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Abstract. The Plantower PMS5003/6003 sensor is widely
used for low-cost monitoring of particulate matter (PM), but
it substantially underestimates PM» 5 and PMq during peri-
ods of elevated dust loading, when the particle size distri-
bution is dominated by particles > 1 ym in diameter. This
limitation is especially critical in the arid regions, such as
the western United States, where windblown dust frequently
degrades air quality, visibility, and public health. Accurate
estimation of PMj 5 and PMjg concentrations during peri-
ods dominated by dust typically relies on federal reference
or equivalent methods (FRM/FEM), but these resources have
limited spatial resolution. This study investigates whether
PMS5003/6003 measurements alone can be used to detect
and to bias correct for these dust-dominant PM conditions.
We analyzed measurements from 109 PMS sensors collo-
cated or near 75 U.S. EPA monitoring sites with hourly FEM
PM, s and/or PMj(p between January 2017 to May 2025.
Two cutoff thresholds (threshold1 and threshold2) were de-
veloped using relative humidity and the sensor-reported ratio
of coarse (2.5-10 um) to submicron (0.3—1 pm) mass concen-
tration to identify potential periods dominated by dust when
the PMS sensor underestimated PM» 5 concentration. The
thresholds can be used in real time, relying on the preced-
ing 336 hourly measurements (consistent with PurpleAir’s
public archive display). To improve PM; 5 estimates from
the PMS sensor (pm2.5_alt, a common correction for Plan-
tower PMS measurements reported by PurpleAir), this study
used pm?2.5_alt measurements identified as potential dust-
dominated periods to develop a correction factor through
non-linear regression. This correction reduced the mean bias
error between PMS PM» 5 estimates (pm2.5_alt) and FEM
PM, 5 by approximately 50 % for 97 sensors, and reduced
the root mean square error by approximately 30 % for 84 sen-

sors. This framework enhances the utility of PMS5003/6003
measurements during periods of elevated dust loading, ex-
tending monitoring capabilities in regions where regulatory
coverage is limited.

1 Introduction

Plantower particulate matter sensors (PMS) are among the
most widely used low-cost sensors for measuring particulate
matter (PM) in ambient and indoor air (Barkjohn et al., 2021;
Jaffe et al., 2023; Kim et al., 2025; Searle et al., 2023; Wal-
lace et al., 2022). The PurpleAir (PA) network uses PMS sen-
sors, and as of 12 August 2025, it had deployed 26 055 nodes
worldwide (PurpleAir, 2025). Additionally, other sensor net-
works use PMS sensors (Air Quality Egg, 2025; AirGradient,
2025; Airly, 2025; Clarity, 2025; QuantAQ, 2025; TELLUS,
2025). The PMS5003 found in the PA-II is one of the most
commonly used PMj 5 sensors; this sensor reports particle
number concentrations in six size bins, along with PM; (PM
with aerodynamic diameter less than 1 um), PM; 5 (PM with
aerodynamic diameter less than 2.5 um), PMjo (PM with
aerodynamic diameter less than 10 pm), temperature (7'), and
relative humidity (RH) measurements (Barkjohn et al., 2021;
Kaur and Kelly, 2023a; Sayahi et al., 2019; Searle et al.,
2023). The PA-II typically contains two sensors per node,
which provides an indication of measurement consistency
(Barkjohn et al., 2021).

The PMS5003 sensor has been extensively studied, and
numerous correction factors have been developed to improve
its PM» 5 measurement accuracy under varying environmen-
tal conditions (Ardon-Dryer et al., 2020; Barkjohn et al.,
2021, 2022; Cowell et al., 2022; Hong et al., 2021; Hua et
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al., 2021; Jaffe et al., 2023; Kaur and Kelly, 2023b; Magi et
al., 2020; Mai et al., 2025; Malings et al., 2020; Mathieu-
Campbell et al., 2024; Nilson et al., 2022; Patel et al., 2024;
Raheja et al., 2023; Si et al., 2020; Tryner et al., 2020b; Wal-
lace, 2023; Wallace et al., 2022; Weissert et al., 2025). Some
of the most commonly used correction algorithms, such as
pm2.5_alt and Barkjohn’s U.S. universal correction, can be
integrated into PurpleAir’s real-time maps (Barkjohn et al.,
2021; Wallace, 2023). However, a persistent limitation of the
PMS sensors is their inability to accurately detect larger par-
ticles (roughly > 1 um in diameter) (Gautam et al., 2025;
He et al., 2020; Kaur and Kelly, 2023a; Kosmopoulos et al.,
2023; Kuula et al., 2020; Ouimette et al., 2022; Tryner et
al., 2020a), which leads to a significant underestimation of
sensor-reported PM»> s and PM( concentrations during pe-
riods dominated by large particles, such as dust (Gautam et
al., 2025; Jaffe et al., 2023; Kaur and Kelly, 2023b; Masic et
al., 2020; Vogt et al., 2021; Weissert et al., 2025). This sig-
nificant underestimation of PM levels during dust-dominant
periods can be misleading. For example, looking at a map of
PM; 5 concentrations from a source that utilizes Plantower
PMS sensors during a dust-dominant PM episode will likely
show inaccurately low PM concentrations, which can lead in-
dividuals and decision makers to significantly underestimate
the associated health risks. Over the long term, this can lead
to distrust in these low-cost sensor networks. Prior studies
(Kuula et al., 2020; Ouimette et al., 2024, 2022) have demon-
strated that this underestimation of coarse PM is due to scat-
tering truncation error. This occurs because the photodiode
in the sensor is poorly positioned to detect forward-scattered
light, which is dominant for large particles, meaning the sen-
sor often fails to register them effectively.

Identifying periods dominated by dust typically relies on
FEM PM, 5 and PM |y measurements to obtain an estimate of
coarse PM, which can be supplemented by satellite imagery,
visibility reports, and high wind speed indicators (Hand et
al., 2017; Jaffe et al., 2023; Kaur and Kelly, 2023b; Robin-
son and Ardon-Dryer, 2024; Sandhu et al., 2024; Tong et al.,
2012). However, the availability of FEM, FRM, and other
high-quality measurements is limited. For example, the con-
tinental United States has 2141 PM; 5 and 672 PM|y mon-
itoring sites, respectively, with only 502 locations operat-
ing both PM, 5 and PM ¢ monitors (AirNowTech, 2025).
In addition, satellite products are typically available after a
time delay; for example, MODIS data is usually available
60 to 125 min after the satellite observation (NASA Earth-
data, 2025). Thus, relying on FEM/FRM measurements or
satellite products is impractical for large-scale or real-time
applications (Brahney et al., 2024). To address these limita-
tions, some studies have used nearby FEM sites to estimate
correction factors for PMS sensors (Weissert et al., 2025).
These methods often rely on rolling 3 or 4d correlations or
FEM-to-PMS concentration ratios, but such strategies have
limitations, including limited spatial representativeness and
time lags. Dust-dominated PM conditions typically last a few
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hours, as they are associated with short-term elevated wind
speeds and larger particles settle quickly (Brahney et al.,
2024). Common strategies for correcting low-cost PM sen-
sor measurements, such as a rolling 3 or 4 d average, cannot
be implemented in real time and may fail to capture periods
dominated by larger particles because the averaging window
can include both dust-dominated periods and periods domi-
nated by other sources.

Recognizing periods dominated by dust is important in
western regions of the United States, where such episodes
can occur frequently due to arid landscapes, land disturbance,
sparse vegetation, and high wind activity. These regions, in-
cluding parts of California, Arizona, Utah, New Mexico, and
Texas, experience elevated levels of windblown dust, which
can significantly impact air quality, visibility, and public
health (Ardon-Dryer et al., 2023a, b; Goudie, 2014; Hahnen-
berger and Nicoll, 2012; Kaur et al., 2025; Lei et al., 2016;
Lewis et al., 2011; Robinson and Ardon-Dryer, 2024). Ac-
curate detection and correction of dust-related pollution are
therefore essential for both regulatory monitoring and public
exposure assessments (Ardon-Dryer et al., 2023a).

This manuscript examines whether PMS measurements
alone can be used to identify and bias-correct their mea-
surements during periods dominated by larger particles (e.g.,
dust), without reliance on external data such as FEM mon-
itors, satellite imagery, or meteorological information. This
question is inspired by findings from Ouimette et al. (2024),
who noted that although the PMS sensor is often described
as a nephelometer, it actually counts individual particles. In
the PMS sensor, the probability of detection increases with
particle size, meaning larger particles are more likely to be
counted. However, the PMS does not effectively size the
large particles (> 1um) to the correct bin, due to scatter-
ing truncation errors. Correctly sizing these larger particles
depends on their passage through the sensor’s focal point,
where sufficient light scattering occurs to be detected by the
photodiode. Ouimette et al. (2024) estimated that the prob-
ability of a 10 um particle being correctly sized in a PMS
sensor to produce a detectable signal is less than 2 %. Conse-
quently, on days with relatively low PM levels, counts in the
coarse particle bin (2.5-10 um) are expected to be negligible
due to both the scarcity of coarse particles and the low prob-
ability of correct bin assignment. Even with the low prob-
ability of correct classification, during dust-dominated peri-
ods, the coarse bin registers higher counts compared to clean
days, reflecting the increased presence of coarse particles and
providing a potential pathway for identifying periods domi-
nated by dust using the sensor alone. Building on this ratio-
nale, Jaffe et al. (2023) proposed using the ratio of 0.3 to
5 um PMS bin counts as a dust indicator, suggesting a cutoff
value of 190, below which measurements were likely associ-
ated with dust events, and suggested a correction method us-
ing the measurements from one site, Keeler, California. Their
method improved corrected PMS PM; 5 measurements dur-
ing dust events at this single controlled site (operated by the
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air quality agency), but it did not provide a useful correction
for most of the 50 other sensors, collocated at monitoring
stations (Jaffe et al., 2023).

Building on these previous studies (Jaffe et al., 2023;
Ouimette et al., 2024), this study developed sensor-specific
parameters for identifying potential periods dominated by
dust, when PMS sensors severely underestimate PM; 5, de-
rived solely from PMS sensor measurements, without relying
on external data sources. By analyzing internal metrics, such
as particle count distributions and RH, it provides a frame-
work that can be applied to any PMS5003 sensor, regardless
of location, to identify potential periods dominated by dust
and to bias correct the sensor measurements of PMj 5 con-
centration. This approach expands the usability of the vast
network of publicly available sensors during periods domi-
nated by dust, even in areas where regulatory monitoring is
lacking.

2 Method

This section describes the PMS sensor, the data sources, and
the time periods used in this study. It also describes the PMS
sensor data cleaning procedures, the sensor parameters of in-
terest, the post-processing and real-time approaches for iden-
tifying potential periods dominated by dust and for bias cor-
recting the sensors’ underestimates of PM5 s, as well as the
statistical tools used for data analysis. This study focuses on
identifying conditions that are specifically associated with
PMS underestimation. It does not attempt to identify “dust
events” in part because there is no well-defined dust event
classification method based solely on FEM PMj( and PM> 5
measurements. Moreover, the PMS sensor’s performance de-
pends strongly on the underlying particle size distribution
(Kaur and Kelly, 2023a; Kuula et al., 2020; Ouimette et al.,
2024). Although the PMS sensors are inefficient at measur-
ing particles with diameters > 1 um (Kaur and Kelly, 2023a;
Kuula et al., 2020; Ouimette et al., 2024), the PMS sensor
can still provide reasonable estimates of PMj 5 concentra-
tions when concentrations of particles > 1 um in diameter are
elevated, as well as particles < 1 um in diameter.

2.1 Plantower PMS5003 and PMS6003 sensors

Several studies have described the Plantower PMS5003 sen-
sors and their laboratory and field performance (Barkjohn
et al., 2021, 2022; Ouimette et al., 2024; Ouimette et al.,
2022; Sayahi et al., 2019). PMS5003 uses a fan to create
flow (~1.67mLs™!), a red laser (~680=+ 10nm), a scat-
tering angle of 90°, and a photo-diode detector to measure
total scattering from a plume of particles (Kaur and Kelly,
2023a; Ouimette et al., 2022). The sensor converts the to-
tal light scattering into several different air quality parame-
ters, including particle counts in six bins (> 0.3, > 0.5, > 1,
>2.5, >5, and > 10 um), and PM;, PM; 5, and PMq us-
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ing an embedded algorithm. The flow path involves more
than one 90° turn before particles reach the photodiode. Sev-
eral other models of the Plantower PMS sensor exist (i.e.,
PMS1003, 3003, 6003, 7003, 9003, A003, T003, X003).
Kaur and Kelly (2023a) evaluated PMS6003 and found that
PMS5003 and PMS6003 exhibited similar performance to
coarse PM. Many of the PMS models have similar config-
urations and likely exhibit similar challenges with accurately
measuring coarse PM, although this has not been systemati-
cally evaluated.

This study used the PurpleAir network PMS sensors, i.e.,
PA-II. This study period began in 2017 and spanned sev-
eral years, during which time the PA-II nodes came in dif-
ferent configurations (PA-II, PA-II-SD, and PA-II-FLEX),
employed two different Plantower PMS sensors (PA-II and
PA-II-SD: 5003 and PA-II-FLEX: 6003), and used different
firmware versions (6.06b, 7.02, and 7.04). Due to the lack of
detailed documentation on how different firmware versions
affected sensor performance, no firmware-based exclusions
were made. The PA-II-SD model is a PA-II sensor variant
that includes an SD card for data storage; both of these varia-
tions were included in the study. The PMS6003, used in PA-
[I-FLEX, differs from PMS5003, primarily in the number of
lasers used (as described in Kaur and Kelly, 2023a), but its
flow design, performance, and overall configuration are sim-
ilar to the PMS5003 (Kaur and Kelly, 2023a). Accordingly,
PA-II-FLEX data were not treated differently in this analy-
sis. The ratio of > 0.5 to > 0.3 um (ratio greater than 0.4)
was used to identify and exclude these alternate PMS5003,
i.e., a PMS5003 version appeared in June 2021 for a limited
period of time and exhibited PM; 5 concentrations that were
biased low (Searle et al., 2023). For the remaining part of the
manuscript, the sensors will be referred to as PMS sensors.

2.2 Sensor selection, data access, and cleaning

This study evaluated 109 PMS sensors at 75 different US
EPA monitoring sites with hourly FEM measurements of
PM; 5 and/or PMjg. The US EPA provided measurements
from 28 of these 109 collocated sensors, which were previ-
ously used by Barkjohn et al. (2021). These 28 sensors are
a subset of the 50 sensors originally used in the Barkjohn
paper because: 5 sensors were collocated with 24-hour aver-
aged FRM measurements; 6 had less than 3 months of col-
located measurements; 5 had poor correlation (R? less than
0.5, after removing the coarse-rich days using FEM based
coarse fraction and PM;g concentrations); 2 were situated
at beach; and 4 were already downloaded as part of the 77
publicly available sensors (discussed below). The two sen-
sors located at the beach were excluded due to the high hu-
midity and high sea salt concentrations. Of the remaining
81 sensors, 77 were publicly available sensors, and raw data
was downloaded (2 min frequency) using PurpleAir’s Data
Download Tool (v1.3.5), and 4 additional PMS5003s were
available from the authors’ group at the University of Utah.
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The publicly available sensors were considered collocated if
the sensor had the same GPS coordinates (latitude and longi-
tude) as the EPA monitoring site; if the sensor did not have
the same coordinates but was within 0.8 km, the sensor was
treated as a “nearby” sensor. Thirteen of the 77 sensors were
“nearby” sensors, which increased spatial diversity by adding
13 additional monitoring sites. This study spanned from Jan-
uary 2017 to May 2025; however, data availability varied by
sensor, depending on its deployment dates. The Supplement
includes sensor IDs, the corresponding collocated EPA moni-
toring site IDs, and each sensor’s data availability (Tables S1,
S2, S3 in the Supplement) and a map with the 75 EPA moni-
toring sites used in this study (Fig. S1).

The downloaded measurements included particle counts
in the six size bins, RH, and pm2.5_alt. All the sensors used
in this study had a minimum of three months of reasonably
continuous data. The PMS measurements were cleaned, par-
tially following guidelines by Barkjohn et al. (2022). Specif-
ically, the 2 min averages were converted to hourly measure-
ments if 27 or more 2 min stamps existed in an hour (> 90 %
completion). Otherwise, the measurement was considered in-
complete and not further analyzed. Next, the hourly measure-
ments of dual nodes were considered valid if (a) the differ-
ence between the pm2.5_alt values for A and B nodes of
PA was less than Sugm™3, or (b) the relative percentage
difference was less than 61 %. Barkjohn et al. (2022) used
pm2.5_cf_1 (PM;5 mass concentration reported by PMS
sensor using a correction factor = 1), while this study used
the pm2.5_alt to clean the PM measurements. We selected
pm2.5_alt because pm2.5_cf_1 can exhibit random elevated
values (order of 1000s) (Barkjohn et al., 2021), even when
the number counts in the six bins are in a reasonable range.
The pm2.5_alt is calculated directly from the bin counts
(Wallace, 2023) and is less susceptible to random spikes.
This study also used the PMS sensor’s reported RH (using
BMEZ280, Bosch Sensortec, Germany) measurements. There-
fore, PM measurements with missing RH were excluded
from the study. This resulted in the removal of <5 % of
the measurement for 94 sensors, between 5 %—10 % for 7
sensors, between 10 %-22 % for 6 sensors, and 34.7 % and
64.9 % for the CA15 and CO3 sensors.

2.3 FEM measurements

FEM measurements of PMj; 5 and PMy were accessed from
the AQS site (U.S. EPA, 2025b) for the period between Jan-
uary 2017-July 2024 (this data was unavailable after July
2024). For the remaining period, i.e., between July 2024—
May 2025, the data was accessed through the AirNow API
(AirNow, 2025).

Most sites employed the beta attenuation and broadband
spectroscopy method (i.e., Teledyne T640 and T640x) for
Federal Equivalent Method (FEM) hourly PM» 5 and PMjo
measurements. A few sites also used FDMS (filter dynamic
measurement system) in conjunction with a TEOM (tapered
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element oscillating microbalance) and laser light scattering
(GRIMM) for hourly PM measurements. Tables S1, S2, and
S3 detail the methods used for PM; 5 and PM ¢ measurement
at each site.

Some sites had multiple parameter occurrence codes
(POCs), either from different measurement methods or from
multiple instruments using the same method operating con-
currently. For sites with two different methods active simul-
taneously, measurements from the method with the greater
number of measurements was used. For sites equipped with
the Teledyne T640X and Teledyne T640, this study used
the POC corresponding to the EPA-corrected measurements
(U.S. EPA, 2025a).

The FEM measurements were used in two ways in this
study. First, they were used to calculate the coarse fraction
(CF), which was subsequently used to assess the effective-
ness of the proposed method (Sect. 2.5) in identifying periods
with a high proportion of coarse particles. Dust-dominated
conditions are typically characterized by high CF values
(> 0.7)(Sugimoto et al., 2016). Second, they were used to
evaluate the performance of the derived corrections.

When both FEM PM; 5 and PM|( measurements were
available, the coarse fraction (CF) was calculated as:

CF— PMjp —PM; 5 0
PMio

Where PM ¢ and PM; 5 were concentrations in pg m~3. Of
the 109 sensors evaluated in this study, 30 sensors did not
have CF data for their evaluation period, and 36 sensors had
CF data for 90 % of their evaluation period. A total of 35
sensors had CF data for 40 %—90 % of their evaluation pe-
riod, and the remaining 8 sensors had CF data for less than
30 % of their evaluation period.

2.4 Parameters

This study used the following parameters developed from the
PMS sensors to identify potential PM measurements domi-
nated by dust:

1. Ratio of mass in the coarse fraction to submicron frac-
tion (C_to_SM): This ratio was defined as:

My 554+ Ms_1o

C_tO_SM s
Mo305+ Mos5-

2

Where M;_; represents the mass concentration (ug m~3)
provided by the PMS sensor in the bin with size bin i—
Jum. The M;_; is the average of valid M;_; measure-
ments from node A and node B of the PMS sensors. The
M;_;, used here and previously by Wallace (2023), was
calculated as:

- -\ 3
4 /
Mi_j=§n< 12X]> X Nij x 1072 3)
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The N;_; represents the number counts of particles
#dL™1) in the size bin i—j um. The density was as-
sumed to be 1 gcm™3, although density cancels out in
the C_to_SM calculation. The 1072 accounts for the
unit conversions in the equation (um> to m*; gecm= to
pugm~3;and 1dL~! to 1 m™3).

Because the particle counts in the 2.5-5 and 5-10 pm
size bins are much lower than in smaller bins, mass
concentrations were used instead of number concentra-
tions to obtain more stable and interpretable ratios. The
C_to_SM parameter was used to identify potential PM
measurements dominated by dust. This approach builds
on the rationale presented in Ouimette et al. (2024)
and discussed in the Introduction. Briefly, although
coarse PM has a low probability of correct classifica-
tion, the coarse bin will register elevated counts during
dust-dominated PM measurements. Consequently, the
C_to_SM ratio becomes elevated during dust events.

2. RH: PMS sensor RH measurements are biased low
by approximately 10 %—20 % (Mathieu-Campbell et al.,
2024). This bias tended to increase at higher RH,
although the PA’s RH measurements generally show
good correlation with regulatory RH measurements
(R? > 0.9) (Mathieu-Campbell et al., 2024). Dust events
are typically associated with low RHs (< 40 %-60 %)
(Csavina et al., 2014), as higher humidity tends to in-
hibit dust suspension and promotes faster resettling of
particles. We used an RH of 50 %, as measured by the
PMS sensor, as a threshold for detecting dust. It should
be noted that an RH of 50 % reported by the PMS sen-
sor corresponds to an actual RH of ~ 70 %. The cut-
off of 50 % is supported by Fig. S2, which illustrates
that elevated C_to_SM with high CF was predominantly
associated with RH less than 50 %. This study also
explored dust-dominated PM measurements identified
without the use of RH, and the results are discussed in
Sect. S1 in the Supplement.

2.5 Methods for identifying potential dust-dominated
PM measurements

Our method included two approaches. The first focuses on
post-processing the sensor measurements to identify poten-
tial dust-dominated PM measurements and to develop ap-
propriate corrections for subsequent applications. The sec-
ond approach emphasizes real-time identification of poten-
tial dust-dominated PM measurements. Both approaches use
the parameters C_to_SM and RH. The post-processing ap-
proach establishes the framework for real-time detection, as
it provides a clearer way to illustrate the methodology. How-
ever, the same real-time approach could also be applied to
post-processing the sensor data.
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2.5.1 Post-processing approach

To identify potential dust-dominated PM measurements, two
sensor-specific C_to_SM based thresholds (threshold]l and
threshold2) were defined using the full dataset for each sen-
SOT.

— Threshold1 was calculated as the sum of the median of
C_to_SM and a factor (F of 2.5) times the median ab-
solute deviation (MAD) of the C_to_SM.

Threshold1 =Median (C_to_SM)
+ F x MAD (C_to_SM) “4)
MAD = Median (|C_to_SM — Median (C_to_SM)|) (5)

— Threshold2 was defined as the maximum of:

i. Three times the slope (with the intercept fixed at
zero) from a linear regression of C_to_SM (y-axis)
against pm?2.5_alt (x-axis), or

ii. A value of 0.584, i.e., three times the median slope
of the slopes from all the sensors evaluated in this
study.

Figure 1 displays Threshold1l and Threshold2 for a subset
of representative sensors (for selected sensors with a history
of windblown dust impacts). Threshold1 was primarily used
to differentiate clean days from those with elevated coarse
particle concentrations. Because dust-dominated PM typi-
cally occurs under specific meteorological conditions (e.g.,
during dust events or wildfires), most measurements were
expected to reflect low coarse PM concentrations. Conse-
quently, most C_to_SM values represent these low-coarse
concentration conditions, and the overall median serves as
a baseline C_to_SM for such conditions. The outliers in the
C_to_SM would represent high coarse concentration mea-
surements. To identify these outliers, we excluded the mea-
surements near the baseline by setting a threshold, i.e., 2.5
times the MAD of the median. Previous studies have reported
that F values of 3, 2.5, or 2 are effective for detecting outliers
(Leys et al., 2013), with F =3 considered conservative and
F =2.5 moderately conservative.

Threshold2 helped differentiate between potential dust-
dominated PM from other sources that may also increase
C_to_SM. For example, during wildfires, both PMjo and
PM, 5 levels are typically elevated, which could lead to high
C_to_SM values, but also high pm2.5_alt concentrations.
Threshold2, defined by the slope between pm?2.5_alt and
C_to_SM (Fig. 1), serves as a threshold to filter out high
C_to_SM values that are not associated with dust-dominated
PM, specifically when both C_to_SM and pm?2.5_alt are
high.

Threshold1 and threshold2 were calculated using all avail-
able measurements, irrespective of the availability of FEM
PM, 5 concentrations. A measurement was labeled as a po-
tential dust-dominated PM measurement if:
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Figure 1. pm2.5_alt vs. C_to_SM. Each point represents an hourly averaged sensor measurement, colored by the FEM-calculated CF. The
black dashed line represents threshold1, and the black solid line represents threshold2. The shaded grey region indicates measurements iden-
tified as potential dust-dominated PM measurements. Grey circles represent times when either PM; 5 or PM g was unavailable, preventing
the calculation of CF. The comparison of pm2.5_alt vs. C_to_SM for the remaining sensors is shown in Fig. S3.

— C_to_SM exceeded threshold1, and
— C_to_SM/pm?2.5_alt exceeded threshold2, and
— RH from the PA measured less than 50 %

2.5.2 Real-time detection of the dust-dominated PM
measurements

For real-time potential dust-dominated PM measurements
detection, threshold1 was defined as the median of C_to_SM
plus 2.5 times its MAD, calculated from the preceding 336
hourly measurements (14 d). Thus, threshold1 was dynamic.
This 14 d window was selected to match the temporal cover-
age of the PA real-time map, which provides the most recent
14 d of hourly measurements.

Threshold2 was set at a fixed value of 0.584, from the
measurements discussed in the post-processing approach
(Sect. 2.5.1). This fixed threshold of 0.584 was selected to
avoid using a slope calculated from just 336 points, which
can be highly sensitive to outliers, as a few extreme values
can distort the slope.

2.5.3 Evaluating the effectiveness of the two
approaches in selecting dust-dominant PM
conditions

Figures 1 and S3 show that high C_to_SM tended to oc-
cur at low pm2.5_alt values, and measurements identified
as potentially dust-dominant using threshold1 and thresh-
old2 generally corresponded to elevated CF values. We eval-
uated the effectiveness of our two approaches by examin-
ing how the potential dust-dominant measurements corre-
sponded to various bins of FEM CF values (0-0.25, 0.25—
0.5, 0.5-0.7, and > 0.7). High CF values can occur under
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low PMj¢ conditions, when small PM concentrations lead
to increased variability in the ratio and do not necessar-
ily indicate dust-dominant conditions. We established cri-
teria for “true dust-dominant PM”, defined when CF > 0.7
and FEM PM concentrations > 100 ug m~> and compared
how PMS-derived PM»> s (pm2.5_alt) compares with FEM
PM; 5 concentrations under true dust-dominant conditions.
Note that a universally accepted definition of dust-dominant
conditions does not yet exist.

Even during periods classified as true dust-dominant, PMS
sensors can estimate PM» s reasonably well, as shown in
Fig. S4, which compares PMS-derived PMj 5 (pm2.5_alt)
with FEM PMj; 5 concentrations. Agreement between PMS
and FEM measurements under these conditions likely re-
flects the presence of mixed aerosol conditions, in which
coarse dust particles coexist with submicron aerosols that
contribute to PMy 5 and are detectable by the PMS sen-
sor. The primary objective of the thresholds defined here is
to identify conditions under which the PMS sensor under-
estimates PMj 5. Accordingly, PM; 5 underestimation was
defined as measurements for which pm2.5_alt was less
than 0.25 times the corresponding FEM PM; 5 concen-
tration. For the true dust-dominant periods (CF > 0.7 and
PMo > 100 ug m~3), the analysis quantified the fraction of
measurements exhibiting PM» s underestimation that were
correctly identified by the thresholds. Of the 109 sensors
evaluated, 79 sensors had sufficient data to calculate CF and
were included in this analysis.
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2.5.4 Correction of measurements identified as
dust-dominated PM measurements

The pm2.5_alt concentration was corrected (referred to as
adj_pm?2.5_alt) using a non-linear regression model in R
(4.4.0) that incorporated pm2.5_alt, C_to_SM, thresholdl,
and a scaling factor A. Measurements identified as poten-
tial dust-dominated PM measurements based on threshold1,
threshold2, and RH thresholds were combined across all
sensors for the post-processing approach and real-time ap-
proach. These pooled measurements were then used to esti-
mate factor A for each approach through non-linear regres-
sion, as follows:

adj_pm?2.5_alt ~ FEM PM, 5
C_to_SM

= - 2.5_al
thresholdl x A x pm2.5_alt ©

Threshold2 was not included in the correction equation be-
cause its sole purpose was to exclude measurements with a
low CF that produced elevated C_to_SM values. In contrast,
threshold1 was applied to normalize C_to_SM values, en-
abling measurements from all sensors to be pooled together.
This normalization ensured that the correction was not dis-
proportionately influenced by sensors with high C_to_SM
values. By normalizing with thresholdl1, data from all sen-
sors could be combined to derive a single factor (A).

2.6 Analysis

Data analysis was performed using R (4.4.0). The primary
focus of the analysis was to compare pm2.5_alt with FEM
PM, 5 concentrations, with an emphasis on potential dust-
dominated PM measurements, and to evaluate the effective-
ness of the applied correction approach. No additional cor-
rections (i.e., adjustments for RH or FEM instrument cali-
bration) were applied to pm?2.5_alt. This study focused solely
on the comparison between pm2.5_alt and FEM PM, 5, and
adj_pm2.5_alt and FEM PM3 5. The performance of our cor-
rection approach was evaluated using the difference in the
mean bias error (MBE, pg m~>) and root mean square error
(RMSE, ug m—3; normalized RMSE represented as nRMSE)
before and after correction of pm?2.5_alt.

1 n
MBE = — 3 (pm2.5_alt; — FEM PM2.5;) %)
i3

1
MBE_adj = — Y _ (adj_pm2.5_alt; — FEMPM2.5,)  (8)
n“
i=1

1 n
RMSE= |- (pm2.5_aly; — FEM PM2.5,) ©)
hi3

1 n
RMSE_adj =J - § '(adj_pm2.5_alt; — FEM PM2.5,)> (10)
n«
i=1
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ARMSE = RMSE_adj — RMSE (11)
RMSE
nRMSE = (12)
M 5
RMSE_adj
nRMSE_adj = ———=2S (13)
PM; 5

MBE, MBE_adj, RMSE, RMSE_adj, nBRMSE, nRMSE _adj,
and ARMSE were calculated only for those measurements
identified as potential dust-dominated PM measurements;
the remaining measurements were not corrected and not in-
cluded in the calculation. Measurements identified using the
real-time approach were corrected using three different val-
ues of A: (1) A derived from a non-linear regression (Eq. 6)
using all measurements identified by the real-time approach;
(2) A derived from a non-linear regression (Eq. 6) using mea-
surements identified by the post-processing approach; and
(3) sensor-specific A values, derived from sensor-specific
non-linear regressions (Eq. 6) using real-time measurements
for each sensor.

In the main manuscript, we present results for 12 repre-
sentative sensors that have collocated measurements and are
affected by windblown dust, including sensors in Utah, Ari-
zona, Texas, Colorado, and California. The results for the re-
maining locations are discussed in the Supplement.

3 Results and discussion

3.1 Measurements identified as a potential
dust-dominated PM using the thresholds

Table S4 summarizes the counts of the threshold-based
identified measurements, which identified 0-3785 (post-
processing approach: 0 %—9.00 % of the sensor’s total hourly
measurements) and 0-4513 (real-time approach: 0 %-9.62 %
of the sensor’s total hourly measurements) hourly measure-
ments as potential dust-dominated PM measurements. These
counts did not consider the availability of FEM PM, 5 mea-
surements. The real-time approach generally identified more
measurements than the post-processing approach (Fig. S5,
Table S4). This outcome was expected because the real-
time method used a dynamic thresholdl, whereas the post-
processing method used a constant thresholdl. A dynamic
thresholdl accommodated shifts in the C_to_SM baseline
(defined in Sect. 2.5.1), which can occur when a sensor op-
erates for extended periods (example in Fig. S6) or when a
PMS sensor is replaced within a node (example in Fig. S6),
resulting in C_to_SM baseline shifts due to differences in
sensor-specific performance characteristics.

Seasonal variability in C_to_SM further complicated the
use of a constant threshold1 (example in Fig. S6). When
most measurements originated from seasons with elevated
PM concentrations, the overall thresholdl was biased up-
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Table 1. Counts of measurements with available CF; true dust-dominant measurements (CF > 0.7 and PM ¢ > 100 ug m_3); and true dust-
dominated PM measurements with underestimated PMS PM; 5 concentration (pm2.5_alt / PMj 5 < 0.25). Counts are reported for all mea-
surements, for measurements identified using the post-processing approach, and for measurements identified using the real-time processing
approach. Four of the 12 representative sensors did not have the appropriate measurements to calculate CF. Table S5 summarizes the counts

for the remaining sensors.

Sensor CF available True dust-dominated PM | True dust-dominated PM &
Name (CF>0.7& underestimated (CF > 0.7 &
PMj( > 100 ugm=3) PM;o > 100pugm—3 &
pm2.5_alt / PMj 5 < 0.25)

all post-  real- all post-  real- all post- real-

processing  time processing  time processing time

AZ3 6713 472 581 70 40 41 47 37 37
CA10 34892 1895 2065 | 488 372 380 | 377 341 340
CAll 45865 3754 4461 | 898 817 861 | 823 771 798
CA19 9642 552 590 | 709 281 295 | 251 207 208
CA35 27470 683 779 | 354 97 151 | 151 82 112
TX4 2132 190 140 33 32 32 30 30 30
UT3 25609 1179 1363 | 187 149 156 | 148 144 144
UT4 16753 847 1026 | 106 84 89 86 82 84

ward, leading to the rejection of high-coarse concentra-
tion measurements during seasons with lower C_to_SM val-
ues. The reverse was held when measurements were domi-
nated by low-concentration seasons. In contrast, the dynamic
threshold1 adjusted for these seasonal shifts, thereby improv-
ing the ability to identify dust-dominated PM measurements
(Fig. S6).

Figure S7 compares the number of PMS measurements
identified as potential dust-dominated PM measurements to
the CF, grouped by CF bins (0-0.25, 0.25-0.5, 0.5-0.7, and
> 0.7). The majority of potential dust-dominated measure-
ments were associated with the CF > 0.7 bin (67.1 £23.4 %
for the post-processing approach and 70.2 £20.8 % for the
real-time approach), followed by the bin between 0.5 and
0.7 (189=%17.1 % and 19.2 £ 15.9 %, respectively). Fewer
than 8.50 % of measurements fell within the 0.25-0.5 bin,
and fewer than 5.50 % fell within the 0-0.25 bin. This distri-
bution of potential dust-dominated PM measurements, with
most measurements in CF > 0.7, supported the use of the
thresholds derived in this study. The CF between 0.5 and 0.7
could have represented dust mixed with other sources.

Tables 1 and S5 summarize counts of true dust-dominant
PM measurements and measurements with PMS PM; 5 un-
derestimation across all sensors. For the 12 representative
sensors (CF available for 8 sensors, Table 1), approximately
20 % of measurements identified using our thresholds were
true dust-dominant PM measurements, and roughly 16 %
were underestimated (pm2.5_alt / PMj 5 < 0.25). The post-
processing and real-time approaches captured 68.4 +24.7 %
and 72.6 +22.2 %, respectively, of all measurements corre-
sponding to true dust-dominated PM measurements. When
restricted to underestimated PMS PMj; s measurements
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meeting the same criteria, 86.5 £ 14.9 % (post-processing)
and 89.7£9.9 % (real-time) were captured. Across the re-
maining 71 sensors (Table S5), 11 %—12 % of measurements
identified using our thresholds were true dust-dominant PM
measurements, and 7 %-10% exhibited PMS PM; s un-
derestimation. Although these remaining 71 sensors had a
smaller fraction of true dust-dominant PM, they accounted
for 60.6+30% and 66.7+25.6 % of the underestimated
PMS PM; 5 measurements, in the post-processing and real-
time approaches, respectively.

3.2 PM; 5 vs. pm2.5_alt: post-processing approach

Figure 2 (top) compares the pm?2.5_alt with FEM PM, 5 con-
centrations, with measurements identified as potential dust-
dominated PM marked as black circles, for the 12 repre-
sentative sensors. The identified measurements corresponded
predominantly to cases in which pm?2.5_alt underestimated
FEM PM, s, typically associated with CF > (.7. The poten-
tial dust-dominant measurements identified from all sensors
were pooled, and using Eq. (6), factor A was estimated at
0.702. The corrections were applied to measurements iden-
tified as potentially dust-dominated PM, while all other ob-
servations remained unchanged. Figure 2 (bottom) illustrates
the measurements after correction. The coefficient of deter-
mination (R?, using just the identified measurements) in-
creased from 0.290 for pm2.5_alt versus FEM PMj 5 to
0.653 for adj_pm2.5_alt versus FEM PM 5. Sensor-specific
changes in R? are presented in Table S6. Comparisons of
pm2.5_alt and FEM PMj; 5 for the remaining sensors were
presented in Figs. S8 and S9.

Figure 3 presents MBE, MBE_adj, and ARMSE. MBE
value closer to zero indicates better sensor performance,
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Figure 2. Post-processing approach: Hourly averaged pm2.5_alt compared with FEM PM; 5 measurements (top). Black open circles indicate
measurements identified as dust-dominated PM measurements. Hourly averaged adj_pm2.5_alt compared with FEM PM, 5 measurements
(bottom). The color of the solid circles corresponds to the CF. The grey solid circles represent times when either PM; 5 or PM g was un-
available, preventing the calculation of CF. n denotes the number of measurements identified as potential dust-dominated PM measurements,
for a subset of data when FEM PM); 5 data were available. Table S4 shows the total number of potential dust-dominated PM measurements,
regardless of FEM PM), 5 availability. Comparisons of pm2.5_alt and FEM PM, 5 for the remaining sensors were presented in Figs. S8 and

S9.

meaning that the sensor-estimated PMj 5 concentrations are
more consistent with the FEM PM; 5 measurements. For
the 12 representative sensors shown in the main manuscript,
MBE decreased by 52.4+16.9 % on average, with MBE
ranging between —20.8 and —4.71 uygm— and MBE_ adj
ranging between —16.7 and —2.07 ugm—>3. These results in-
dicate that although the sensor’s PM> 5 estimation improved
it remained less than FEM PM, 5 after correction. For these
12 sensors, RMSE also decreased by 42.3 +15.9 %, with
ARMSE ranging between —18.0 and —1.3 ugm™3, indicat-
ing a reduction in error following correction. The corre-
sponding nRMSE shows the same trends as those for RMSE,
and these values can be found in Table S7.

For the remaining sensors (Fig. S10, Tables S4 and S7),
82 sensors showed decreases in MBE, with MBE ranging be-
tween —14.6 and —1.54 ugm—3 to MBE_adj between —7.60
and 0.76 pg m™3, i.e., a bias error reduction of 49.6 +22.9 %.
The RMSE decreased by 27.2+14.3% for 72 sensors
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(ARMSE ranging between —15.8 and —0.0965 ug m—3) and
increased for 23 sensors (ARMSE ranging between 0.127
and 15.9ugm™3). Five sensors (Fig. S10) showed a de-
crease in MBE (with MBE_adj ranging from —3.52 to
—0.818 ugm™3), but an increase in ARMSE (from 11.2
to 17.5ugm™3). Extreme overcorrection of a few measure-
ments for these five sensors was likely responsible for this
behavior.

Thirteen sensors exhibited MBE_adj greater than
lugm™ and positive ARMSEs (Fig. S10 and Table S7),
indicating the correction led to an overestimation of the
PMS PM, 5 concentrations. Among the sensors with pos-
itive MBE_adj (Fig. S10), 7 had fewer than 60 potential
dust-dominated PM measurements (< 0.6 %, Table S4),
and these 7 belonged to locations in Alaska, Iowa, Oregon,
Washington, and Vermont that are infrequently affected by
dust. Even for sensors with positive MBE_adj, the corrected
pm2.5_alt concentration remained within the sensor’s
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Figure 3. Post-processing approach: MBE (ug m~3) with respect to
FEM PM), 5 before and after correcting pm?2.5_alt (top). The blue
dot represents the MBE before correction, while the orange square
represents the MBE after correction (MBE_adj). The grey arrow
highlights the direction of the MBE shift after correction. Change
in RMSE (ARMSE, pg m73) (bottom). Comparisons of MBE and
RMSE for the remaining sensors are presented in Fig. S10 and Ta-
bles S4 and S7. Table S7 also reports AnRMSE for all the sensors.

expected range (Fig. S9). For two sensors, no measurements
were identified as potential dust-dominated PM.

It is important to note that the locations of most sensors
were identified based on the PA public map, and no physical
verification of collocation was available, except for 4 sensors
maintained by the authors’ group and the sensor list provided
by the EPA. Given this uncertainty, some variability in MBE
and RMSE outcomes were expected.

3.3 Real-time processing: pm2.5_alt vs. FEM PM; 5

Figure 4 (top) compares the pm?2.5_alt with FEM PM; 5 con-
centrations, with measurements identified as potential dust-
dominated PM marked as black circles, for the 12 repre-
sentative sensors, using the real-time approach. The poten-
tial dust-dominant measurements identified from all sensors
were pooled, and using Eq. (6), factor A was estimated at
0.998. The corrections were applied to measurements identi-
fied as potentially dust-dominated PM, while all other obser-
vations remained unchanged. The real-time approach identi-
fied measurements were also corrected using an A of 0.702
(derived using the post-processing approach) and sensor-
specific As. Fig. 4 (bottom) illustrates the measurements after
correction using an A of 0.702. The coefficient of determina-
tion (R?, using just the identified measurements), irrespective
of the A values, increased from 0.262 for pm2.5_alt versus
FEM PM; 5 to 0.513 for adj_pm?2.5_alt versus FEM PMj s.
Sensor-specific changes in R? are presented in Table S6.
Figure 5 compares the MBE and RMSE before and after
correction using different values of A for the 12 represen-
tative sensors. The results indicate that the corrected PMS
PM3; 5 concentrations agreed better with the FEM PM, 5 con-
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centrations during periods potentially dominated by dust, re-
gardless of the A value. The sensor-specific A and A value
of 0.998 led to decreases in MBE and RMSE and did not
cause overestimates of the PM» 5 concentration compared to
the FEM PM, 5 concentration. Using an A of 0.702 caused
one sensor (CO3) to slightly overestimate PM» 5 concentra-
tion compared to the FEM, with an increase in MBE from
—3.52to 1.44ugm=3.

Figure S14 and Tables S4 and S7 presents changes in
MBE and RMSE for the remaining 95 sensors (no mea-
surements identified with the thresholds for 2 sensors) us-
ing different values for A. Applying a correction factor with
A =0.998 reduced MBE for 91 sensors by 24.7 £ 12.7 % on
average and RMSE for 80 sensors by 14.5+9.96 % with
ARMSE between —8.53 and —0.026 uygm~>. This correc-
tion (A =0.998) caused an increase in MBE for four sen-
sors (MBE_adj between 0.318 and 4.06 ugm~—3) and RMSE
for 12 sensors (ARMSE between 0.025 and 11.0ugm™3),
suggesting inconsistent performance across sensors. Appli-
cation of a correction factor with A =0.702 resulted in MBE
decreases for 83 sensors by 55.4419.9 % (with MBE_adj
varying between —7.58 and —0.0035ugm™3) and RMSE
decreases for 71 sensors by 24.8 +14.5 % (with ARMSE
in —13.3 to —0.0422ugm™3). This correction caused in-
creases in MBE at 13 sensors (with MBE_adj between 0.313
and 8.76 uygm~>). For 11 of these 13 sensors, RMSE also
increased (MBE_adj between 0.13 and 6.78 uygm~3, and
ARMSE between 0.11 and 17.96 uyg m—3, respectively), with
6 sensors belonging to locations in Alaska, Oregon, Wash-
ington, and Vermont that are infrequently affected by dust.
For a few sensors (NV3, CA14, CA21, COl1, and CO2), a
decrease in MBE was accompanied by an increase in RMSE
(positive ARMSE), indicating sensitivity to a small number
of overcorrected observations.

The sensor-specific A correction produced the greatest im-
provement in performance, yielding the largest reduction in
MBE across sensors (mean reduction of 58.9 + 23.9 % across
85 sensors) and a decrease in RMSE of 28.9+19.4 % for
82 sensors (Fig. S14; Table S7). Although seven sensors ex-
hibited increases in both MBE (24.9 +17.1 %) and RMSE
(ARMSE =0.32-2.61 ug m~3) following correction, and six
additional sensors showed reduced bias but increased RMSE
(ARMSE =0.28-0.63 ugm~3), these cases reflect a trade-
off between improved mean agreement and increased vari-
ability. Importantly, for sensors with increased RMSE, the
magnitude of ARMSE using the sensor-specific correction
was substantially smaller (0.28-2.61 uygm~3) than that ob-
served under the uniform-A correction (0.024—10.9 uygm~3
for A=0.998 and 0.111-17.9uygm=3 for A =0.702), indi-
cating greater robustness of the sensor-specific approach.

Overall, these results highlight that while uniform cor-
rection factors can reduce bias for many sensors, they may
introduce overcorrection and increased error at others. The
sensor-specific correction provided a more balanced adjust-
ment across the network, with reduced sensitivity to over-
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Figure 4. Real-time approach: Hourly averaged pm2.5_alt values compared to FEM PM, 5 measurements (top). Hourly averaged
adj_pm?2.5_alt, corrected using an A of 0.702, compared with FEM PM, 5 measurements (bottom). The color of the solid circles corre-
sponds to the CE. The grey solid circles represent times when either PM», 5 or PM g was unavailable, preventing the calculation of CF.
Black open circles represent measurements identified as potential dust-dominated PM measurements. n denotes the number of measure-
ments identified as potential dust-dominated PM measurements, for a subset of data when FEM PM), 5 data were available. Table S4 shows
the total number of potential dust-dominated PM measurements, regardless of FEM PM), 5 availability. Figure S11 shows comparisons of
pm2.5_alt and FEM PM)j 5 for the remaining sensors. Figures S12 and S13 compare the adj_pm?2.5_alt with FEM PMj s, for A of 0.998 and

sensor-specific As, respectively.

correction and smaller increases in absolute error where per-
formance degrades. However, implementing sensor-specific
A requires calibration against a reference instrument before
deployment, ideally under a range of PM concentrations and
compositions representative of the target environment. This
requirement limits scalability and may not be feasible for ge-
ographically diverse networks. Thus, there is a trade-off: a
fixed A offers simplicity and consistency for a broad distribu-
tion of sensors, while a sensor-specific A improves accuracy
but reduces generality.

4 Limitations
This study has several limitations, primarily related to the
use of PMS sensors and the assumptions made in select-

ing and interpreting the data. First, most PMS sensors used
in this analysis were identified from the publicly available
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PA map, and their physical locations and deployment con-
ditions could not be independently confirmed. It is possi-
ble that some of the sensors selected were not truly collo-
cated with the FEM instruments. Second, PA nodes are user-
deployed and can be moved or reconfigured at any time. A
user might relocate the entire sensor, swap sensor nodes, or
even replace hardware without any indication in the meta-
data. Such changes can alter sensor performance or the en-
vironmental context of the measurements (e.g., from out-
door to indoor), potentially affecting C_to_SM values and
the thresholds used for dust-dominated PM measurement de-
tection. These untracked changes may lead to inconsisten-
cies in the correction approach, either causing genuine dust-
dominated PM measurements to be missed or non-dust days
to be mistakenly corrected due to a sudden shift in sensor be-
havior. Additionally, the correction method depends on long-
term consistency in sensor performance. Any drift in sensor
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Figure 5. Real-time approach: MBE with respect to FEM PM, 5 before and after correcting pm2.5_alt using an A 0f 0.998, 0.702, and sensor-
specific A (top). The blue dot represents the MBE before correction, while the orange square, purple cross, and green diamond represent the
MBE after correction (MBE_adj) using an A of 0.998, 0.702, and sensor-specific A, respectively. Change in RMSE (ARMSE) with respect
to FEM PM)j 5 before and after correcting pm?2.5_alt using an A of 0.998, 0.702, and sensor-specific A (bottom). The orange square, purple
cross, and green diamond represent the ARMSE after correction using an A of 0.998, 0.702, and sensor-specific A, respectively. Figure S14
and Tables S4 and S7 show comparisons of MBE and MBE_adj, and ARMSE for the remaining sensors. Table S7 also reports AnRMSE for

all the sensors.

response (deSouza et al., 2023), contamination of the sensor
inlet, changes in the PMS production process (i.e., Searle et
al., 2023), or firmware updates may also influence measure-
ment characteristics and correction effectiveness. A potential
limitation of this approach is that it may be less effective un-
der consistently high-dust conditions, as the baseline correc-
tion assumes that the environment is relatively clean most of
the time. Finally, this study evaluated PMS5003/6003s, and
the proposed methods would need to be evaluated for other
PMS models. Despite these limitations, the general trends
and methodology proposed in this manuscript can provide
a useful framework for real-time and retrospective identifica-
tion of possible dust-dominated PM measurement using PMS
sensors. However, future work should aim to validate sensor-
reference collocation and investigate the impact of node-level
changes on the robustness of corrections.

Some potentially problematic measurements were not ex-
plicitly excluded in this study. These included: (i) periods
with all zero counts in bins > 0.5 um throughout the sampling
duration; (ii) spurious temperature readings (e.g., ~ —129 °F
(~—89°C)) persisting over the study period; and (iii) in-
consistent particle count assignments, such as higher counts
in the >0.5um bin compared to the > 0.3 um bin, or in
the > 2.5 ym bin compared to the > 5 um bin, which some-
times resulted in negative pm2.5_alt concentrations. While
the thresholds developed in this study may have excluded
many of these problematic data points, they may also have
inadvertently excluded valid dust-dominated PM measure-
ments.

Atmos. Meas. Tech., 19, 1077-1092, 2026

5 Future Work

Our approach for identifying elevated coarse particle concen-
trations could be extended to improve PMj estimation from
low-cost sensors. Furthermore, in conjunction with back-
trajectory models, meteorological data, or satellite imagery,
this method could help identify the sources of PMjg plumes,
such as dust sources, construction activity, or agricultural
emissions. In addition, if A could be defined for each sen-
sor based on laboratory calibration under controlled condi-
tions, it could significantly enhance the accuracy of real-
time dust-dominated PM measurement detection and correc-
tion, although a strategy for addressing sensor performance
changes over time would still be needed. This could enhance
both the scalability and robustness of using low-cost sensors,
such as the PMS, for dust-dominated PM monitoring in di-
verse environmental settings.

6 Conclusion

This study demonstrates that PMS5003/6003 sensors, de-
spite their well-known limitations in detecting coarse parti-
cles, can be used to identify and provide estimates of PMj 5
concentration during dust-dominated periods using only the
sensor’s reported outputs. By leveraging particle counts in
the coarser and submicron bins and RH, we developed real-
time thresholds (threshold1 and threshold2) that can identify
potential dust-dominated PM measurements without reliance
on external datasets. Between 0 and 3785 hourly averaged
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PM; 5 measurements (0 %-9.00 %) from each sensor were
identified as potential dust-dominated PM measurements
with the post-processing approach, and 0-4513 measure-
ments (0 %-9.62 %) with the real-time approach. The real-
time method consistently identified more dust-dominated
PM measurements, owing to its dynamic threshold1, which
better accounted for seasonal and sensor-specific variabil-
ity. Most potential dust-dominated PM measurements were
associated with coarse fraction values > 0.7 (67 %-70 %)
as measured by FEMs, confirming that the thresholds tar-
geted conditions when PMS sensors most strongly under-
estimated FEM PM, 5. The correction of PMS PM; 5 es-
timates (pm2.5_alt) using the post-processing approach re-
duced MBE by approximately 50 % (52.4 £16.9 % for the
12 representative sensors and 49.6 £ 22.9 % for the remain-
ing 85 sensors) and decreased RMSE for 84 sensors (—18.0
to —0.0965 ug m~3). A small subset of sensors (< 13) exhib-
ited increases in MBE and RMSE, likely due to overcorrec-
tion or limited dust-influenced observations; however, cor-
rected concentrations remained within the expected sensor
response range. For the real-time correction approach, the
magnitude of adjustment depended on the value of A, with
uniform corrections using A =0.998 and A =0.702 reduc-
ing MBE and RMSE for most sensors (e.g., A =0.998 re-
duced MBE by 24.7 £ 12.7 % for 91 sensors, and A =0.702
reduced MBE by 55.4+19.9% for 83 sensors), although
overcorrection occurred for a limited number of sensors,
resulting in increases in MBE (up to 8.76ugm™>) and
RMSE (up to 17.96 ug m—3). The sensor-specific correction
yielded the greatest overall improvement, reducing MBE by
58.9 +23.9 % across 85 sensors and RMSE by 28.9 +19.4 %
for 82 sensors, suggesting the most robust agreement with
FEM PM,; 5 during dust-influenced periods. Overall, the
framework developed here improves PMS5003 performance
under elevated dust loading, reduces PMj 5 underestimation,
and enhances the utility of low-cost sensors for dust monitor-
ing in regions with limited FRM/FEM coverage.
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