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Abstract. The appropriate period of collocation of a low-
cost air sensor (LCS) with reference measurements is of-
ten unknown. Previous LCS studies have shown that due
to sensor ageing and seasonality of environmental interfer-
ences periodical sensor calibration needs to be performed to
guarantee sufficient data quality. While the limitations are
well-established it is still unclear how often a recalibration
of a sensor needs to be carried out. In this study, we demon-
strate how widely used air sensors (OX-B431 and SPS30)
for the relevant air pollutants ozone (O3) and fine particulate
matter (PM2.5) by two manufacturers (Alphasense and Sen-
sirion) should be recalibrated for real-world monitoring ap-
plications. Sensor calibration functions were built using Mul-
tiple Linear Regression, Ridge Regression, Random Forest
and Extreme Gradient Boosting. We use multiple novel test
protocols for air sensors provided by the United States Envi-
ronmental Protection Agency and the European Committee
for Standardization for evaluative guidance and to identify
possible applications for OX-B431 and SPS30 sensors. We
conducted a yearlong collocation campaign at an urban back-
ground air and climate monitoring station next to the Univer-
sity Hospital Augsburg, Germany. LCSs were exposed to a
wide range of environmental conditions, with air tempera-
tures between −10 and 36 °C, relative air humidity between
19 % and 96 % and air pressure between 937 and 983 hPa.
The ambient concentration ranges for O3 and PM2.5 were up
to 82 ppb and 153 µg m−3, respectively. For the baseline sin-
gle training of 5 months, the calibrated O3 and PM2.5 sensors
were able to reflect the hourly reference data well during the
training (R2: O3= 0.92–1.00; PM2.5= 0.93–0.97) and the
following test period (R2: O3= 0.93–0.98; PM2.5= 0.84–
0.93). Additionally, the sensor errors were generally ac-

ceptable during the training (RMSE: O3= 0.80–4.35 ppb;
PM2.5= 1.45–2.51 µg m−3) and the following test period
(RMSE: O3= 3.62–5.84 ppb; PM2.5= 2.04–3.02 µg m−3).
We investigated different recalibration cycles using a pair-
wise calibration strategy, which is an uncommon method for
recurrent LCS calibration. Our results indicate that a regu-
lar in-season recalibration is required to obtain the highest
quantitative validity and broadest range of applications (in-
dicative and non-regulatory supplemental measurements) for
the analysed LCSs. Monthly recalibrations are observed to
be the most suitable approach. The measurement uncertain-
ties of the calibrated O3 LCSs and PM2.5 LCSs were able
to meet the data quality objective for indicative measure-
ments for different calibration models. In-season recalibra-
tion, rather than reliance on a single pre-deployment calibra-
tion, should be adopted by end-user communities. This ap-
proach is required for certain real-world applications to be
performed reliably by LCSs and to achieve sufficient infor-
mation content.

1 Introduction

Low-cost sensors (LCSs) form an interesting approach for
monitoring air pollution in a denser network than currently
available due to the cost of regular fixed measurement sta-
tions. Basically, they are smaller, consume less power, are
cheaper and therefore more accessible than regular monitor-
ing devices for air pollution (Lewis et al., 2018; Li et al.,
2020; Peltier et al., 2021; Schäfer et al., 2021; Narayana et
al., 2022). This underlines why there is an interest among
researchers, governments, businesses and individuals in us-
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ing LCSs for air quality monitoring in different settings, e.g.
citizen science, mobile and stationary monitoring (in for in-
stance urban or remote locations), urban planning, personal
exposure science or education (Williams et al., 2019; Ma-
hajan and Kumar, 2020; Mahajan et al., 2020; Peltier et al.,
2021; Okure et al., 2022; Hassani et al., 2023; Malings et al.,
2024). This interest has led researchers to develop their own
custom-built air quality monitoring systems equipped with
LCSs (Mueller et al., 2017; Cross et al., 2017; Gäbel et al.,
2022), which can be more widely used in the aforementioned
settings.

Nevertheless, those sensors also have their disadvantages.
At present they do not fulfill the stringent requirements for
regulatory measurements provided by high-quality air pollu-
tant monitoring systems used by governments to monitor the
exceedance of health-relevant thresholds for air pollutants
like ozone (O3), nitrogen oxides (NOx), particulate matter
(PM2.5, PM10), carbon monoxide (CO), and sulfur dioxide
(SO2) (Castell et al., 2017; Wesseling et al., 2019; Schäfer
et al., 2021). Major issues with LCSs are their short oper-
ating life, lack of long-term stability due to sensor ageing,
interferences, cross-sensitivities and the need for calibration
functions to adjust LCS bias and transform LCS output into
meaningful units (Lewis et al., 2018; Peltier et al., 2021;
Concas et al., 2021; Carotenuto et al., 2023). Hence refer-
ence measurements are needed. The inter-sensor unit vari-
ability of LCSs is another issue, where a calibration function
derived through training data for a LCS is usually not by de-
fault transferable. LCS data of a unit can be quite unique,
when compared to data of another unit of the same model
(Moltchanov et al., 2015; Gäbel et al., 2022; Bittner et al.,
2022). However, good-performing sensors can act as devices
for non-regulatory supplemental and informational monitor-
ing (NSIM) applications (Duvall et al., 2021a, b). LCS per-
formance must be assessed, and data quality control pro-
cesses must be developed to establish confidence in LCS data
(Malings et al., 2024). Consequently, the question of whether
a selected air sensor is a good fit for its planned purpose must
be answered (Diez et al., 2022). Snyder et al. (2013) summa-
rized the essence of the problem in one sentence: “Data of
poor or unknown quality is less useful than no data since it
can lead to wrong decisions”.

Uniform evaluation and comparison methods for LCSs are
incentivized by a growing market, which offers a greater sup-
ply of more refined LCSs. The lack of standardized proce-
dures was recognized in the literature in recent years (Rai
et al., 2017; Karagulian et al., 2019; Williams et al., 2019;
Duvall et al., 2021a). Therefore, there is an initiative by mul-
tiple organizations to develop test programs and test proto-
cols like the Environmental Protection Agency (EPA) of the
United States or the European Committee for Standardiza-
tion (CEN) (Duvall et al., 2021a, b; CEN/TS 17660-1:2021,
2021; CEN/TS 17660-2:2024, 2024). The development of
test programs by organizations, which are also recognized
by governmental bodies, is an important achievement. They

create a foundational framework to collect comparable har-
monized metrics to assess LCS data quality. Thus, they help
to develop a standardized quality assessment to ultimately
justify the use of LCSs in defined areas of interest in air pol-
lution monitoring. Hence it is a further step for establishing
reliable low-cost air quality networks within the regulatory
monitoring system for air quality worldwide. Using target
metrics and sensor (tier) classifications from these test pro-
grams to better understand air sensor performance and their
potential role within the broader air quality information sys-
tem is not yet common practice in studies evaluating LCSs
across different settings. The current air quality information
system is defined by reference-grade monitoring, satellite
monitoring and air quality modeling.

One important aspect is recalibrations of LCSs after their
initial (on-site) calibration using reference monitors, which
is an important point in network management to guarantee
long-term data quality (Concas et al., 2021; Carotenuto et al.,
2023). However, most of the recent studies doing long-term
field campaigns using LCS networks for air quality monitor-
ing show in their methods no recalibration strategy to mit-
igate the effect of sensor ageing and thus to enhance the
LCS measurement output under a quantitative point of view
(Jayaratne et al., 2020; Petäjä et al., 2021; Mohd Nadzir et
al., 2021; Bílek et al., 2021; Raheja et al., 2022; Kim et al.,
2022; Collier-Oxandale et al., 2022; Okure et al., 2022; Con-
nolly et al., 2022). For instance, the official warranted oper-
ating lifespan of the commonly used electrochemical (EC)
LCS NO2-B43F by the company Alphasense is only 2 years
(Alphasense, 2024a) or even lower according to Li et al.
(2021). They investigated the long-term degradation of EC
Alphasense NO2 sensors in the field and found evidence that
those sensors could already malfunction after 200 d. Further-
more Kim et al. (2022) calibrated Alphasense NO2 sensors
based on a 6-month collocation using regulatory monitoring
devices at a rural traffic site. 1.5 years later Kim et al. (2022)
did a second collocation experiment with the same sensors at
the same site using their original calibration functions from
the first collocation. They found a significant deterioration
in sensor performance during the second collocation. It was
also discussed that due to time-varying effects of environ-
mental interferences (e.g. air temperature, relative humidity),
sensor performance can vary with season (Ratingen et al.,
2021; Peters et al., 2022). For these reasons, LCS recalibra-
tion intervals of less than 1 year and methods for regular LCS
data quality checks using regulatory monitoring devices need
to be explored whether those sensor devices are supposed
to be used in lengthy measurement campaigns to assess air
quality. At present, it remains unclear how regularly LCSs
need to be recalibrated. The number of publications inves-
tigating varying calibration periods is not exhaustive due to
the lack of long-term collocation experiments in the avail-
able literature. Generally, studies which investigate varying
recalibration periods look only at a specific air pollutant sen-
sor targeting one air pollutant. They do not apply state-of-
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the-art test programs for LCSs to categorize their results in
frameworks provided by organizations, which are officially
recognized by governmental authorities. In this context, this
study presents a concept for recurrent LCS calibration for
real-world applications by using various performance met-
rics based on multiple novel test protocols.

We investigated different recalibration cycles for com-
monly used LCSs for NO2, O3, CO and PM2.5 using met-
rics and target values provided by EPA and CEN (Duvall et
al., 2021a, b; CEN/TS 17660-1:2021, 2021; CEN/TS 17660-
2:2024, 2024). We conducted the investigation during a 1-
year on-site collocation experiment in the city of Augsburg,
Germany.

This work is organized as follows. The section about ma-
terials and methods describes the infrastructure used for the
collocation experiment and the methodology behind our sen-
sor calibration strategy and its evaluation. The “Results and
discussion” section focuses on the environmental conditions
and pollution concentrations observed during the collocation
experiment, the performance of the introduced LCS calibra-
tion models under different recalibration cycles and the po-
tential implications of our findings for LCS networks. The
concluding remarks can be found in the last section.

2 Materials and methods

An in-depth investigation was done for LCSs measuring O3
and PM2.5. Due to test site limitations affecting the ability to
classify LCSs for NO2 and CO according to CEN, LCSs for
these air substances could only be classified using the EPA
test protocol for gas sensors. Two Atmospheric Exposure
Low-Cost Monitoring (AELCM) boxes were mounted next
to the Atmospheric Exposure Monitoring Station (AEMS)
for air substances and meteorological variables. The boxes
included the LCSs for the mentioned air pollutants while
the latter provided the reference measurements in the present
study. The AEMS is operated by the Chair for Regional Cli-
mate Change and Health at the University of Augsburg.

2.1 AELCM sensor box

Two advanced AELCM sensor boxes, denoted as
AELCM009 and AELCM010, were used. The custom-
built devices were developed by the Chair for Regional
Climate Change and Health at the University of Augsburg.
A detailed description and performance check of the first
version of the low-cost measurement unit can be found
in our previous study (Gäbel et al., 2022). The upgraded
AELCM units measured air quality and meteorological
parameters, namely O3 (Alphasense OX-B431), NO2 (Al-
phasense NO2-B43F), CO (Alphasense CO-B4), PM2.5
(Sensirion AG SPS30) as well as humidity and air temper-
ature (Bosch BME280) (Bosch Sensortec, 2015; Sensirion,
2020; Alphasense, 2024a, b, c). In this study the air pollution

sensors were denoted as AS-B431, AS-B43F, AS-B4 and
SAG-SPS30. Table 1 summarizes the specifications of the air
sensors, with technical details taken from the manufacturers’
official data sheets (Sensirion, 2020; Alphasense, 2024a,
b, c). The upgrade of the AELCM boxes with respect to
the previous study was related to the switch to EC gas
sensors from Alphasense, which exclusively measured the
earlier mentioned gaseous air substances. The upgrades also
involved the increase of the sampling frequency for each
AELCM sensor from 10 s to every 4 s. A code rework on the
Arduino microcontroller board made it possible to measure
on a higher temporal resolution.

There were multiple reasons for the use of Alphasense
sensors. In our earlier work (Gäbel et al., 2022), we in-
vestigated the digital gas sensors DGS-NO2 and DGS-CO
from SPEC Sensors, based on EC gas sensor technology, as
well as the MiCS-2714 (NO2) and MiCS-4514 (CO) sensors
from SGX Sensortech, based on metal oxide semiconductor
(MOS) technology. Our results showed that these air sensors
exhibited no satisfactory capability to capture the observed
concentrations at a measurement station, according to the co-
efficient of determination after sensor calibration (R2: 0.15–
0.66). Therefore, we applied alternative LCSs to capture NO2
and CO. Overall, the SPEC DGS-O3 units performed satis-
factorily (R2: 0.71–0.95) but showed high inter-sensor unit
variability. For the calibrated MQ131 sensor outputs moder-
ate to high R2 were determined (R2: 0.71–0.83). In contrast,
the raw MQ131 sensor outputs showed generally poor cor-
relation with the O3 reference measurements. We concluded
that EC gas sensor technology is suitable for detecting O3
in an urban background environment, whereas MOS tech-
nology showed limited capability in the case of Winsen’s
MQ131 sensor. Alphasense EC gas sensors are the most used
and evaluated LCSs for measuring O3, NO2 and CO (Karag-
ulian et al., 2019; Kang et al., 2022) and offer a good price-
to-quality ratio (see Table 1). Kang et al. (2022) reported me-
dian R2 values of 0.70, 0.68 and 0.82 for these pollutants,
respectively. The values were derived by Kang et al. (2022)
from studies that used Alphasense EC sensors in outdoor set-
tings in conjunction with reference instruments. In our eval-
uation at an urban background station (Gäbel et al., 2022),
the SAG-SPS30 particulate matter (PM) sensor showed high
correlative performance for calibrated data (R2: 0.90–0.94).
Also, other outdoor studies showed satisfactory results for
the SAG-SPS30 and its measurement of PM2.5 (R2: 0.72–
0.87) (Vogt et al., 2021; Roberts et al., 2022; Shittu et al.,
2025).

2.2 Collocation with AEMS

The AELCM units were mounted on a fence right next
to the AEMS, as shown in Fig. 1. The AEMS is a high-
quality air and climate measurement station located next to
the University Hospital Augsburg in Germany (48°23.04′ N,
10°50.53′ E). The station can be classified as an urban back-

https://doi.org/10.5194/amt-19-1293-2026 Atmos. Meas. Tech., 19, 1293–1321, 2026



1296 P. Gäbel and E. Hertig: Recalibration of low-cost O3 and PM2.5 sensors

Table 1. Overview of the specifications of air sensors that can be used in the AELCM unit.

Measured Sensor Manufacturer Abbreviation Range Noisea Approx. Price
Variable [Precision] (Euro) 2025

O3+NO2 OX-B431 Alphasense AS-B431 20 ppm 15 ppb 71/84b

NO2 NO2-B43F Alphasense AS-B43F 20 ppm 15 ppb 59/84b

CO CO-B4 Alphasense AS-B4 1000 ppm 4 ppb 56/79b

PM2.5 SPS30 Sensirion AG SAG-SPS30 1000 µg m−3 [±10 µg m−3 at 0 30
to 100 µg m−3]
[±10 % at 100 to
1000 µg m−3]

a Tested with Alphasense ISB low noise circuit: ±2 standard deviations (ppb equivalent). b Additional cost for the Individual Sensor Board (ISB) low
noise circuit for B sensors.

Figure 1. Photographs of the AEMS and AELCM units
(AELCM009 and AELCM010), which are mounted on the fence
next to the AEMS: (a) the stationary air and climate measurement
station of the Chair for Regional Climate Change and Health, Fac-
ulty of Medicine, University of Augsburg; and (b) the housing and
interior view of the engineered AELCM units.

ground station. Federal roads are in the south and east, re-
spectively 850 and 1200 m located away from the station.
A highway road is 3600 m located away in the North. In-
dustrial areas relative to the station location are located fur-
ther away, in the south-east and the north-east of Augsburg.
Regular station measurements of varying concentrations of
CO, NO2 and PM2.5 due to local traffic and local industry
depend highly on circulation patterns favouring an air flow
from those sources towards the city as well as on the day
and daytime, where factors like commuting play an impor-
tant role.

The regulatory-grade air measurement instruments are
from the company HORIBA. Reference measurements of
O3, NO2, CO and PM2.5 were conducted using the instru-
ments APOA-370, APNA-370, APMA-370 and APDA-372,
in that order. The HORIBA instruments for gaseous air pol-
lutants are also used by the Bavarian Environment Agency
for official air pollution monitoring in Bavaria (Bayerisches

Landesamt für Umwelt, 2019). The weather station WS600-
UMB mounted to the station provided measurements for me-
teorological variables. Further details about the AEMS can
be found in the study of Gäbel et al. (2022).

The collocation took place from January 2022 until Jan-
uary 2023. The model training period for the LCSs was be-
tween 11 January 2022 till 10 June 2022. The testing pe-
riod for the LCS recalibration experiment started at 10 June
2022. The experiment ended between 6 and 11 January 2023
depending on the LCS. The end is individual for each LCS
model unit, because of individual missing values in the ref-
erence measurements for each air pollutant. The aim of the
collocation was the assessment of the benefit of regular re-
calibrations against single calibration. The latter used solely
the above-mentioned training period for model training. Per-
formance metrics and their recommended target values given
by novel test programs and test protocols by EPA and CEN
were used to assess the influence of a recalibration procedure
on LCS performance and to identify possible real-world ap-
plications for the investigated LCSs (Duvall et al., 2021a,
b; CEN/TS 17660-1:2021, 2021; CEN/TS 17660-2:2024,
2024).

2.3 Data treatment

The collocation experiment involving AELCM009 and
AELCM010 started initially on 10 January 2022. The used
LCSs have a stabilization phase after being powered on. Only
after this stabilization phase are the LCSs eligible for mea-
surements of a target pollutant (Gäbel et al., 2022). The sta-
bilization phase observed in the LCS measurement outputs
was shorter than one day. The first 24 h of all LCS data were
thus removed and not included in this study. The AS-B431 is
an LCS which measures O3 and NO2 (Alphasense, 2024b).
For the correct measurement of ambient O3 using an AS-
B431 unit, data of a LCS measuring NO2 is required for the
O3 calibration model. For this purpose, we used an AS-B43F
unit. The modelled calibration functions for the estimation of
O3 included by default the LCS output of both Alphasense
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sensor units. The Alphasense sensors provided voltages as
measurement outputs by default. Like Bigi et al. (2018), we
calculated the net voltage of every Alphasense sensor de-
rived from the difference between the working and auxiliary
electrodes. The calculated net voltages became an input for
the modelled calibration functions next to the meteorological
variables air temperature and relative humidity, which affect
the LCS output as environmental interferences.

The system time of the AELCM units (UTC) was adjusted
to the system time of the AEMS (CET). Raw LCS and AEMS
reference measurements were aggregated to hourly means
for LCS calibration. This resulted in calibrated hourly values
of gas and PM sensors. Calibrated PM2.5 sensor measure-
ments were aggregated to daily means. Hourly means of gas
sensor data and daily means of PM sensor data were required
for the performance evaluation of LCSs according to the
technical specifications (TSs) developed by CEN (CEN/TS
17660-1:2021, 2021; CEN/TS 17660-2:2024, 2024) and the
test protocols developed by EPA (Duvall et al., 2021a, b). As
a result, PM2.5 measurements provided by the AEMS were
also aggregated to daily means for evaluation. The missing
values in the air pollution reference data were caused by
regular maintenance, device malfunctions or due to power
grid tests at the University Hospital. The missing values in
the meteorological data were due to device malfunctions of
the weather station. The LCS measurement data for each
AELCM unit was nearly complete, with very few missing
values, similar to the data in Gäbel et al. (2022). 100 % and
at least 80 % of the data had to be available for the hourly
aggregation of reference measurements of gaseous air pollu-
tants and meteorological variables, respectively. For the cal-
culation of the key performance metric in the TS by CEN
(CEN/TS 17660-2:2024, 2024), the minimum data capture of
the SAG-SPS30 was set to 90 %. Therefore, the daily means
of PM2.5 resulting from reference and LCS data were only
valid if at least 90 % of the hourly averages were available
within a 24 h period. Note that the data completeness cri-
terion is less strict in the PM sensor test protocol by EPA.
There, the daily mean PM2.5 concentration is calculated on
at least 75 % of hourly averages within a 24 h period (Duvall
et al., 2021a). The SAG-SPS30 for the measurement of PM
provides outputs in mass concentrations by default.

For gaseous air constituents the devices in the AEMS and
the model-calibrated LCS devices provided measurements
in the unit parts per billion (ppb). Hence for the calculation
of mass concentrations the hourly aggregated meteorological
measurements of the integrated weather station of the AEMS
were used. Mass concentrations were needed for the perfor-
mance evaluation of ambient air quality sensors for gaseous
pollutants following the TS developed by CEN (CEN/TS
17660-1:2021, 2021). We solely used low-cost meteorolog-
ical data from the Bosch BME280 sensors as input for the
calibration models (Sect. 2.4). To calculate mass concentra-
tions from the output of the calibration models we did not
rely on BME280 meteorological data but used the weather

station data. The former are highly biased due to solar radia-
tion. The bias stems from solar heating of the AELCM units,
which could not be mitigated by the integrated fan. The fan
causes an exchange of air between the inside and outside yet
does not reduce the heating effect. It is planned to equip the
AELCM units with radiation shields in the future to reduce
the effect of solar radiation on the low-cost meteorological
measurements.

2.4 LCS calibration and model tuning

We built and evaluated four regression models (calibration
models) for each LCS to estimate air pollution levels based
on their data output (hourly means), accounting for envi-
ronmental influences on sensor output and reference mea-
surements (AEMS). The regression models were Multiple
Linear Regression (MLR), Ridge Regression (RR), Random
Forest (RF) and Extreme Gradient Boosting (XGB). Mov-
ing forward we will call these calibration models. Every
calibration model consisted of a target variable to be pre-
dicted, and features used for prediction. As the target we de-
fined the ambient air pollutant concentration of a specific air
substance (AEMSO3 , AEMSNO2 , AEMSCO, AEMSPM2.5).
As features used for prediction, we used the raw LCS out-
put. The LCS output can be classified into the net voltages
measured by each Alphasense sensor (VOX_10, VOX_09,
VNO2_10, VNO2_09, VCO_10, VCO_09), the mass concentra-
tions measured by each Sensirion PM sensor (SPS30_10,
SPS30_09) and the air temperatures (T _10, T _09) and rela-
tive humidities (RH_10, RH_09) provided by each BME280.

We chose MLR models because MLR is still the most
common basic approach in the literature to develop calibra-
tion models for LCSs (Karagulian et al., 2019). In this paper,
we used MLR with the setup as in Gäbel et al. (2022) ex-
tended by an interaction term according to Bigi et al. (2018)
as the reference calibration approach next to machine learn-
ing approaches, i.e. RF (Breiman, 2001) and XGB (Chen
and Guestrin, 2016). Also RR was applied (Friedman et al.,
2010), which includes an approach to adjust for collinearity
between model features. For the development of the MLR
models, we considered the usual MLR model assumptions
and checks, including the inspection of the residuals as well
as the findings from the work of Bigi et al. (2018) and Hasan
et al. (2023). In view of the findings of Bigi et al. (2018),
we have used net voltages and a term for the interaction be-
tween net voltages and air temperature as features. Further-
more, Hasan et al. (2023) found a calibration model perfor-
mance improvement using O3 and NO2 sensors, when they
added the output of a low-cost CO sensor as a feature. We
took both findings into account for our own calibration mod-
els. The selected features for every calibration model can be
found in Table 2 (O3 and PM2.5) and in Table S53 (NO2 and
CO).
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Table 2. Model variables for the development of the calibration functions based on MLR, RR, RF and XGB.

Calibration Model O3 Model Features PM2.5 Model Features [Target]

MLR VOX , VNO2 , VCO, RH, T , VOX × T SPS30, RH, T , log(SPS30), [log(AEMSPM2.5)]∗

RR VOX , VNO2 , VCO, RH, T SPS30, RH, T

RF VOX , VNO2 , VCO, RH, T SPS30, RH, T

XGB VOX , VNO2 , VCO, RH, T SPS30, RH, T

∗ This target is shown because it is transformed in the MLR calibration model configuration.

The development of the calibration models for the LCS
data of both AELCM units using RF, XGB and RR had the
following steps: (1) Pre-processing of data provided by the
AEMS (Reference) and AELCM units (LCSs) according to
Sect. 2.3; (2) Tuning of selected model hyperparameters dur-
ing the first 5 months of the collocation period using the
repeated holdout method (10 evaluation periods), random
search as search strategy and the root-mean-squared error
(RMSE) as performance metric; (3) Applying the best hyper-
parameter configuration to the calibration model, and train-
ing it using a single calibration period (first 5 months of the
collocation period) or an extended calibration period (further
training). For step (2) and step (3) the package mlr3 in the
statistics software R was used (Lang et al., 2019). The mlr3
package and mlr3 ecosystem provide a framework for regres-
sion tasks and a unified interface for working with various
learning algorithms, including the calibration models used in
this work. The selected and tuned model hyperparameters for
RF, XGB and RR can be found in the Supplement as well as
more detailed information on the calibration models and used
R packages (Table S3).

The search strategy random search describes a random
value selection in a pre-defined interval for each to be tuned
model hyperparameter in an independent manner (Bergstra
and Bengio, 2012; Becker et al., 2024). We selected random
search as the search strategy for its simplicity and the possi-
bility to use mixed search spaces (using numeric and integer
hyperparameters) (Becker et al., 2024). Becker et al. (2024)
also mention that random search is often the better choice to
produce more unique values per hyperparameter compared to
grid search under the circumstance that certain hyperparame-
ters only offer a minimal impact on model performance com-
pared to others. Therefore, random search enables a mean-
ingful hyperparameter tuning for multiple models and LCSs
in a reasonable timeframe.

An out-of-sample (OOS) method following a repeated
holdout strategy (Gäbel et al., 2022) was used to identify cal-
ibration models with good performance and optimally tuned
hyperparameters, as estimated by their performance on the
holdout data. Summarizing this method, a random point t in
time (e.g., 30 April 2022 12:00:00 CET) of the time series ts
was chosen to separate the training and evaluation data. The
previous window with reference to t comprising 60 % of ts
was used for training and the following window of 10 % of

ts was used for testing. For 10 repetitions, we received 10
randomly chosen dates t , which separated the training and
evaluation sets. The sizes of the training and evaluation sets
depended on the length of the available LCS time series and
reference data. As mentioned in step (2), for the hyperpa-
rameter tuning process we used the first 5 months of data
per LCS during the collocation period. Finally, considering
the average RMSE based on 10 evaluation periods, we chose
the final hyperparameter configuration for each LCS calibra-
tion model. The hyperparameter tuning process was unique
for each LCS calibration model. No generalized model for a
specific sensor unit was developed.

2.5 Key aspects for exploring a pairwise calibration
strategy

LCSs are measurement instruments that require regular up-
keep to ensure reliable performance. This necessitates ac-
counting for ongoing post-deployment maintenance, includ-
ing recalibration (Peltier et al., 2021; Concas et al., 2021).
However, calibration of LCSs requires substantial effort and
is resource-intensive in general. Carotenuto et al. (2023) con-
cluded that the comparison of LCS measurements against
those from official reference stations for in situ calibration
is often recommended in the scientific literature. Continu-
ous and independent access to high quality equipment (e.g.
laboratory, monitoring station) for reference measurements
would be ideal to establish and maintain low-cost air mea-
surement networks but it is rather difficult to achieve. There-
fore, maintainers of LCS networks are either forced to rely
on their established pre-deployment calibration functions
(single calibration) or to find alternative, advanced network
calibration methods to calibrate sensors in situ on a regu-
lar basis. Both usually rely on the measurement infrastruc-
ture of a third party in some form (e.g. local environmental
agency). Alternative network calibration methods are for in-
stance blind calibration, opportunistic and collaborative cali-
bration and calibration transfer (Maag et al., 2018; Concas et
al., 2021), which increase the level of methodical complexity
compared to a more traditional pairwise calibration strategy
(Delaine et al., 2019). The latter, which can take the form
of collocation calibration, is usually deemed unfeasible as
a network calibration strategy (Mueller et al., 2017; Broday
and The Citi-Sense Project Collaborators, 2017).
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Mueller et al. (2017) argued, that a collocation calibration
using a reference measurement station is time consuming
and that the infrastructure for that approach must be avail-
able in the first place. Broday and The Citi-Sense Project
Collaborators (2017) highlighted the impracticality of rely-
ing on collocations for regular LCS calibration and that in
situ calibration methods could make the widespread use of
LCS air pollution networks more likely. Furthermore, regu-
lar recalibration using a collocation calibration hinders a con-
tinuous data collection in situ, because in situ measurements
are interrupted to calibrate LCSs (Broday and The Citi-Sense
Project Collaborators, 2017; Kizel et al., 2018). In this study
we explore these issues through a calibration methodology,
which involves a pairwise calibration strategy. Moreover, we
analysed if less but more regularly calibrated LCSs and less
complex calibration methods (e.g. collocation) using a con-
tinuous stream of high-quality reference measurements can
be an option to establish easier to manage (but smaller) LCS
networks for long-term in situ measurements.

In most air sensor studies aiming at establishing a long-
term low-cost air quality monitoring network, a pairwise cal-
ibration strategy is not seen as a viable strategy due to the
focus on establishing spatially dense LCS networks. The re-
sources required for pairwise calibration are often not avail-
able and the method is regarded as resource-intensive. Con-
sequently, current and likely future studies will not explore
this method in the same depth as in this study. This tendency
is seen in the main recommendations delivered by other sci-
entific papers (Carotenuto et al., 2023). Indeed, a continu-
ous data collection in situ is an obstacle when a colloca-
tion calibration is applied. This can be avoided by using a
pair of LCS devices in situ. We examined the use of two
AELCM units with the same sensor configuration for one
location. One AELCM unit, which requires recalibration can
be replaced with its partner AELCM unit. It must be noted
that, while continuous, it creates a somewhat inhomogeneous
measurement time series because the same location is alter-
nately measured with two AELCM units.

2.6 Single training vs. extended training

A single training (ST) period represented a continuous time
frame for model calibration. In this work an extended train-
ing (ET) period referred to a non-continuous time frame for
model calibration, which was longer than the former. Non-
continuous meant, that there were gaps of defined length
between blocks of continuous data. Together these blocks
served as the training data used for training the final calibra-
tion model. We also investigated the influence of the length of
gaps on the model performance. As a baseline for reference,
we used the model trained on the single, shorter training pe-
riod. This approach helped us to examine the overall benefit
of longer training periods on model performance given that
sensors degrade over time. Also, we investigated if shorter
gaps influence the model performance considering the sea-

sonal variability of air pollution and that sensor performance
can vary with season due to time-varying effects of environ-
mental interferences.

The outline of the approach is shown in Fig. 2. Since the
primary goal of an air quality monitoring system equipped
with LCSs is to collect continuous measurements from a
location outside a station site used for collocation calibra-
tion, we simulated the use of two calibrated LCS measure-
ment systems alternately in the field. These two LCS mea-
surement systems were represented through AELCM009 and
AELCM010. Using both AELCM units, we received a con-
tinuous time series of in situ air pollution measurements.
These in situ measurements are represented through the test
periods (TPs) in Fig. 2. By merging the blocks of continu-
ous data (TP1 to TP7), we created a continuous time series in
the field. Individual calibration models for each AELCM unit
were trained using a ST period or an ET period. ST used ap-
proximately 5 months of hourly reference data and LCS data
to train a final calibration model for each individual LCS. ET
offered more training data across different seasons, which re-
flects the aspect of regular LCS recalibration using reference
monitors at a collocation site to guarantee long-term consis-
tent data quality. The ST served as a reference to investigate
whether there is an actual benefit in extending the training
period.

Figure 2 shows ET lengths of 1 month and the testing
data blocks. We experimented with a length of 1, 2 and 3
months to study the influence on the model performance. In a
LCS network setting, an ET length of 3 months would mean,
that an AELCM unit would take in situ measurements for 3
months before being replaced by another calibrated AELCM
unit. Therefore, the former unit can be relocated to the col-
location site for 3 months to extend its training data and to
quality check its data before switching places again with the
latter unit. Please note, that we were restricted by the overall
collocation campaign length of 1 year. Selecting 5 months for
the ST period, as shown in Fig. 2, resulted in seven months
being available to fit the following data blocks, which were
defined by the ET lengths. Two- and three-month ETs cre-
ated a remainder of 1 training month at the end of the mea-
surement campaign, which we used as well for the ET to not
waste training data.

For the ET setup all training data blocks were employed
for training a calibration model. Thus, we performed an a
posteriori evaluation of the introduced pairwise calibration
strategy including the introduced calibration models and ET
lengths based on different performance metrics.

2.7 Performance metrics and target values

To quantify the impact of using an ET approach compared
to a ST approach, we mostly applied commonly used and
recommended performance metrics in LCS studies (Karagu-
lian et al., 2019; Concas et al., 2021) and target values pro-
vided by EPA and CEN (Duvall et al., 2021a, b; CEN/TS
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Figure 2. Schematic representation of the pairwise calibration strategy and calibration model development as a flow diagram (top) and a time
series scheme (bottom) using two LCS measurement systems (AELCM009 and AELCM010). The ST period (11 January–10 June 2022)
and the ET period as well as the numbered one-month test periods (TPs) for each LCS measurement system are shown. The thickness of the
coloured lines in the flow diagram visually represents the amount of training data used for ET of the calibration model compared to ST.

17660-1:2021, 2021; CEN/TS 17660-2:2024, 2024). These
performance metrics are the RMSE, R2, mean absolute error
(MAE), relative expanded uncertainty (REU), spearman rank
correlation (Rs) as well as the regression slope and intercept.
Here, a simple linear regression between model-calibrated
LCS data and AEMS reference data provide the slope and in-
tercept (Duvall et al., 2021a, b). Most of the mentioned met-
rics are commonly used to describe LCS calibration model
performance in regards of bias, noise, linearity and error
(Karagulian et al., 2019; Duvall et al., 2021a, b; Yatkin et
al., 2022; Diez et al., 2022).

We analysed the consequences of ET by using a cohesive
view of performance metrics and target values, introduced
through state-of-the-art test programs. A major challenge for
potential end-users of LCSs is to interpret the calculated per-
formance metrics and thus to infer if a LCS is a good fit for
an intended application (Diez et al., 2022). Recognized or-
ganizations linked with governmental bodies like CEN and
EPA started to develop frameworks in the form of test proto-
cols, which can be used to check the suitability of LCSs for
air quality monitoring applications. We used the performance

metrics and associated categorizations given by state-of-the-
art test programs as a reference to contextualize our study
results. However, we emphasize that due to methodological
differences, our testing framework for air sensors does not
fully align with those of EPA and CEN.

So far, the EPA offers target values for O3, NO2, CO, SO2,
PM2.5 and PM10 air sensors through their testing protocols.
According to EPA, the introduced performance metrics and
their corresponding target values are the result of the cur-
rent state of knowledge, based on, for example, literature re-
views, findings from other organizations that conduct routine
sensor evaluations and EPA’s own expertise in sensor evalu-
ation research (Duvall et al., 2021a, b). The current EPA test
protocols include target values for the RMSE, R2, regression
slope, intercept, standard deviation and coefficient of varia-
tion. We used most of these target values in our benchmark
experiment to assess how our pairwise calibration strategy
influences the recognition of the presented LCSs as NSIM
devices as defined by EPA. In this study, we did not include
the standard deviation or coefficient of variation. Since we
used only two LCSs per air pollutant, our experimental setup
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did not fulfil the requirements to calculate both performance
metrics according to EPA’s test protocols.

The REU is a performance metric, which is used for
the assessment of the compliance of data quality objec-
tives (DQOs) set in the European Air Quality Directive
(AQD) 2008/50/EC (Directive 2008/50/EC, 2008; Yatkin et
al., 2022). The REU is used in LCS studies (Spinelle et al.,
2015; Castell et al., 2017; Cordero et al., 2018; Bigi et al.,
2018; Liu et al., 2019; Bagkis et al., 2021; Ratingen et al.,
2021; Bagkis et al., 2022), yet it is not a common sight to
describe measurement uncertainty (Karagulian et al., 2019).
While LCSs currently cannot meet the strict requirements for
reference measurements in the AQD, their measurements can
at least meet less strict DQOs. For this reason, LCSs can pro-
vide valuable supplemental information like indicative mea-
surements next to regulatory fixed measurements provided
by air quality stations for the assessment of air quality. This is
acknowledged through the recently developed European TSs
by CEN for gas sensors and PM sensors (CEN/TS 17660-
1:2021, 2021; CEN/TS 17660-2:2024, 2024). Both CEN/TSs
present classification schemes for LCSs, which respect the
requirements for indicative measurements (class 1) and ob-
jective estimation (class 2) defined in the AQD Directive
2008/50/EC (2008). Furthermore, the CEN/TSs offer a clas-
sification for LCSs, being out of scope of the DQOs set in
the AQD. Those LCSs fulfil more relaxed performance crite-
ria and provide non-regulatory measurements (class 3). For
instance, LCSs classified as class 3 air sensors can be ap-
plied in citizen science studies or can be used for educational
purposes to raise environmental awareness. Finally, to clas-
sify the LCSs as class 1, class 2 or class 3 air sensor de-
vices, we only used the REU estimated at the air pollutant
limit values (LVs) in accordance with CEN/TSs (CEN/TS
17660-1:2021, 2021; CEN/TS 17660-2:2024, 2024). The
LVs were obtained from CEN/TSs (CEN/TS 17660-1:2021,
2021; CEN/TS 17660-2:2024, 2024). The DQO of class 1,
class 2 and class 3 correspond to specific REUs defined in the
CEN/TSs for each air pollutant (Tables S1 and S2). Recently,
the global air quality guidelines were updated by the World
Health Organization (WHO) based on the latest systematic
reviews of exposure-response studies (WHO, 2021). The Eu-
ropean Union Parliament and the European Council agreed to
a new revised AQD because of this development (Directive
(EU) 2024/2881, 2024). The latest revised Directive (EU)
2024/2881 aligned its standards closer to the latest WHO air
quality guidelines and introduced stricter LVs and updated
DQOs for indicative measurements and objective estimation.
Please note, that the presented CEN/TSs might change in the
future to reflect the changes in Directive (EU) 2024/2881. It
should also be noted that the LCS evaluation was performed
only at a single urban background site (AEMS). The TSs by
CEN call for evaluations at different sites, for instance, test-
ing NO2 sensors at traffic and background sites. To visualize
the REU in the statistics software R we followed the study
of Diez et al. (2022) as a reference, who made their code

and data available. Furthermore, we used different smoothers
(GAM, LOESS) in the REU figures depending on the sample
size of the calibration data (Figs. 9, 10, 11, 12).

We calculated the REU according to the Guide for the
Demonstration of Equivalence (GDE) following the in-
troduced CEN/TSs (GDE, 2010; CEN/TS 17660-1:2021,
2021; CEN/TS 17660-2:2024, 2024). The REU is calculated
through Eq. (1):

REU(yi)=
2
(

RSS
(n−2)

− u2 (xi)+ [b0+ (b1− 1)xi]2
)1/2

yi

× 100, (1)

with

RSS=
∑

(yi − b0− b1xi)
2,

where b0 is the intercept and b1 the slope of the orthog-
onal regression of yi against xi . xi are the reference mea-
surements given through the measurement instruments of the
AEMS and yi are the model-calibrated LCS measurements
provided by the AELCM units, which together form n pairs
of observation data. RSS is the residual sum of squares re-
sulting from the orthogonal regression. u describes the uncer-
tainty of the AEMS measurement instrument, which was ob-
tained for every AEMS measurement instrument through the
CEN/TSs (CEN/TS 17660-1:2021, 2021; CEN/TS 17660-
2:2024, 2024).

3 Results and discussion

3.1 Air pollution and meteorological situation

The environmental conditions and pollution concentrations
based on hourly means are provided in Table 3. In our
work, every LCS showed the premise of being a good-quality
source of information according to the Rs (Table 3). We used
the hourly means of the raw output of the LCSs and of the
reference station AEMS to calculate Rs. In view of the ob-
served gas concentration ranges in Table 3 and the LVs in the
CEN/TS, it can be inferred that the LVs for CO (10 mg m−3)
and NO2 (200 µg m−3) were not reached at the measurement
site. Thus, we could not classify the sensors according to
CEN/TS 17660-1:2021 (2021). Classifications according to
CEN/TS 17660-1:2021 (2021) and CEN/TS 17660-2:2024
(2024) were possible for O3 and PM2.5 since the hourly LV
for O3 (120 µg m−3) and the daily LV for PM2.5 (30 µg m−3)
were reached in their respective TPs. Given the observed
concentration ranges for each air pollutant at our urban back-
ground collocation site (Table 3), we decided to do an in-
depth analysis focussing on the O3 and PM2.5 LCSs in this
study. Nevertheless, the analytical results for the employed
CO and NO2 LCSs are provided in the Supplement of this
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Table 3. Statistics based on the hourly means of the different atmospheric variables measured by the AEMS from January 2022 to January
2023. For the calculation of the Rs all raw hourly LCS data for every individual sensor are used from AELCM009 and AELCM010. The
AEMS data are used as reference for the correlation.

Measured Timespan Min. 5th 25th Mean 75th 95th Max. Rs
Variable (dd/mm/yy) Percentile Percentile Percentile Percentile AELCM

009/010

O3 (ppb) 11/01/22–11/01/23 0.03 1.07 12.19 26.43 37.97 58.42 81.87 0.75/0.68
NO2 (ppb) 11/01/22–10/01/23 0.02 1.01 2.62 7.23 10.10 19.99 38.54 0.75/0.77
CO (ppb) 11/01/22–10/01/23 74.35 94.53 117.83 181.46 213.52 368.11 1013.46 0.85/0.83
PM2.5 (µg m−3) 11/01/22–06/01/23 0.14 1.78 4.41 9.72 12.92 24.91 153.22 0.95/0.95
Temperature (°C) 11/01/22–11/01/23 −10.02 −1.39 4.97 11.29 17.14 24.98 35.65 0.99/0.99
Relative Humidity (%) 11/01/22–11/01/23 18.69 35.31 58.24 71.48 87.29 92.60 96.33 0.91/0.96
Pressure (hPa) 11/01/22–11/01/23 937.2 949.1 958.7 962.5 966.9 973.8 983.1 – /–

study. This is because the thresholds for the averaged con-
centrations of each air pollutant at the urban background col-
location site were met at least once, as recommended by EPA
(Duvall et al., 2021a, b). The recommended thresholds are
1 h average concentrations of 60 ppb for O3, 30 ppb for NO2,
and 500 ppb for CO. The recommended threshold for the 24 h
average is 25 µg m−3 for PM2.5. The EPA suggests that these
averaged concentrations must be reached at least once during
a (30 d) TP (Duvall et al., 2021a, b).

3.2 Baseline single training results

We evaluated the calibration model output with respect to
the training period and TP of each LCS targeting a specific
air substance. The performance metrics in Table 4 highlight
the general robustness and overall good performance of the
found calibration models. All LCS models for O3 and PM2.5
for both AELCM boxes were able to reflect well the pat-
terns in the reference data. For the O3 calibration models, R2

ranged from 0.92 to 1.00 during the training period and from
0.93 to 0.98 during the TP. For the PM2.5 calibration models,
R2 ranged from 0.93 to 0.97 during the training period and
from 0.84 to 0.93 during the TP. Considering the sensor er-
ror target by EPA (RMSE≤ 5 ppb), it was reached for every
O3 sensor calibration model applied to the training period
(RMSE: 0.80–4.35 ppb). It was mostly reached or at least
approached during the TP (RMSE: 3.62–5.84 ppb). Instead
of hourly means, the recommended performance metrics and
target values by EPA for PM2.5 are based on 24 h averages
(e.g. RMSE≤ 7 µg m−3). Nevertheless, given the results for
the model-adjusted hourly means of the PM2.5 air sensor out-
put for the training period (RMSE: 1.45–2.51 µg m−3) and
the TP (RMSE: 2.04–3.02 µg m−3), the PM2.5 sensor error
target was met for each calibration model if this criterion is
applied to hourly means.

While the O3 sensor calibration models based on the ma-
chine learning techniques RF and XGB performed the best
in regards of R2, MAE and RMSE in the training period,
it is not the case in the TP. Table 4 shows the results of a
single calibration using different calibration models, which

are trained on data from January to June 2022 (ST period).
The tree-based algorithms represented through RF and XGB
have the constraint, that they are bound by their calibration
space (Bigi et al., 2018). Tree-based models can only esti-
mate within the bounds of the calibration space (Bigi et al.,
2018), which is defined by the training dataset, and show
poor extrapolation ability (Yu et al., 2024). MLR and RR do
not have a constraint like tree-based models in regards of cal-
ibration space. Given the described limitations of tree-based
models, it is understandable that their performance decreases
more strongly from the training to the test period compared
with the MLR and RR approaches. MLR and RR calibration
models seem to be an appropriate choice for low-cost O3 air
sensors in a ST setup. Apparently, there is no meaningful
performance benefit in using tree-based calibration models
given the calculated performance metrics for the TP in Ta-
ble 4. The same holds true for PM2.5. Given that a training
period spans several months, MLR and RR calibration mod-
els should be used instead of tree-based models, if the goal
is to calibrate the chosen O3 and PM2.5 LCSs in a ST setup.
This is further explained in Sect. 3.3.

Identical LCS units like the calibrated AS-B431 and SAG-
SPS30 units performed differently at the same location when
inspecting the calculated R2, RMSE and MAE values. The
raw output data produced by the AS-B431 for O3 (net
voltages) and the SAG-SPS30 for PM2.5 (mass concentra-
tions) of both AELCM boxes were almost perfectly corre-
lated (R2

≥ 0.97) during the collocation period. This implies
changes in sensor signals were responses to changing envi-
ronmental conditions (e.g. air pollution, ambient temperature
and humidity) and not related to sensor-to-sensor variabil-
ity. Bittner et al. (2022) reported the same behaviour for Al-
phasense EC gas sensors. Performance differences between
the same LCS model units after calibration are possibly re-
lated to the varying performance of the other sensors used in
the LCS calibration models.

Atmos. Meas. Tech., 19, 1293–1321, 2026 https://doi.org/10.5194/amt-19-1293-2026



P. Gäbel and E. Hertig: Recalibration of low-cost O3 and PM2.5 sensors 1303

Table 4. Performances of LCS calibration models (MLR, RR, XGB, RF) for O3 and PM2.5 for each AELCM box using hourly means.
Results are for the O3 training dataset (11 January, 19:00:00–10 June 2022, 18:00:00 CET) and O3 test dataset (10 June 2022, 19:00:00–11
January 2023, 17:00:00 CET) as well as for the PM2.5 training dataset (11 January, 19:00:00–10 June 2022, 18:00:00 CET) and PM2.5 test
dataset (10 June 2022, 19:00:00–7 January 2023, 00:00:00 CET).

Model target Training R2 Training MAE Training RMSE Test R2 Test MAE Test RMSE
(ppb) (ppb) (ppb) (ppb)

O3 (MLR, 009) 0.98 1.57 1.97 0.98 2.49 3.62
O3 (MLR, 010) 0.93 3.05 3.84 0.93 4.05 5.13
O3 (RR, 009) 0.97 2.00 2.52 0.97 2.98 3.91
O3 (RR, 010) 0.92 3.51 4.35 0.94 3.69 4.81
O3 (XGB, 009) 0.99 0.84 1.07 0.97 2.97 3.75
O3 (XGB, 010) 0.99 1.44 2.08 0.93 4.21 5.84
O3 (RF, 009) 1.00 0.59 0.80 0.96 3.42 4.51
O3 (RF, 010) 0.99 0.80 1.08 0.93 3.87 5.12

Training R2 Training MAE Training RMSE Test R2 Test MAE Test RMSE
(µg m−3) (µg m−3) (µg m−3) (µg m−3)

PM2.5 (MLR, 009) 0.95 1.22 1.90 0.92 1.54 2.69
PM2.5 (MLR, 010) 0.96 1.18 1.85 0.93 1.13 2.04
PM2.5 (RR, 009) 0.93 1.76 2.48 0.89 1.82 2.63
PM2.5 (RR, 010) 0.94 1.58 2.27 0.91 1.38 2.04
PM2.5 (XGB, 009) 0.94 1.46 2.29 0.84 1.55 2.97
PM2.5 (XGB, 010) 0.95 1.37 2.51 0.85 1.39 3.02
PM2.5 (RF, 009) 0.97 0.97 1.56 0.87 1.37 2.85
PM2.5 (RF, 010) 0.97 0.90 1.45 0.89 1.06 2.35

3.3 Extended training results and EPA performance
targets

To assess seasonal differences in air sensor performance we
calculated the suggested performance metrics by EPA on a
30 d basis, namely the RMSE (error), R2 (linearity), slope
(bias) and intercept (bias). The EPA also provided target val-
ues for each of these performance metrics, which are high-
lighted in red in the circular bar plots (e.g. Fig. 3). We used
the absolute value of the calculated intercept and the dif-
ference between the calculated model slope and the ideal
slope of 1. We did this for each calibration model to improve
the interpretability of the figures. The original intercepts and
slopes can be found in the Supplement (Tables S29–S52).
Circular bar plots are a visual tool to evaluate the benefit of
using the ET instead of the ST approach to enhance the qual-
itative and quantitative validity of calibrated LCS output. In
addition, they enhance the visual distinction between the dif-
ferent calibration techniques, i.e. MLR, RR, and the machine
learning algorithms RF and XGB.

For the most part, O3 sensor calibration model perfor-
mance benefitted from an ET. According to Figs. 3, 4 and 5,
the performance gains highly varied in magnitude depending
on the performance metric (Intercept, slope, RMSE, R2), ET
length (1 month to 3 months) and calibration model (MLR,
RR, RF and XGB). For ETs of 1 month, 2 months and 3
months and for each calibration model both calibrated O3
sensors correlated quite well with the hourly reference data

during summer, autumn and winter. This is reflected through
R2 (R2 (ST): 0.79–0.98; R2 (ET): 0.86–0.98). Only once
the target value range for R2 was missed, which was for
AELCM010 and the RF calibration model in TP5 for the
ST variant. But an ET resulted in reaching the target value
range for R2 in TP5 for this calibration model. To summa-
rize, a ST period of 5 months was almost sufficient to reach
the target value range for R2 (R2

≥ 0.80) for each TP and O3
sensor calibration model. High R2 values for the calibrated
O3 sensor units of the same type (AS-B431) for periods asso-
ciated with Northern Hemisphere winter and warmer months
(“ozone season”) are in agreement with other LCS studies
(Zimmerman et al., 2018; Zauli-Sajani et al., 2021). For all
ET configurations, the performance of MLR and RR in terms
of R2 was comparable to the RF and XGB machine learning
techniques.

We found a distinct difference in gas sensor performance
for R2 between warmer periods and colder periods for the
employed NO2 and CO sensors, which implied the exis-
tence of limiting factors in sensor calibration. Generally, TP4
(≈ September) was the first TP, where NO2 and CO sen-
sor calibration models entered the R2 target range recom-
mended by EPA for NO2 sensors (R2

≥ 0.70) and CO sensors
(R2
≥ 0.80) (Figs. S5, S6, S7, S12, S13, S14). In the follow-

ing months (TPs), NO2 and CO sensor calibration models
were available, which performed in the boundaries of their
targeted R2 range. We assume for TP1 till TP3, that an inter-
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Figure 3. Performance metrics of the single O3 LCS in each AELCM box, calculated from hourly mean values after calibration. Metrics are
presented for each calibration model, TP, and calibration variant (ST and ET). Models are ordered by performance from highest to lowest in
each period. The ET is characterized by the one-month variant for each AELCM box. Values highlighted in red describe the least accepted
target value given by EPA for each performance metric (|Intercept| (a), RMSE (b), 1Slope (c), R2 (d)).
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Figure 4. Performance metrics of the single O3 LCS in each AELCM box, calculated from hourly mean values after calibration. Metrics are
presented for each calibration model, TP, and calibration variant (ST and ET). Models are ordered by performance from highest to lowest in
each period. The ET is characterized by the two-month variant for each AELCM box. Values highlighted in red describe the least accepted
target value given by EPA for each performance metric (|Intercept| (a), RMSE (b), 1Slope (c), R2 (d)).
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Figure 5. Performance metrics of the single O3 LCS in each AELCM box, calculated from hourly mean values after calibration. Metrics are
presented for each calibration model, TP, and calibration variant (ST and ET). Models are ordered by performance from highest to lowest in
each period. The ET is characterized by the three-month variant for each AELCM box. Values highlighted in red describe the least accepted
target value given by EPA for each performance metric (|Intercept| (a), RMSE (b), 1Slope (c), R2 (d)).
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play between environmental interferences and limited sensor
sensitivity at lower ambient concentrations of NO2 and CO
played a crucial role for the overall low sensor performances
in those warmer periods. The findings in other studies sup-
port this assumption (Cross et al., 2017; Hagan et al., 2018).
The mean reference values for NO2, CO, air temperature and
relative humidity for each TP can be found in the Supple-
ment (Figs. S3 and S4). In the warmer periods, MLR and RR
LCS calibration models performed notably worse for NO2
sensors, as reflected in the R2 values. The increased air tem-
peratures at low pollutant concentrations during these peri-
ods might have introduced non-linearities to the sensor sig-
nals (Cross et al., 2017; Hagan et al., 2018). Consequently,
non-linear models (RF and XGB) outperformed linear mod-
els (MLR and RR).

An extension of the training period for the O3 and PM2.5
calibration models had overall only a small impact on R2,
when comparing the LCS calibration models between their
ST and ET variants (Figs. 3, 4, 5, 6, 7, 8). R2 values only oc-
casionally experienced stronger positive changes between at
least 0.05 and 0.09 through ET for some TPs and mainly for
the O3 LCSs and the RF and XGB calibration models (Ta-
bles S29–S52). The correlative performance of the O3 and
PM2.5 calibration models for ST were already quite high.
The calibrated PM2.5 sensors correlated quite well with the
daily reference data during summer, autumn and winter (R2

(ST): 0.76–0.99; R2 (ET): 0.79–0.99). This was observed for
ETs of 1 month, 2 months and 3 months and for each cal-
ibration model. A ST period of 5 months was sufficient to
reach the target value range for R2 (R2

≥ 0.70) for each TP
and PM2.5 sensor calibration model. High R2 values for the
calibrated PM2.5 sensor units (SAG-SPS30) for periods as-
sociated with Northern Hemisphere winter (heating season)
and warmer months are in agreement with other LCS studies.
In these studies the same sensor type was factory-calibrated
or model-calibrated (Vogt et al., 2021; Gäbel et al., 2022;
Shittu et al., 2025). Distinctive benefits for applying an ET
to calibration models were rather identified for performance
metrics, which describe the bias and error.

Using ST, our LCS calibration models were trained on
data between January and June. The TPs TP1 till TP3 (≈
June–September) in Figs. 3, 4 and 5 are the most relevant
TPs for the assessment of the performance (Intercept, slope,
RMSE) of our O3 sensor calibration models. This is due to
elevated O3 concentrations and the health relevance of O3
during these periods in the Northern Hemisphere (Hertig et
al., 2019; Jahn and Hertig, 2021). TP1 is the only period,
where we can see a change in performance of LCS calibra-
tion models for a single O3 sensor (AELCM010) depending
on ET length over all introduced ET lengths (ETs of 1, 2 and
3 months).

Overall, the bias worsens with ET lengths of 2 months
and 3 months. The most pronounced degradation of inter-
cept and slope can be seen for RF and XGB. A reduction of
the amount of summer training data provided by AELCM010

leads to a meaningful reduction of the calibration space for
the XGB and RF calibration models. While the XGB cali-
bration model with ETs of 1 month almost reached the inter-
cept target value range (|Intercept| ≤ 5 ppb) in TP1, not a sin-
gle calibration model even approached the target value range
with other ET lengths. The RF and XGB calibration models
using only ST and ETs of 3 months were outside the slope
target value range (1Slope≤ 0.2) in TP1. The decrease in
performance was also reflected in a decrease of the number of
calibration models, which were within the target value range
for the RMSE (RMSE≤ 5 ppb). Most calibration models did
not achieve the target RMSE range during TP1. At most two
models achieved a sufficiently low RMSE in TP1, both us-
ing ET lengths of 1 month (XGB and RF). Considering all
calculated performance metrics derived from Figs. 3, 4 and 5
in TP1, the XGB calibration model with ETs of 1 month was
almost able to reach all target values provided by EPA. Look-
ing at TP1 and TP3 with respect to bias and error, in general
XGB and RF calibration models suffered the most under a
lack of training data (ST variant) and a loss of summer train-
ing data due to longer ETs. The former scenario reflects an
absence of recalibration, whereas the latter reflects a reduced
recalibration cycle (two- and three-month variants). Compar-
ing the MLR and RR calibration models with XGB and RF
calibration models for AELCM010 in terms of bias and er-
ror in TP1, TP2 and TP3, it becomes evident that applying
ET to the machine learning techniques can yield substantial
improvements. In contrast, the absence of ET may result in
markedly higher bias and error. In these periods the impact
on bias reduction and error reduction due to an ET is more
pronounced for the RF and XGB calibration models related
to the O3 sensor employed with AELCM010.

Considering our experimental setup at an urban back-
ground site as well as the calculated bias and error metrics
for TP1 to TP7, we conclude the following for LCS air pol-
lution studies that aim to make quantitative statements about
O3 employing AS-B431 sensor units: (1) MLR and RR cali-
bration models should be employed when ET cannot be ap-
plied, but a single multi-month training period is available,
which accounts for seasonal variations in atmospheric con-
ditions (meteorological and air pollution factors) and thus a
wide range of environmental influences on the sensor signal.
(2) If ET is applicable in the form of monthly recalibration,
RF and XGB calibration models appear to be the most sensi-
ble choice.

Unlike for O3, all TPs shown in Figs. 6, 7 and 8 were
relevant for assessing the performance of our PM2.5 sen-
sor calibration models. From a health perspective, unhealthy
levels of PM2.5 can be present throughout the year due to
the diverse sources of ambient PM2.5. Main anthropogenic
sources include industrial emissions, ground transport emis-
sions, biomass burning and the secondary formation of fine
PM classified as PM2.5 (Thunis et al., 2021; Gu et al., 2023;
Chowdhury et al., 2023; Zauli-Sajani et al., 2024). Natu-
ral sources of fine particles include wildfires (Chowdhury
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Figure 6. Performance metrics of the single PM2.5 LCS in each AELCM box, calculated from daily mean values after calibration. Metrics
are presented for each calibration model, TP, and calibration variant (ST and ET). Models are ordered by performance from highest to lowest
in each period. The ET is characterized by the one-month variant for each AELCM box. Values highlighted in red describe the least accepted
target value given by EPA for each performance metric (|Intercept| (a), RMSE (b), 1Slope (c), R2 (d)).
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Figure 7. Performance metrics of the single PM2.5 LCS in each AELCM box, calculated from daily mean values after calibration. Metrics
are presented for each calibration model, TP, and calibration variant (ST and ET). Models are ordered by performance from highest to lowest
in each period. The ET is characterized by the two-month variant for each AELCM box. Values highlighted in red describe the least accepted
target value given by EPA for each performance metric (|Intercept| (a), RMSE (b), 1Slope (c), R2 (d)).
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Figure 8. Performance metrics of the single PM2.5 LCS in each AELCM box, calculated from daily mean values after calibration. Metrics are
presented for each calibration model, TP, and calibration variant (ST and ET). Models are ordered by performance from highest to lowest in
each period. The ET is characterized by the three-month variant for each AELCM box. Values highlighted in red describe the least accepted
target value given by EPA for each performance metric (|Intercept| (a), RMSE (b), 1Slope (c), R2 (d)).
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et al., 2024) and dust events, such as Saharan dust trans-
ported to different latitudes (Varga et al., 2021). Generally,
weather conditions and the atmospheric state influence the
transport, mixing ratio, transformation and deposition of air
substances; hence they are important factors defining the air
quality level (Russo et al., 2014, 2016; Bodor et al., 2020;
García-Herrera et al., 2022; Dayan et al., 2023; Du et al.,
2024).

A MLR calibration model was the only one that sat-
isfied all EPA recommendations for PM2.5 sensor bias
(|Intercept| ≤ 5 µg m−3; 1Slope≤ 0.35) in all TPs, which is
shown in Figs. 6, 7 and 8. Here, the MLR calibration model
with ET reached the target range for the slope in TP1, which
the other calibration models did not. The intercept target
range was met by all calibration models with ST in each TP.
No ET was needed here. The same applied for the PM2.5
sensor error target range (RMSE≤ 7 µg m−3). Considering
how often a MLR calibration model was the best perform-
ing model in regards of sensor bias and sensor error, we
conclude that a MLR calibration model is sufficient to im-
prove the quantitative validity of raw SAG-SPS30 data. RF
and XGB did not offer a substantial alternative, visible by
their performance metrics. This is emphasized for instance
in Fig. 7, where the best-performing machine learning model,
RF with ET, barely offers more than a small performance im-
provement compared to a MLR calibration model with ST.
Looking at all ST and ET calibration models, there is gen-
erally very little change in quantitative performance follow-
ing an ET approach. In our collocation experiment, the cho-
sen ST period appears to be sufficient to train robust calibra-
tion models, which perform well in the following TPs in an
urban background setting. Therefore, recalibration appears
largely unnecessary for the SAG-SPS30 when considering
only the EPA performance targets discussed in this section,
rather than the more stringent DQOs outlined in Sect. 3.4.
This is particularly notable given that both the RF and MLR
calibration models, trained using the ST period, nearly met
the slope target range in TP1.

A calibrated SAG-SPS30 performed usually well in all
performance categories in each TP. This could be due to
the raw sensor data quality, which may be influenced by
the technical integration of the measurement principle into
the SAG-SPS30, or the out-of-the-box calibration algorithm
provided by Sensirion (Vogt et al., 2021). Our calibration
models may have benefited from both aspects. Meeting the
EPA performance recommendations through LCS calibra-
tion was less challenging for a SAG-SPS30 than for the Al-
phasense EC gas sensors. An ET is recommended to achieve
the best possible sensor performance for Alphasense EC gas
sensors. They are likely more challenging to maintain be-
cause gas sensor performance is strongly influenced by lo-
cal atmospheric conditions that vary seasonally. In addition,
Alphasense EC gas sensors experience a more pronounced
sensor ageing compared to SAG-SPS30 units. Therefore,
more frequent pairwise recalibrations are expected to im-

prove the calibration process. Our performance results im-
plied (Figs. 3–5, S5–S7, S12–S14, Tables S5–S40), that the
EC LCSs AS-B431, AS-B43F and AS-B4 benefit the most
from a pairwise recalibration every 30 d (one-month ET vari-
ant), where the pairwise calibration gets extended by another
30 d. With two AELCM units and monthly recalibrations,
both units can be recalibrated within the same season while
uninterrupted in situ data collection continues. This allows
us to account for sensor ageing and changing environmen-
tal conditions. Our results, together with those of other stud-
ies, show that the likelihood of well performing calibration
models for the employed LCSs increases with a sufficient
amount of training data (Zauli-Sajani et al., 2021; Nowack
et al., 2021). Moreover, LCS calibration benefits from raw
LCS measurement data that are not dominated by noise at
low concentrations because of sensor sensitivity limits (Zim-
merman et al., 2018).

3.4 Extended training results and data quality
objectives

The EU AQDs Directive 2008/50/EC (2008) and the new Di-
rective (EU) 2024/2881 (2024) provide DQOs for regulatory-
grade measurement devices, which LCSs are not. But LCSs
have a legitimate role alongside those regulatory-grade mon-
itoring systems as air sensors for indicative measurements
and objective estimation. We applied REU plots to analyse
the possible end-use applications of the employed calibrated
AELCM sensors, considering the DQOs and LVs for air sen-
sor classification provided by the CEN/TSs. The DQOs used
in the sensor test protocols CEN/TS 17660-1:2021 (2021)
and CEN/TS 17660-2:2024 (2024) are based on Directive
2008/50/EC (2008). REU plots helped to describe the mea-
surement uncertainty “point by point” of the calibrated LCSs,
complementing the use of single-value error metrics (global
performance metrics) applied in Sect. 3.2 and 3.3 (Diez et al.,
2024). They provide deeper insight into the error structures
and information content of calibrated LCS data (Diez et al.,
2022).

Figures 9 and 10 show the “point by point” LCS mea-
surement uncertainty for the “classical” MLR O3 calibration
models and the machine learning-based RF O3 calibration
models. The fluctuation in measurement uncertainty across
the observed range was greater for the calibrated O3 LCS
data of AELCM010, which is shown in the top rows of the
REU plots. The ST calibrated O3 LCS data of AELCM009
and AELCM010 met the class 1 DQO (REU≤ 30 %), but
the calibrated data of AELCM009 reached it more reliably
even at lower measured concentrations. The REU values at
the O3 LV of 120 µg m−3 indicate that both calibrated O3
LCSs can be classified as class 1 sensor systems. Therefore,
both air sensors can be used for indicative measurements. It
must be said that we did not follow all activities and prin-
ciples, which are relevant for the classification according to
CEN/TS 17660-1:2021 (2021) and CEN/TS 17660-2:2024
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Figure 9. Calculated REU values for MLR calibrated O3 LCS hourly data belonging to the TPs (TP1–TP7, 10 June 2022–11 January 2023)
of AELCM009 and AELCM010. The calibration variants are ST (top row, left: AELCM010, right: AELCM009) and ET (bottom row).
The ET is characterized by ET variants of 1, 2 and 3 months for each AELCM box. Horizontal dashed lines describe the DQOs (O3 Class 1
DQO= 30 %, Class 2 DQO= 75 % and Class 3 DQO= 200 %). The vertical dashed line describes the limit value for O3 (LV= 120 µg m−3).
The fitted smooth curve (red) is based on a generalized additive model (GAM). Data density is shown through colour, where darker colours
express lower data density and brighter colours express higher data density.

(2024). This includes laboratory tests, which were not part
of this study.

As in Sect. 3.2, differences in performance between iden-
tical LCS units are evident once more. In this case, they
are visually detectable across the entire observed concen-
tration range of ambient O3. Global performance metrics
(e.g. RMSE, R2, MAE) cannot reflect this aspect (Diez et
al., 2022). The top rows in both figures (also Figs. S19 and
S20) depict a differing response of the employed calibrated
sensor units to the same environmental conditions experi-
enced at the station site during the collocation period. Pos-
sible reasons for these differences in sensor behaviour were
explained in Sect. 3.2. Extending the calibration model train-
ing period and therefore expanding the calibration space is
advised for machine learning methods, as evidenced by the

REU plots in Figs. 10 and S19. In the three-month ET vari-
ant, AELCM010 was active in TP1 to TP3, the time when
the highest O3 concentrations were observed (Fig. S1). In
the two-month and one-month ET variants, AELCM009 was
active in TP3 and TP2, in that order. The lack of further sum-
mer training data in the three-month ET variant resulted visi-
bly in increased REU values above 100 µg m−3 (Fig. 10, bot-
tom left) for AELCM010. The other two ET variants pro-
vide further summer training data to each RF calibration
model used for the O3 LCSs belonging to AELCM009 and
AELCM010. This resulted in a reduced measurement uncer-
tainty for higher concentrations in TP1 until TP3 (Fig. 10,
bottom middle and bottom right), being not the case for both
RF calibrated LCSs using only ST (Fig. 10, top row). If pair-
wise calibration is considered for a LCS measurement cam-
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Figure 10. Calculated REU values for RF calibrated O3 LCS hourly data belonging to the TPs (TP1–TP7, 10 June 2022–11 January 2023)
of AELCM009 and AELCM010. The calibration variants are ST (top row, left: AELCM010, right: AELCM009) and ET (bottom row).
The ET is characterized by ET variants of 1, 2 and 3 months for each AELCM box. Horizontal dashed lines describe the DQOs (O3 Class 1
DQO= 30 %, Class 2 DQO= 75 % and Class 3 DQO= 200 %). The vertical dashed line describes the limit value for O3 (LV= 120 µg m−3).
The fitted smooth curve (red) is based on a generalized additive model (GAM). Data density is shown through colour, where darker colours
express lower data density and brighter colours express higher data density.

paign, we recommend using two calibrated LCSs meeting the
same DQO, in order to ensure consistent in situ data quality
as demonstrated in Figs. 9 and 10.

Figures 11 and 12 show the “point by point” LCS measure-
ment uncertainty for the PM2.5 calibration models based on
MLR and RF. The MLR and RF calibrated PM2.5 datasets
of AELCM009 exhibited greater measurement uncertainty
across the observed daily means of PM2.5. This is evident
when comparing the ST calibrated datasets of AELCM009
and AELCM010 (Figs. 11 and 12, top row): REU values re-
lated to AELCM009 met the class 1 DQO (REU≤ 50 %)
less consistently compared to the REU values related to
AELCM010. For the ST variant, the LOESS fits at the PM2.5
LV of 30 µg m−3 indicate that the MLR calibrated PM2.5
LCS of AELCM009 can be classified as a class 2 sensor

system for objective estimation (REU≤ 100 %), whereas the
MLR calibrated PM2.5 LCS of AELCM010 can be classi-
fied as a class 1 sensor system for indicative measurements.
RF calibration models suggest that both PM2.5 LCSs accom-
plish the highest tier of sensor systems (class 1), achieving
indicative measurements at the PM2.5 LV. Above 5 µg m−3

both RF calibrated PM2.5 LCSs show (almost) consistently
data meeting the class 1 DQO for the ST variant. The non-
aligning patterns in relative error between the ST calibrated
SAG-SPS30 units indicate that the employed calibrated sen-
sor units respond differently under identical environmental
conditions (Figs. 11, 12, S21, S22), as previously observed
with the AS-B431 units measuring O3.

ET for the MLR and RF calibration models helped to build
continuous LCS time series data that met the class 1 DQO
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Figure 11. Calculated REU values for MLR calibrated PM2.5 LCS daily data belonging to the TPs (TP1–TP7, 11 June 2022–6 January
2023) of AELCM009 and AELCM010. The calibration variants are ST (top row, left: AELCM010, right: AELCM009) and ET (bottom
row). The ET is characterized by ET variants of 1, 2 and 3 months for each AELCM box. Horizontal dashed lines describe the DQOs
(PM2.5 Class 1 DQO= 50 %, Class 2 DQO= 100 % and Class 3 DQO= 200 %). The vertical dashed line describes the limit value for PM2.5
(LV= 30 µg m−3). The fitted smooth curve (red) is based on locally estimated scatterplot smoothing (LOESS). Data density is shown through
colour, where darker colours express lower data density and brighter colours express higher data density.

more consistently, using both calibrated SAG-SPS30 units
(Figs. 11, 12, bottom row). ET to achieve more consistency
in data quality was especially relevant for the PM2.5 LCS em-
ployed with AELCM009. Figure 12 shows, that an ET char-
acterized by the one-month variant was the most beneficial to
reduce measurement uncertainty for higher concentrations of
PM2.5. We conclude that higher sensor system tiers for LCSs
can be achieved through ET, thereby broadening the scope of
applications for a LCS.

3.5 Implications for sustainable LCS networks and
future outlook

Our concept for an effective, sustainable and manageable
LCS network focuses on identifying the main target popu-

lation for health protection from environmental exposures,
such as air pollution and heat. This focus takes into account
the advantages and disadvantages of current LCS technol-
ogy. We consider the most vulnerable people as our main
target group, for instance children, elderly people, outdoor
workers or people with pre-existing health conditions. LCS
measurements can thus be placed at locations with a high
density of vulnerable populations, such as retirement homes,
schools, kindergartens, or outdoor workplaces. Therefore,
we recommend focusing on the characteristics of the mea-
surement scope rather than simply building a spatially dense
LCS observation network. Reducing the amount of LCSs and
efficiently placing them by figuring out at-risk population
hotspots could reduce the management effort using a pair-
wise calibration strategy similar to the one we introduced in
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Figure 12. Calculated REU values for RF calibrated PM2.5 LCS daily data belonging to the TPs (TP1–TP7, 11 June 2022–6 January
2023) of AELCM009 and AELCM010. The calibration variants are ST (top row, left: AELCM010, right: AELCM009) and ET (bottom
row). The ET is characterized by ET variants of 1, 2 and 3 months for each AELCM box. Horizontal dashed lines describe the DQOs
(PM2.5 Class 1 DQO= 50 %, Class 2 DQO= 100 % and Class 3 DQO= 200 %). The vertical dashed line describes the limit value for PM2.5
(LV= 30 µg m−3). The fitted smooth curve (red) is based on locally estimated scatterplot smoothing (LOESS). Data density is shown through
colour, where darker colours express lower data density and brighter colours express higher data density.

this study. Another benefit of following our calibration strat-
egy could be improved error minimization of LCS data, par-
ticularly given that LCS devices are placed directly next to
a reference station for (re-)calibration. This could result in
higher LCS data quality compared to the use of complex in
situ calibration strategies for error reduction and data qual-
ity control. Following our concept, continuous in situ data
collection can be achieved by using a pair of regularly main-
tained LCSs at the same location.

Analysing whether LCS data fit their intended purpose
and provide viable information for the end-use application
over time remains a challenge, especially in the context
of a long-term measurement campaign. Stricter DQOs for
regulatory-grade air measurement instruments, as a result
of the recently updated WHO global air quality guidelines

(WHO, 2021), could indirectly limit the scope of end-use
applications for LCSs. For example, CEN/TS 17660-1:2021
(2021) and CEN/TS 17660-2:2024 (2024) rely on Directive
2008/50/EC (2008). Both CEN/TSs help to define the pos-
sible end-use applications of sensor systems. Considering
the relationship between the introduced CEN/TSs and the
Directive 2008/50/EC, an update of both CEN/TSs due to
the recently published Directive (EU) 2024/2881 (2024) is
not unlikely. Sensor manufacturers are called upon to con-
sult state-of-the-art scientific literature of the air sensor re-
search community to accelerate technological advancement
while the air sensor community is called upon to rethink how
LCS networks are built and managed. The latter is important
to ensure that LCS networks move beyond the status of test
applications and gain recognition as long-term supplemental
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monitoring systems (Carotenuto et al., 2023). Such recogni-
tion facilitates their integration into official networks, allow-
ing LCSs to benefit the most vulnerable members of society.

4 Conclusions

In an attempt to consistently provide air sensor performance
by a pair of O3 and PM2.5 LCSs (AS-B431 and SAG-SPS30)
suitable for supplementing official air quality monitoring net-
works, a still uncommon approach for recurrent sensor cal-
ibration was explored. This approach was tested during a
yearlong collocation campaign at an urban background sta-
tion next to the University Hospital Augsburg, Germany.

LCSs were collocated with regulatory-grade air measure-
ment instruments and were exposed to a wide range of en-
vironmental conditions, with air temperatures between −10
and 36 °C, relative air humidity between 19 % and 96 % and
air pressure between 937 and 983 hPa. The ambient concen-
tration ranges were up to 82 ppb for O3 and 153 µg m−3 for
PM2.5. LCS calibration models were built using linear re-
gression techniques (MLR and RR) and machine learning
(RF and XGB).

We used a pairwise (re-)calibration strategy to enable
continuous in situ measurements with two alternating O3
(PM2.5) LCSs. The results were evaluated using novel air
sensor performance targets defined by EPA test protocols and
CEN/TSs. We recommend regular in-season ET, instead of
relying on a single multi-month training period. These up-
dates to the calibration models are necessary to consistently
produce data with sufficient information content (indica-
tive and NSIM-level measurements) from AS-B431 (SAG-
SPS30) units to support existing official air quality monitor-
ing. Our findings underscore the importance of rigorous LCS
quality assurance and control for studies or LCS monitoring
networks that aim to make quantitative assertions with LCSs.

Based on the EPA performance targets for O3
(RMSE≤ 5 ppb, R2

≥ 0.80, Slope= 1.0± 0.20, Inter-
cept (b)=−5≤ b≤ 5 ppb), monthly recalibrations for
AS-B431 LCSs are recommended to increase the likelihood
of reliably achieving acceptable sensor bias and error during
the O3 season. In particular, RF and XGB calibration models
benefited from the increased amount of summer training
data resulting from monthly recalibrations.

We showed that MLR and RR calibration models should
be employed when ET cannot be applied but a single multi-
month training period is available. A multi-month period ac-
counts for seasonal variations in atmospheric conditions (me-
teorological and air pollution factors). If ET via monthly re-
calibration is feasible, RF and XGB calibration models ap-
pear to be the most sensible choice, as their quantitative per-
formance aligns particularly well with EPA guidelines for
NSIM devices targeting O3.

The need for recurrent calibration of the SAG-SPS30 is
less apparent relying on the PM2.5 EPA performance targets

(RMSE≤ 7 µg m−3, R2
≥ 0.70, Slope= 1.0± 0.35, Intercept

(b)=−5≤ b≤ 5 µg m−3). It is generally unnecessary, when
a single lengthy multi-month calibration is applied. Also, a
MLR calibration model for the SAG-SPS30 is adequate since
no significant benefit was found by using more sophisticated
ML methods as calibration tools.

The calibrated O3 LCSs and PM2.5 LCSs were able to
meet the class 1 DQO (REU≤ 30 % and 50 %, respectively)
for different calibration models. Therefore, they can provide
indicative measurements. The REU values suggest that ET of
the employed calibration models enables the generation of a
continuous LCS time series from two identical sensor model
units, more consistently meeting a targeted DQO (indicative
measurements). Again, extending the calibration space by
ET is especially advised for tree-based ML methods to re-
duce the LCS measurement uncertainty with increasing pol-
lution concentrations.

The performance evaluation of the SAG-SPS30 based on
EPA recommendations suggests that ET is generally unnec-
essary and that MLR calibration is sufficient. In contrast,
European standards relying on REU values yield a differ-
ent assessment for one of the SAG-SPS30 units. The re-
sults indicate that ET is a technique that should be carried
out to achieve class 1 data quality for the SAG-SPS30 de-
ployed with AELCM009. The discrepancy between our rec-
ommendations for recurrent calibration based on the EPA
test protocol performance targets (single-value performance
metrics) and those based on the CEN/TS performance tar-
gets (measurement uncertainty distribution) for PM2.5 LCSs
highlights the need for careful evaluation. EPA test protocols
and CEN/TSs should be used together as evaluative guidance
to obtain a more complete understanding of an LCS’s per-
formance. This combined approach supports end-user com-
munities to evaluate whether specific real-world applications
can be supported by LCSs.
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Appendix A: List of abbreviations

AELCM Atmospheric Exposure Low-Cost Monitoring
AEMS Atmospheric Exposure Monitoring Station
AEMSXX Concentration of a specific air substance

measured by the AEMS
AQD Air Quality Directive of the European Union
AS Alphasense
AS-B431 Alphasense B-Series electrochemical sensor

for O3
AS-B43F Alphasense B-Series electrochemical sensor

for NO2
AS-B4 Alphasense B-Series electrochemical sensor

for CO
CEN European Committee for Standardization
CET Central European Time
CO Carbon monoxide
DQO Data quality objective
EC Electrochemical
EPA United States Environmental Protection

Agency
ET Extended training
GDE Guide for the Demonstration of Equivalence
LCS Low-cost (air) sensor
MLR Multiple Linear Regression
MOS Metal oxide semiconductor
NOx Nitrogen oxides
NSIM Non-regulatory supplemental and

informational monitoring
O3 Ozone
OOS Out-of-sample
PM Particulate matter
PM2.5 Particulate matter (Particles that are 2.5 µm or

less in diameter)
PM10 Particulate matter (Particles that are 10 µm or

less in diameter)
R2 Coefficient of determination
REU Relative expanded uncertainty
RF Random Forest
RH_XX Relative humidity of a specific BME280 sensor

in an AELCM unit
RMSE Root-mean-squared error
RR Ridge Regression
Rs Spearman rank correlation
SO2 Sulfur dioxide
SAG Sensirion AG
SAG-SPS30 Sensirion AG optical particle sensor for PM1

and PM2.5
SPS30_XX Particulate matter concentration of a specific

SAG-SPS30 in an AELCM unit
ST Single training
T _XX Temperature of a specific BME280 sensor in an

AELCM unit
TP Test period
TS Technical specification
UTC Coordinated Universal Time
V _XX Net voltage of a specific AS sensor in an

AELCM unit
WHO World Health Organization
XGB Extreme Gradient Boosting
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