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Abstract. Accurate PV power production modelling requires
precise knowledge of the distribution of solar irradiance
among its direct and diffuse components. Since this infor-
mation is rarely available, this requirement can be addressed
through the use of diffuse fraction models. In this study, we
try to quantify the errors in PV modelling when measure-
ments of the diffuse solar irradiance are not available. For
this purpose, we use total and diffuse solar irradiance data
obtained from ground-based measurements of BSRN to sim-
ulate the PV electric output using GSEE. We have chosen
five sites in Europe and North Africa, with different pre-
vailing conditions, where BSRN measurements are available.
GSEE incorporates an implementation of the Boland-Ridley-
Lauret (BRL) diffuse fraction model, along with a Climate
Data Interface that enables simulations across different time
scales. We evaluate the capability of BRL in providing accu-
rate estimations of the diffuse fraction under diverse atmo-
spheric conditions, with particular attention on the presence
of clouds and aerosols and assess the extent to which its asso-
ciated errors propagate to energy production modelling. Fur-

thermore, we compare GSEE outputs when using CAMS ra-
diation time-series as input instead of ground-based measure-
ments, to quantify the impact of the CAMS radiation product
uncertainties in PV modelling.

1 Introduction

Decarbonizing the power sector in a sustainable manner is
pivotal in the effort to mitigate climate change (Edenhofer
et al., 2011; Owusu and Asumadu-Sarkodie, 2016; IPCC,
2022) and the large-scale deployment of Solar Energy of-
fers significant prospects toward this objective (Kakran et
al., 2024). The available solar energy is a variable source,
fluctuating across different timescales with a unique solar-
resource profile over individual locations (McMahan et al.,
2013). Therefore, accurate solar energy forecasting and re-
source assessment is crucial for minimizing the risk in select-
ing project location, designing the appropriate solar-energy
conversion technology, and integrating new sources of so-
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lar based power generation into the electricity grid (Stoffel,
2013), while short-term, intra-hour forecasts are critical for
power plant operations, grid-balancing, real-time unit dis-
patching, automatic generation control, and trading (Pedro
et al., 2017).

Extending solar irradiance forecasting to derive PV power
forecasts is essential in solar energy applications. PV power
modelling can be achieved through the following additional
steps to solar irradiance forecasting: (i) decomposing Global
Horizontal Irradiance (GHI) into Diffuse Horizontal Irradi-
ance (DHI) and Direct Normal Irradiance (DNI); (ii) calcu-
lating the plane-of-array irradiance incident on the surface of
PV planes, whether static or mounted on a solar tracking sys-
tem, and (iii) simulating the PV power production primarily
based on the in-plane irradiance (Blanc et al., 2017).

The scarcity of concurrent measurements of both solar ir-
radiance components, coupled with the complexity of their
theoretical computation, has driven the development of nu-
merous empirical models for estimating the diffuse frac-
tion (ratio of the diffuse-to-global solar radiation). A sem-
inal contribution in this area was made by Liu and Jordan
(1960), who established a correlation between the diffuse
fraction and the clearness or cloudiness index (ratio of the
global-to-extraterrestrial radiation). These models predomi-
nantly rely on the clearness index as the principal predic-
tor. They are generally classified into single-predictor mod-
els and multi-predictor models, with the latter incorporat-
ing additional astronomical variables for enhanced precision
(Paulescu and Blaga, 2019). Typically, these models are ex-
pressed as polynomial equations, ranging from the 1st to
the 4th degree, that link the diffuse fraction to the clear-
ness index DF = f (clearness index, ∗ params) (Jacovides et
al., 2006). Boland et al. (2001) proposed the use of a lo-
gistic function instead of linear or simple nonlinear func-
tions of the clearness index. Ridley et al. (2010) developed
a multiple-predictor logistic model, known as the Boland-
Ridley-Lauret (BRL), which combines simplicity and reli-
able performance across both the Northern and Southern
Hemispheres. The BRL model extends Boland’s approach by
adopting the hourly clearness index as the principal predic-
tor and introducing the following additional parameters: ap-
parent solar time, daily clearness index, solar altitude, and a
measure of the persistence of global radiation level. In the
implementation of the BRL included in the GSEE, the users
set as input only the hourly clearness. Moreover, this imple-
mentation adopts the updated parameters proposed by Lauret
et al. (2013), which derived using data from nine worldwide
locations covering a variety of climates and environments
across Europe, Africa, Australia and Asia. While the exist-
ing models consider all-sky conditions, in solar energy mod-
elling it is critical to focus on cloud-free skies, where energy
production is maximized. Under such conditions, aerosols
become the primary parameter influencing the distribution
of solar irradiance among its components. (e.g., Blaga et al.,
2024). Specifically, the BRL model accounts for aerosols in-

directly through the clearness index, which is indicative of
the overall atmospheric attenuation of solar radiation.

In regions dominated by abundant sunshine, such as the
Mediterranean and Middle East, which are favorable for solar
based power generation, the attenuation of solar irradiance
is strongly influenced by aerosols, and particularly desert
dust aerosols. Several studies highlighted the impact of desert
dust aerosol in the downwelling solar irradiance and the en-
ergy production in these regions (Fountoulakis et al., 2021;
Papachristopoulou et al., 2022; Kosmopoulos et al., 2018;
Kouklaki et al., 2023). The significance of considering the
effect of aerosols in short-term solar irradiance forecasting
and nowcasting is emphasized by Kazantzidis et al. (2017),
Raptis et al. (2023) and Papachristopoulou et al. (2024).

The Global Solar Energy Estimator (GSEE; Pfenninger
and Staffell, 2016) is a widely used open access model for
simulating PV power output, designed for rapid calculations
and ease of use. It comes with an implementation of the
BRL diffuse fraction model (Ridley et al., 2010; Lauret et
al., 2013).

While PV power modelling is essential for linking solar re-
sources to energy production, the existing literature does not
adequately address its reliability under diverse atmospheric
conditions. To the best of our knowledge, the existing lit-
erature does not include studies that explicitly address the
uncertainties in PV energy production modeling associated
with the partitioning of solar radiation into its direct and dif-
fuse components at the model input. In this study, we supply
GSEE with input data from ground-based measurements as
well as from the Copernicus Atmospheric Monitoring Ser-
vice (CAMS), aiming to investigate differences in PV power
output simulations, which arise from providing only GHI as
input radiation data. At the outset, we focus on evaluating
the reliability of BRL under diverse atmospheric conditions,
with particular attention to the dependence of its accuracy
on the presence of clouds and aerosols. To further explore
this, we conduct a sensitivity analysis using radiative trans-
fer model (RTM) simulations under cloud-free skies. Follow-
ing these analyses, we assess the extent to which the asso-
ciated uncertainties in the estimation of the diffuse fraction
spread to the power generation over hourly intervals. This
step involves simulating PV plants with varying configura-
tions. GSEE is also effective for analyzing trends and vari-
ability in solar based power generation through its climate
interface submodule (e.g., Hou et al., 2021), where the BRL
model is integrated within the internal processing chain The
accuracy of the climate interface in estimating the total daily
PV power output is also evaluated in this study.
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2 Data and Methodology

2.1 Global Solar Energy Estimator (GSEE)

The modelling of the PV power output is conducted using
the version 0.3.1 of GSEE (Pfenninger and Staffell, 2016).
The model features functions for simulating a complete PV
system, incorporating characteristics and specifications such
as location, installed capacity, technology, tracking (fixed, 1-
axis, 2-axis), tilt angle, and orientation.

The user provides as input time-series data of solar ra-
diation, and optionally, ambient air temperature and sur-
face albedo. Specifically, the model requires GHI and, when
available, the Diffuse Fraction. If the diffuse component
is not provided, the provided implementation of the BRL
diffuse fraction model (Ridley et al., 2010; Lauret et al.,
2013) is employed to estimate it, relying only on time-series
of the hourly clearness index and the geographical coordi-
nates. While in the single-site application of the GSEE model
with hourly time resolution the user has the option to ad-
just the input and select alternative diffuse fraction models
implemented by external libraries, e.g., pvlib (Anderson et
al., 2023), the climate data interface automatically invokes
the BRL model as part of the internal processing work-
flow. GSEE utilizes the provided information for the distri-
bution of the irradiance components and applies trigonomet-
ric calculations to determine the total solar irradiance inci-
dent on the panel’s inclined plane. More precisely, for the
plane-of-array irradiance calculation a GSEE includes the
submodule “trigon” (transposition model), which is based
on trigonometric formulations, that account of the surface
albedo, thereby including the ground-reflected component
of solar radiation. However, the transposition model is in-
tegrated within the GSEE internal algorithms, so it cannot be
modified by the user.

After solar irradiance the most significant parameter re-
garding energy production is air temperature (e.g., Dubey
et al., 2013). If temperature is not provided by the user,
the model assumes a default value of 20 °C. In this study,
temperature was used as input only in the simulations with
BSRN data, as it is provided alongside radiation measure-
ments. A surface albedo value of 0.3 considered by default
from the model, introduces some uncertainty in our simula-
tions, which however is estimated to be small. Under cloud-
less conditions, a 10 % difference in surface albedo changes
the GHI by ∼ 1 % for SZA< 75°. Differences are larger un-
der cloudy conditions (∼ 10 % difference in GHI for a 10 %
difference in surface albedo). Nevertheless, surface albedo
at the selected sites is generally low and relatively invariant
throughout the year (even at the most northern site of Linden-
berg there is only a limited number of days with increased
surface albedo due to snow cover).

The available options for the panel type are crystalline sil-
icon (c-Si) and Cadmium Telluride (CdTe), where the power
output is modeled based on the relative PV performance

model described by Huld et al. (2010). For fixed panels, a
built-in latitude dependent function for the optimal tilt is also
included.

Moreover, GSEE includes a Climate Data Interface sub-
module that enables the processing of gridded climate
datasets, with varying temporal resolutions, ranging from
hourly to annual. Within the context of this submodule, the
use of BRL serves as part of the resampling and upsam-
pling processes applied to input climate datasets with daily
resolution. For processing data with lower-than-daily resolu-
tions, it incorporates the use of Probability Density Functions
(PDFs), which describe the probability with which a day with
a certain amount of radiation occurs within a month (GSEE,
2026). This methodology accounts for the non-linear distri-
bution of mean monthly radiation across individual days, en-
suring a more representative temporal disaggregation. The
processes applied to the mean daily irradiance are described
in detail in Sect. 3.4.

For the purposes of this study, we simulated solar plants
with capacity of 1 kWp, and for both available technologies.
The simulations with c-Si technology, considered as default
by the model, are presented in detail the following sections.
The results of the simulations with CdTe technology are pro-
vided in the supplement, and are not thoroughly discussed,
since they are very similar to the results for the c-Si tech-
nology. Regarding the mounting approach, the solar plants
were either static and oriented to the south or equipped with
a 2-axis solar tracking system. In the case of fixed panels, we
selected the optimal tilt angle relying on the latitude depen-
dent built-in function.

The input parameters defining the characteristics of the
simulated PV plants are summarized in Table 1.

2.2 Ground-based measurements

We supplied GSEE with ground-based irradiance as well as
ambient temperature measurements collected from five sta-
tions of the Baseline Surface Radiation Network (BSRN;
Driemel et al., 2018). Moreover, information about aerosols
was retrieved from co-located stations of the Aerosol Robotic
Network (AERONET; Holben et al., 1998; Dubovik et al.,
2000).

Information for the stations utilized for this study is sum-
marized in Table 2, and their geographical location is de-
picted in Fig. 1.

BSRN station-to-archive files were accessed and manipu-
lated using the SolarData v1.1 R package (Yang, 2019), and
the BSRN-recommended quality check (QC) tests (Long and
Dutton, 2010) applied to the collected data. Some data gaps
arose due to measurements removed during the QC proce-
dure. Although these data gaps are, in most cases, shorter
than 2–3 h, they may affect the BRL performance throughout
the corresponding days. Consequently, days affected by such
data gaps excluded from the analysis. We retrieved data for
2017, with 1-min temporal resolution. We used GHI, DHI,
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Table 1. Input parameters defining the characteristics of the simulated PV plants.

Capacity Mounting Approach Technology

1 kWp Fixed 2-axis tracking c-Si CdTe

Orientation:
south

Tilt Angle: f (latitude)
built-in function for
optimal tilt

Table 2. Detailed information about the location of the ground-
based stations used in this study.

Latitude Longitude Elevation
Station [°N] [°E] [m]

Carpentras (CAR) 44.08 5.06 100
Cener (CNR) 42.82 −1.60 471
Izaña (IZA) 28.31 −16.50 2373
Lindenberg (LIN) 52.21 14.12 125
Tamanrasset (TAM) 22.79 5.53 1385

Figure 1. Locations of the BSRN and co-located AERONET sta-
tions that are used in the current study.

and Temperature as inputs to the GSEE model. Initially, the
data were resampled to hourly and mean hourly values of
GHI and DHI are calculated. Then, the simulations were
conducted using either GHI and DHI, or only GHI along
with the deployment of BRL. The input to BRL consists of
hourly clearness index, derived by dividing GHI measure-
ments with the solar radiation incident on a horizontal plane
at the Top of the Atmosphere (TOA) above the examined lo-
cation. Subsequently, the 1-min timeseries resampled also to
a daily resolution and transformed into three-dimensional ar-
rays, GHI= f (time, lat, lon), where the spatial dimensions
of each dataset corresponded to a unique point defined by

the coordinates of the associated station. Simulations with
the daily time-resolved dataset were performed using the Cli-
mate Data Interface.

Representing cloudiness is a challenging task that requires
several observations. For this purpose, aiming to obtain an
indicative measure of the intra-hour cloudiness conditions
we adopted the following formulation. Specifically, measure-
ments of Direct Normal Irradiance (DNI) were utilized to
obtain information for cloudiness relying on the conditions
stated by WMO (2021), according to which sunshine dura-
tion is the total period where DNI exceeds 120 W m2. Alter-
native approaches such as the Cloud Modification Factor, re-
quire estimates of the clear sky irradiance, which introduces
additional uncertainty. For the purpose of this analysis, we
introduced a solar visibility (SV) parameter. Specifically, we
assigned the value 0 when sun was obscured and the value 1
when visible. Aiming to describe the mean intra-hour cloudi-
ness conditions, we considered the sky as cloud-free, cloudy,
and partly cloudy based on the mean SV for the entire corre-
sponding hour as follows:

〈SV〉hour :

 1 cloud− free
∈ (0,1) partlycloudy
0 cloudy

For aerosol information, we accessed the AERONET Ver-
sion 3 (V3) (Giles et al., 2019) and retrieved level 2.0 data
(from direct sun measurements) for Aerosol Optical Depth
at 500 nm (AOD500), which serves as a representative mea-
sure of the aerosol load; Ångström Exponent between 440
and 870 nm wavelengths (AE440−870), where values near 0
correspond to coarse dust particles and values around 2 to
fine (e.g., smoke) particles (Dubovik et al., 2002); and
Fine Mode Fraction at 500 nm (FMF500) obtained from the
Spectral Deconvolution Algorithm (SDA) retrievals, to dis-
tinguish aerosol into fine and coarse mode. The data were
resampled at hourly intervals and a mean hourly value cal-
culated. After, the hourly mean values divided into clusters
based on AOD500, reflecting different levels of aerosol load
and allowing us to quantify their impact on solar energy
production. To investigate the impact related exclusively to
aerosols, we included only hours with cloud-free sky condi-
tions. The clusters are defined in detail as follows:

– AOD500 ≤ 0.05: Low aerosol load

– 0.05< AOD500 ≤ 0.15: Moderate aerosol load
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– 0.15< AOD500 ≤ 0.3: High aerosol load

– AOD500 > 0.3: Very high aerosol load

To evaluate the performance of the Climate Interface over
daily intervals, we defined the sunny (cloudless) days using
the condition: 〈SV〉day ≥ 0.9. Next, to characterize the aver-
age aerosol conditions on sunny days, we applied the follow-
ing classification:

– 〈AOD〉day ≤ 0.05: very-low aerosol

– 〈AOD〉day > 0.05: aerosol-laden

Detailed comparisons of the energy production over hourly
and daily integrals under the various predefined sky condi-
tions are provided in the supplement through evaluation met-
rics.

The selected locations have quite different atmospheric
conditions regarding cloudiness and aerosols. Additionally,
they vary in altitude. A brief overview of the prevailing con-
ditions derived from the ground-based data is provided on
the supplement. Regarding cloudiness, it is notable that in
Lindenberg the sky is generally overcast, whereas in south-
ern locations sunshine dominates. In terms of aerosols, very
high aerosol loads occur more frequently in Tamanrasset. As
for aerosol type, there is considerable variation among the
examined locations: Carpentras, Cener, and Lindenberg are
primarily influenced by fine mode aerosols, while Tamanras-
set and Izaña are mostly affected by coarse mode aerosols.

For investigating the impact of desert dust aerosol in solar
based power generation, Tamanrasset serves as a representa-
tive and exceptional case because it is in a region with im-
portant sources of Saharan dust aerosols (Faid et al., 2012).
Meanwhile, Izaña, located in subtropical North Atlantic, is
a high mountain station within the free troposphere, affected
mineral dust when the Saharan Air Layer top exceeds the sta-
tion height, especially through August to October (Toledano
et al., 2018; Cuevas et al., 2019). Due to its high altitude,
Izaña avoids contamination from local or regional sources
(Barreto et al. 2022). The Canary Islands, where Izaña is
located, are influenced by extreme dust events that cause
a significant decrease in PV power generation (Canadillas-
Ramallo et al., 2022). In South Europe, which is also affected
by the transport of Saharan dust across the Mediterranean,
aerosol types exhibit a mixture as a result of simultaneous
local pollution and low concentration of mineral dust (Logo-
thetis et al., 2020).

2.3 Copernicus Atmospheric Monitoring Service
(CAMS)

We retrieved data from the CAMS radiation service
(Schroedter-Homscheidt et al., 2022; Qu et al., 2017), from
the solar radiation time-series product (CAMS, 2020). The
CAMS solar radiation service provides historical estimates
for global solar radiation, along with its components, from

2004 to present. These values are provided with a frequency
as fine as 1-min. In this study, we used the hourly time-series
of GHI and DHI for all-sky conditions, setting the input coor-
dinates to match the locations of the BSRN stations. The so-
lar radiation time-series product (CAMS, 2020) performs in-
terpolations integrated in its internal algorithm and provides
time-series for the coordinates and the altitude of a single-
site location. We compared the solar energy production de-
rived from the use of CAMS data with that derived from the
use of ground-based measurements from BSRN.

2.4 Radiative Transfer Model (RTM)

We performed Radiative Transfer (RT) simulations aiming to
further assess the uncertainties in estimating the diffuse frac-
tion arising from the effect of aerosols. The simulations were
conducted using libRadtran (Emde et al., 2016; Mayer and
Kylling, 2005), a widely used software package, allowing the
computation of radiances, irradiances, and actinic fluxes. A
sensitivity analysis was performed by comparing the diffuse
irradiance calculated from libRadtran with the estimations of
BRL. This analysis examines the dependence of the aerosol-
related discrepancy as function of Solar Zenith Angle (SZA)
and latitude, considering the effect of parameters such as sur-
face albedo and altitude.

To conduct aerosol parameterizations, we considered the
default aerosol extinction profile (Shettle, 1989) and set
asymmetry factor (gg) to 0.7, while varying the Single Scat-
tering Albedo (SSA) and the Ångström Exponent (AE), and
defining AOD500 by adjusting the value of the parameter-b
in Ångström’s law (Ångström, 1929) as follows:

τλ = b · λ
−a
→ AOD500 = b · (0.5µm)−AE (1)

The standard aerosol profiles (Anderson et al., 1986) were
used for all sites. According to Fountoulakis et al. (2022),
using a more accurate vertical distribution of aerosols in the
troposphere would have a negligible effect in the GHI and
DHI at the Earth’s surface. Table 3 illustrates the libRadtran
settings used in this study.

3 Results

3.1 Performance verification of the BRL diffuse
fraction model

The performance of BRL was evaluated by comparing the
actual diffuse fraction, obtained directly from resampled to
hourly BSRN ground-based measurements, with that derived
using BRL. As a first step, to isolate the influence of SZA
from that associated with the atmospheric conditions, the dif-
ference in diffuse fraction (DF) between the observed and the
one estimated using BRL as a function of SZA is presented
in Fig. 2. The atmospheric conditions are represented sepa-
rately for both all-sky and cloud-free sky conditions and are

https://doi.org/10.5194/amt-19-1227-2026 Atmos. Meas. Tech., 19, 1227–1244, 2026



1232 N. Papadimitriou et al.: Uncertainties leveraging the Global Solar Energy Estimator (GSEE)

Table 3. LibRadtran inputs.

Parameter Input

Atmospheric profile Mid-latitude summer (April–
September)/mid-latitude
winter (October–March)
(Anderson et al., 1986)

Extraterrestrial spectrum (Kato et al., 1999)

Datetime date and time input
accompanied by project
location coordinates

Altitude 0.1/2 km

Surface albedo 0.2/0.8

Number of streams 6

RT solver sdisort (Buras et al., 2011)

AE 0–2 with step 1

SSA 0.7, 0.9, 1.0

gg 0.7

TOC (Total Ozone Column) 300 DU

Integrated Water Vapor 15 mm

grouped into clusters, as outlined in Sect. 2.2. The patterns
reflecting the differences under the distinct sky conditions
indicate an additional dependency on SZA, which becomes
apparent approximately at SZA between 60 and 70°. In most
cases, there is an almost constant displacement with respect
to y = 0 below 60°, as well as a change in behavior when
SZA exceeds this value. Izaña presents a special case, as the
station is located at a very high altitude. At such high al-
titudes the contribution of the diffuse component to the to-
tal irradiance is significantly smaller relative to lower alti-
tude sites, which seems to be captured more accurately by
BRL at high SZAs. We must also note that (i) at Izaña, the
actual diffuse irradiance may experience an additional en-
hancement due to the contribution of adjacent lower-lying
clouds – an effect that is not accounted for in the diffuse
fraction model, and (ii) during dust events the site is usu-
ally inside – and not under – the dust layer, which results in
more complex interactions between dust and solar radiation
relative to lower altitude sites. Defining an exact limit (for
the lower altitude sites), where the behavior is changing, is
challenging; therefore, 60° was selected for practical energy-
related applications, focusing on periods with meaningful en-
ergy contribution, and is supported by the sensitivity analysis
(Sect. 3.2) under clear-sky conditions. Concerning the same
grouped atmospheric conditions, Fig. 3 illustrates the com-
parison between the observed and the estimated diffuse frac-
tion for SZA≤ 60°. This approach allows us to examine BRL

performance after eliminating the influence of SZA, thereby
providing a more comprehensive view of its reliability.

From Fig. 3, a distinct dependency of BRL’s reliability on
the atmospheric conditions can be observed. Under all-sky
conditions, the presence of clouds has a notable impact on
the model’s performance. Partly cloudy conditions result in
greater dispersion of the values from the identity line respec-
tively, likely due to the complexity of such sky scenes. Un-
der overcast conditions, where the sky can be considered ho-
mogeneous and isotropic, the model in most cases performs
slightly better. However, the limitations of the DNI-based
classification methodology, related to the complexity of the
cloud scenes, the spatiotemporal variability during the hourly
periods, and the 3D variability of cloud properties, would re-
quire additional observational tools for a more detailed in-
vestigation. More specifically, the vast majority of overcast
cases where the BRL diffuse fraction is below 0.8 while the
observed is close to 1 correspond to periods involving rapid
transitions between partly cloudy and overcast skies, occur-
ring either during the hour itself or immediately before or af-
ter it. Furthermore, a limited number of cases identified dur-
ing intense dust events at Tamanrasset and Izana, where the
reduction of DNI was so pronounced that the applied DNI-
based criterion classified these conditions as overcast. How-
ever, these cases are not further investigated, as the energy
production levels during such periods are very low.

Under cloud-free skies, BRL tends to underestimate, and
this bias becomes more pronounced as aerosol load in-
creases. Aiming to highlight this dependency, Fig. 4 shows
the difference between the estimated and the observed dif-
fuse fraction as function of AOD500, emphasizing also the
extent to which it is related to the aerosol type by providing
FMF500. A decrease for increasing AOD500 is evident across
all cases. In Tamanrasset and Izaña, associated with the in-
fluence of Saharan dust, the coarse mode dominates, and a
more distinct and well-defined curve is depicted compared to
other sites.

It is important to clarify that for assessing the impact of
aerosols we have assumed entirely cloud-free conditions.
However, the criterion applied based on DNI does not fully
guarantee the absence of small, scattered clouds within the
sky dome. Such clouds could induce slight enhancements in
DHI. A more rigorous assessment of the impact associated
exclusively with aerosols could be achieved by integrating
images from ground-based co-located all-sky cameras. On
the other hand, the presence of aerosols even under cloudy
scenes, introduces an additional uncertainty which is difficult
to investigate accurately.

3.2 Sensitivity analysis of the BRL performance under
cloud-free sky conditions from RT simulations

The uncertainties in estimating diffuse fraction under cloud-
free sky conditions, as discussed in Sect. 3.1, are further in-
vestigated. We performed RT simulations using libRadtran to
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Figure 2. Difference between the diffuse fraction estimated by the ground-based measurements and by using the BRL model as a function of
SZA under diverse atmospheric conditions: (top) classification with respect to cloudiness and (bottom) classification with respect to aerosol
optical depth.

calculate GHI and DHI under various aerosol scenarios. The
resulting GHI values were then used as input to BRL to esti-
mate the diffuse fraction, which was subsequently compared
to the diffuse fraction derived directly from the ratio of DHI
to GHI computed by libRadtran.

To ensure a comprehensive analysis, we considered three
representative latitudes (25, 35 and 45°). Since BRL requires
an hourly time-series of GHI as input, the analysis was con-
ducted for the summer solstice. On this day, a sufficient num-
ber of hourly values are available, corresponding to a wide
range of SZA values, allowing for a robust assessment of the
methodology. The sensitivity analysis was performed for sur-
face albedo values of 0.2 and 0.8 as well as for altitudes of 0.1
and 2 km. For aerosol parameterization, we examined com-
pletely clear-sky conditions as a reference, alongside scenar-
ios with AOD500 values of 0.2, 0.6, and 1, while varying the
SSA and AE. Specifically, the scenarios included SSA val-
ues of 0.7, 0.9 and 1, combined with AE values of 0, 1 and
2. The results of this sensitivity analysis for an albedo of 0.2
are provided in Fig. 5, while the results for an albedo of 0.8
are included in the supplement (Fig. S1 in the Supplement).

The results confirm that BRL performs well under clear
sky conditions and for SZA below 60°, while the incorpo-
ration of aerosols in the sky scene introduces larger uncer-
tainties. In all scenarios, we observe that lower values of AE

correspond to higher uncertainties. Moreover, when SSA is
0.9 or 1 BRL gradually tends to underestimate the diffuse
fraction as aerosol load increases. Instead, when SSA is 0.7,
BRL exhibits a different behavior, shifting toward an overes-
timation of the diffuse fraction at high aerosol loads.

The findings of this sensitivity analysis are consistent with
the evaluated BRL performance from ground-based mea-
surements presented in Sect. 3.1, especially at SZA smaller
than 60–70°, and underscore the role of aerosol in the ac-
curacy of diffuse fraction estimations. Differences between
the results shown in Figs. 2 and 5 at SZA between 60–80°
can be due to a number of site-related reasons. For example,
enhancement of the diffuse component due to scattering by
underlying atmospheric layers and clouds in the case of Izaña
may compensate the observed overestimation of the diffuse
fraction by BRL. Concerning the impact related to AE and
SSA, we confirm that the higher underestimations observed
for Tamanrasset and Izaña are associated with the optical
properties of desert dust aerosol particles. While AE and SSA
alone are not sufficient to fully characterize the aerosol type,
they serve as strong indicators, aligning with the classifica-
tion framework of Dubovik et al. (2002). The same compar-
ison for albedo 0.8 (Fig. S1) reveals a significant broadening
of the discrepancies. Moreover, we observe the presence of a
systematic error, even under clear sky conditions.
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Figure 3. Comparison of the diffuse fraction estimated using BRL with that estimated by the ground-based measurements under diverse
atmospheric conditions for SZA< 60°: (top) classification with respect to cloudiness and (bottom) classification with respect to aerosol
optical depth.

Figure 4. Difference between the estimated using BRL and the diffuse fraction estimated by the ground-based measurements as function of
AOD500 and FMF500.

The resulting differences were practically identical across
the three selected latitudes, indicating that the BRL model
is largely independent of latitude and can therefore be con-
sidered as a reliable solution over a wide range of latitudes.
Furthermore, the effect of altitude was found to be small. Fi-
nally, the outcomes of this analysis highlight potential incon-
sistencies arising from aerosols with different optical prop-
erties. Although the updated parameters of the BRL’s model
(as implemented in the GSEE model) reported by Lauret et
al. (2013) were derived using data from nine worldwide lo-
cations, encompassing a broad range of sky conditions that

capture a fully representative set of optical properties remain
challenging.

3.3 Analysis of the differences in energy production
using hourly integrals within the modelling of PV
plants

Uncertainties in estimating the diffuse fraction influence the
calculation of the total irradiance received by an inclined
panel’s surface, thereby affecting the accuracy of the PV
power simulations. In this section, we employ the main sub-
module of GSEE, used for modelling the electric output from
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Figure 5. Difference between the diffuse fraction derived directly from the computations of DHI and GHI using libRadtran and the one
estimated by applying BRL to the libRadtran-computed GHI.

a PV panel, aiming to assess the extent to which these uncer-
tainties propagate to the estimation of the hourly power pro-
duction. We analyze discrepancies arising from using only
GHI from BSRN as input radiation data to the model, in-
stead of both DHI and GHI. More specifically, we compare
the total energy produced per hour per unit, expressed in
watt-hours (Wh), per unit of nominal power (kWp). The en-
ergy production is evaluated for both fixed panels and 2-axis
tracking systems.

The results of this comparison for c-Si based technology
PV panels for different atmospheric conditions are presented

in Fig. 6, illustrating the impact of cloudiness, and in Fig. 7,
demonstrating the effect of aerosols. The corresponding re-
sults for CdTe technology are provided in the supplement
(Figs. S2 and S3 respectively). In the modelling of 2-axis
solar tracking systems, where the panel is continuously ad-
justed to maintain a perpendicular orientation to incoming
solar radiation, the system becomes more sensitive to uncer-
tainties in the estimation of the diffuse fraction, leading to
more significant differences in energy production. Specifi-
cally, the contribution of the direct irradiance is maximized
in such systems, as the panel exploits the entirety of the avail-
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able direct irradiance. On the other hand, in the simulation
of static panels, the contributions of direct and diffuse com-
ponents are more evenly distributed, making the impact of
diffuse fraction uncertainties less pronounced in energy pro-
duction.

Regarding the uncertainties related to the atmospheric
conditions, from Fig. 6 we confirm that the highest disper-
sion occurs in partly cloudy conditions, while from Fig. 7,
where we examine cloud-free conditions, we note that fur-
ther improvement achieved as aerosol load decreases. Under
totally overcast skies the energy production is extremely low,
rendering errors practically negligible. Moreover, accuracy is
influenced by aerosols, where a gradual decline in accuracy
is detected as aerosol load increases. However, assessing the
extent of aerosol loading impact is complex, depending on
the interaction of solar radiation with particles of varying op-
tical properties, as extensively analyzed in the previous sec-
tions. This effect becomes particularly evident in cases of
high aerosol loading, where a noticeable offset is observed,
while under certain conditions, the associated uncertainty is
comparable to that found in partly cloudy conditions.

The PV systems considered in this study have a nomi-
nal capacity of 1 kWp. The PV model applies a default sys-
tem loss factor of 10 %. This effectively limits the maxi-
mum achievable power output to approximately 90 % of the
nominal capacity (i.e., around 900 W kWp−1). This effect be-
comes apparent at the Izaña site due to its low latitude com-
bined with its specific geographical and atmospheric condi-
tions, which lead to high irradiance levels. As a result, the
simulated PV output in some cases appears capped around
900 Wh kWp−1 per hour when only GHI is used.

Additionally, Tables 4 and 5 present the validation results
for Carpentras and Tamanrasset, selected as representative
locations that encompass a wide variety of sky conditions.
Validation results for the remaining stations are available in
the supplement (Tables S1–S3). All the evaluation metrics
correspond to simulations of PV panels with c-Si technology.

Based on the calculated statistical indices, the Root
Mean Square Error (RMSE) values for fixed pan-
els range from 4.7 Wh kWp−1 h−1 (clear sky) to
19.5 Wh kWp−1 h−1 (partly cloudy) in Carpentras, and
from 3.2 to 20.1 Wh kWp−1 h−1 in Tamanrasset. Un-
der very high aerosol loading, RMSE reaches 14.9 and
18.0 Wh kWp−1 h−1, respectively. For 2-axis tracking
systems, RMSE values vary significantly, ranging from
9.5 to 32.5 Wh kWp−1 h−1 in Carpentras and from 6.6
to 56.1 Wh kWp−1 h−1 in Tamanrasset, with peaks of
22.7 and 57.0 Wh kWp−1 h−1 under very high aerosol
loading conditions. Similarly, the Mean Absolut Error
(MAE) values are generally lower for fixed panels (3.4–
12.5 Wh kWp−1 h−1 in Carpentras, 2.0–15.0 in Tamanrasset)
and substantially higher for 2-axis tracking (7.5–23.9 and
4.0–45.7 Wh kWp−1 h−1, respectively). Notably in Taman-
rasset, MAE values under very high aerosol loading exceed
those observed under partly cloudy conditions, with values

increasing from 15.0 to 16.2 Wh kWp−1 h−1 for fixed panels
and from 45.7 to 49.2 Wh kWp−1 h−1 for 2-axis tracking
systems. Regarding the relative mean bias (rMBE), this
remains mostly within ±4.6 % for fixed panels but can reach
up to 11.2 % for 2-axis tracking, particularly in aerosol-laden
conditions.

3.4 Estimating total daily PV power output using the
Climate Interface

Validation of the estimated daily energy production using
the Climate Interface is achieved by comparing the estimates
with the results obtained from the direct summation of the
hourly simulations with input both GHI and DHI.

The Climate Interface generates the hourly profile of GHI
for each day as a sinusoidal function. Then, the BRL is ap-
plied to the hourly time-series, and the hourly power genera-
tion is computed. Finally, these values are summed up to pro-
vide an estimate of the total daily output power. As shown in
Fig. 8, which illustrates the differences between the Climate
Interface estimates and the sums of the hourly simulations,
this approach introduces a variability throughout the year.
Furthermore, Figure S6 in the supplement presents the per-
centage differences between the two approaches, using the
latter as the reference.

The time-series represent the centered 30-day moving av-
erage. To ensure that the values are representative of the
reference period, we have applied all conditions requiring
at least 20 d of available data within each 30-days inter-
val. In Tamanrasset and Izaña, especially during the summer
months, there are significant data gaps on several days, often
occurring around solar noon.

More precisely, from Fig. 8, we observe that within the
modelling of PV plants with fixed panels, there is a ten-
dency to overestimate in winter, with deviations of approxi-
mately 0.3 kWh kWp−1 d−1, and to slightly underestimate in
summer, where deviations are around 0.1 kWh kWp−1 d−1.
In contrast, for 2-axis solar tracking systems, the resulting
deviations are significantly larger, with a general tendency
toward overestimation that peaks during summer, reaching
approximately 1.75 kWh kWp−1 d−1. The percentage differ-
ences span from −10 % to 20 % for fixed panels and from
−5 % to 35 % for 2-axis tracking systems.

The variability in the percentage difference between the
daily PV output estimated using the climate interface and
the corresponding daily sums is mainly a function of the
minimum SZA, while especially in the case of modeling
for 2-axits tracking systems, the variation is also influenced
by aerosol loading, with differences tending to increase as
aerosol load rises (Figs. S4 and S5 in the Supplement).

Additional validation results are provided in the sup-
plement (Tables S4–S8). Indicatively, for Carpentras and
Tamanrasset, representative results are discussed below. For
fixed panels, RMSE is minimized at 0.18 kWh kWp−1 d−1

under very-low aerosol conditions, compared to the over-
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Figure 6. Comparison of the estimated hourly PV power generation between simulations performed using GSEE with input data consisting
of either only GHI or both GHI and DHI under varying cloudiness conditions: (top) fixed panels (bottom) 2-axis tracking systems.

Figure 7. Comparison of the estimated hourly PV power generation between simulations performed using GSEE with input data consisting
of either only GHI or both GHI and DHI under varying aerosol conditions: (top) fixed panels (bottom) 2-axis tracking systems.
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Table 4. Evaluation metrics for GSEE performance within hourly intervals in Carpentras, comparing simulations with diffuse fraction from
measurements and from the BRL model.

STATION: Carpentras fixed panels 2-axis tracking

RMSE MAE rMBE RMSE MAE rMBE
(Wh kWp−1 h−1) (Wh kWp−1 h−1) (%) (Wh kWp−1 h−1) (Wh kWp−1 h−1) (%)

All-Sky scenes 12.6 6.6 0.8 20.8 12.5 1.2

All-Sky cloud-free 9.2 4.6 0.4 14.8 8.7 0.5
scenes partly cloudy 19.5 12.5 2.3 32.5 23.9 3.8
(cloudiness) cloudy (overcast) 5.8 3.0 2.0 10.5 6.1 4.6

Cloudless-Sky low 4.7 3.4 −0.4 9.5 7.5 −0.8
scenes moderate 4.3 2.2 0.1 7.8 4.7 0.0
(aerosol high 6.4 4.0 0.6 11.0 7.8 0.9
load) very high 14.9 10.2 1.6 22.7 17.2 2.6

Table 5. Evaluation metrics for GSEE performance within hourly intervals in Tamanrasset, comparing simulations with diffuse fraction from
measurements and from the BRL model.

STATION: Tamanrasset fixed panels 2-axis tracking

RMSE MAE rMBE RMSE MAE rMBE
(Wh kWp−1 h−1) (Wh kWp−1 h−1) (%) (Wh kWp−1 h−1) (Wh kWp−1 h−1) (%)

All-Sky scenes 13.6 9.3 1.0 40.4 27.8 3.8

All-Sky cloud-free 11.5 8.0 0.8 35.3 23.4 2.9
scenes partly cloudy 20.1 15.0 2.0 56.1 45.7 8.1
(cloudiness) cloudy (overcast) 8.4 5.2 −0.1 45.3 30.1 11.2

Cloudless- low 3.2 2.0 0.2 6.6 4.0 0.3
Sky scenes moderate 5.4 4.6 0.6 13.0 10.5 1.2
(aerosol high 12.5 11.7 1.6 30.1 27.4 3.4
load) very high 18.0 16.2 1.9 57.0 49.2 6.8

all 0.22 kWh kWp−1 d−1 for Carpentras. In Tamanrasset, the
lowest RMSE is observed at 0.15 kWh kWp−1 d−1 under
very low aerosol conditions, while the overall reaches 0.24.
In the case of 2-axis tracking, a significant increase is ob-
served from low-aerosol to aerosol-laden conditions, rang-
ing from 0.82 to 1.28 kWh kWp−1 d−1 in Carpentras and
from 0.66 to 1.37 in Tamanrasset. Similar widening trends
are also evident in the MAE values across different aerosol
loading conditions. The computed statistical indices confirm
that the differences are minimized under sunny and nearly
aerosol-free sky conditions. Comparing the performance on
low-aerosol days to that on aerosol-laden, we conclude that,
particularly in the case of modelling 2-axis tracking systems,
errors increase significantly. In Tamanrasset, in particular, the
errors are more than double.

3.5 Evaluation of the reliability of using the CAMS
solar radiation time-series product in modelling PV
power potential

The aim of this section is to inspect the reliability of using the
CAMS solar radiation time-series product in modelling the
PV power potential adapted to a certain location. A review of
the existing literature indicates a lack of studies directly ex-
amining the accuracy of using CAMS data for assessing PV
power potential. This is addressed by comparing the output
power obtained from using CAMS solar radiation data with
that calculated using ground-based measurements. The anal-
ysis focuses on the capability of CAMS to provide accurate
estimates of both GHI as well as its individual components.

In this section, we have excluded Izaña, because, due to
its high altitude – as indicated through a personal communi-
cation with Yves-Marie Saint-Drenan (2025) – comparable
results would require adjusting the measurements to the el-
evation of the stations, which is a complicated process and
beyond the scope of this study.
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Figure 8. Time-series of the differences between the daily PV output estimated using the climate interface and the corresponding daily sums
from hourly simulations.

The CAMS-based diffuse fraction, compared to the ob-
served, is presented in Fig. 9 under different prevailing con-
ditions. We observe that the calculation of the diffuse com-
ponent is subject to significant uncertainty. Cloudiness is the
primary uncertainty source, particularly under partly cloudy
conditions. Additionally, notable discrepancies related to
aerosols emerge only in cases of very high aerosol loading.

In Fig. 10 we provide density scatter plots comparing the
CAMS-based PV output power with that computed from the
ground-based BSRN data, aiming to illustrate how the un-
certainty in the diffuse component estimates propagate to the
calculation of power generation. Notably, there is a much
greater dispersion from the y = x line in the case of simu-
lating PV plants with 2-axis tracking system, compared to
that within the modelling of fixed panels. This outcome is
attributed to the increased sensitivity of the 2-axis tracking
systems to the partitioning of global irradiance into its com-
ponents. Nevertheless, correlation coefficients are in all cases
better than 0.9.

Additional evaluation metrics are provided in the sup-
plement (Tables S9–S12). Indicatively, we observe that
under cloudless conditions, for fixed panels, RMSE
ranges between 25.0 to 42.3 Wh kWp−1 h−1 in Carpen-
tras and 16.6 and 31.0 Wh kWp−1 h−1 in Tamanras-
set, with variations linked to aerosol loading. Similarly,
MAE ranges from 20.0 to 36.9 Wh kWp−1 h−1 in Car-
pentras and 11.9 to 22.9 Wh kWp−1 h−1 in Tamanras-
set. For 2-axis systems, RMSE and MAE follow sim-
ilar trend, ranging from 28.8 to 49.9 Wh kWp−1 h−1

and 22.3 to 44.1 Wh kWp−1 h−1, respectively, in Carpen-
tras, and from 20.8 to 48.0 Wh kWp−1 h−1 and 15.3 to
35.5 Wh kWp−1 h−1, respectively, in Tamanrasset. Con-
versely, under cloudy conditions the errors are significantly
increasing. In Carpentras, as well as in Cener, and Linden-
berg (according to the corresponding tables in the supple-
ment) the errors peak under partly cloudy conditions, with
RMSE reaching up to 94.2 Wh kWp−1 h−1 in Carpentras.
However, in Tamanrasset, the highest errors occur under
overcast conditions, where RMSE and MAE for 2-axis solar
tracking systems reach 210.7 and 151.6 Wh kWp−1 h−1, re-
spectively. This exception can be interpreted through Fig. 15,
which illustrates that in the rare overcast scenes in Tamanras-
set, CAMS occasionally reports low diffuse fraction values
instead of values close to 1, suggesting that CAMS did not
accurately represent cloudiness in these cases.

4 Conclusions

The optimal approach to include solar radiation information
to PV power models such as GSEE is to use actual in-situ
measurements of global and diffuse solar irradiance. Since
measurements of the diffuse component are rarely available,
it is common to use measurements of the GHI (if available)
and retrieve the diffuse component using a model such as
BRL. In the absence of in-situ measurements, other options
include the use of datasets such as CAMS or even a radia-
tive transfer model, provided that atmospheric inputs such
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Figure 9. Comparison of the CAMS-based diffuse fraction estimated using BRL with the actual one under diverse atmospheric conditions.

as clearness index, aerosol optical depth (AOD), and other
aerosol properties are available. This study evaluated these
options and their implications for PV modelling accuracy.

The results highlighted the importance of having precise
information for the distribution of solar irradiance among
its components in PV power modelling. The implementation
of the BRL diffuse fraction within GSEE serves as a practi-
cal, and under certain conditions, reliable solution to the ab-
sence of detailed information for each component separately.
Moreover, the integrated Climate Data Interface submod-
ule offers valuable prospects for investigating fluctuations in
the solar PV power generation across various timescales. In
this context, the use of BRL has a key contribution along-
side the other computational procedures in processing cli-
mate datasets. Previous studies on PV power modelling ap-
proaches have not examined their reliability under diverse
atmospheric conditions, including the effects associated with
cloudiness, aerosol loading, as well as aerosol optical prop-
erties.

The evaluation of the BRL’s performance revealed a de-
pendency of its reliability on the prevailing sky conditions.

BRL has excellent accuracy under totally clear sky scenes
and still performs well for cloudless scenes with moderate
aerosol loading. In general, its accuracy is inversely propor-
tional to the complexity of the cloud scene. However, the
model systematically underestimates the diffuse fraction un-
der high-loading conditions, such as during dust events. The
discrepancies arising from diffuse fraction estimation prop-
agate to PV power generation and become particularly pro-
nounced in the modelling of 2-axis tracking systems. Indica-
tively, MAE under cloud-free scenes with moderate aerosol
loading, ranges between 2.2 to 6.6 Wh kWp−1 h−1 for fixed
panels and 4.7 to 15.0 Wh kWp−1 h−1 for 2-axis tracking
systems. Under partly cloudy conditions, where the cloud
scene is more complex, the MAE increases substantially,
ranging from 12.4 to 25.8 Wh kWp−1 h−1 for fixed panels
and from 23.5 to 55.1 Wh kWp−1 h−1 for 2-axis tracking sys-
tems. Moreover, during intense dust events, MAE can reach
up to 49.2 Wh kWp−1 h−1 in Tamanrasset, which is compara-
ble to that computed under partly cloudy conditions. Overall,
the rMBE remains within the ±5 %, with the exception of a
limited cases under overcast conditions. The same analysis
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Figure 10. Overview of the reliability of the CAMS-based PV power simulations.

applied to CdTe panels yielded similar results, with minor
differences.

Aiming to provide an indicative assessment of the fi-
nancial impacts of the effect of desert dust aerosols, we
assume that the statistical indices calculated for Tamanrasset
are representative of a large-scale solar farm located in
the Sahara region, with 500 MW installed PV capacity
and systems equipped with 2-axis solar tracking sys-
tem. For this hypothetical solar farm, according to the
value of the Mean Absolute Error (MAE) on Table 4 for
very high aerosol loading, we estimate that the produced
energy is 0.0492 [Wh kWp−1 h−1]×500× 103 [kWp]=

24 600 [kWh−1 h−1]
supposing 12 sunlight hours per day

H⇒

∼ 295 200 [kWh d−1] less than the expected from the
PV power simulations. According to the global average
auction prices for selling produced energy back to the grid in
2021 (IRENA, 2026), the overestimations are equivalent to
a financial loss of 0.039 [USD/kWh] ×295 200 [kWh d−1]
≈USD 11 500 d−1. Therefore, site assessments that do not
correctly account for the distribution of surface solar irra-
diance in the sky under desert dust aerosol conditions may
overestimate financial performance and the annual financial
deficit could be accumulated to hundreds of thousands of US
dollars per year.

Comparing the range of computed errors, we observe that
the errors arising from employing CAMS rather than us-
ing ground-based measurements, even when the diffuse frac-
tion is not provided, are higher across the overwhelming
majority of the considered sky conditions. More specifi-
cally, regarding the overall performance, MAE when using
CAMS ranges between 33.7 and 46.1 Wh kWp h−1, while
with ground-based GHI measurements, MAE remains below
10 Wh kWp h−1 within the modelling of systems with fixed
panels and can reach up to 27.8 Wh kWp h−1 within the mod-
elling of 2-axis tracking systems. This outcome highlights
the value of ground-based measurements.

To sum up, achieving the highest quality PV power sim-
ulations necessitates high-quality, concurrent measurements
of solar irradiance components. In absence of this, the sub-
modules included in the GSEE package enable reliable sim-
ulations under the vast majority of prevailing sky conditions.
CAMS serves as a valuable data source for PV power mod-
elling, but it cannot fully replace the precision and reliabil-
ity of using ground-based measurements. The integration of
aerosol correction within the BRL model opens new possibil-
ities for further improvements in the modelling of solar en-
ergy systems. A more comprehensive assessment would re-
quire measured PV output data; however, acquiring simulta-
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neous direct and diffuse irradiance measurements at the same
location as the solar farms remains challenging.
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