. XCO2 vs. AOD vs.
MODIS AOD OCO-2 AOD AOD difference AOD

Dataset R Slope R Slope R Slope R Slope

Global 0.10 1.80 0.16 10.46 −0.06 −1.24 0.52 0.18
Urban 0.16 2.30 0.04 2.38 −0.17 −2.66 0.52 0.12
TCCON(1) 0.12 2.15 0.18 15.33 −0.09 −1.72 0.45 0.12
TCCON(2) 0.17 2.86 0.25 19.89 −0.13 −2.32 0.45 0.12

Table A4. The 26 TCCON sites used in this study.

Site name Location Data citation

bremen01 Bremen, Germany Notholt et al. (2022)
burgos01 Burgos, Philippines Morino et al. (2022c)
pasadena01 Pasadena, California, USA Wennberg et al. (2022c)
easttroutlake01 East Trout Lake, Canada Wunch et al. (2022)
edwards01 AFRC, Edwards, CA, USA Iraci et al. (2022b)
eureka01 Eureka, Canada Strong et al. (2022)
garmisch01 Garmisch, Germany Sussmann and Rettinger (2017)
indianapolis01 Indianapolis, Indiana, USA Iraci et al. (2022a)
izana01 Izana, Tenerife, Spain Blumenstock et al. (2017)
jpl02 JPL, Pasadena, California, USA Wennberg et al. (2022a)
saga01 Saga, Japan Shiomi et al. (2022)
karlsruhe01 Karlsruhe, Germany Hase et al. (2022)
lauder02 Lauder, New Zealand Sherlock et al. (2022)
lauder03 Lauder, New Zealand Pollard et al. (2022)
manaus01 Manaus, Brazil Dubey et al. (2022)
nicosia01 Nicosia, Cyprus Petri et al. (2023)
nyalesund01 Ny-Ålesund, Svalbard, Norway Buschmann et al. (2022)
lamont01 Lamont, Oklahoma, USA Wennberg et al. (2022d)
orleans01 Orleans, France Warneke et al. (2022)
parkfalls01 Park Falls, Wisconsin, USA Wennberg et al. (2022b)
paris01 Sorbonne Université, Paris, FR Te et al. (2022)
reunion01 Reunion Island, France Maziere et al. (2022)
rikubetsu01 Rikubetsu, Hokkaido, Japan Morino et al. (2022a)
sodankyla01 Sodankylä, Finland Kivi et al. (2022)
tsukuba02 Tsukuba, Ibaraki, Japan, 125HR Morino et al. (2022b)
xianghe01 Xianghe, China Zhou et al. (2022)
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Figure A1. (a) Fraction of OCO-2 data points (without quality fil-
tering) with matching MODIS data for 1°× 1° grid cells. The frac-
tion is only shown for grid cells which have at least one MODIS data
point. N means the total number of MODIS data points. The aver-
age fraction (64 %) of OCO-2 data points with matching MODIS
data is calculated over grid cells which have a nonzero fraction. Ex-
ample for 1 year: 2018. (b) Fraction of good-quality data for each
1°× 1° grid cell in the collocated MODIS–OCO-2 dataset. Figure A2. Same as Fig. 1, but for MODIS Deep Blue (DB).
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Figure A3. (a) AOD comparison with OCO-2 AOD scaled from 755 to 550 nm using the Ångström exponent from collocated MERRA-2
data. The red line shows binned mean values, the dashed green line shows a bivariate linear fit, the boxes show the interquartile range, and
the whiskers show the 9th and 91st percentiles for MODIS AOD bins. (b) Comparison of OCO-2 AOD against MODIS AOD for three
different cases: the original comparison between MODIS AOD at 550 nm and OCO-2 total AOD at 755 nm (“Orig”, blue line), MODIS AOD
at 660 nm vs. OCO-2 AOD at 755 nm (“660”, red line), and MODIS AOD at 550 nm vs. OCO-2 AOD scaled to 550 nm (“scaled”, yellow
line). Solid lines show bin-averaged OCO-2 AOD (for MODIS AOD bins); the dotted part corresponds to bins with less than 1 % of all data.
Dashed lines show bivariate linear fits. OCO-2 quality filtering has not been applied.

Figure A4. Same as Fig. 7, but for MODIS DB.

Figure A5. Fraction of data in Q1 for urban pixels (areas of dense human habitation using the urban area mask from https://www.
naturalearthdata.com/; last access: 22 April 2024) (NaturalEarth, 2024). Also shown are the seven geographic areas used in this study.
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Code and data availability. The AERONET data are available
from NASA Goddard Space Flight Center at https://aeronet.gsfc.
nasa.gov/new_web/data.html (NASA, 2024a). The TCCON data
were obtained from the TCCON Data Archive hosted by Cal-
techDATA at https://tccondata.org (CaltechDATA, 2024) (see Ta-
ble A4 for references). The MODIS data used in this work can be
found and downloaded using the NASA Earthdata Search website at
https://www.earthdata.nasa.gov/ (NASA, 2024b). The OCO-2 data
were produced by the OCO-2 project at the Jet Propulsion Lab-
oratory, California Institute of Technology, and obtained from the
OCO-2 data archive maintained at the NASA Goddard Earth Sci-
ence Data and Information Services Center (OCO-2 Science Team
et al., 2020). The collocated OCO-2–MODIS dataset created in this
work and related codes are available as open data (Virtanen, 2024).
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