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Abstract. Polarimetric radio occultations (PROs) of the
Global Navigation Satellite System are able to characterize
precipitation structure and intensity. Prior studies have shown
the relationship between precipitation and water vapor pres-
sure columns, known as the “precipitation pickup.” Less is
known about the relationship between the vertical distribu-
tions of temperature and moisture globally within precipitat-
ing scenes as measured from space. This work uses cluster
analysis of PRO to explore how the vertical distributions of
temperature and moisture – combined into PRO refractivity
– relate to vertical distributions of precipitation and moisture
variables. We evaluate the ability of k-means clustering to
find relationships among PRO polarimetric phase difference,
refractivity, liquid water path (LWP), ice water path (IWP),
and water vapor pressure using over 2 years of data matched
between the Global Precipitation Measurement (GPM) mis-
sion and the radio occultations (ROs) and heavy precipitation
(HP) demonstration mission on board the Spanish Paz space-
craft (ROHP-PAZ). A polytropic potential refractivity model
for polytropic atmospheres is introduced to ascertain how
different vertical thermodynamic profiles that can occur dur-
ing different precipitation scenarios are related to changes in
the polytropic index and thereby vertical heat transfer rates.
The cluster analyses suggest a relationship between the am-
plitude and shape of deviations from the potential refractivity
model and water vapor pressure. These analyses also confirm

a positive correlation between vertical shapes of polarimetric
phase difference and both LWP and IWP. For certain values,
the coefficients of the polytropic potential refractivity model
flag physical vs. nonphysical retrievals and indicate when a
profile has little to no moisture. The study reveals a similar
relationship between the clustering for these coefficients and
different water vapor pressure profiles.

1 Introduction

General circulation models need to represent the spatiotem-
poral structure of precipitation for accurate predictions of cli-
mate variability and deep convective structures. Models and
observations show a relationship in the probability densities
between the precipitation and column water vapor relation-
ship known as the precipitation pickup. Emmenegger et al.
(2022) conclude that the majority of the models’ convection
onset statistics display some degree of temperature depen-
dence in the column water vapor value of the pickup and
collapse approximately to a common critical column rela-
tive humidity value across saturation mixing ratio bins. How-
ever, prior results suggest that the onset of convective insta-
bility has a complex dependence on temperature. The vertical
structure of temperature and moisture, as well as the entrain-
ment of free-tropospheric air, affects the buoyancy of a rising
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convective plume, yielding an onset moisture–temperature
dependence slightly different than that of bulk saturation.
This work explores how the vertical structure of temperature
and moisture, combined into refractivity measured by radio
occultation (RO), relates to distributions of precipitation and
moisture variables.

Global Navigational Satellite System (GNSS) satellites or-
biting Earth periodically send circularly polarized radio sig-
nals indicating their positions globally. As these satellites
occult from a low-Earth-orbiting satellite with a GNSS re-
ceiver, the radio signal they receive has been refracted and
bent by the atmosphere. The bending angle is caused by the
atmospheric refractivity gradient in the region where the sig-
nal traveled. The degree of bending can be calculated using
the geometry between the emitting satellite and a receiver,
as well as the shift in signal phase between when the sig-
nal is emitted and received. GNSS ROs provide refractivity,
N , which is related to pressure (p, in hPa), temperature (T ,
in K), and water vapor pressure (e, in hPa) as follows (e.g.,
Smith and Weintraub, 1953; Kliore et al., 1974) for an at-
mospheric air composition with approximately 78 % nitro-
gen and 21 % oxygen containing water:

N =
k1p

T
+
k2e

T 2 , (1)

where k1 = 77.6 and k2 = 3.73× 105 are typically given
without dimensions. However, N is expressed in refrac-
tivity units, N units; hence, k1 would be understood in
N units ·K hPa−1, and k2 in N units ·K2 hPa−1.

Quantities derived from RO have demonstrated high ac-
curacy and resolution in space (e.g., Kursinski et al., 1997;
Huang et al., 2010; Son et al., 2017). RO temperatures de-
rived from refractivity have been shown to be of similar
quantitative accuracy to temperatures directly measured by
radiosondes, which are mostly limited to land (e.g., Nishida
et al., 2000; Randel et al., 2003; Schmidt et al., 2004; Kim
and Son, 2012).

One of the most powerful applications of RO has been
in understanding climatic trends – including intraseasonal-
to-interannual atmospheric modes of variability such as the
quasi-biennial oscillation (QBO), Madden–Julian oscillation
(MJO), and El Niño–Southern Oscillation (ENSO) – as they
relate to atmospheric structure over the tropics (Scherllin-
Pirscher et al., 2021), especially in the upper-troposphere–
lower-stratosphere (UTLS) region (Schmidt et al., 2004;
Lackner et al., 2011; Johnston et al., 2018, 2022). RO ob-
servations have also been used to uncover and measure the
upper-level thermal structures of deep convection in trop-
ical storms both alongside and without precipitation radar
data (Biondi et al., 2012; Xian and Fu, 2015; Scherllin-
Pirscher et al., 2021). In the context of precipitation events,
Johnston et al. (2018, 2022) studied the impacts of deep con-
vection and precipitation on the thermodynamic structure of
the UTLS region by collocating RO temperature profiles with
data from the Global Precipitation Measurement (GPM) mis-

sion and Tropical Rainfall Measuring Mission (TRMM) in
both the tropics and midlatitudes.

Equation (1) shows that using RO refractivity data to re-
trieve thermodynamic variables such as temperature, pres-
sure, and water vapor remains underconstrained. Water va-
por information is extracted from refractivity by assuming
that the temperature profiles from a given weather analysis
– typically either the European Centre for Medium-Range
Weather Forecasts (ECMWF) or the National Centers for En-
vironmental Prediction (NCEP) – are accurate at the location
of each RO profile, even in cases where the RO and model re-
fractivity may differ (e.g., Kursinski et al., 1997; Kuo et al.,
2001). Two common methods for extracting water vapor in-
formation from RO refractivity are the 1D-Var method (Wee
et al., 2022), which iteratively refines retrievals by combin-
ing RO data with background atmospheric model informa-
tion through a variational data assimilation process, and the
direct method (Hajj et al., 2002), which derives retrievals
based on hydrostatic equilibrium and an assumed model or
background temperature profile. To avoid relying on model
water vapor pressure as an assumed background a priori, this
study uses the direct retrieval method using temperature pro-
files provided by NCEP.

An inaccurate refractivity profile from the analysis will
lead to erroneous water vapor retrievals. Because RO makes
a more valuable contribution to model improvement pre-
cisely in the profiles where the weather analysis and RO dif-
fer, the relationship between water vapor and refractivity has
a higher error bar, particularly in the most useful profiles.
Moreover, GNSS RO measurements are sensitive to vari-
ations in temperature and water vapor within clouds (Kuo
et al., 2001; Huang et al., 2010) but require other observ-
ables to confirm the presence of clouds and understand their
structure.

Polarimetric radio occultation (PRO) provides a way to ex-
pand the applications of standard RO. PRO measures the re-
sponse of circularly polarized GNSS radio signals to atmo-
spheric anisotropies like precipitating droplets and ice crys-
tals, as these induce a phase difference between the horizon-
tal (H) and vertical (V) components of the GNSS radio sig-
nal. The polarimetric phase difference, 18, between H and
V is related to the number of rain drops or ice crystals in
the atmosphere (Tomás et al., 2018; Cardellach et al., 2019;
Wang et al., 2022; Padullés et al., 2023) using 18 and has
promising applications in weather model assimilation (Rus-
ton and Healy, 2021; Wang et al., 2022; Hotta et al., 2024),
climate monitoring (Cardellach et al., 2019; Gleisner et al.,
2022), and atmospheric research (Turk et al., 2021; Padul-
lés et al., 2023). Datasets from GNSS PRO contain data on
refractivity and 18, both as functions of height. Unlike in-
frared instruments, PRO gives data even inside clouds with
a higher vertical resolution than microwave (e.g., Turk et al.,
2019).

Statistical correlations as a function of height between in-
tegrated water content (or water path) from CloudSat – a
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NASA satellite mission to survey the vertical structure of
clouds and their water content via a radar that launched on
28 April 2006 and ended on 20 December 2023 (NASA,
2024) – along the RO ray path and 18 were shown to be
strong (Padullés et al., 2023). There are models for how a
given thermodynamic state of the atmosphere will affect a
propagating RO signal and cause a 18 (e.g., Padullés et al.,
2023, and references therein). However, a precise formula is
missing for how a measured 18 relates to thermodynamic
atmospheric states. GNSS PRO is generally insensitive to
non-dipolar and to spherically symmetric particles, such as
aerosols and non-precipitating cloud droplets (Padullés et al.,
2023; Hotta et al., 2024). CloudSat-based water content mea-
surements tend to be more sensitive to these smaller parti-
cles and cloud tops (Ramon Padull´es and F. Joseph Turk,
private communication, 11 November 2024). 18 at a spe-
cific height could result from precipitation of liquid water,
ice water, or both – and it may still be influenced by non-
precipitating features, such as anisotropic ice crystals (Padul-
lés et al., 2023). It remains an open question whether, or
to what extent, differentiating between liquid and ice wa-
ter precipitation – let alone non-precipitating hydrometeors
– is possible using PRO data alone. Therefore, we explore if
different vertical distributions of precipitation- or moisture-
related variables – 18, liquid water path (LWP), ice water
path (IWP), and water vapor pressure – are interrelated.

Cluster analysis is a family of methods used to collect
and separate populations into different groups or “clusters”
within a dataset based on some measure of similarity or hi-
erarchy. One of the most popular clustering techniques is k-
means clustering – a flexible, established unsupervised learn-
ing method that has been used to classify and analyze the dif-
ferent distributions of physical variables present in climatic
and atmospheric datasets (e.g., Jakob and Tselioudis, 2003;
Rossow et al., 2005; Yokoi et al., 2011; Wilks, 2019; Goven-
der and Sivakumar, 2020; Nidzgorska-Lencewicz and Czar-
necka, 2020).

This study uses cluster analysis to look at how the vertical
shape of 18 along the RO ray correlates with that of other
thermodynamic variables such as refractivity, water vapor
pressure, liquid water path (LWP), and ice water path (IWP)
along the ray as functions of height at given latitudes and
longitudes. A k-means cluster analysis is performed to see
if cluster centroids relate to physical phenomena across dif-
ferent variables, the variables being the aforementioned ones
and a physically interpretable model for potential refractiv-
ity similar to the one introduced in, for example, Bean and
Dutton (1966) and de la Torre Juárez et al. (2018). This anal-
ysis also looks at how the vertical integral of 18 relates to
total column water vapor, and how well this confirms results
and observations from prior studies. We explore if vertical
profiles of 18 and refractivity can help to distinguish pos-
sible thermodynamic states and even the contributions from
ice vs. liquid water precipitation. Through new statistical and

graphical analyses, this study hopes to help understand and
quantify these relationships.

To this end, in Sect. 2, we describe the dataset; in Sect. 3,
we outline how we classify different thermodynamic states
from refractivity profiles alone and provide an overview of
how we apply k-means clustering to different variables; in
Sect. 4, we use our cluster analysis to search for a classifica-
tion of disparate vertical structures and cross-correlate inter-
pretations of clusters for different variables; and in Sect. 5,
we summarize the aims and results of our study.

2 Data

The two datasets analyzed and used to train the data classi-
fication and potential refractivity model are Level 1C, 2A,
and 2B Global Precipitation Measurement (GPM) satellite
data from the NASA Goddard Space Flight Center and
Level 2 radio occultations (ROs) and heavy precipitation
(HP) data from the PAZ satellite (ROHP-PAZ) (Cardellach
et al., 2019). From the former, we obtain the liquid water
path (LWP, kg m−2) and ice water path (IWP, kg m−2) using
emissivity principal component (EPC) profiling retrievals at
each pixel across the scan of the GPM passive microwave
(PMW) satellite radiometer. The EPC data have a spatial res-
olution of 0.1°× 0.1°, temporal resolution of 30 min, and
0.25 km height levels, as described in Appendix A of Turk
et al. (2018) and in Table 1 and Sect. 3 of Turk et al. (2021).
Meanwhile, ROHP-PAZ gives refractivity (N units) and 18
(mm), all as functions of height at different latitudes, lon-
gitudes, and times. Using refractivity and assuming temper-
ature from NCEP, the direct method (Hajj et al., 2002) is
applied to derive the pressure (hPa) and water vapor pres-
sure (hPa), by means of which the temperature (K) used in
this study is derived from Eq. (1). For further details on how
the aforementioned variables are retrieved from the datasets,
we refer the reader to Turk et al. (2021) and the references
therein for the GPM dataset and Cardellach et al. (2019) for
the ROHP-PAZ dataset.

The direct method relies on the ancillary model refrac-
tivity agreeing with that of the RO and with its having the
correct temperature distribution for that refractivity profile.
While an agreement between the ancillary model and obser-
vation should yield reliable retrieved values, using the model
temperature profile may introduce retrieval errors when the
ancillary model and RO profile refractivities differ signifi-
cantly (due to, e.g., collocation errors, RO bias, or limited
model resolution). The direct method results in negative or
otherwise unrealistic water vapor pressure values serving as
quality-control flags.

The GPM and ROHP-PAZ profiles are matched across dif-
ferent latitudes, longitudes, and times whenever they coin-
cided within a given spatiotemporal range. As described in
Sect. 2 of Turk et al. (2021), the collocation criteria were
that the GPM PMW satellite overpass had to occur within
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Figure 1. Sampling distributions for the collocations between the GPM and ROHP-PAZ datasets at different (a) latitudes and (b) months.

±15 min of the ROHP-PAZ observation, and the ROHP-PAZ
observation location had to fall within the PMW satellite’s
swath. For each ROHP-PAZ observation, the tangent point –
the point closest to the Earth’s surface along the ray path –
was selected from the lowest-level RO. This gives

– 2362 coincidences from 26 July to 31 December 2018
(inclusive),

– 2943 coincidences from 1 March to 31 Decem-
ber 2019,1 and

– 1401 coincidences from 1 January to 22 August 2020,

thereby yielding a total of 6706 coincidences from
26 July 2018 to 22 August 2020. At the latitude and longi-
tude of each coincidence, the collocated data are interpolated
onto a grid with equally spaced height intervals of 0.1 km.

Most of the aforementioned coincidences lie poleward of
40◦ N or S, as shown in Fig. 1a, enabling good statistics
in those regions. There was a low number of coincidences
in the tropics (within 15° of the Equator), which constrains
our analysis in low-latitude regions. Furthermore, as Fig. 1b
shows, there is also a slightly higher number of coincidences
in the last 4 months of the year vs. the first 8 months, but this
poses less of a problem as we do not assess seasonality.

Turk et al. (2021) computed LWP and IWP by integrating
the condensed water content (kg m−3) – estimated via EPC
passive microwave precipitation profiling (Turk et al., 2018;
Utsumi et al., 2020) – along each RO ray path in the ROHP
dataset coinciding with GPM data. Integrating the condensed
water content along the ray paths ensures that their values are
related to 18, which is also computed by integrating along
each ray path. As a first approximation, we partition the inte-
grated water content into LWP and IWP based on whether the

1Technical issues with the processing of ROHP-PAZ retrievals
were encountered in January and February 2019. Although these
issues have since been resolved in the currently available ROHP-
PAZ dataset, the collocated dataset described in Turk et al. (2021)
and analyzed in this study was created before then.

retrieved or model temperature is above or below 273 K, re-
spectively (Turk et al., 2021). Since non-precipitating super-
cooled water is not expected to be asymmetric, it should in-
duce little to no polarimetric phase difference (Padullés et al.,
2023; Hotta et al., 2024). Hence, this approach misclassifies
some supercooled water as ice, in which case this misclassi-
fication would predict 18 associated with ice when no 18
is measured. Finally, as with 18, the values of the LWP and
IWP at a given latitude, longitude, and height are given ac-
cording to where the lowest-level tangent point for the given
ray path lies.

To compute the total column water and ice paths from the
aforementioned data for each profile, the water and ice paths
are integrated, respectively, from 1 to 10 km only if a profile
has data at 1 and 10 km.2 For computing the vertical integral
of 18, since the error associated with this variable in the
ROHP-PAZ dataset is roughly ±2 mm at each height, 18 is
integrated from 2.5 to 10 km after rounding 18 to the near-
est multiple of 2 mm if data exist from 2 to 2.5 km and at
10 km. The latter condition ensures that the endpoints of the
integral are correct, and we exclude faulty retrievals which
tend to deteriorate near the bottom of the profiles before the
data become corrupted or missing.

Finally, for computing the total column water vapor, the
water vapor pressure is integrated from 2.5 to 10 km, exclud-
ing profiles that feature no data at 2.5 or 10 km, negative wa-
ter vapor pressure values, or unrealistically high water vapor
pressure values – these situations are unphysical and likely
result from ancillary model or retrieval errors. The profiles
with unrealistically high water vapor pressure values were
identified by running an initial k-means cluster analysis with
k = 8 – as explained later in Sect. 3.2 and 3.3 – but on every
water vapor pressure profile in the dataset. For the dataset,

2While requiring path data down to 1 km may seem too strin-
gent, requiring this only ends up excluding six profiles at most for
both water and ice paths or under 0.1 % of all the profiles in the
dataset. Thus, it is not too stringent unless these six profiles hap-
pen to be rather extreme cases. The analysis at hand aims at finding
general trends and associations rather than atypical cases.
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only one cluster contained profiles with unrealistically large
water vapor pressure values – at least above 250 hPa at some
height in all profiles – while the other clusters contained pro-
files with water vapor pressure values below 150 hPa. Hence,
all profiles in the anomalous cluster were excluded from
analyses that relied on water vapor pressure, particularly in
the final water vapor pressure cluster analysis.

The number of profiles where these conditions were not
met are as follows:

– for total column water vapor, 33 profiles (0.49 % of all
profiles in the dataset);

– for total column water path, 1 profile (0.01 %);

– for total column ice path, 6 profile (0.09 %);

– for total column water plus ice path, 6 profiles (0.09 %);
and

– for the vertical integral of 18, 923 profiles (13.76 %).

For all cases, the integration is implemented in Python using
the composite trapezoidal rule (Atkinson, 1988).

3 Methods

The PRO observables are 18 and refractivity as functions
of height, latitude, and longitude. Hence, this study explores
how far one can get with PRO observables while remaining
as independent from externally derived weather analyses as
possible. To this end, we develop a model for potential re-
fractivity as a function of height assuming a constant lapse
rate (which can be non-adiabatic), hydrostatic balance, and a
constant water vapor mixing ratio.

3.1 Potential refractivity in a polytropic atmosphere

A first classification criterion organizes profiles based on the
differences between observed refractivity profiles and those
expected for polytropic atmospheres where air can expand
and compress with adiabatic and non-adiabatic heat transfer.
If an air parcel moving vertically through the atmosphere fol-
lows a polytropic process – a polytropic atmosphere – and the
ideal gas law holds, then p/ρm and therefore p1−mT m are
constant, where m is the polytropic index of the atmosphere.

We define K
.
= p1−m (z)T m (z)= p(z0)

1−mT (z0)
m for

some reference height z0. In hydrostatic balance, we have
∂p
∂z
=−ρg, and polytropy also implies that ∂p

∂z
=

∂(Kρm)
∂z
=

mKρm−1 ∂ρ
∂z

. Balancing these two equations necessitates that
−ρg =mKρm−1 ∂ρ

∂z
, and after multiplying both sides by

m−1
mKρ

, one gets

g
1−m
mK

=
∂ρm−2

∂z
.

At constant m 6= 0,1, the solution is

ρm−1(z)= ρ(z0)+ g
1−m
m

(z− z0). (2)

At m= 0, the pressure is constant and cannot satisfy hydro-
static equilibrium unless ρ = 0, while at m= 1, the density
decays exponentially, typical of an isothermal atmosphere.
When m= γ , where γ = 5/3 is the adiabatic index, the
change in temperature incurred by air parcels moving ver-
tically in this atmosphere follows an adiabatic process – an
adiabatic atmosphere.

Using Eq. (2) for the vertical profile of an ideal gas, where
p(z)
ρ(z)
= RT(z), and by polytropy again, p(z)=Kρm(z)=

Kρ(z)ρm−1(z) implies that

RT(z)=
p(z)

ρ(z)
=Kρm−1(z)

=K

[
ρ(z0)+ g

1−m
m

(z− z0)

]
.

This shows that an ideal gas atmosphere in hydrostatic equi-
librium and with constant polytropic indexm 6= 0 with height
has a linear temperature profile T (z)= T̂ (z0)− 0̂(z− z0),
where T̂ (z0)=

Kρ(z0)
R

and 0̂ =−Kgm−1
mR

. When m= 1, the
solution holds with 0̂ = 0 and a constant temperature with
height. At constant m and R, 0̂ =− ∂T

∂z
, and hence, the lapse

rate is constant.
When including water vapor processes, one can charac-

terize the temperature profiles in a polytropic atmosphere as
(1) a completely dry atmosphere or (2) an unsaturated moist
atmosphere. Additionally, one can approximate temperature
via a linear relationship with height for (3) a saturated moist
atmospheric layer where the expansion and contraction of air
are reversible or (4) an atmosphere in which water that con-
denses in an air parcel is instantaneously removed via pre-
cipitation – a pseudoadiabatic atmosphere (e.g., Emanuel,
1994). The lapse rate, 0, is nearly constant and called a dry
adiabatic lapse rate in the first case, a moist–unsaturated adi-
abatic lapse rate in the second, a reversible moist adiabatic
lapse rate in the third, and a pseudoadiabatic lapse rate in
the fourth. The temperature profile is precisely linear with
height for only the first case and close to linear for the oth-
ers. Each of the four thermodynamic cases above would be
represented by a different conservation law (Emanuel, 1994)
– dry adiabatic (for 1), moist adiabatic (for 2 and 3), and
pseudoequivalent potential temperatures (for 4) – and, by
analogy, via a different type of potential refractivity profile.
These conserved quantities can be used to define different
types of potential refractivity, N̂ , based on fitting data to
physical laws describing adiabatic and pseudoadiabatic pro-
cesses (e.g., de la Torre Juárez et al., 2018).
N̂ is derived here for an atmosphere with the following

properties: (1) Eq. (1), (2) the ideal gas law, (3) a linear tem-
perature profile with height representative of a polytropic at-
mosphere, (4) a constant specific humidity representative of a
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subsaturated atmosphere, and (5) in hydrostatic equilibrium.
Deviations between the measured refractivity N and the fit
to the model N̂ signal the presence of changes in mixing
ratio, precipitation, or non-equilibrium physics (e.g., grav-
ity waves or turbulence). From the above assumptions, we
derive in Appendix A the model for N̂ :

N̂ (z)=
N (z0)

[1− c1 (z− z0)]2 ×
{
(1− c2) [1− c1 (z− z0)]c0 + c2

}
, (3)

where c0 =
g

R0̂
+ 1= 2m−1

K(m−1) , c1 =
0̂

T̂0
=

g(m−1)
mρ(z0)

, and c2 =

k2ê0
N(z0)T̂

2
0

are coefficients which must be fit to a given re-

fractivity profile and provide information about the poly-
tropic index. T̂0

.
= T (z0) and ê0

.
= e (z0) are the temper-

ature and water vapor pressure, respectively, at reference
height z0. In particular, for m= 1, N̂ has an exponential
relationship with z (e.g., Bean and Dutton, 1966). The fit
coefficients c = (c0,c1,c2) are defined in terms of the fol-
lowing physical parameters: the acceleration due to grav-
ity on Earth g = 9.81 m s−2, specific gas constant of dry air
R = 287.05 J kg−1 K−1, mean tropospheric lapse rate 0̂ (in
K km−1), and constants k1 and k2 defined in Sect. 1.

The lapse rate can change with height across moist and
dry sections, e.g., in the transition between the boundary
layer and the free atmosphere (von Engeln et al., 2005; Ao
et al., 2012), in the transition from the mid-troposphere to the
tropical tropopause layer (TTL) (Fueglistaler et al., 2009),
or when clouds are present in a real atmosphere (e.g., Peng
et al., 2006; Mascio et al., 2021). Based on these three exam-
ples, the fits for N̂ are made in an altitude range that is likely
to have a constant lapse rate under the five assumed proper-
ties from the last subsection. We set the lower limit of the
fit at z0 = 2.5 km, which is mostly above the boundary layer.
Furthermore, we set the upper limit to ensure that the fit re-
mains below changes in sign in the lapse rate, such as those
caused by gravity waves, stratospheric intrusions, and ther-
mal inversions. Specifically, the upper limit to the fit is 200 m
below the lowest height above 5 km where

∣∣∣ ∂T∂z ∣∣∣ is minimized
– which defines a local minimum or a maximum in temper-
ature, as expected for either the cold point tropopause, large
gravity waves, or the bottom of the TTL (Fueglistaler et al.,
2009) – and where the temperature is within 10 K of the min-
imum temperature below 25 km, i.e., within 10 K of the tem-
perature at the cold-point tropopause. Second-order central
differences are used to estimate ∂T

∂z
across all of the heights

for each given profile (Atkinson, 1988). For this purpose, we
use the RO-derived temperature to estimate T to establish a
rigorous criterion across all of the profiles and ensure that the
fit N̂ is consistently being used where it would be expected
to hold, especially for accurate clustering in N − N̂ .

More details on the numerical fitting of Eq. (3) are given
in Appendix B.

3.2 Time series k-means clustering

Across the profiles in the merged dataset described above, we
apply k-means clustering with k = 8 clusters for each of the
following variables:

– RO-measured variables – 18 (2.5 to 10 km), N − N̂
(2.5 to 8 km), and the three fit coefficients for N̂ (the
vector c);

– variables from ancillary data – RO plus model-derived
water vapor pressure (e, 2.5 to 10 km) and GPM plus
RO ray-path-computed liquid water path (LWP, 1 to
10 km), ice water path (IWP, 1 to 10 km), and total (liq-
uid plus ice) water path (TWP, 1 to 10 km).

In all cases aside from the clustering for coefficients (in
which case we use standard k-means clustering with the stan-
dard Euclidean distance), a variation in naive k-means clus-
tering called time series k-means with dynamic time warp-
ing (DTW) (Izakian et al., 2015) is applied. As with naive
k-means, the dataset is partitioned into k clusters, but instead
of measuring the distances between profiles using the Eu-
clidean distance, DTW is used. The numerical procedure for
running k-means clustering on the aforementioned variables
is described in Appendix C.

We introduce quality-control criteria for each of the vari-
ables informed by how k-means clustering detected outliers
and other physical considerations. For instance, for the 18
clustering, we excluded 18 profiles where the retrieval for
18 cut off above 2 km, and for the e clustering, we excluded
e profiles with unphysically high values, identified using the
same clustering technique described in Sect. 2 for exclud-
ing e profiles used in the total column water vapor calcu-
lations. Including these faulty profiles affects the accuracy
when we compare the shapes of the 18 profiles for cluster-
ing and compute the integral of 18. We found that faulty
retrievals tend to deteriorate near the bottom of the profiles
before the data become corrupted or missing. The percent of
profiles excluded ranged from 0.01 % (for LWP clustering)
to 13.76 % (for 18 clustering). See Appendix D for more
details on the precise quality-control criteria used for each
clustering variable.

3.3 Dynamic time warping

DTW is a technique originating in time series analysis that
measures the similarity between two signals which are func-
tions of time (or some analogous variable – in this case,
height) by finding an optimal alignment between the two sig-
nals by “warping” the sample points of each signal such that
the measurements in each signal are matched to their near-
est point(s) in the other signal as measured by the Euclidean
norm, regardless of the times at which each point was mea-
sured (Müller, 2007). We still assume that the start and end
points match in each case, that the ordering of measurements
(with time) within each profile stay the same, and that each
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Figure 2. A visual comparison (Tavenard, 2021) showing the difference between Euclidean distance (a) and the DTW measure (b). Time
series are shifted vertically in the visualization, but assume that the y axis values match. Thus, between the two time series shown, the
Euclidean distance would be nonzero but the DTW measure would be zero.

point in one signal is matched to at least one point in the
other. This ensures the following:

1. For cases of missing or uneven data points within a
given profile, we can still compare the rough shape of
this profile with others.

2. For translations in sampling (e.g., when two measure-
ments are out of phase or when recorded heights are
imprecise), DTW can make up for this by shifting the
heights at which measurements are taken when compar-
ing two profiles.

See Tavenard (2021) or Müller (2007) for more details on
how DTW is calculated.

Figure 2 features an intuitive visualization of how DTW
works when comparing time series. The featured example is
taken from Tavenard (2021) and shows two signals consist-
ing of horizontal lines combined with one period of a sinu-
soid. Note how DTW matches the patterns and overall shape
of each time series, which intuitively should result in a more
sound similarity assessment than when using the Euclidean
distance, since the latter matches timestamps (or heights for
this study) regardless of when they were sampled.

4 Results and analysis

Clustering provides an initial classification for the types of
atmospheric profiles that can occur across the dataset by
looking at the centroids in different clustering variables. Fig-
ure 3 shows the results of k-means cluster analysis when ap-
plied to the following variables in the dataset: (a) N − N̂ , (b)
18, (c) IWP, (d) LWP, (e) TWP, and (f) water vapor pres-
sure. The plots in Fig. 3 show the eight clustering centroids
for each variable. Each centroid is an average profile rep-
resenting the general shape and magnitude of the indicated
variable for profiles within its cluster.

A second step in the analysis uses frequency histograms
of different cluster groups to summarize the relationships
between clusters. Tables 1, 2, and 3 feature frequency his-
tograms that compare clustering in different variables:N−N̂

Figure 3. Cluster analysis centroids computed by applying time
series k-means clustering across profiles in (a) N − N̂ , (b) 18,
(c) IWP, (d) LWP, (e) TWP, and (f) water vapor pressure.

with water vapor pressure, the N̂ coefficients c with water va-
por pressure, and 18 against the path variables (LWP, IWP,
and TWP), respectively. These tables look for patterns in the
ability of N − N̂ to predict different distributions of vertical
water vapor pressure and 18 to predict different types of
water path profiles across the vertical profiles in the dataset.
Percentages in the topmost row and leftmost column reflect

https://doi.org/10.5194/amt-18-953-2025 Atmos. Meas. Tech., 18, 953–970, 2025



960 J. Katona et al.: Cluster analysis of PRO and liquid and ice water paths from GPM

Figure 4. Moving averages (blue) of accumulated 18 vs. accumu-
lated water vapor pressure over scatter plots (red) across (a) all lat-
itudes, (b) |latitude|> 50°, (c) |latitude| ≥ 20° and |latitude| ≤ 50°,
and (d) |latitude|< 20°. Dashed portions of the moving averages
correspond to where each bin had less than 34 data points.

the total number of profiles that meet the clustering require-
ments for each specified clustering variable. Bolded black
and bolded grey indicate the maximum and minimum per-
centages within each respective row. Note that since profiles
were excluded from the cluster analyses for certain variables,
the weighted averages for each column or row will not al-
ways add up as expected from the law of total probability.

4.1 Total column 18 and total column water vapor

Bretherton et al. (2004) showed an exponentially increas-
ing relationship between precipitation and total column rel-
ative humidity over the tropics. Later studies (Muller et al.,
2009; Holloway and Neelin, 2010; Emmenegger et al., 2022)
demonstrate a similar and related positive relationship be-
tween precipitation and total column water vapor (TCWV)
in the tropics, where under a certain TCWV value, precip-
itation is generally near-zero in a given profile, and above a
“pickup” threshold in TCWV, precipitation may become non-
negligible and increase exponentially. To evaluate the statis-
tical representativity of our dataset, we tested the validity of
using the magnitude of 18 as a proxy for the magnitude of
precipitation by looking for a monotonic relationship – and
in particular, the precipitation pickup pattern (Holloway and
Neelin, 2010) – between TCWV and the total column of the
PRO observable 18.

Figure 4 presents scatter plots of accumulated 18 vs.
TCWV for all profiles in the dataset at (a) all latitudes, (b) up-
per midlatitudes (above 50°), (c) subtropics and midlatitudes
(between 20 and 50°), and (d) tropics (below 20°), with over-

laid moving averages. These moving averages were done us-
ing the filter1d tool Generic Mapping Tools (gmt) Ver-
sion 6.3 (Wessel et al., 2019). Averaging was done with a
Gaussian filter of width 2 hPa km (option -Fg2) excluding
outputs where the input data have a gap exceeding 0.2 (op-
tion -L0.2) and including ends of the time series in the out-
put (option -E).

The sparse statistics and high variability across higher-
moisture profiles within the dataset make it difficult to fil-
ter out outlier profiles that could significantly bias the mov-
ing averages. Thus, Fig. 4 shows insufficient data for higher-
moisture cases to replicate the precipitation pickup pattern
with much fidelity, as shown by the dashed lines in Fig. 4.3

Nonetheless, after averaging, a positive correlation between
accumulated 18 and TCWV was found across all latitudes
(rp = 0.940) and for the three latitudinal ranges separately
(see Table 4).

The strength of the correlation between accumulated 18
and TCWV also depends on which data the correlation analy-
ses ran. The correlation coefficients in Table 4 indicate a low
positive correlation between accumulated 18 and TCWV
in the raw dataset – i.e., in the individual profiles. After ap-
plying the Gaussian filter with results in Fig. 4 and running
correlation analyses on the filtered data, we find a high pos-
itive correlation between the same two quantities in Table 4.
This suggests that, on average, there is a global positive re-
lationship between the total column 18 and water vapor
pressure, but this relationship is weak across individual pro-
files. Hence, when classifying individual profiles, accumu-
lated 18 does not appear to be a good proxy for precipita-
tion on a single profile; Sect. 4.2 gives a more useful way to
predict water vapor pressure profiles using RO observables.

Similarly, Fig. 4b and d show that, even when using run-
ning means, the limited data and high variability across in-
dividual profiles only weakly suggest a threshold at which
TCWV begins to induce precipitation – i.e., the critical level
at which the precipitation pickup starts. This threshold ap-
pears to be notably lower in the upper midlatitudes than in
the tropics: the accumulated18moving averages reach sim-
ilar magnitudes at approximately 12–13 hPa km in high lati-
tudes vs. 25–26 hPa km in the tropics. However, particularly
for tropical profiles, significantly more data are needed to ro-
bustly confirm how accurately polarimetry can capture the
precipitation pickup pattern from accumulated18 averages.

4.2 N − N̂ and water vapor pressure

We represent the deviations of N from a profile with the
properties outlined in Sect. 3.1 by looking at overlaid graphs
of N and N̂ as functions of height and by plotting N − N̂ as
a function of height. Figure 5 shows two examples – Fig. 5a
and b – where N − N̂ does not correlate strongly with 18,

3A total of 34 counts per bin was chosen as a consistent thresh-
old for all plots in Fig. 4 to show where the density of data falls
below a given reference value.
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Table 1. Percent of profiles in each e cluster (column) for each N − N̂ cluster (row). Cluster numbers are ordered from smallest (most
negative/zero) to largest (most positive) values by comparing their corresponding centroids in Fig. 3. Overbars and underbars indicate
percentages that fall above or below, respectively, 1.5 times the weighted standard deviation (SD) from the mean percentage for each given
row; the SD is weighted by the percentage of N − N̂ corresponding to each case (6.66 %, 5.34 %, 7.06 %, etc.). Bolded black and bolded
grey indicate the maximum and minimum percentages for each row, respectively.

Table 2. Percent of profiles in each e cluster (column) for each c cluster (row). e cluster numbers are ordered roughly from smallest to largest
values by comparing their corresponding e centroids in Fig. 3f, while the c cluster numbers are merely listed in numerically increasing order
(arbitrarily). Bolding, coloring, and over- and underbars are for each row as in Table 1.

whereas Fig. 5c highlights a profile in which a small bump
in N − N̂ and in water vapor correlates with a large 18.
This supports the interpretation of 18 as being caused by
an ice cloud. Figure 5a and b instead demonstrate the abil-
ity of the deviation from potential refractivity N − N̂ to pre-
dict moisture distributions, even when 18 shows little to
no correlation with these moisture changes as a function of
height. For example, the profile in Fig. 5b shows negligible
18, suggesting that the water vapor profile likely indicates
ice-crystal-free clouds from approximately 7.5 km down to
nearly 5.5 km (see, e.g., the method in Peng et al., 2006).

Hence, Fig. 5b shows that differences in N from N̂ tend to
correspond to altitudinal excursions from a near-exponential
water vapor pressure as expected for a constant c2 in Eq. (3).
Table 1 verifies this by measuring the frequency with which
different N − N̂ clusters agree with specific e clusters; their
centroids are shown in Fig. 3a and f, respectively. For ex-
ample, Cluster 1 for N − N̂ is the most flat and occurs most
frequently to – and correlates most strongly with – Clusters

3 and 7 for e, the latter of which corresponds to profiles with
little to no moisture. Conversely, Cluster 6 for N − N̂ corre-
lates well with the highest-moisture profiles in Clusters 1 and
5 for e and contains almost none of the low- or no-moisture
profiles (Clusters 3, 7, 2, and 8 for e).

The N − N̂ centroids in Fig. 3a tend to deviate from a
constant value, primarily in the negative direction for N − N̂
clusters associated with higher moisture, e.g., N− N̂ Cluster
6. This indicates that N < N̂ within a profile correlates with
the presence of moisture, as a higher specific humidity gen-
erally increases refractivity (Friehe et al., 1975; Takamura
et al., 1984; also see Eq. 1). Hence, because the potential
refractivity N̂ is fit across both moist and dry regions of a
profile, the background measured refractivity N in regions
without moisture may fall below the vertically representa-
tive N̂ .

On the other hand, as shown in Table 1, Cluster 3 forN−N̂
features larger values of

∣∣N − N̂ ∣∣ than Cluster 6 for N − N̂
yet does not correlate with profiles that have a higher water
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Table 3. Percent of profiles in each cluster for the column variable listed – liquid water path (LWP), ice water path (IWP), and liquid plus
ice water path (TWP) – for each 18 cluster indicated by the row. Cluster numbers are ordered from smallest (most negative/zero) to largest
(most positive) value by comparing their corresponding centroids in Fig. 3. Bolding, coloring, and over- and underbars are for each row as
in Table 1.

vapor pressure (i.e., Clusters 1 and 5 for e). The examples
in Fig. 5 also demonstrate this; in particular, Fig. 5c features
a profile with a notably higher value of e than the one in
Fig. 5b yet exhibits smaller values of

∣∣N − N̂ ∣∣ overall. This
suggests that the actual magnitude of deviations of N from
N̂ does not necessarily correspond to the magnitude of water
vapor pressure. Nonetheless, the clustering indicates a weak
inverse relationship betweenN−N̂ and e – the upper-left and
bottom-right corners of Table 1 consist mostly of bolded grey

values, while the bottom-left and upper-right corners consist
mostly of bolded black ones.

The aforementioned observation raises two possible hy-
potheses for why the relationship between the magnitudes of
N − N̂ and e is not more direct. Firstly, it is possible that
the relationship between e and N − N̂ is between the deriva-
tives of one or both. Furthermore, N̂ is fit to most of the
troposphere down to 2.5 km. Hence, the difference between
the measured refractivity, N , and the potential refractivity
model, N̂ , is most pronounced when there are concentrated
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Table 4. Pearson’s correlation coefficient (r), Spearman’s rank correlation coefficient (ρ), and Kendall’s rank correlation coefficient (τ ) for
all pairs of the accumulated 18 vs. total column water vapor across varying latitudinal ranges for the raw dataset and the moving averages.
Each correlation coefficient has a p value below 10−9, indicating a high statistical significance for all coefficients.

Latitudinal range:→ All > 50° ≥ 20° and < 20°
Correlation coefficient: ↓ ≤ 50°

Pearson’s rp (raw dataset) 0.332 0.315 0.349 0.375
Spearman’s ρs (raw dataset) 0.216 0.223 0.206 0.287
Kendall’s τk (raw dataset) 0.147 0.151 0.139 0.194
Pearson’s rp (moving averages) 0.940 0.901 0.921 0.708
Spearman’s ρs (moving averages) 0.971 0.964 0.947 0.683
Kendall’s τk (moving averages) 0.864 0.847 0.803 0.508

moisture anomalies within narrow bands of the troposphere.
Conversely, the sensitivity of the derivatives ofN and N̂ with
respect to height suggests that there could be cases where a
profile is moist, yet the model N̂ still closely matches the
observed N . This can happen when a moist–unsaturated adi-
abatic lapse rate (Emanuel, 1994) holds throughout most of
the profile. In such cases, N− N̂ could be close to zero, even
when the water vapor pressure remains elevated, provided
that the water vapor pressure gradients remain small. As an
example, the centroid for N − N̂ Cluster 7 is relatively flat
(Fig. 3a), but Table 1 shows that e Clusters 4 and 6 – both
moderately high-moisture cases (Fig. 3f) – are the most com-
monly represented e clusters in N − N̂ Cluster 7.

4.3 N̂ model coefficients and cluster groups

The N̂ coefficients c = (c0,c1,c2) tend to only exhibit 2 de-
grees of freedom across the profiles in the dataset. Figure 6
shows how projecting the c clusters onto the

(
0̂, T̂0

)
plane

leads to a clear partitioning across different c clusters. This
suggests that the dominant clusters for ê (and therefore e)
in the dataset are related to changes in 0̂ and T̂0. Note that
changes in 0̂ and T̂0 are related to changes in the polytropic
index m and therewith the underlying heat transfer thermo-
dynamics.

The clustering across c was generally able to partition the
physical and nonphysical fits. Clusters 2, 3, 7, and 8 for c

feature physical values of T̂0 and 0̂, while the other clusters
feature nonphysically extreme values of T̂0 (mainly Cluster
6), 0̂ (Clusters 1 and 4), or both (Cluster 5). Such nonphysi-
cal fits indicate where the assumed physics is not reflective of
the actual physics in those profiles. Sometimes, we observed
that faulty retrievals fell within these clusters with unphys-
ical profiles, suggesting (and perhaps identifying) retrieval
issues – e.g., those discussed in Sect. 2 – rather than physical
phenomena.

Figure 6 shows a moderately negative linear correlation
between T̂0 and 0̂ for the fits which feature physically re-
alistic values of 0̂. Between T̂0 and 0̂ across all latitudes
for 0̂ > 0.1, we have a Pearson correlation coefficient of
−0.697, a Spearman rank correlation coefficient of −0.676,

and a Kendall rank correlation coefficient of −0.497. Each
correlation coefficient has a p value below machine epsilon
(i.e., at least below 2.22×10−16), thereby showing the statis-
tical significance of this negative correlation. This correlation
reflects that the moist adiabatic lapse rate has a negative re-
lationship with temperature for profiles with sufficient mois-
ture. Since the moist adiabatic lapse rate approaches the dry
adiabatic lapse rate for temperatures roughly below 230 K, a
higher lapse rate can be observed for colder profiles.

Figure 7 features two scatter plots that show how the fit
coefficient vector c relates to the LWP and IWP as a function
of height. The fit values of 0̂ and T̂0 generally do not cor-
relate with path clusters. However, when 0̂ > 10−1 K km−1

and T̂0 > 280 K for a given profile, that profile has little to
no precipitation, as shown by the near-uniformity of Cluster
1 (turquoise) for either LWP or IWP in that region, as in-
dicated by Fig. 7a and b, respectively. That is to say that c

is not too informative in confirming the presence of precip-
itation; however, c can sometimes rule out the presence of
moisture and thereby precipitation. Similar yet weaker re-
lationships between c and particular precipitation regimes
can also be seen across other ranges of 0̂ and T̂0 in Fig. 7;
e.g., 0̂ > 10 K km−1 tends to also correlate with low- or no-
moisture cases.

As the aforementioned relationship between N − N̂ and
e suggests, c also exhibits an apparent relationship with e.
Figure 6 suggests that Cluster 2 for c tends to contain pro-
files where ê is near-zero. This tends to correspond to cases
when e is too low for there to be precipitation: as confirmed
in Fig. 4, when the water vapor pressure is too low, precipi-
tation cannot form. The relationship between c and e may be
analyzed more precisely by looking at Table 2, which demon-
strates the predictive power in using c clusters to predict rep-
resentative water vapor pressure profiles, i.e., the centroids
for e clusters shown in Fig. 3f.

4.4 18 and both liquid and ice water paths

Table 3 explores the correlation of PRO 18 profiles with
precipitation in a given profile. Clusters with large 18 tend
to correlate with those of large LWP or IWP, and inversely,
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Figure 5. Three examples of thermodynamic profiles at various times and locations with (a) low moisture and no apparent precipitation,
(b) some moisture but no apparent precipitation, and (c) high moisture and high precipitation. For each, we show the height on the y axes
and the following on the x axes: e (left), N in blue and N̂ in red (center), and 18 (right). The date format is year-month-day.

Figure 6. Scatter plots of the best-fit values of T̂0 vs. 0̂ across all latitudes in the dataset using (a) logarithmic scaling and (b) linear scaling
in 0̂ to make the separation in 0̂ more apparent for small values of 0̂. The colors and symbols correspond to the associated N̂ coefficient
(c) clusters for each point, as indicated by the color bars on the right-hand sides.
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Figure 7. (a) LWP clusters and (b) IWP clusters over T̂0 vs. 0̂ across all profiles and latitudes.

those with small 18 also relate to profiles with little to no
LWP or IWP. This should already be expected, as prior stud-
ies (e.g., Cardellach et al., 2019; Wang et al., 2022; Padullés
et al., 2023) already indicate relationships between 18 and
both water precipitation and ice.

Despite how Clusters 2 and 6 for 18 feature large val-
ues of 18 (> 4 mm) quite deep into the atmosphere – up to
around 9 km according to their respective centroids – Table 3
shows that ice precipitation is not necessarily deep for those
cases. In particular, Clusters 2 and 6 for 18 both correlate
well with Clusters 2 and 6 for IWP, but the centroids for the
latter two drop to zero near 7 and 5 km, respectively. This
could be because 18 across different heights need not cor-
respond one-to-one with the LWP or the IWP at those heights
and also because LWP and IWP do not necessarily signal pre-
cipitation right at the time they are measured.

Even though the height of a particular onset or peak in
18 might not correlate with onsets or peaks, respectively,
in the path cluster centroids, the shapes of the 18 and total
path cluster centroids appear to correlate in both precipita-
tion and non-precipitation cases, as demonstrated in Table 3.
This consistency in shape but not in height is a property of
the DTW measure used for the clustering. Hence, the lack
of height correlations in our clusters does not contradict the
model predictions of Padullés et al. (2023) since their model
directly matches features in 18 and precipitation as a func-
tion of height.

5 Conclusions

In summary, k-means clustering has been used to evaluate its
ability to identify different types of correlations between the
vertical distributions of precipitation- and moisture-related
variables. Our work shows the application and physical in-
terpretability of using an unsaturated polytropic potential
refractivity fit, N̂ , when there is a linear temperature pro-

file with height, which is expected in a polytropic atmo-
sphere. Deviations from N̂ relate to the presence of water
vapor pressure anomalies at given latitudes, longitudes, and
times (Sect. 4.2). In particular, Table 1 demonstrates a visibly
strong yet non-monotonic relationship between the shapes
and amplitudes of N − N̂ vs. e. For instance, the moder-
ately negative Cluster 6 for N − N̂ corresponds well with
very moist profiles, yet the more negative clusters for N − N̂
correspond to only moderately moist profiles. Inversely, the
mostly flat Cluster 1 for N − N̂ corresponds to profiles with
little to no moisture (Clusters 3 and 7 for e), yet the most pos-
itive Cluster 5 for N − N̂ corresponds to profiles with low to
moderate moisture. This can be explained by how the devia-
tion of N from N̂ will be muted if N̂ has been fit to a profile
which is moist overall, and thereby

∣∣N − N̂ ∣∣ will be largest
when the moisture is high and relatively localized (e.g., in
the presence of clouds).
N̂ coefficient (c) clusters can flag physical vs. nonphysical

values of observed and derived variables (Sect. 4.3, Fig. 6).
As shown in Fig. 6, Clusters 5–7 for c generally correspond
to temperature values that are far too low, indicating either a
problem with the data from the retrievals or a profile which
does not satisfy the physical assumptions made in deriving N̂
(see Sect. 3.1). Inversely, the values of c for a given profile
can identify when a profile has no moisture or precipitation
with very high accuracy – as shown in Fig. 7, profiles with
0̂ > 10−1 K km−1 and T̂0 > 280 K have little to no precipita-
tion. Related correlations between different c and e clusters
are also shown in Table 2, where we see that different clus-
ters for c correspond to profiles with low, medium, and high
water vapor pressure throughout.

Similarly, vertical distributions of 18 are found to corre-
late to specific vertical profiles of liquid and ice precipita-
tion. In particular, the amplitude and shape of 18 centroids
correlate with the amplitudes and shapes of LWP and IWP
centroids, respectively (Sect. 4.4, Table 3). This correlation
persists across low and high levels of LWP, IWP, and both
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combined, thereby demonstrating a strong one-to-one rela-
tionship between 18 and water path.

In conclusion, the clustering centroids (i.e., “representa-
tive” profiles) correlate with the general magnitude of a vari-
able for a given profile and also the general shape of that
variable as a function of height. The latter is especially evi-
dent for variables that correlate with water content: 18 and
the path variables. As a demonstration of how the centroids
capture the magnitude of profiles in their associated clusters,
consider the ice water path (IWP) clusters shown in Fig. 3c:
Clusters 4 and 7 for IWP both correspond to higher-than-
average ice content in their respective profiles, and a simi-
lar comparison can be drawn between Clusters 2 and 6 for
IWP. Relatedly, as a demonstration of how the centroids cap-
ture the shape, consider the liquid water path (LWP) clus-
ters shown in Fig. 3d: Clusters 2 and 5 for LWP both cor-
respond to non-negligible water precipitation, but Cluster 5
features profiles with deeper precipitation than those in Clus-
ter 2. Thus, clustering in the manner introduced in this study
confirms its value as a tool for the quality control of pro-
files and automates the classification of physical phenomena
found across large datasets.

Appendix A: Derivation of N̂

Combining the equation for hydrostatic equilibrium and the
ideal gas law, we have

p(z)= p(z0)exp

− g
R

z∫
z0

ds
T (s)

 , (A1)

where g = 9.8 g m−2 is the acceleration due to gravity on
Earth and R = 287 J kg−1 K−1 is the specific gas constant
for dry air. In a polytropic atmosphere, T (z)= T (z0)−

0(z− z0) for a lapse rate 0 to be determined by a fit to the
data together with T (z0). The integral in Eq. (A1) for this
temperature profile can be computed as

−
g

R

z∫
z0

ds
T (s)

=
g

R0
log

[
1−

0(z− z0)

T (z0)

]
,

which in turn implies that (e.g., Dutton, 1976)

p(z)= p(z0)

[
1−

0

T (z0)
(z− z0)

] g
R0

. (A2)

Substituting Eq. (A2) and T (z)= T (z0)−0(z− z0) into
Eq. (1) and putting a hat onN since N̂ is the idealized model,
we have

N̂ (z)=
k1p(z0)

T (z0)
[
1− 0(z−z0)

T (z0)

]2 ×

{[
1−

0(z− z0)

T (z0)

] g
R0
+1

+
k2e

k1p(z0)T (z0)

}
. (A3)

While p(z0) might not be available directly in a typical PRO
profile (which only contains refractivity and 18), there will
be data for N (z0). Hence, we solve for p(z0) in terms of
T (z0) and N (z0) to constrain the number of fitting parame-
ters. Rewriting Eq. (1) at z= z0, we have

k1p(z0)= T (z0)

[
N (z0)−

k2e

T (z0)
2

]
. (A4)

Substituting Eq. (A4) into Eq. (A3) for a constant, represen-
tative, ê0, and rewriting in terms of the fit coefficients c0, c1,
and c2, leads to Eq. (3).

Appendix B: Numerical fitting procedure for N̂

Once Eq. (3) has been fit to a given profile, we can use c0 to
solve for 0̂, then use this and c1 to solve for T̂0, and finally
use c2 and T̂0 to solve for the representative value of ê. To
do this fitting routine in practice, since k2, ê, and N ≥ 0, we
impose the constraint c2 ≥ 0 and use the curve-fitting util-
ity optimize.least_squares from the SciPy package
(version 1.7.3) in Python 3.7.4 with the initial conditions
c0 = 4.5, c1 = 0.01 m−1, and c2 = 0 to fit Eq. (3) to each N
profile for all cases. For reasons which are generally internal
to the default optimize.least_squares algorithm, ei-
ther the nonlinear fitting procedure did not always converge
within the preset maximum number of iterations, 10 000,
with prescribed error tolerances ftol=xtol= 10−12, or
the profile in question was missing too much data for the
model coefficients to be uniquely determinable – this only
occurred in 5 profiles out of the 6706 in the dataset or 0.07 %.
The latter could have occurred either because there were not
enough data overall or because there were no refractivity data
at z0 = 2.5 km.

Appendix C: Clustering algorithm for k-means

For the numerical implementation of time series k-
means clustering, we use version 0.6.2 of the Python
package tslearn, which provides machine learn-
ing tools for the analysis of time series data and
builds on the scikit-learn, scipy, and numpy
libraries (Tavenard et al., 2020). To run time series k-
means clustering for all variables in the dataset, we use
tslearn.clustering.TimeSeriesKMeans with
k = 8 clusters, the DTW metric, and a maximum of 30
iterations of the algorithm, and we fix the random state
to 0 to ensure that the cluster labels stay consistent upon
each run.

There are ways to estimate the most “statistically mean-
ingful” number of clusters for a given dataset, even when
not using the Euclidean metric – e.g., the average silhouette
method (Rousseeuw, 1987) or the gap statistic method (Tib-
shirani et al., 2001) – which could give different numbers
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of clusters for each variable. However, to keep a consistent
number of clusters for each variable and to give some sem-
blance of the same hierarchy in magnitude across clustering
in each variable, this study uses the same number of clusters
for all variables and defers to using a number that is possibly
too large rather than too small.

Appendix D: Quality-control criteria for clustering

Profiles are excluded from each cluster according to the
quality-control criteria listed below:

– For18 (923 profiles excluded or 13.76 %), files are ex-
cluded by the same criteria used for the vertical integral
of 18.

– For c0, c1, and c2 (5 profiles excluded or 0.07 %), the
fit for N̂ must converge, i.e., the algorithm for com-
puting the best-fit coefficients c0, c1, and c2 must con-
verge, which means that there must be refractivity data
at 2.5 km, there must be enough refractivity data be-
tween 2.5 km and the estimated lapse-rate tropopause
(the latter of which was explained earlier), and the fit
must converge within 10 000 iterations for tolerance
conditions ftol=xtol= 10−12.

– ForN−N̂ (223 profiles excluded or 3.33 %), along with
the same criteria related to N̂ used for the coefficient
clusters, cases where the tropopause is below 8.2 km are
skipped and three files from clustering for N − N̂ are
taken out manually and excluded. These three files con-
tained unphysically large values of N (N > 600) and
likely indicate an issue with retrieving the refractivity
for the RO dataset.

– For water vapor pressure (33 profiles excluded or
0.49 %), files are excluded by the same criteria used
for the total column water vapor described in Sect. 2.
It should be noted that the three files with unphysically
large values of N that were manually excluded from
clustering for N − N̂ also had unphysically large water
vapor pressure values. Hence, these profiles were also
excluded from the clustering for water vapor pressure,
thereby showing that at least some of the erroneous wa-
ter vapor pressure retrievals were caused by issues with
the retrieved RO refractivity.

– For LWP (1 profile excluded or 0.01 %), files without
LWP data from 1 to 10 km are excluded.

– For IWP (6 profiles excluded or 0.09 %), files without
IWP data from 1 to 10 km are excluded.

– For TWP (6 profiles excluded or 0.09 %), files without
LWP or IWP data from 1 to 10 km are excluded.

Code and data availability. The datasets associated with this study
have been uploaded to the Jet Propulsion Laboratory’s GENESIS
(Global Environmental and Earth Science Information System) site:
https://genesis.jpl.nasa.gov/ftp/paz_pol/ (Padullés et al., 2020). Fur-
ther ROHP data are available at https://paz.ice.csic.es (Cardellach
et al., 2020). GPM Level 1C, 2A, and 2B PMW radiometer data
are openly available via the Precipitation Processing System (PPS)
at NASA Goddard Space Flight Center: https://pps.gsfc.nasa.gov/
(NASA, 2025).
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