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Abstract. Diurnal variations in planetary boundary layer
height (PBLH) is highly linked to weather, climate, and envi-
ronmental processes. However, remaining challenges persist
in estimating its diurnal behavior at a large scale due to insuf-
ficient observations and limitations of operational retrieval
algorithms. This study proposed a deep learning framework
based on an attention-augmented residual neural network to
estimate diurnal variations in near-global PBLH, incorpo-
rating profiles from an non-sun-synchronous lidar (Cloud-
Aerosol Transport System: CATS) and meteorological fields.
The framework can largely address the issue of multi-layer
structures in space-borne lidar signals, significantly improv-
ing the accuracy of PBLH retrieval during morning and
evening (with accuracy improvement approach 30 % com-
pared to traditional algorithm). Due to insufficient observa-
tions aligned with CATS orbits, a pre-train model was firstly
trained using pseudo-labels from reanalysis, and then was
transferred to observation-based target labels. The transfer
model demonstrates superior performance in most regions
and periods, outperforming classical algorithm in capturing
PBLH magnitude and its diurnal variations. Further assess-
ments over different land covers show that the transfer model
estimated PBLH and diurnal patterns were highly consistent
with those from radiosondes, surpassing reanalysis outputs.
For model capability, wavelet covariance transformation de-
rived potential PBLH and temperature profiles emerged as
dominant factors, with contributions exhibiting diurnal pat-
terns. Overall, this work proposes a novel framework for
large-scale PBLH estimation and provides insights for im-

proving retrieval algorithms, particularly through integrating
remote sensing and machine learning.

1 Introduction

The planetary boundary layer height (PBLH) plays key
roles in land-air exchanges and lower tropospheric processes
(LeMone et al., 2019; Medeiros et al., 2005), such as the
transfer and exchange of heat, momentum, humidity, and ma-
terials (Garratt, 1994; Holtslag et al., 2013; Stull, 1988). As
an interface between the turbulent boundary layer and the
free atmosphere, PBLH acts as a significant barrier and rep-
resents the degree of turbulent diffusion, determining the up-
per limit of boundary layer processes and playing vital roles
in weather, climate, and environmental studies (Che et al.,
2019; Davy and Esau, 2016; Guo et al., 2021; Li et al., 2017).
Particularly, weather and pollution conditions are largely de-
pendent on the diurnal behaviors of PBLH, which dominates
the atmospheric dispersion and vertical mixing of pollutants
(Ding et al., 2013; Huang et al., 2023; Li et al., 2025).

Despite the crucial importance, accurately measuring di-
urnal variations of PBLH across large scaled areas remains
challenging due to spatio-temporal limitations of current de-
tection instruments. Radiosonde and lidar measurements al-
low precise representation of vertical atmospheric structure
(Seidel et al., 2010; Seidel et al., 2012). The radiosonde de-
rived PBLH generally serves as a benchmark for validat-
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ing simulations, reanalysis, and remote sensing (Guo et al.,
2021; Li et al., 2023; Yue et al., 2021).However, global ra-
diosondes are generally launched two or four times per day,
and its coverage is much sparse in less-developed regions
(like Africa and South America). Lidar systems serve as a
promising tool for continuous PBLH monitoring (Chen et
al., 2022; Liu et al., 2021), benefiting from their operation
at sub-minute temporal resolution. While ground-based lidar
has limited spatial representation, space-borne lidar enables
large-scale PBLH detection across diverse regions (Jordan et
al., 2010; McGrath-Spangler and Denning, 2012). Li et al.
(2023) demonstrated diurnal variations in large-scale PBLH
from an non-sun-synchronous satellite. However, the PBLH
retrieved by them exhibited large deviations in accuracy and
diurnal patterns due to uncertainties of retrieval and signal
noises such as multi-layer structures.

Traditional algorithms for retrieving PBLH from satellite
signals are typically developed either to detect abrupt jumps
in backscatter profiles (Kumar et al., 2018; Liu et al., 2015)
or to identify the first exceeding of an empirical threshold
(Palm et al., 2021). These algorithms suffered from signif-
icant accuracy challenges, due to at least three limitations:
(i) the presence of elevated residual layers prevent down-
ward staring lidar from detecting the true PBLH; (ii) cloud
contamination or advected aerosols induce noises into lidar
echos; and (iii) parameter selection of algorithm affect its
sensitivity to diverse profile structures. The primary chal-
lenge for retrieving the diurnal variation of PBLH perhaps
lies in minimizing the influences of residual layers or multi-
layer structures during its morning and evening transition pe-
riods (Su et al., 2020; Li et al., 2023). Numerous efforts have
been taken to enhance the algorithm performance in operat-
ing multi-layer profile structures of space-borne lidar, such as
utilizing graphic clustering (Liu et al., 2018) or implement-
ing additional physical constraints (Kim et al., 2021; Su et
al., 2017). However, to date, current algorithms have not yet
achieved optimal performance, primarily due to their inabil-
ity to effectively resolve ambiguity signal structures through
automated detection.

In recent years, machine learning has been increasingly
integrated into PBLH estimation, achieving evidenced im-
provements. Several studies have employed deep neural net-
work frameworks to estimate PBLH using near-surface and
vertical atmospheric variables (Nguyen et al., 2021; Su and
Zhang, 2024), constructing non-linear mapping from meteo-
rologies to PBLH. Based on parameters acquired from sur-
face observations, remoter sensors, reanalyses, and simula-
tions, several random forest models were developed to pre-
dict PBLH (Guo et al., 2024; Krishnamurthy et al., 2021),
the results demonstrated greater consistency with radioson-
des and effectively corrected some inherent biases. There
are gradient boosting learning models been proposed (de
Arruda Moreira et al., 2022; Peng et al., 2023), which se-
quentially fits multiple weak learners, allowing the model
to learn iteratively and improve prediction accuracy progres-

sively. These methodologies essentially address a regression
relationship between PBLH and associated meteorological
variables. There are also machine learning models were em-
ployed to refine retrieval technique from only remote sens-
ing data. Rieutord et al. (2021) compared an unsupervised
(AdaBoost) and a supervised (k-means) learning, to judge
whether the lidar signals originate from the boundary layer
or the above free atmosphere. Mei et al. (2022) proposed
a VGG16-based convolutional neural network for PBLH
detection using wavelet covariance transformation (WCT)
images of ground-lidar backscatter, which can effectively
suppresses contamination from clouds and residual layers.
Sleeman et al. (2020) improved PBLH measurement from
backscatter profiles under cloud condition through convolu-
tional network.

Existing machine learning methodologies exhibit signifi-
cant advantages in capture PBLH and its diurnal variations
from noisy lidar signals. However, these studies have almost
been limited to ground-based sites, and either require addi-
tional meteorological variables affecting PBLH evolution to
be provided or necessitate human intervention to process re-
mote sensing signals. These site-scaled models may not be
generalizable on larger regions or global scale. Few studies
have focused on improving PBLH estimation from space-
borne lidar through machine learning approaches. This is pri-
marily due to training a robust model requires substantial
feature samples been provided, yet ground-based observa-
tions aligned with space-borne lidar overpass orbits are ex-
tremely scarce, making it difficult to obtain sufficient target
labels; while those unsupervised learning methods often fail
to achieve the desired performance (Rieutord et al., 2021).

Given the aforementioned considerations, this study pro-
poses to construct a temporally and spatially adaptive deep
learning model to estimate PBLH and its diurnal variations
on a near-global scale using space-borne Cloud-Aerosol
Transport System (CATS). As the satellite operates on a non-
sun-synchronous orbit, it can capture a complete diurnal cy-
cle (Yorks et al., 2016). To address the issue of insufficient
matching samples with satellite orbits, this paper employs a
transfer learning strategy. The approach involves first estab-
lishing a pre-train model using large samples matched by re-
analysis data. And then, the feature extraction capabilities of
the pre-train model are transferred to small samples matched
with ground truth values. By fine-tuning the model weights,
its representation for real-world targets and generalization
will beenhanced, thereby constructing more accuracy mea-
surements of diurnal variations in large-scaled PBLH. Over-
all, this work presents the first attempt to integrate attention
mechanisms and transfer learning for diurnal PBLH estima-
tion at near-global scale, overcoming the limitations of clas-
sical algorithms in handling multi-layer atmospheric struc-
tures.
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2 Dataset

2.1 Satellite-based lidar profiles

This study aims to develop a robust and generalizable deep
learning framework for PBLH estimation from space-borne
CATS lidar. CATS is initiated to monitor atmospheric
clouds and aerosols using advanced lidar technology and is
mounted on the International Space Station’s (ISS) Japanese
Experiment Module. Launched on 10 January 2015, the ISS
operated in 51.6° inclined orbits at an altitude of ∼ 405 km,
covering tropical and mid-latitude regions. Unlike sun-
synchronous satellite, CATS exhibits a repeat cycle of
approximately 3 d and operates at non-fixed overpass times.
These characteristics allow CATS to capture large-scale
diurnal variations in aerosols (Yu et al., 2021) and clouds
(Zhao et al., 2023), as well as in PBLH (Li et al., 2023) after
approximately 16 d of running. Due to instrument malfunc-
tions, available CATS backscatters for PBLH retrieval only
limited from March 2015 to October 2017, exclusively at
the 1064 nm. Such wavelength is more sensitive to aerosol
structure and variations compared to 532 nm (Winker et al.,
2007), but with a lower signal-to-noise ratio (SNR); such
that CATS signals necessitate more rigorous de-noising
processes. Herein, the study acquired 1064 nm “To-
tal_Attenuated_Backscatter” profiles (TAB) from the CATS
V3.00 Level 1B product and “Feature_Type” data from the
Level 2 product. The collected L1B and L2 products have
horizontal resolutions of 350 m and 5 km, while both main-
tain a vertical resolution of 60 m. Several additional CATS
products: “Profile_UTC_Time”, “DEM_Mean_Elevation”,
“Bin_Altitude_Array”, “Opacity”, “Layer_Top_Bin”,
“Layer_Base_Bin”, “Surface_Type”, “Sky_Condition” were
collected to refine the input features when training model.
Noting that only the daytime CATS products were acquired,
as the determination for nocturnal PBLH falls outside scope
of this paper.

2.2 Radiosondes and reanalyses derived PBLH

Given that radiosonde derived PBLH is typically recognized
as ground truth, this study employed sounding profiles from
Integrated Global Radiosonde Archive (IGRA) V2.0, which
serves to generate benchmark PBLH and to assess perfor-
mances of our deep learning model. IGRA offers exceptional
temporal and spatial coverage, with current 466 radiosondes
sites (Fig. S1 in the Supplement) available in CATS over-
passing areas. We acquired IGRA data temporally aligned
with the CATS orbits (2015–2017). Sounding profiles for
PBLH determination encompass geo-potential height, tem-
perature, dew point depression, wind speed and direction.
The bulk Richardson number method (Vogelezang and Holt-
slag, 1996) was adopted here to calculate the PBLH, which
can even maintain enough effectiveness under stable atmo-
sphere regime and coarse sounding resolutions. Neverthe-

less, procedures were still conducted to eliminate soundings
with coarse vertical resolution: within 5 km from the surface,
the profiles must include at least seven vertical levels of tem-
perature and humidity records; along with at least four levels
of wind records. If valid wind observations are fewer than
seven levels, a cubic spline interpolation was employed to
fill missing values (Zhang et al., 2013). However, we should
aware that radiosondes have standard launch schedule (fixed
at 02:00 UTC), only a few soundings coincide with CATS
orbits, spatio-temporal overlaps between the two CATS and
radiosondes are quite scarce. Figure S1 gives their match-up
information, where relatively rough matching rules (with dis-
tance limited to 200 km and time to 1.5 h) were performed to
enlarge the number of samples. As a result, we obtained to-
tally 5368 valid matching samples, which cover the majority
of the Earth’s land, and larger sampling numbers observed in
mid-latitude regions.

While the robustness and reliability of radiosonde-based
PBLH, using only 5,368 matched samples to train a model
is far from sufficient, especially considering these samples
fall throughout diverse periods and areas. Therefore, two re-
analyses outputted PBLH, ERA5 (the fifth generation Eu-
ropean Centre for Medium-Range Weather Forecasts atmo-
spheric reanalysis) and MERRA2 (the Modern-Era Retro-
spective Analysis for Research and Applications Version 2),
were further acquired in this study. Two sets of PBLH have
the same temporal resolution (1 h) but with discrepant spatial
grids: 0.25°× 0.25° (ERA5) and 0.625°× 0.5° (MERRA2).
The grid-based reanalyses were interpolated to the orbit-
based CATS data using inverse distance weighting to ensure
they are spatially aligned. In this study, the MERRA2 PBLH
was employed to construct one of training sets for the model,
partly because it assimilates aerosol information compared
to ERA5 (Gelaro et al., 2017), making it more approach to
the intrinsic nature of CATS retrieval. Our prior study also
reported that using classical algorithm retrieved PBLH from
CATS was more consistent with that from MERRA2 (Li et
al., 2023). Moreover, we acquired vertical profiles of temper-
ature, humidity, and wind speed from MERRA2 website as
meteorological features input to model. These variables rep-
resent 3 h averaged meteorological fields and were matched
with CATS orbits.

3 Methodologies

3.1 Generate training data

WCT is one of typical PBLH retrieval techniques from
satellite-based backscatters. This study employs the Haar
wavelet transform (Gamage and Hagelberg, 1993):

Wf (a,b)=
1
a

zt∫
zb

B(z)h

(
z− b

a

)
dz (1)
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where, Wf (a,b) is the WCT coefficient, a is dilation factor,
b denotes the central location of vertical translation, B(z) is
backscatters, zb and zt represent the bottom and top limits
when integrating the Haar function, respectively. The Haar
wavelet function is:

h

(
z− b

a

)
=

 1, b− a/2≤ z ≤ b

−1, b ≤ z ≤ z+ a/2
0, elsewhere

(2)

inherently, the WCT is designed to check the similarity be-
tween the lidar profile and wavelet stepping function, its
maximum peak represents the sharpest signal gradient, and
thereby is considered as PBLH. However, selecting a proper
dilation factor is crucial, diverse dilation values exhibit sig-
nificant impacts on step WCT signals. Particularly, a smaller
dilation cause WCT being sensitive to small-scaled fluctu-
ations in backscatter profile and is susceptible to noise in-
terference, whereas a larger dilation may smooth out thin
aerosol layers.

Since varying sensitivity of different dilations to backscat-
ter structures, we evaluated the retrieval accuracy of seven di-
lation values ranging 240–960 m (with an interval of 120 m)
in Fig. 1a. Note that a tolerate PBLH bias of 500 m between
WCT and radiosonde was utilized when calculating the re-
trieval accuracy, accounting for spatio-temporal matching er-
rors and inherent algorithm differences between them. When
compared against radiosonde derived PBLH, a dilation of
480 m yielded the optimal results. Therefore, a dilation of
480 m is taken as a benchmark for WCT in this work. How-
ever, its maximum accuracy of 39.7 % does not meet rea-
sonable desire, such uncertainty is mainly induced by multi-
layer structures such as residual layer and advected aerosols,
and inability of WCT algorithm (Li et al., 2023). Here, the
threshold of 500 m is only used to check whether the retrieval
results of WCT are close to the actual PBLH, rather than
to illustrate the performance of the algorithm. Changing the
threshold (Table S1) does not affect the key findings.

The WCT can, to some extent, be considered as a gradient-
based algorithm, local peaks in WCT profile denote sharp
changes in signal structure. A previous study adopted dy-
namic noise thresholds of ground-based lidar to identify the
multiple layers (Li et al., 2023), but it is not applicative to
space-borne lidar profiles. Due to the magnitude of WCT rep-
resents the intensity of local changes in backscatter profile,
we hypothesize in this study that the local peaks in WCT pro-
files correspond to the top position of multi-layer aerosols;
these peaks were then compared against the radiosonde de-
rived PBLH (Fig. 1b). The results show that the first five
peaks in WCT profiles align well with the truth PBLH, with
their overall accuracy exceeding 90 % when we assumed one
of these peaks to be PBLH. These peaks may not necessarily
originate from the PBLH but may be induced by other in-
terfering signals, whereas the first peak (i.e., benchmark for
WCT algorithm), only capture few portion of truth PBLH.
In other words, the WCT can effectively detect complex sig-

Figure 1. Assessment for the WCT algorithm under different di-
lations (a); and accuracy (b) and MAE (c) compared against ra-
diosonde derived PBLH when assuming one the first five peaks in
WCT profiles (dilation= 480) as PBLH.

nal structures, while its maximum peak does not fully denote
the PBLH. Therefore, the performance of WCT are largely
biased, particularly when it was utilized to CATS backscat-
ters with strong temporal variability. Figure 1c further exam-
ine mean absolute errors (MAE) when assuming one of the
first five WCT peaks as PBLH, the MAE values (∼ 240 m)
are much lower than that using WCT algorithm (∼ 1 km, not
show here). Moreover, the hit rates and MAEs across multi-
ple peaks under various dilation parameters also indicate that
selecting 480 m as the dilation for WCT is the most appro-
priate for this study.

Consequently, this study proposes to develop a deep learn-
ing framework to identify the optimal peak from the first sev-
eral peaks of WCT profiles that aligned with the truth PBLH.
Three types of feature data: remotely sensed profiles, mete-
orological profiles, and auxiliary parameters serve as model
inputs. We used the raw CATS backscatter profile as one of
the remotely sensed features. Due to the lower SNR, a se-
ries of pre-processing procedures were implemented. First,
we utilized the “Opacity” parameter to remove opaque pro-
files, ensuring downward scanning CATS lidar can detect
entire atmosphere columns. Samilar as previous retrieval
practices (Li et al., 2023), profiles containing cloud layers
were filtered using the “Feature_Type” and corresponding
“Layer_Top_Bin”, “Layer_Base_Bin” from CATS L2 prod-
uct. Since CATS L1B and L2 products have diverse hori-
zontal resolutions (a single L2 profile involves 14 L1B pro-
files), all of 14 L1B profiles would be eliminated if any cloud
layer exists in the L2 profile. Noting that cloud screening
was only applied below 5 km, profiles remained available
when the lowest cloud base exceeded this altitude. Prior stud-
ies have suggested that long-distance horizontal smoothing
can enhance SNR of daytime CATS profiles (Nowottnick
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et al., 2022; Palm et al., 2021). Accordingly, the L1B pro-
files were then horizontally averaged across 60 km, mean-
ing each training unit aggregated 60 km of raw CATS pro-
files. However, the solid ground generally return stronger sig-
nal echoes than the above aerosols, which could potentially
distort the long-distance smoothing. To address this, we re-
aligned the CATS profiles according to their elevations, en-
suring consistent bin for ground layers in a single training
unit. Moreover, elevations of CATS profile extracted from
the “DEM_Mean_Elevation” may slightly bias from the true
ground level, we thereby followed the same approach as Li
et al. (2023) to re-calibrate the ground bin. Finally, to pre-
vent the model from learning unforeseeable signal noises, we
adopted a vertical smoothing window spanning three vertical
bins into the profiles.

Based on the above cloud-screened, re-aligned, and hor-
izontally averaged CATS profiles, we calculated the corre-
sponding WCT profiles based on a dilation of 480 m. This
study limits the PBLH estimation to height below 5 km (cor-
responding to 84 CATS bins), which covers the vast majority
of global cases. Additionally, the two lowest bins (nearest the
surface) were excluded to minimize ground noise contami-
nation. Consequently, the derived PBLH values range from
360 m (120+a/2) to 4800 m (5040−a/2). From each WCT
profile, we acquired an additional profile involves the candi-
date PBLH, with the same shape as the backscatter and WCT
profiles. In candidate profile, most bins were assigned as
“0”, while the bins corresponding to local WCT peaks were
marked as “1”. The WCT peaks were selected based on their
sorted magnitudes, with a maximum of five peaks retained
per profile. Overall, three remote sensing based profiles, en-
compassing averaged TAB, WCT, and candidate PBLH, each
with dimensions of 84× 1, are incorporated as model inputs.

The meteorological profiles include temperature, rela-
tive humidity, and wind speeds obtained from MERRA2
reanalysis,which were first matched with each CATS or-
bit, following inverse distance weight for spatial matchup
and most proximity for temporal matchup. And then the
spatio-temporally matched MERRA2 profiles were vertically
aligned to 84 CATS bins using a linear interpolation method..
In addition, the model inputs incorporated several non-profile
parameters extracted from CATS auxiliary products, includ-
ing geography information (latitude, longitude, altitude), lo-
cal standard time (LST; converted from UTC of each profile),
surface type (based on MODIS land cover catagories) , and
sky conditions. These non-profile parameters are one-to-on
attached to CATS profiles and were subsequently resampled
to match the dimensions of the profile features, and finally
forming a standardized input array (84 bins× 12 features)
for training the model, as the input layer shown in Fig. 2.

In principle, the target labels for model training should
be generated from radiosonde derived PBLH. However, this
study obtained only 5368 matched samples between CATS
and radiosonde data, which are far too limited to train a
model capable of capturing both temporal and spatial PBLH

variations. To address this challenge, a transfer learning strat-
egy was adopted. Specifically, a base model was pre-trained
across a large feature set using pseudo-labels constrained by
MERRA2 PBLH, after which the pre-train model was fine-
tuned on a smaller dataset with target labels constrained by
radiosonde derived PBLH. During the pre-training phase, the
target lable was defined as the single peak in the WCT profile
closest to the MERRA2 PBLH, allowing a maximum devi-
ation of 480 m that equals to one-fold dilation value. This
approach enables the model to learn vast feature information
and substantially expands the training sample size. For pre-
training, a feature dataset of 2016 covering a completed cal-
ender year was employed, comprising 113 488 samples in to-
tal, and were split into training (80 %) and validation (20 %)
subsets. In the transfer-learning stage, the target labels were
constrained by radiosonde derived PBLH. There are 5008
feature samples were extracted from the matched CATS-
radiosonde samples. Of these, 4258 samples were used for
transfer training, while the remaining 750 samples served as
a common testing set to assess model performances for both
pre-training and transfer-learning stages. It is worth noting
that the 750 samples in test set were not randomly chosen.
We carefully consider the sample size and distribution to en-
sure that they could cover most of the space and time, while
also ensuring that there is no data leakage. In fact, for match-
ing samples from different orbits, the possibility of data leak-
age is extremely low due to the time and space isolation.
However, for the same orbit, if the distance between two sam-
ples is too close, there may be a data leakage risk. Therefore,
all samples on the same orbit that are within 300 km of other
samples were placed in the training set while not in the test-
ing set.

3.2 Model architecture

A residual neural network (ResNet) attempts to learn the
residual mapping between input features and outputs, effec-
tively alleviating the vanishing gradient problems in a deep
neural network. This study constructed a ResNet based trans-
fer learning framework for target location detection, aiming
to identify the only bin representing the PBLH. The approach
reshaped inputted feature array and employed a deep neu-
ral network to estimate the probability of each bin approx-
imating the truth PBLH. As illustrated in Fig. 2, the model
adopted a modified ResNet-18 architecture (He et al., 2016),
consisting of four main components.

i. Input layer: the model receives 2-D feature vectors
(84× 12) without spatial reshape, maintaining the orig-
inal temporal structure.

ii. Initial feature extracting: a 1-D convolutional layer with
64 channels (kernel_size= 7) processes the input se-
quence, followed by batch normalization and ReLU ac-
tivation. This maintains the original sequence length
while expands the channel dimension.
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Figure 2. Visualization for the model architecture, encompassing input layer (pre-training set and transfer training set), shared feature
extractor (involving two attention augmented residual blocks), prediction heads (two discrepant fully connected layers for pre-training and
transfer-training), and output layer.

iii. Attention augmented residual blocks: three groups of
down-sampling networks (64→ 128→ 256 channels)
process the extracted features, containing two residual
blocks. Notably, all convolutions use kernel_size= 3
with to preserve sequence length. Each residual block
incorporates a parallel attention mechanism, where the
positions of candidate PBLH are transformed through a
1-D convolution to weight the feature maps. Skip con-
nections are implemented through 1× 1 convolutions
when channel dimensions change.

iv. Prediction heads: our model architecture includes a
global average pooling across the temporal dimension
to aggregate sequence information, and two fully con-
nected layers (256→ 256→ 84) with ReLU activation
and dropout. Sigmoid activation producing probability
scores for each bin, the losses during training process
were ranked to ensure that the score of target bin is
higher than that of non-target bins.

The architecture involves an end-to-end supervised learn-
ing approach to train an enhanced attention-based ResNet
based on PyTorch framework, where candidate PBLH with
single channel was mapped to 64 channels via 1D convo-
lution to align with the main ResNet networks, transform-
ing position information into attention weights that explic-
itly leverage prior knowledge for improved PBLH prediction.
For the hyper-parameter tuning, the model was trained using
the Adam optimizer with an initial learning rate of 0.001,
and was optimized via binary cross-entropy loss. To prevent
over-fitting, a dropout regularization with a rate of 0.3 was
implemented in the last fully connected layers, and an early

stopping mechanism was enabled (patience= 10). Training
process would be terminated when the validating accuracy
does not improved for 10 epochs.

Transfer learning is an efficient deep learning strategy that
leverages prior knowledge from pre-train model to address
new tasks (Pan and Yang, 2010). In this study, we first trained
a ResNet model as our base network on larger samples with
target labels constrained by MERRA2 PBLH. By virtue of
the strong feature extraction capability of the pre-train model
to learn common hierarchical features from the input data, we
then transferred it to a new task, establishing the optimal pre-
diction model. For this new task, the classification head at the
end of the pre-train model was removed and replaced with
new fully connected layers, the weights of the third resid-
ual block were also released, which were re-trained on the
smaller transfer-training dataset. Meanwhile, the weights of
other convolutional layers were kept frozen to preserve the
learned feature representations. During transfer training, we
employed a fine-tuning strategy with a lower learning rate
(0.0001), reduced training epochs and early stopping toler-
ance to prevent overfitting.

Given the majority of matched CATS-radiosonde sam-
ples fall in land (Fig. S1), features over oceans were filtered
out when training the pre-train model. As training curves
shown in Fig. S2, the pre-train model achieved its optimal
validation accuracy at 38th epoch, and training was stopped
at 48th epoch due to early stopping. The optimal model
demonstrates an accuracy of 80.24 % on the training set and
81.18 % on the validation set, with corresponding losses of
0.0209 and 0.0204. Over the common testing set, the pre-
train model achieves an accuracy of 59.2 %. Such testing
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accuracy is slightly lower when compared the base model
(training model only in the radiosonde constrained training
set, with testing accuracy of 60.0 %), see training curves in
Fig. S3. However, our transfer training achieves an better
performances than both the pre-train and base models. The
transfer model early stopped at 27th epoch (Fig. S4), reach-
ing accuracies of 72.85 % and 71.79 % over training and val-
idating sets, and a testing accuracy of 68.3 %. This indicates
that employing a transfer learning strategy can effectively en-
hance the model’s learning capabilities and increase its gen-
eralization.

Figure 3 preliminarily evaluates the temporal (monthly
and hourly) and spatial differences in accuracy, MAE, de-
termination coefficient (R2), and normalized mean abso-
lute error (NMAE) of the pre-train model. The results in-
dicate the pre-train model performed well over most land
areas. However, the model’s representation in high-altitude
regions (Tibetan Plateau, Rocky Mountains) and desert ar-
eas (Sahara, Arabian Peninsula) are somewhat weak, where
the accuracy drops below 80 % and the MAE exceeds 400 m,
particularly the R2 and NMAE denote the model’s perfor-
mances are quite poor over complex terrains. These inabil-
ities can be attributed to three main causes. First, the long-
distance signal smoothing in processing raw CATS profiles
may cause uncertainties over complex terrain. Second, grid-
based MERRA2 data represents average state within a grid-
cell, potentially leading to matching errors with orbital CATS
observations in high-altitude areas. Finally, meteorological
profiles and PBLH from MERRA2 may contain pronounced
errors in these regions due to sparse observations available
for assimilation.

The capabilities of pre-train model also exhibits seasonal
and diurnal discrepancies. Particularly, the model demon-
strate poorer performance from April to September com-
pared to other months. As the poorer performances are pri-
marily sourced from the Northern Hemisphere, it can be con-
cluded that the model’s representation in spring and summer
seasons are somewhat weaker than that in autumn and winter.
For the spring and summer seasons, the atmosphere is vigor-
ous, accompanied by more convective activities. This leads to
more complex aerosol structures (more noised CATS signal),
but also limits the representation ability of MERRA2. In con-
trast, the atmosphere is more stagnant, and the aerosol struc-
ture is simpler (Li et al., 2025). Additionally, our assessment
is mainly based on absolute deviations. The higher PBLH
magnitude in the spring and summer seasons will cause the
assessment being worse. When considering relative deviation
(NMAE, Fig. 3a), the performance improves somewhat, but
it is still slightly poorer than that in the autumn and winter.
From a perspective of diurnal variation, the pre-train model
performs less effectively during morning and later afternoon
hours compared to around midday, with particularly poor
performance observed in the later afternoon.

Figure 3. Assessment of the pre-train model. Panels (a) and (b)
give the accuracy (column), MAE (black solid line) and NMAE (red
solid line) at monthly and hourly scale, respectively; panels (c)–(f)
denote the spatial distributions of accuracy, MAE, R2, and NMAE,
respectively.

3.3 Feature importance permutation

Based on the transfer model, we examined the importance
score of each input feature using permutation importance
technique (Altmann et al., 2010; Breiman, 2001). By ran-
domly shuffling individual feature and measuring decreases
in model performance, this method directly quantifies fea-
ture importance and can capture the non-linear dependencies
among different features. Since the proposed ResNet model
is essentially a classification task, we quantified the feature
importance scores by calculating the increase in MAE in-
duced by feature shuffling. Specifically, permutation impor-
tance estimations were implemented based on radiosonde
constrained dataset (5008 samples), and the baseline MAE
over original testing set was firstly derived. And then, we ran-
domly shuffled the target feature across all samples, ensuring
that 84 bins of target feature move synchronously from every
input sample, while keeping other features unchanged. This
will break the association between the target feature and pre-
dict label and is much applicable for our position sensitive
predict task. The importance score is determined by the in-
creased magnitude of MAE after permutation, a larger MAE
increase indicates an higher feature importance. To enhance
the robustness of feature permutation, each feature undergoes
30 independent iterations with different random sequences,
noting that the input features were shuffled using a com-
mon random seed at each iteration. The ultimate importance
scores were represented as mean value across 30 iterations.

The obtained importance score of each input feature was
recalculated to derive its relative contribution rate. As shown
in Fig. 4a, two profile features (candidate PBLH, tempera-
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Figure 4. The permutation importance of input features is measured by the increase in MAE when each individual feature is randomly
shuffled. These importance scores are then normalized to represent their relative contributions (a), with the total importance summing to
100 %. Panel (b) illustrates their relative importance scores at each hour.

ture), along with two non-profile features (alititude, LST)
emerge as the most important features, each with relative
importance exceeding 10 %. Geographic associated vari-
ables (latitude, longitude) and two meteorological (humid-
ity, wind speed) profiles contribute the secondary impor-
tance, collectively contributing over 25 % to the total im-
portance, whereas surface type and sky conditions contribute
marginally. Among the three remotely sensed profiles, im-
portance scores of TAB and WCT are negligible, despite can-
didate PBLH playing the dominant role in the model. This
implies that local peak/valley locations in backscatter profiles
are more important than other shape features when estimat-
ing PBLH from CATS profiles. This may also suggest poten-
tial direction for improving classical retrieval algorithms of
PBLH. That is, the shape and structure of remotely sensed
profiles provide limited information about the PBLH, efforts
should be taken to incorporate other diagnostic data, as also
suggested by (Su et al., 2020). This also promote an implica-
tion for refining performances of classical algorithm, many
of signal structures in the lidar profiles are noisy and mean-
ingless. Instead of further refining profile-shape as our previ-
ous study (Li et al., 2023), incorporating thermodynamic and
terrain-related diagnostics appears more beneficial.

We further extracted the permutation importance of in-
put feature at each hour, and present their diurnal variations
(Fig. 3b). The hourly importance scores of the two dom-
inant contributors (candidate PBLH and temperature) vary
evidently, while the diurnal variations of other importance
scores are relatively slight. The combined importance of the
two dominant contributors exceeds 45 %, and their diurnal
variations exhibit an alternating dominance pattern. Specifi-
cally, candidate PBLH dominates the model’s capability dur-
ing the morning periods with a gradually decreasing ten-
dency, while the temperature emerges as the primary factor
in the afternoon, with its importance scores essentially sur-

passing those of candidate PBLH. The diurnal variations in
these importance scores might lead to diurnal behaviors of
model performance (Fig. 3b), which will be discussed in the
next section.

4 Results and Discussions

4.1 Assessing the model

Herein, we evaluated the performance of the transfer model
by checking whether the model effectively captures the tar-
get labels constrained by radiosonde derived PBLH. Figure 5
illustrate the spatial distributions of accuracy, MAE, and
NMAE for transfer model, as well as their diurnal variations
for WCT, base, pre- and transfer models. Notably, the calcu-
lated accuracy for WCT is slightly higher than that in Fig. 1a,
because the current assessment is carried out only on the fea-
ture samples (5008) rather than all of the matched CATS-
radiosonde samples (5368). All the three metrics denote the
transfer model’s prediction ability is weak in Western Asia
and western North America, which are regions (Fig. 3) char-
acterized by high-elevations and deserts. The pre-train model
also performs poorly in these regions, partly because both
the meteorological and lidar profiles over these regions have
relatively low data quality (Li et al., 2023). Overall, the pre-
train and transfer models demonstrate different degree of en-
hancements related to the classical WCT algorithm, and the
performance of transfer model is reasonably better than pre-
train and base model. As shown in Fig. S5, the transfer model
achieves an improvement at nearly all sites. Quantitatively,
the transfer model achieves an increase of 27.7 % in accuracy
and a reduction of 596.5 m (55 %) m in MAE (NMAE) com-
pared to the WCT, demonstrating the substantial advantage
of transfer training in refining driunal PBLH measurements
from CATS data.
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Figure 5. Performance comparisons of the WCT, base, pre-train,
and transfer model against radiosonde constrained target labels.
Panels (a), (c), and (e) show the spatial distributions of accuracy,
MAE, and NMAE for transfer model, panels (b), (d), and (f) dis-
play the diurnal variations of these metrics for WCT (column), base
(back dash), pre-train (blue dash), and transfer (red dash) models.

For the diurnal variations, transfer model performs well
during the morning and midday periods but poor in the after-
noon. In other words, its performance deteriorates over daily
hours. It is interesting to note that the diurnal variations of the
model performance align closely with the importance scores
of candidate PBLH in Fig. 4b, while exhibits an inverse ten-
dency with that of temperature. This further underscores the
dominant roles of these two factors in regulating the model’s
capability. These diurnal variations may be largely regu-
lated by the spatial distribution of training samples. Since
radiosondes are only launched at two fixed times (00:00 and
12:00 UTC), these sites can provide samples at different local
time. The lowest accuracy and largest MAE/NMAE typically
occurred during 14:00–16:00 LST, with most samples origi-
nated from western North America and the Western Asia (see
rectangular boxes in Fig. 5c). Since the PBLH magnitude
over these regions is generally higher than others, an abso-
lute error may bias the assessment; however, the relative error
(i.e., NMAE) also demonstrate the model’s ability is weak in
afternoon.transferAdditionally, the pre-train model exhibits
generally weak performance during morning and later after-
noon periods (Fig. 3b), whereas the transfer model performs
better in the morning than at other daily times. This may at-
tribute to the fact that morning samples are predominantly
collected from areas around 120° E and 60° W, where the pre-
train model performs stronger feature extraction capabilities
in these low-altitude areas compared to others (Fig. 3c–d).

4.2 Inter-comparison of multi-sourced PBLH

The above analyses primarily involve to validate the model’s
capability in capturing target labels, where the positions typi-
cally correspond to the WCT peak closest to either MERRA2
or radiosonde derived PBLH. In fact, the core function of the
model is selecting, from multiple WCT peaks, the one that
most accurately represents the PBLH based on meteorolog-
ical and physical conditions. It is crucial to aware that the
model output remains a remotely sensed product, while ra-
diosonde derived PBLH is regarded as closest to ground truth
and generally serves as benchmarks for validating other mea-
surements. Accordingly, Fig. 6 presents scatter plots compar-
ing PBLH estimated by WCT, base model, pre-train model,
transfer model, MERRA2, and ERA5 against those from ra-
diosondes. To enable systematic comparisons, their outputs
within 200 km of sounding sites were averaged to derive sta-
tistical metrics, including correlation coefficient (R), MAE,
NMAE, and root mean square error (RMSE).

As results, the classical WCT shows the poorest consis-
tence with radiosondes, with the weakest correlation (0.22)
and largest MAE/NMAE (989.8 m/73.6 %) among all these
comparisons. Although we have previously obtained reason-
able consistency between them by filtering PBLH under sta-
ble regime and separately comparing samples under cloudy
and clear-sky conditions (Li et al., 2023), those statistical
metrics remained inferior to the comparisons between ra-
diosonde and MERRA2 and ERA5. However, our ResNet
model significantly enhances the representation for the truth
PBLH. The transfer model demonstrates marked improve-
ments in predictive capability, exhibiting higher consistency
with radiosondes than both the base and pre-train model, as
well as two reanalysis datasets, with the strongest correla-
tion (0.67) and the lowest MAE/NMAE (561.3 m/41.7 %). In
addition, Table 1 gives the comparisons between the WCT,
base, pre-train, and transfer models and radiosondes at each
daily hour. The transfer model is also superior than others at
hourly scale, indicating its ability to capture more accurate
diurnal variations of PBLH.

Since the pre-train model using pseudo-labels constrained
by MERRA2 PBLH, the statistical metrics may inject re-
analysis systematic deviation into the learned representa-
tion. Residual deviation correlation analysis was carried out
to quantify this impacts. We calculated the residual biases
between radiosonde-based PBLH and others (MERRA2,
base model, pre-train model, and transfer model estimated
PBLH), and compared them against the residual bias of
MERRA2 (Fig. 7). The R and R2 in Fig. 7a indicates that the
base model itself incorporates some bias information from
MERRA2 (15 %), this may be due to the meteorological fea-
tures inputted the model are generated from MERRA2. How-
ever, the system’s deviation of MERRA2 is deeply embed-
ded in the pre-train model, 80 % of its residual can be ex-
plained by the MERRA2 deviation. Despite fine-tuning the
model’s weights using radiosonde labels can mitigate this
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Figure 6. Scatter plots comparing PBLH estimations from (a) base model, (b) pre-train model, (c) transfer trained model, (d) WCT, (e)
MERRA2, and (f) ERA5 against radiosonde observations. Unlike Fig. 5, these comparisons employ direct radiosonde-derived PBLH rather
than the radiosonde-constrained target labels. Statistical metrics, R, MAE, NMAE, and RMSE are present in red at the upper left of each
panel.

Figure 7. Comparisons of residual deviations from base, pre-train, transfer model against those from MERRA2 PBLH. (a) Base vs.
MERRA2, (b) Pre-train vs. MERRA2, and (c) Transfer vs. MERRA2.

impacts, with R2 dropped to 0.38, it is undeniable that the
transfer model still introduces a certain deviation information
from MERRA2. Herein, we quantified the reduction rate of
transfer training by a function: (R2

pre−R2
tra)/(R

2
pre−R2

base)×

100%, and found the reduction rate reaches 64.6 %, suggest-
ing that fine-tuning can effectively weaken the generaliza-
tion impact of the MERRA2 deviation. Compared to the base
model, our transfer model has better overall performance
(Fig. 6), suggesting that the model has achieved bias miti-
gation while retaining the advantages of the pre-train model.
Even so, it is declare to integrate multi-source observations
to reduce this impacts in future work.

Although radiosondes are considered as ground truth and
often serve as benchmarks for evaluating models and re-

analysis outputs, complete quantitative consistency cannot
be pursued due to mis-matches in both space and time with
other datasets and discrepancies in retrieval algorithms. In-
stead, we can only ensure certain consistency in their spatio-
temporal characteristics. The prominent consistency between
the transfer model and radiosonde demonstrates the superior-
ity of deep learning approaches and validates the rationality
of our experimental design. However, it should be noted that
the matchup between orbital CATS data and radiosonde sites
remain relatively crude, exhibiting considerable mismatches
in temporal, horizontal distance, and altitudes. Moreover, dif-
ferent vertical resolution of radiosondes induce uncertainties
in deriving PBLH. Therefore, the PBLH differences between
the transfer model compared to the sounding derived PBLH
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were examined in Fig. S6, with respect to their sensitivity
to the matching differences in distance, time, and altitude,
as well as vertical resolution of radiosonde. It can be ob-
served that although the PBLH deviations exhibit slight de-
pendence on time difference, distance difference, and ver-
tical resolution,implying that the matching criteria between
the radiosonde sites and CATS orbits cannot cause substan-
tial uncertainties in this study. However, significant PBLH
differences emerge as the altitude difference increasing. This
is related to the poor model performance over rugged terrain,
and it also highlights the heterogeneity of PBLH over com-
plex terrains.

4.3 Diurnal variations in near-global PBLH

Benefiting from the unique operational characteristics of
the CATS, the near-global diurnal variations in PBLH can
be obtained after approximately 16 d of operation. How-
ever, due to interference from multi-layer structures and
noises in backscatter signals, diurnal variations derived by
classical WCT algorithm often present non-physical fluc-
tuations (Li et al., 2023). This study aims to extract more
physically reasonable diurnal PBLH variations from CATS
data using a deep learning approach. Based on theory by
Stull (1988), we assumed that daytime PBLH evolution
undergoes four distinct phases: morning transition (08:00–
09:00 LST), rapid growth (10:00–14:00 LST), maintenance
(14:00–16:00 LST), and decay in the late afternoon (17:00–
18:00 LST). Figure 8 presents spatial distributions of PBLH
for the four evolution periods derived from WCT, pre-train
model, transfer model, MERRA2, and ERA5. Furthermore,
Fig. S7 provides their details by highlighting the specific
PBLH at each daytime hour. These results demonstrate rea-
sonable diurnal PBLH behaviors, and they show evident dif-
ferences among different datasets or methodologies.

Similar as previous results by Li et al. (2023), the diur-
nal variation amplitudes derived by the WCT algorithm are
severely weaken, showing no significant difference between
the morning transition period and the afternoon maintenance
period. In contrast, our ResNet model capture clearer diurnal
patterns: lower PBLH is observed in the morning transition
period, gradually increases at the growth period, reaches its
daily maximum in the maintenance stage, and then began to
decline during the decay period. The transfer model exhibits
some anomalous performance, such as its higher PBLH over
high-altitudes and deserts during the maintenance and decay
stages. We suspect that the transfer model may deviate from
actual situations over these areas, as the assessments in Fig. 5
has proved the model’s ability over these areas are relatively
weaker than others. Figure S8 also shows the model’s pre-
diction biases for hourly PBLH are larger over plateaus and
deserts, especially in maintenance and decay stages. On av-
erage, the MAE in high-elevation and desert is 260.2 and
187.6 m higher than that in low-elevation and non-deserts.
This partly stems from the inherent limitation in feature ex-

traction capability of the pre-train model over high-altitude
regions (Fig. 3). Furthermore, the scarcity of available train-
ing samples in high-altitude regions for the transfer model
can also cause substantial uncertainties in its performances.
Additionally, the transfer model predicted PBLH in the later
afternoon does not significant decay and remained notably
higher than those from other methods or datasets. Figure S9
illustrates the diurnal variations of PBLH derived from the
transfer model at four seasons. There are almost no dis-
cernible decays in PBLH during summer (JJA in the North-
ern Hemisphere and SON in the Southern Hemisphere); in-
stead, it even maintains an increasing trend. In contrast, slight
PBLH decays were observed in other seasons.

Evolution of PBLH is mainly governed by surface condi-
tions and is highly dependent on land surface types (Li et al.,
2021). To better illustrate its diurnal variation, Fig. 9 presents
the hourly PBLH across ten major land surface types (derived
from the three approaches and two reanalyses). The trans-
fer model demonstrate significant improvements in captur-
ing diurnal variations compared to WCT at most land covers,
exhibiting more reasonable diurnal patterns in terms of am-
plitude, growth duration, and peak timing. Particularly, the
model presents clearer morning growth phase and more ac-
curate peak timing. Additionally, the model predicted PBLH
exhibits a more pronounced dependence on land cover, with
higher PBLH and greater diurnal amplitude observed over
bare soil and shrublands compared to forests, croplands, and
grassland areas. These findings are consistent with our pre-
vious observation based report (Li et al., 2021), whereas
the WCT predicted PBLH exhibits much smaller deviations
across different land surface types. In addition, the diurnal
PBLH variation patterns (amplitude, peak timing) derived
from our models aligned closely with those from the two
reanalyses. Specifically, the pre-train model displays nearly
identical diurnal patterns to MERRA2, while the transfer
model performs more closely with ERA5 during the growth
and maintenance period. However, the transfer model pre-
dicted much higher PBLH than ERA5 during transition and
decay phases.

As mentioned above, our transfer model derived PBLH
decay in the later afternoon is not pronounced in most land
covers, with PBLH magnitudes during this period being no-
tably higher than those from the reanalyses and pre-train
model. This is primarily due to reanalysis outputted PBLH
is highly dependent on thermodynamic conditions and be-
gins to decay after surface thermal flux reaches its afternoon
maximum. In contrast, the model predicted PBLH is associ-
ated with backscatter of aerosols, which does not diminish
synchronously with thermodynamic weakening (Wang et al.,
2012). Likewise, Pearson et al. (2010) synthesized numerous
studies regarding the diurnal variations of PBLH, obtaining
diurnal variation curves that resembled the results from our
transfer model, which suggested the credibility of the diurnal
patterns predicted by our transfer model. To further support
this conclusion, we qualitatively compared the diurnal PBLH
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Figure 8. Spatial distributions of PBLH derived from (a1–a4) WCT, (b1–b4) pre-train model, (c1–c4) transfer model, (d1–d4) MERRA2,
and (e1–e4) ERA5 during four diurnal evolution phases: morning transition, rapid growth, maintenance, and afternoon decay.

Figure 9. Hourly PBLH from WCT, pre-train model, transfer model, MERRA2, and ERA5 over the major ten land cover types. The bar
plots denote sampling frequency for a specified land cover at each daytime hours. Panel (k) reveals the land cover distributions across 2°× 2°
grids.
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Figure 10. Comparing the diurnal variations of PBLH estimated from WCT, base model, pre-train model, transfer model, MERRA2, and
ERA5 to that derived from radiosondes (bar plots). Text in subplots represent the peak timing and amplitude for each diurnal curve, which is
formatted with “peak timing/amplitude”.

patterns from WCT, three model predictions, and reanalysis
outputs, to the radiosonde observations across the ten major
land types (Fig. 10). Although these diurnal variations were
composited from radiosonde sites at different longitudes (po-
tentially inducing perturbations in diurnal curves), their one-
to-one matchup with other PBLH can still provide certain
effective evidences. The results demonstrate that over most
land covers, PBLH from the two reanalyses show more pro-
nounced decays and lower magnitudes in the later afternoon
than the radiosonde derived PBLH. Additionally, ERA5 ex-
hibits lower PBLH than radiosonde observations during the
morning transition and afternoon decay periods. Based on
their diurnal variations on the seasonal scale (Fig. S10), we
evaluated several metrics of their diurnal variations with the
radiosonde derived PBLH, including R, MAE, and IA (index
of agreement, Li et al., 2023). These metrics were calculated
separately for the periods before and after the peak of the di-
urnal variations of sounding PBLH (Fig. S11). The results
show that for those land cover types with sufficient sample
sizes, the performance of the transfer model is superior to
that of the base and the pre-train model, even more often su-
perior to reanalyses. These findings indicate that our trans-
fer model captures more reasonable diurnal patterns, and the
ResNet based transfer learning approach can effectively esti-
mate near-global PBLH from CATS data.

5 Conclusions

This study developed a spatially and temporally applicative
ResNet learning framework to estimate near-global diurnal
variations in PBLH from approximately three years of CATS
lidar profiles. The proposed model demonstrates significant
enhancement in estimating large-scale PBLH compared to
classical algorithm. The framework is designed based on the
concept that the first few peaks in WCT profiles typically
capture the true PBLH, and the model is inherently proposed
to identify the peak with the highest probability of represent-
ing the actual PBLH. Given the radiosonde measured PBLH
samples for training a robust deep learning model are insuf-
ficient, this study adopted a transfer learning strategy. We
first trained a base model using pseudo-target constrained by
MERRA2 PBLH and then fine-tuned the base model on a
smaller sampling dataset to generate the optimal model. This
transfer model retained the strong feature extraction capa-
bilities of the pre-train model and demonstrated considerable
improvement in performance when evaluated on unseen data.

The input features for the model include remotely sensed
and meteorological profiles, geographic and temporal infor-
mation, as well as surface/sky conditions. Among these, can-
didate PBLH derived from CATS backscatters and tempera-
ture profiles are the two dominant factors influencing model
performance, collectively accounting for more than 45 %
of the importance scores. Their importance exhibits a dis-
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tinct diurnal variation with alternating dominance: candidate
PBLH primarily influences morning periods while temper-
ature dominates the afternoon. This alternating dominance
pattern further explains the diurnal variation in model per-
formance, with higher accuracy and lower MAE/NMAE ob-
served during morning hours and the opposite tendencies oc-
curred in the late afternoon. Despite these temporal fluctua-
tions, the transfer model demonstrates overall superior per-
formance metrics when compared against radiosondes, out-
performing the results obtained from WCT, pre-train model,
MERRA2, and ERA5.

Regarding diurnal variation, the transfer model predicted
PBLH exhibits clear diurnal patterns, demonstrating more
reasonable diurnal amplitude, growth duration, and peak tim-
ing compared to the classical WCT algorithm. Although the
model struggles to capture PBLH over high-altitude regions
like the Tibetan Plateau due to insufficient training samples
and low data quality, its performances in other regions are
significantly better. Particularly, the model derived diurnal
PBLH variations are sensitive to land covers. PBLH over
bare and shrub lands exhibit higher magnitude and larger
diurnal amplitudes than that over forests, croplands, and
other vegetated areas. Furthermore, the model maintains high
PBLH magnitudes in the late afternoon and shows only slight
decay, differing from the pronounced decay phases of the two
reanalyses derived PBLH. Even so, this non-prominent after-
noon decay aligns well with radiosonde measurements, indi-
cating its superior capability in capturing diurnal PBLH.

This study involves an initial attempt of using a deep neu-
ral network to address complex signal structure in CATS
backscatter, and then to re-fine its measurement for PBLH on
a near-global scale. Although utilizing attention augmented
ResNet and transfer learning strategy can effectively improve
the model’s capability, its performances in high-altitude re-
gions and deserts in the morning and later afternoon periods
remain poor. Future efforts would be prospected to refine the
model’s applicability in rugged topography or on specified
land covers, integrating multi-source observations with fine-
resolution meteorological data and accurate target label are
crucial for improving the model performances.

Code and data availability. Data and software used in this study
are available as follows. Relevant datasets and scripts necessary to
understand, evaluate, and extend the research findings reported in
this paper were archived in the Zenodo repository, accessible un-
der the DOI: https://doi.org/10.5281/zenodo.16907935 (Li, 2025).
The IGRA V2 radiosonde data (Durre and Yin, 2008) is avail-
able at https://www.ncei.noaa.gov/products/weather-balloon (last
access: 30 December 2024). CATS (Yorks et al., 2016) data can
be acquired from https://cats.gsfc.nasa.gov/ (last access: 20 May
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