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Abstract. Herein, we describe an approach to retrieve free
tropospheric columns of peroxyacyl nitrates (PANs) from
radiances observed by the Atmospheric Infrared Sounder
(AIRS). AIRS has provided daily global coverage since its
launch in 2002, making the AIRS data a valuable long term
record. Although the instrument is very radiometrically sta-
ble, the radiance noise level is large enough to present a chal-
lenge when retrieving a weak absorber such as PAN. To ad-
dress this, spectral windows were selected to minimize in-
terference from other species as much as possible and a set
of filters was developed to predict whether a PAN value re-
trieved from AIRS is within 0.2 ppb or 50 % of what would
be retrieved from the Cross-track Infrared Sounder (CrIS)
and to remove spurious signals caused by specific surface
features or clouds. We show that AIRS is capable of retriev-
ing PAN plumes with very high concentrations of PAN (such
as those from significant wildfires) that have similar spatial
extent as seen by CrIS and that PAN retrieved from AIRS
has good correlation with CrIS given sufficient averaging.
We conclude with recommendations for users to help ensure
that these data are used appropriately.

1 Introduction

Acyl peroxy nitrates (APNs) are a family of air pollutants
formed by the reaction of a peroxy radical with NO;. Perox-
yacetyl nitrate (PAN, CH3C(O)OONO>) is the most com-
monly considered member of this family, resulting from
the reaction of a peroxyacetyl radical with NO, (Singh and
Hanst, 1981). PAN exists in equilibrium with its reactants
and is more stable at colder temperatures. Because of this,
PAN often acts as a temporary reservoir of nitrogen oxides

(NOy), enhancing long range transport of NO, to downwind
regions (e.g., Singh et al., 1986; Moxim et al., 1996; Hudman
et al., 2004). In addition to redistributing NO, and the asso-
ciated potential for photochemical production of secondary
pollutants, PAN itself is toxic to plants and an eye irritant for
humans (Gaffney and Marley, 2021).

PAN is neither a criteria air pollutant nor a designated
hazardous air pollutant by the United States Environmental
Protection Agency (Suh et al., 2000) or the World Health
Organization (World Health Organization, 2021). As a re-
sult, routine in situ monitoring of PAN is rare. However, tar-
geted campaigns such as the Arctic Research of the Compo-
sition of the Troposphere from Aircraft and Satellites (ARC-
TAS, Alvarado et al., 2010), Western Wildfire Experiment for
Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-
CAN Juncosa Calahorrano et al., 2021a), or Fire Influence on
Regional to Global Environments and Air Quality (FIREX-
AQ, Warneke et al., 2023) include measurements of PAN to
more fully constrain the nitrogen cycle in the outflow of the
phenomenon of interest for that campaign. Other campaigns
focused on measuring background air, such as HIAPER Pole-
to-Pole Observations (HIPPO, Wofsy, 2011) or the Atmo-
spheric Tomography Mission (ATom, Thompson et al., 2022)
include PAN measurements to quantify its effect on remote
air.

Techniques for remote sensing of PAN have been devel-
oped in the last two decades. PAN has very similar absorp-
tion features to other members of the APN chemical fam-
ily (e.g., peroxypropionyl nitrate, peroxy-n-butyryl nitrate,
peroxy-n-valeryl nitrate, peroxyacryloyl nitrate, and peroxy-
crotonyl nitrate, Monedero et al., 2008). Thus, retrievals of
“PAN” are in fact retrievals of a mixture of APNs. How-
ever, PAN typically comprises the majority (75 % to 90 %)
of APNs in both remote areas (Roberts et al., 1998, 2002;
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Wolfe et al., 2007; Fischer et al., 2014) and urban plumes
(LaFranchi et al., 2009). The fraction may be lower in wild-
fire plumes; Peng et al. (2021) hypothesize that an unknown
APN could explain discrepancies in NO, /CO ratios between
their observations and model. Given the predominance of
PAN as the majority APN, the convention is to refer to the
satellite products as retrieving “PAN” or “PANs”, and we
adopt that convention for this manuscript.

PAN has been retrieved from ground-based instruments
as well as limb- and nadir- viewing space-based platforms.
Several sites in the Network for Detection of Atmospheric
Composition Change (NDACC) perform retrievals of PAN
from ground-based spectra (Mahieu et al., 2021). From
space, PAN in the upper troposphere/lower stratosphere has
been retrieved from limb measurements from CRyogenic
Infrared Spectrometers and Telescopes for the Atmosphere
(CRISTA, Ungermann et al., 2016) on board two space shut-
tle flights in the 1990s, the Michelson Interferometer for Pas-
sive Atmospheric Sounding (MIPAS, Glatthor et al., 2007,
Moore and Remedios, 2010; Wiegele et al., 2012; Fadnavis
et al., 2014; Pope et al., 2016), and Atmospheric Chem-
istry Experiment-Fourier Transform Spectrometer (ACE-
FTS, Tereszchuk et al., 2013). Nadir viewing instruments,
such as the Tropospheric Emission Spectrometer (TES, Al-
varado et al., 2011; Payne et al., 2014), the Infrared Atmo-
spheric Sounding Interferometer (IASI, Coheur et al., 2009;
Clarisse et al., 2011; Franco et al., 2018), and the Cross-track
Infrared Sounder (CrIS, Payne et al., 2022), provide the abil-
ity to retrieve column amounts of PAN sensitive to the mid-
troposphere.

Consistent records of atmospheric trace gas concentrations
are essential to monitor how air quality is changing over
time. A major challenge in this respect is addressing instru-
ment differences among satellites to produce records span-
ning multiple decades. The Community Long-term Infrared
Microwave Combined Atmospheric Product System (CLIM-
CAPS) product (Smith and Barnet, 2020, 2023) invested sig-
nificant effort in applying a consistent retrieval to radiances
from both the Atmospheric Infrared Sounder (AIRS) and
the various CrIS instruments as well as minimizing cross-
correlations between retrieved variables (Smith and Barnet,
2019). Smith and Barnet (2025) discuss an information con-
tent approach to minimizing differences in CLIMCAPS re-
trievals. CLIMCAPS produces records spanning the more
than two decades since AIRS launched in 2002 that include
profiles of atmospheric temperature, H,O, CO, O3, CO»,
HNOj3, and CHy4, but does not include PAN.

The TRopospheric Ozone and its Precurors from Earth
System Sounding (TROPESS) project also focuses on ap-
plying a consistent retrieval algorithm for various trace
gases to radiances from a variety of instruments. This in-
cludes thermal radiances observed by AIRS and CrlS, as
well as radiances in other parts of the electromagnetic spec-
trum from the Ozone Monitoring Instrument (OMI) and,
in the future, the TROPOspheric Monitoring Instrument
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(TROPOMI). Cady-Pereira et al. (2024) demonstrated the ca-
pability with TROPESS to retrieve NH3 from both AIRS and
CrlS. They validated NH3 from both instruments against air-
craft data and found that, although the retrievals from the two
instruments are broadly similar, there are differences in the
agreement with aircraft profiles. However, after accounting
for the smoothing errors, the biases fall below 1 ppb. Pen-
nington et al. (2025) evaluated O3 trends in three TROPESS
products using thermal radiances from AIRS and CrIS and
combined thermal and ultraviolet radiances from AIRS and
OML. They compared these products to ozonesonde data, and
found that trends in the bias of the retrieved O3 were signifi-
cantly less than the reported O3 trends.

The ability to retrieve tropospheric columns of PAN from
space has enabled scientific studies of various sources of
air pollution. Several studies made use of the TES PAN re-
trievals to investigate factors driving PAN over Eurasia (Zhu
et al.,, 2015; Jiang et al., 2016) and the tropics (Payne et al.,
2017) as well as the prevalence of PAN in smoke-impacted
air masses over North America (Fischer et al., 2018). Other
studies (Zhu et al., 2015; Jiang et al., 2016) found that a com-
bination of seasonal temperature, lightning, biomass burn-
ing, and microbial emissions influenced the PAN outflow
from Eurasia, while Payne et al. (2017) found that the domi-
nant factors in the tropics were biogenic emissions and light-
ning, with some influence from biomass burning during the
study period. Juncosa Calahorrano et al. (2021b) used PAN
retrieved from CrIS to quantify the chemical production of
PAN in the outflow from the Pole Creek Fire in central Utah,
USA. Shogrin et al. (2023) combined PAN values retrieved
from TES and CrIS and found that PAN columns over Mex-
ico City had no trend over a time period when NO; columns
decreased. Shogrin et al. (2024) used PAN columns retrieved
from CrIS to study whether there were statistically signifi-
cant changes in PAN amounts over eight megacities during
the COVID pandemic. They found a mix of increases, de-
creases, and no change in PAN columns among the megac-
ities. More recently, Zhai et al. (2024) used PAN retrieved
from IASI to study transport of PANs across the Pacific and
concluded that the effect on ozone in the western US was less
than 1ppb. These studies provide examples of how space-
based retrievals of PAN, particularly in synergy with other
space-based trace gas observations, can provide valuable in-
formation about how the meteorological conditions, episodic
events, and dominant chemical regime influence air quality
in different regions.

In this work, we demonstrate the first retrieval of PAN
from AIRS. As AIRS was launched in 2002, this has the
potential to provide the longest continual record of PAN
from a nadir viewing instrument. Our approach is based on
that of Payne et al. (2022). We begin with an overview of
the AIRS and CrIS instruments, which are both used in this
work. Then, we review the MUIti-SpEctra, MUIti-SpEcies,
MUIti-Sensors (MUSES) algorithm which provides a
retrieval framework for this work. Next, we describe the
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Table 1. Comparison of relevant AIRS and CrIS instrument characteristics. Spectral resolution was computed from the L1B files. All other
values are from the cited references. NEdT stands for “noise equivalent differential temperature,” and the NEdT value for CrIS was estimated

from Fig. 10 of (Zavyalov et al., 2013) for CrIS full resolution spectra.

AIRS

CrIS

Spectral resolution at 790 em™! (cm_l) 0.355
Field of view diameter (km)
Spatial sampling (km)

NEdT (K)

15 (Thrastarson et al., 2021)
13.5 (Schreier et al., 2010)
0.1 to 0.8 (Thrastarson et al., 2021)

0.625

14 (Zavyalov et al., 2011)

15 (Wang et al., 2013)

~0.04 (Zavyalov et al., 2013)

specific MUSES configuration we use. Fourth, we address
several challenges encountered in adapting the approach of
Payne et al. (2022) to AIRS spectra. Finally, we close with
recommendations to users of the new AIRS PAN product.
Due to the computational cost of this retrieval, our analysis
focuses on a few days with significant variation in PAN from
major fires in the US and Australia. This product will be
incorporated in the operational TROPESS data processing in
the future (https://disc.gsfc.nasa.gov/information/mission-
project?’keywords=tropess&title=TROPESS, last access:
11 September 2025), which will enable analysis on a longer
timeseries of data.

2 Data sources and algorithm background
2.1 AIRS radiances

The Atmospheric Infrared Sounder (AIRS) instrument is car-
ried on board the Aqua satellite. Aqua was launched in May
2002 and flies in a polar, sun synchronous orbit. For most of
its mission, it had a local ascending equator crossing time of
~ 13:35LT. Starting in 2022, it began to drift to a later cross-
ing time; as of early 2025, it has an equator crossing time
of ~14:30LT (https://aqua.nasa.gov/, last access: 12 March
2025).

AIRS is a grating spectrometer, covering three spectral
bands (approximately 650 to 1140 cm™!, 1220 to 1610cm™!,
and 2170 to 2670 cm™!) with 17 detector arrays and a nom-
inal spectral resolution of A/AX=1200 (ranging between
1086 and 1570, Aumann et al., 2003; Thrastarson et al.,
2021). The original calibration is described by Pagano et al.
(2003) and an update is given in Pagano et al. (2020). AIRS’s
radiometric calibration has been very stable over its lifetime,
with <2 mer_l drift between 2017 (Aumann et al., 2019)
and between —3 and +6 mK since (Aumann et al., 2023). Ta-
ble 1 compares some of the relevant instrument characteris-
tics of AIRS and CrIS. For a more in-depth description of the
differences between the AIRS and CrIS instruments, please
see Table S1 of Smith and Barnet (2025) and Table 1 of Smith
and Barnet (2019). In this work, we use AIRS level 1B ra-
diances from version 5 of the AIRIBRAD product (AIRS
Project, 2020).
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2.2 CrlIS radiances and the CrIS PANSs product

At time of writing, there are three operational Cross-track
Infrared Sounder (CrIS) instruments. The first is on board
the Suomi-NPP satellite, launched in October 2011, followed
by copies on the JPSS-1/NOAA-20 and JPSS-2/NOAA-21
satellites, launched in November 2017 and November 2022,
respectively. All three are in sun synchronous orbits with as-
cending local equator crossing times around 13:30 LT. Unlike
AIRS, CrIS is a Fourier transform spectrometer that observes
nine fields of view in a 3 x 3 array simultaneously. It per-
forms an across-track scan of 30 view positions. The fields
of view are ~ 15 km in diameter (Zavyalov et al., 2011).

Payne et al. (2022) used radiances from the CrIS instru-
ment on board Suomi-NPP (S-NPP) (specifically the NASA
version 2 level 1B radiances, Sounder SIPS and GES DISC,
2017) to retrieve PANs. CrIS measures in three spectral
bands: long-wave IR (650 to 1095 cm™!), midwave IR (1210
to 1750 cm ™), and short-wave IR (2155 to 2550 cm™!) (Han
et al., 2013). At launch, the CrIS S-NPP instrument was op-
erated in “normal spectral resolution” mode, with the bands
measuring at 0.625, 1.25, and 2.5 cm™L, respectively. In De-
cember 2014, it was switched to “full spectral resolution”
(FSR) mode, with 0.625 cm™! resolution in all bands (Strow
et al., 2021). The NASA FSR level 1B product begins a year
later (December 2015) after additional upgrades to CrIS cal-
ibration in November 2015. Our work uses the MUSES al-
gorithm (Sect. 2.3), which uses radiances from multiple CrIS
bands to retrieve atmospheric trace gases and temperature.
Currently, this requires the full spectral resolution product,
thus we limit ourselves to CrlIS data from December 2015
on.

Payne et al. (2022) validated the CrIS PANs retrievals
against PAN measurements taken during the ATom cam-
paign. The measured profiles had GEOS-Chem profiles ap-
pended to the top. From the standard deviation of the differ-
ences between CrIS and aircraft free tropospheric PAN col-
umn averages, Payne et al. (2022) derived a single sounding
uncertainty of 0.08 ppb for the CrIS PANs retrieval. This was
larger than the uncertainty calculated by the MUSES optimal
estimation (OE) algorithm, but Payne et al. (2022) attribute
the discrepancy to pseudo-random error contributions from
the retrieval of interfering species or the temperature profile.
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Such interferent-driven error was not included in the uncer-
tainty calculated by the MUSES algorithm, as for PAN re-
trievals, the algorithm calculates uncertainty from noise only.

Further, the comparison with ATom found a negative bias
(CrIS lower than aircraft) that correlated with the total col-
umn amount of water vapor. The relationship between wa-
ter vapor and the CrIS PAN bias was further corroborated
by examination of the pre-PAN retrieval spectral residuals,
which found a positive residual correlated with water vapor
column amounts. From the ATom comparisons, Payne et al.
(2022) derived a bias correction for the CrIS PAN product,
c=0.05+0.035 x 10723 x X, where X is the column den-
sity of water vapor in molec. cm™2 and ¢ is the correction
in ppb.

2.3 MUSES Retrieval

The MUSES retrieval (Worden et al., 2007; Luo et al., 2013;
Fu et al., 2018; Worden et al., 2019; Malina et al., 2024) is
an optimal estimation retrieval with heritage tracing back to
the TES retrieval (Bowman et al., 2006). It is instrument-
agnostic, able to solve for the optimal state vector given
radiances from a variety of instruments (e.g., AIRS, CrIS,
the Ozone Monitoring Instrument (OMI), and the TROPO-
spheric Monitoring Instrument (TROPOMI)), or multiple in-
struments (e.g., AIRS + OMI, CrIS + TROPOMI).

The MUSES algorithm allows retrievals to be broken
down into smaller steps, each of which define the spectral
windows for which to minimize the radiance residuals, the
atmospheric parameters to solve for, which of those param-
eters to update for the next step, along with a number of
more technical options. The steps are defined in a “strat-
egy table” which can be quickly edited to test different re-
trieval approaches. This step-wise design provides flexibility
to fix some elements of the state vector while updating others
in certain steps, which is particularly useful when retrieving
state vector elements with large differences in the magnitude
of their Jacobian matrices (e.g., atmospheric temperature vs.
PAN) or which interfere with each other (e.g., O3 vs. PAN).
These steps are run sequentially; the final state of one step
becomes the initial state for the next, save for any state vec-
tor elements which the strategy table indicates should not be
updated.

Within each step, MUSES uses an iterative solver that ap-
plies the trust-region Levenberg—Marquardt scheme (Bow-
man et al., 2006) to mimimize a cost function

J(x)=1[y—F(x,b)1"S.'[y — F(x,b)]
+(x —x) TS (x —x,) (1

where

— x is the retrieved state vector,

— X, is the a priori state vector,
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y is the observation vector (i.e., AIRS or CrlIS radi-
ances),

F is the forward model that simulates radiances given
the state vector and fixed parameters (b),

S¢ is the error covariance matrix for the observed radi-
ance, and

S, is the prior error covariance matrix.

The Levenberg—Marquardt solver will iteratively update
the state vector, x along a direction in state space expected
to mimimize Eq. (1). It will continue until the convergence
criteria are satisfied or the maximum number of iterations is
reached.

An important distinction within MUSES is the difference
between the a priori (or constraint) state vector and the ini-
tial state vector. The former is x, in Eq. (1) and is a math-
ematical constraint on the optimal state vector, the latter
is the starting point of x before the first iteration of the
Levenberg—Marquardt solver. This distinction is important
within MUSES because it is a multi-step retrieval. The strat-
egy table, mentioned above, defines which elements of the
state vector will be retrieved in each step and whether or
not the retrieved state for step i becomes the initial state for
step i + 1. For example, the retrieval may begin with an H,O
profile taken from a meteorological reanalysis as both the
initial guess and the a priori constraint. An early step in the
retrieval can then retrieve a new H,O profile which is more
consistent with the observed radiances. This new H,O profile
can then be used as an initial state for later steps (whether or
not those steps retrieve H>O). This can be important for weak
absorbers, such as PAN, which need the profiles of strong
thermal IR absorbers to be accurate for the scene in question
so that the relatively small absorption feature of the weak ab-
sorber can be identified. We note that, for a given step, the
initial state and a priori constraint can be the same but do
not need to be. For later steps of the retrieval, the initial state
may have been set by earlier retrieval steps (as in the exam-
ple given with H,O) but the a priori constraint will remain
the same for all steps. Or, the a priori constraint may be cho-
sen to be a relatively simple profile to avoid imposing undue
assumptions, while the initial state may be chosen to reflect a
better estimate of the atmospheric state in that location to at-
tempt to minimize the number of steps needed by the solver.

MUSES can use different radiative transfer models for F
in Eq. (1). For this work, we use version 1.2 of the Optimal
Spectral Sampling (OSS) model (Moncet et al., 2008, 2015).
OSS is designed to use an optimal set of absorption coeffi-
cients (per absorbing species and vertical layers) and weights
that can be used to compute the radiance for each chan-
nel of a spectrometer very efficiently, given the amounts
of each absorbing species. These weights are computed by
training OSS against a reference line-by-line spectroscopic
model. Determining those optimal absorption coefficients
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and weights requires it to be trained for a given instru-
ment. In version 1.2, the absorption coefficients are cal-
culated from the Line By Line Radiative Transfer Model
(LBLRTM) version 12.4 (Clough et al., 2005; Alvarado
et al., 2013). This allows OSS to efficiently simulate the ra-
diances a specific instrument would observe by reducing the
number of monochromatic wavelengths that must be mod-
eled for a given instrument channel, but means that OSS must
be trained for each instrument used in a retrieval separately.
For details on the approach, readers are encouraged to review
Moncet et al. (2008) and Moncet et al. (2015).

2.4 TROPESS products

The TROPESS project focuses on applying the MUSES al-
gorithm to retrieve a range of atmospheric trace gases from a
variety of space-based instruments, including AIRS, OMI,
CrlS, and TROPOMI to date. Operational processing for
TROPESS is set up to accommodate two distinct goals. The
first is to provide a global record of ozone and related trace
gases for the first ~ 20 years of the 21st century. The sec-
ond is to support rapid iteration on and improvement of the
underlying level 2 algorithms while processing more recent
data. Due to the computational cost of these retrievals, meet-
ing both goals requires two separate data streams.

The first is a “retrospective” or “reanalysis” stream that re-
trieves trace gas amounts from ~ 2002 through ~ 2021. This
stream is processed with a version of the MUSES algorithm
frozen at the time the retrospective processing began. The
second is a “forward” stream that processes new radiances as
they become available with the latest version of the MUSES
algorithm, including updates to the algorithm made after the
retrospective processing began. The forward stream serves
the dual purpose of monitoring significant events affecting
air quality and serving as a test bed for improvements to the
MUSES algorithm. Due to the difference in the algorithm
versions, users must take care not to misinterpret changes in
trends between the two streams.

Both streams use a “global survey” sampling approach
to process a subset of all available soundings yet provide
global coverage, which allows a balance between computa-
tional cost and spatial coverage. The default survey strategy
processes one sounding in each x° x x° box over land and
one out of every four such boxes over ocean. For the current
products, x is either 0.7 or 0.8°. In addition, TROPESS pro-
duces special collections with full data density for high in-
terest events (e.g., the 2019-2020 Australian Bush Fires and
2020 US West Coast Fires) and a set of megacities around
the world.

The CrIS PAN product described in Payne et al. (2022)
and Sect. 2.2, with mostly minor updates, is now routinely
produced as part of both the reanalysis (Bowman, 2023) and
forward (Bowman, 2022) TROPESS streams, as well as spe-
cial products. The reanalysis and forward streams provide
twice daily (day and night) global coverage of PAN, using the
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global survey strategy described in the previous paragraph.
Other species retrieved within the TROPESS project include
methane, carbon monoxide, deuterated water (HDO), ammo-
nia, and ozone.

3 AIRS PAN retrieval development

3.1 AIRS PAN retrieval design: microwindows and
retrieval order

Retrievals using AIRS radiances have previously been im-
plemented within the TROPESS MUSES algorithm (§ 2.3),
thus the AIRS PAN retrieval can use the existing readers and
MUSES OE framework. The components that must be added
are (1) the desired windows, (2) the strategy table that in-
structs the MUSES algorithm to retrieve PAN, and (3) details
about PAN retrievals copied from the CrIS PAN retrievals,
such as the prior vector values.

For the existing CrIS PAN retrieval, Payne et al. (2022)
chose two windows on the low frequency side of the PAN
spectral feature (Fig. 1). However, parts of these windows
fall in the AIRS “spectral gap,” where no radiance channels
are available. Thus, we had to compromise between win-
dows that will see sufficient signal for PAN absorption and
windows that avoid signal from interfering species. Figure 1
shows the selected windows overlaid on simulated absorp-
tion features for the relevant species in this spectral range.
The two windows on the left of the PAN feature (below
785cm™!) only see a weak part of the signal from PAN,
but are outside of the CCly absorption. The center window
at 795 cm™! is able to capture the core PAN absorption, but
has interference from both water and CCly. The two right-
most microwindows (above 800 cm ™) are able to avoid in-
terference from water, but have minor to moderate interfer-
ence from CCly. CCly is not retrieved (Table 3) but is simu-
lated in the radiative transfer as an interferent, using clima-
tological profiles scaled by yearly scale factors derived from
ground based observations. The base climatological profiles
vary with latitude and longitude in 30 and 60° bins, respec-
tively, and were developed from MOZART model output
(Brasseur et al., 1998).

Early tests with the three windows above 790cm™!
showed that omitting the 795 cm~! window gave erroneously
high PAN column average values across much of the west-
ern United States during a period when the Pole Creek Fire
was emitting PAN (among other species, Juncosa Calahor-
rano et al., 2021b). Similar tests also showed no benefit to
adding additional microwindows above 805cm™~!. The two
microwindows below 785 cm™! were added later to provide
the retrieval with some radiance information with PAN but
not CCly absorption. The specific frequency ranges for each
microwindow are given in Table 2.

Development of the strategy table was straightforward, re-
quiring only the addition of a PAN retrieval step to the stan-

Atmos. Meas. Tech., 19, 249-276, 2026



254

—— Spectrum

AIRS Channels

J. L. Laughner et al.: PAN from AIRS

AIRS Windows CrlS Windows

A BT (K)

0000- ity pece 0 0000800000000000000000000000 00000000000000000000000
—0.005 -
—0.010 1 PAN

(K)

—0.10

0.00 == e
E —0.05 MV
<

A BT (K)

s —Wwvx—-———\f\/\/s/\/w\/\/\/\/wvw
~1.01 CO»

0.0 1

A BT (K)

A BT (K)

0.00 : pessegpTTeeIee seeed =
ool W
. | _ ccl

770 775 780 785 790 795

800 805 810 815 820 825 830

Frequency (cm™1)

Figure 1. An illustration of the factors driving the selection of windows for the AIRS PAN retrieval. Each panel shows the simulated
difference in brightness temperature for a 10 % increase in the mixing ratio of one species at all altitudes as the black line. The AIRS
channels are marked at the top of each panel as gray dots. The chosen windows for the AIRS retrieval are the full height blue boxes. For
reference, the CrIS windows used by Payne et al. (2022) are the short, orange boxes.

Table 2. The microwindows selected for the AIRS PAN retrieval.

Window number  Freq. range (em™h

772.5t0 775

780 to 781.875
793.75 to 796.875
800 to 802.5
804.375 to 805

W W N =

dard AIRS strategy table in use by TROPESS to generate
AIRS products. Table 3 enumerates the steps included in this
table; the PAN step added is step number 6. The choice to
place the PAN retrieval immediately following the “strong
features” step (no. 4) follows Payne et al. (2022). Step num-
ber 5 was also added to enable saving of spectral residuals
in a wider range of frequencies centered on the PAN feature.
Such a diagnostic is helpful to understand what factors might
be affecting a given retrieval and proved valuable for filtering
(Sect. 3.2).

The a priori constraints used in the AIRS PANS retrieval
are mostly the same as the Payne et al. (2022) CrIS PANs re-
trieval, with the exception of surface emissivity. As in Payne
et al. (2022), the PAN profile used as the a priori constraint
for each sounding is selected from a set of 6 climatological
profiles for each month (Fig. 2) and the initial PAN profile
used as the starting point for the nonlinear optimization is a
flat 0.3 ppb in the troposphere. Likewise, the a priori covari-
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ance for the PAN VMRs is the same as in Payne et al. (2022).
These constraints derive from those used in the retrieval of
PAN from the Tropospheric Emissions Spectrometer (Payne
et al., 2014). For surface emissivity, we used the Combined
ASTER MODIS Emissivity over Land (CAMEL) database
(Borbas et al., 2018; Feltz et al., 2018) for our inital and
a priori constraint on surface emissivity. Payne et al. (2022)
used the University of Wisconsin Cooperative Institute for
Meteorological and Satellite Studies High Spectral Resolu-
tion database (Borbas et al., 2007). Note that all TROPESS
products starting from v1.16 now use the CAMEL database;
this included the CrIS PAN retrievals we use for comparison
in Sect. 3.3.

3.2 Addressing cloud interference over ocean

During development, we found that low, warm clouds over
ocean would be misinterpreted by our AIRS retrieval as PAN.
For the cases tested, we were able to filter out such sound-
ings by decomposing the AIRS radiances into empirical or-
thogonal functions (EOFs) and filtering soundings for which
the second principle component (PC) was below a threshold.
This section describes that approach.

This issue of certain clouds appearing as PAN in the re-
trieval can be seen in Fig. 3, which shows free tropospheric
column averages of PAN (which we will refer to as Xpan)
from 11 September 2020. This was a period with major
wildfires throughout the west coast of the United States. In
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Table 3. The retrieval steps in the strategy table for this AIRS PAN retrieval. Retrieved elements annotated with a * are only included over

land.
Step num.  Step name Retrieved elements Comment
1 Brightness temperature - Initial check to determine whether to run
check step 2, 3, or neither
2 Cloud properties Cloud extent, cloud pressure Optional, depends on step 1
3 Surface temperature Surface temperature Optional, depends on step 1
4 Strong features Atm. temp., surf. temp., HoO, HDO,
N> O, CHy, cld. extent, cld. pres., surf.
emissivity™
5 Model residual check - This step does not update any values, it
provides pre-PAN residuals useful for
future development and filtering
6 PAN PAN
7 03 and HyO update Surf. temp., HyO, O3, cld. extent, cld.
pres., surf. emissivity™
8 Surface refinement Surf. temp., cld. extent, cld. pres., surf. This step gives a chance to refine surface
emissivity™ temperature/emissivity*/cloud properties
before retrieving NH3
9 NH3 NH3
10 CO CO, surf. temp., cld. extent, surf.

emissivity*
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Figure 2. The different sets of PAN mole fraction profiles used as a priori constraints in the MUSES retrieval. Each panel represents a profile
type, selected within MUSES based on the sounding location. Within each panel, the variation with month is shown by the differently colored

profiles.
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Figure 3. Column average PAN between 825 and 215 hPa as retrieved for 11 September 2020 from both CrIS (on the Suomi-NPP satellite, a)
and AIRS (b and ¢). Compared to (b), (¢) uses a PC-based filter instead of the previous retrieval step’s water quality check to filter for cloud
impacts. The black box in both panels shows the location of the spurious plume in the AIRS retrievals that is the focus of discussion in

Sect. 3.2.

Fig. 3a, Xpan retrieved from CrIS shows a reasonable plume
structure, with clear advection of PAN from the fires on the
west coast. We also see some of this in the AIRS retrievals —
specifically, the enhanced PAN in the southern half of Cali-
fornia, most of Arizona, and the northwest corner of Mexico,
as well as over the northern Pacific Ocean (Fig. 3b).

However, in the black box (20 to 30°N, 142 to
122°W), CrIS shows mostly background column
whereas the AIRS retrievals show an enhancement
with an unusual structure (not a shape representative
of transport from the fires). When we check RGB im-
agery from the GOES-West Advanced Baseline Imager
(https://noaa-goes17.s3.amazonaws.com/index.html#ABI-
L2-MCMIPC/2020/255/22/, last access: 8 December 2022),
we clearly see that this “plume” seen by the AIRS PAN
retrieval matches the shape of the clouds in that area
(Fig. 4a). Further, cloud properties from the MODIS-Aqua
MYDO06 product (MODIS Atmosphere Science Team, 2017)
plotted in Fig. 4b—d show that this is a low, warm cloud.
This clear spatial correlation between the cloud extent and
the spurious PAN plume leads us to conclude that such low,
warm clouds cause difficulties for our retrieval with the
chosen spectral windows (Table 2). Similarly, in the plume
around 50°N, AIRS sees enhanced Xpan further west than
CrIS (around 150°W) and more to the northwest of the
state of Washington (near 50°N, 125°W). From the cloud
properties shown in Fig. 4, these are also potential cases of
erroneous impact from clouds.

The AIRS data shown in Fig. 3 are those soundings which
pass prototype quality flags chosen based on quality flags for
other thermal retrievals, including sufficiently small radiance
residual, surface temperature > 265 K, cloud top pressure (as
retrieved in our algorithm) below the tropopause, and the
quality of the H,O retrieval in step 4 of Table 3. (Note that
these quality flags were for prototyping purposes only, and
are not those used in the final product.)

Since these criteria were insufficient to remove the spu-
rious plume, we investigated an approach inspired by Huang

Atmos. Meas. Tech., 19, 249-276, 2026

and Yung (2005). As they used an empirical orthogonal func-
tion (EOF) decomposition to study dominant patterns of vari-
ability in the AIRS data, we tested whether an EOF decom-
position could identify the low, warm clouds causing the spu-
rious PAN signal in our AIRS PAN retrieval. We do note
that a cloud-clearing approach, like that used in CLIMCAPS
(Smith and Barnet, 2023), could be one approach to address
this issue. Such an approach combines radiances from mul-
tiple soundings to yield radiances unimpacted by clouds (see
Sect. 3 and Fig. 1 of Smith and Barnet, 2025, for a descrip-
tion of this approach) . However, the MUSES algorithm is
designed to operate on individual soundings. Therefore, we
focused our efforts on the EOF decomposition as a way to
screen out these cloud-affected soundings.

Figure 5 shows the first three EOFs resulting from a de-
composition of the AIRS observed radiances (as stored by
the MUSES algorithm in its output radiance files) within the
domain covering 20 to 60° N and 150 to 110° W. Keeping in
mind that the sign of an EOF is arbitrary, as it can be flipped
by changing the sign of the principal component (PC) by
which it is multiplied, the first two EOFs contain many fea-
tures which match up closely in shape to the HoO spectral
features shown in the top panel. The third EOF appears to re-
late to CO», as the dominant feature appears at approximately
the same frequency as the CO, feature shown in Fig. 1. These
EOFs were computed from the window used in step 5 of the
strategy table (Table 3), which spans 760 to 860 cm™!.

For each AIRS sounding, the observed radiances can be
represented as the linear combination of the EOFs with the
PCs as the coefficients. Figure 6 shows the values of the PCs
for the first two EOFs needed to reconstruct the AIRS radi-
ances for all the soundings in this domain. The second PC
(Fig. 6, right panel) has a spatial pattern of negative values
strikingly similar to the clouds seen in Fig. 4. In Fig. 3c, we
show the AIRS Xpan with a filter based on the values of PC 2
applied. Filtering out soundings with PC 2 < 0 removes the
spurious XpaAN.
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clouds.

As a next step, we applied this PC-based filtering to differ-
ent region. We chose a PAN plume from the Australian Bush
Fires in late 2019/early 2020. For this Australian fire case,
we also see a collection of soundings with large Xpan values
in the AIRS data but not the CrIS data, marked by the black
box in Fig. 7a and b. The MODIS cloud properties (Fig. 7d—f)
confirm that this is again a low, warm cloud. When we apply
the PC-based filter, it correctly marks these soundings as bad
quality and removes them (Fig. 7c).

Fortunately, it appears that soundings over land are not
as susceptible to this issue with low, warm clouds. Figure 8

Atmos. Meas. Tech., 19, 249-276, 2026

shows Xpan retrieved from both CrIS and AIRS again along
with MODIS-Aqua cloud properties, this time over the Ama-
zon. While the AIRS Xpan (Fig. 8b) shows sporadic high
values compared to CrIS (Fig. 8a), these erroneous high val-
ues appear to be random, rather than systematically located
where the low, warm clouds are. In particular, the western
swath shows mostly low Xpan values despite the presence
of low, warm clouds. Therefore, we apply the PC-based filter
only to ocean soundings.

Our hypothesis is that the reason the AIRS retrieval is af-
fected by the low, warm clouds and CrIS is not is due ei-
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ther the difference in spectral windows used between the re-
trievals (Fig. 1), the difference in radiance noise between the
instruments, or a combination of the two. Further, our hy-
pothesis for why land soundings are much less impacted than
ocean soundings is that it is more difficult to distinguish a
low, warm cloud from an underlying ocean surface than a
land surface.

While the PC-based filter was successful in these cases,
we note that it may need additional adjustment in the fu-
ture. During testing, we found that filtering out soundings
with PC 2 < —10 was sufficient for the US West Coast Fires
case (Fig. 3), but not the Australian Bush Fires case (Fig. 7),
whereas requiring PC 2 <0 worked for both. Future work
will examine whether the criterion of PC 2 < 0 is sufficient
globally, or if further refinement is necessary.

We also note that it was necessary to use the 760 to
860 cm~! window, rather than the narrower windows used in
the PAN retrieval step (Table 2). When we tested the latter,
this PC-based filter was not effective in the Australian fires
case. Therefore, we conclude that information available in
the wider window provides the necessary data for the EOFs
to correctly fit clouds.

3.3 Filtering and validation through comparison with
CrIS

While the PC-based filter addresses the issue of interference
from low, warm clouds (Sect. 3.2), it is not sufficient by itself
as a quality filter. Ideally, quality filters would be derived by
comparing the satellite product to in situ data and checking
that the filters ensure good agreement between the satellite
and in situ data. To this end, Payne et al. (2022) used aircraft
profiles from the ATom campaign to validate the CrIS PAN
product. This was ideal for CrIS, as the ATom flights pro-
vided profiles of PAN over the majority of the troposphere.

https://doi.org/10.5194/amt-19-249-2026

However, the majority of the ATom profiles are over ocean
(see Fig. 1 of Payne et al., 2022), and this is also true for
HIPPO, a similar campaign that occurred before the start of
the CrIS FSR product (and so not be used by Payne et al.,
2022). As we will lose any profile comparisons that occur
over ocean clouds, this would likely limit the number of com-
parisons we can draw from HIPPO and ATom. To add to
the challenge, from Fig. 3, we can see that outside of strong
PAN plumes from, e.g., fires, the single sounding retrievals
over land from AIRS have significant sounding-to-sounding
noise, indicating that bulk statistics will be necessary for a
meaningful comparison.

Thus, instead of relying on aircraft data directly, we de-
cided to use the existing CrIS PAN product as a transfer
standard by designing a quality filter that predicts whether
the AIRS Xpan value will be within a given threshold of the
nearest CrIS Xpan value. This provides the large number of
soundings needed for bulk statistics and implicitly makes the
AIRS PAN product consistent with the CrIS PAN product,
which can allow users to combine the two.

We chose to implement this quality filter using decision
trees, with the Scikit Learn package (Pedregosa et al., 2011).
Using simple decision trees allowed us to investigate what
variables were used to classify a sounding as good or bad
quality during development. Using decision trees rather than
hand-tuned quality filter parameters allowed faster iteration
and should, in principle, be more reproducible. Because we
saw in Sect. 3.2 that ocean soundings required different fil-
tering for clouds than land soundings, we also tested whether
using a single decision tree for all soundings or separate de-
cision trees for land and ocean soundings gave better results.
We found that separate decision trees for land and ocean
soundings retained more soundings with significant Xpan,
and that there was little difference in the correlation between
AIRS and CrIS Xpan using separate land/ocean trees or a
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single tree. Therefore, we chose to use separate decision
trees. Appendix C shows a subset of results using a single
decision tree, and describes the trade offs between using a
single decision tree and separate decision trees.

The decision trees were trained on AIRS and CrIS re-
trievals for oneday from each of the 2019/2020 Australian
Bush Fires and 2020 US West Coast Fires. Ocean soundings
that failed the PC-based filter (Sect. 3.2) were excluded from
training. Two different days from these fires, plus retrievals
over the Amazon and Africa were used for testing (Table 4).
The data was divided into training and testing by days and re-
gions rather than a random 70/30 or similar stochastic split
to ensure that the training data included at least some sound-
ings with significant Xpan. Since plumes with significant
XpaN are outnumbered by background soundings, we were
concerned that a fully random split would miss the plume
soundings.

As inputs, the decision trees received 16 values commonly
used by existing MUSES retrievals as quality metrics, listed
in Table 5. It was trained to predict a binary flag indicating
whether the AIRS Xpan was within 0.2 ppb or 50 % of the
CrIS Xpan from the CrIS sounding closest to it (by great
circle distance). The CrIS soundings are restricted to those
that pass basic quality flagging for modeled vs. observed
radiance and a check for certain surface features that can
cause erroneous retrievals. The CrIS Xpan value compared
against includes an averaging kernel adjustment to accom-
modate different vertical sensitivity between CrIS and AIRS.
(see Fig. 15 for a summary of typical CrIS and AIRS Xpan
column averaging kernels.) Specifically, following Eq. (25)
of Rodgers and Connor (2003),

~ T,a
CCrlS,comp = Ca,AIRS T @ (Xcrs — xa,AIRS) 2)
where

— Ca,AIRS 18 the a priori Xpan from AIRS,

— a is the AIRS pressure-weighted column averaging ker-
nel (i.e., one that includes the integration operator),

— Xcqs is the CrlIS posterior PAN profile,
— Xa AIRS 1S the AIRS prior PAN profile.

Note that the CrIS Xpan is not an input to the decision
trees; it is used only in training. This permits the decision
trees to be applied to AIRS soundings without a coincidence
CrIS sounding.

Typically, it is important to “prune” decision trees (Espos-
ito et al., 1997) by limiting the number of decision nodes
it can include in order to prevent overfitting to the training
data. We tested pruning by limiting both the maximum depth
(i.e., the number of nodes along any one path) and maximum
number of leaf nodes (i.e., the number of end points for the
model). However, we found that either method of pruning the
decision trees caused the filter to screen out soundings with
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enhanced Xpan. Our hypothesis is that, because these sound-
ings are still in the minority of all soundings in the training
data, limiting the decision tree’s size gave it too little flexi-
bility to account for these somewhat uncommon cases. That
is, because soundings with enhanced Xpan are in the minor-
ity, a model limited in size lacked the flexibility to develop
useful rules for these soundings, and instead was able to
achieve better accuracy by simply classifying all such sound-
ings as bad quality. Therefore, we proceed without limiting
the model size.

Additionally, we include an explicit check that the re-
trieved surface emissivity at 1025cm™! is > 0.94. This fil-
ter is similar to one used in Payne et al. (2022) to remove
soundings impacted by a silicate feature that produces a sur-
face emissivity with a similar spectral shape to PAN. The
same silicate feature also shows up as a low emissivity near
1025 cm™! (see Appendix B). Although the decision trees are
trained on this value as an input, it still retains some sound-
ings clearly affected by the silicate feature. Figure 9 shows
CrIS Xpan in Fig. 9a, AIRS Xpan in Fig. 9c and d, and the
emissivity value in Fig. 9b. The red or black box identifies
a region with low 1025 cm™! emissivity values that has very
high Xpan values in the AIRS retrieval in Fig. 9c. When we
add an explicit filter on the 1025 cm™! emissivity, those few
remaining soundings are removed.

The final quality filter will be a combination of the PC-
based filter from Sect. 3.2, the emissivity-based filter, and
the decision tree-based filter. Figure 10 shows how each of
these filters affects the soundings passed as good quality for
two days with clear PAN plumes. As discussed in Sect. 3.2,
the PC-based filter is applied only to ocean soundings, where
clouds cause a high bias in Xpan. For these two scenes, the
emissivity filter has a modest impact, removing some sound-
ings in southern California, northeastern Arizona, and south-
eastern Utah (Fig. 10g). In both scenes, the decision tree-
based filter does remove a number of the soundings with
large Xpan values (Fig. 10d,h). Therefore, in the public files,
we will provide the information for users to adjust the qual-
ity flagging to suit their application; specifically the PC value
used for flagging, the emissivity value used for flagging, and
the binary flag produced by the decision trees.

For the rest of this section, we will focus on the perfor-
mance of the combined filter. Appendix A contains a brief
exploration of the relationship between the input variables
and predicted quality flag.

First, we examine the spatial distribution of PAN plumes in
our filtered AIRS product versus CrIS. Figure 11 shows our
filtered AIRS PAN data alongside the PAN retrieved from
CrlS. The data shown here are from the four testing data re-
gion/day pairs in Table 4; thus, these are data that the de-
cision trees were not trained on. The first two rows show
the Australian 2019/2020 Bush Fires and the 2020 US West
Coast Fires, respectively. In both cases, we can see that the
AIRS PAN product matches the location of enhanced PAN
plumes seen in the CrIS data very well. In the US West
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Table 4. Regions and dates used for the quality filter decision tree training and testing. A — in the “Training date” column indicates that no

data from that region was used in training.

Region name Training date  Testing date  Latitude bounds  Longitude bounds
Australia/NZ 1 Jan 2020 5 Jan 2020 60 to 20° S 150 to 177.5°E
US West Coast 13 Sep 2020 11 Sep 2020 20 to 60° N 150 to 110°W
Amazon - 11 Sep2020 25°Sto 10°N 80 to 40°W
Africa - 11 Sep2020 30°Sto5°N 5t045°E

Table 5. Input variables for the quality filter decision trees. Note that “O3 quality” is not useful as O3 is retrieved after PAN (see Table 3) but
is included because it is a standard quality variable in the MUSES algorithm.

Short name Description

Rad. resid. mean
Rad. resid. std. dev.
Res. Norm. Init.
Res. Norm. Final

Post-PAN retrieval mean of noise-normalized radiance residuals

Post-PAN retrieval standard deviation of noise-normalized radiance residuals
Quadrature sum of pre-PAN retrieval residual mean and standard deviation
Quadrature sum of post-PAN retrieval residual mean and standard deviation

Standard deviation of cloud optical depth between 975 and 1200 cm™!
Mean difterence between retrieved and a priori surface emissivity

Rad. Max. SNR Maximum ratio of radiance to noise

K-dL Jacobian dotted with radiance residuals

L-dL Radiances dotted with radiance residuals

Cld. pres. Cloud pressure

Cld. OD mean Mean cloud optical depth between 975 and 1200 em™!
Cld. OD var.

Mean surf. emis.

Desert emis.

H,O self corr.
Atm. T quality
03 quality
H,O quality

Value of retrieved surface emissivity nearest 1025 cm
Consistency between HpO retrieved in two different steps
Quality flag for retrieved atmospheric temperature

Quality flag for retrieved O3 profile

Quality flag for retrieved HyO profile from step 4 (Table 3)

-1

Coast Fires case, the large Xpan values in Arizona, central/-
southern California, and northwestern Mexico are all in the
same region where CrIS sees high Xpan values. Likewise, in
the Australian fires case, AIRS captures the PAN plume ap-
proaching New Zealand’s northern island, though compared
to CrIS, more of the plume is removed by our filtering crite-
ria.

The last two rows of Fig. 11 show a day over the Amazon
and central/southern Africa, respectively. These are regions
not included in the training data for the decision trees (Ta-
ble 4), so these are a good test of whether the filter can gen-
eralize to new regions. Neither region has significant PAN
plumes in the CrIS data. However, there are small enhance-
ments to ~ 0.5 ppb in both cases. In the Amazon, there are
also a few soundings with ~ 1 ppb Xpan near 17.5° S, 55° W.
AIRS does see this 1 ppb hotspot, though it also retrieves sev-
eral soundings with > 1 ppb further north, where CrIS does
not. The Amazon hotspot in western Brazil cannot be seen in
AIRS due to the swath gap. The PAN hotspot seen by CrIS
in the African test over Angola, Zambia, and the Democratic
Republic of the Congo is not as apparent in the AIRS PAN;
however, AIRS does appear to capture some enhancement
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in that area, particularly compared to further north, near the
equator.

Helpfully, in most of these cases, when there is a strong
PAN enhancement in CrIS, AIRS also sees an enhancement
in CO. For example, in the Amazon test case, only the sound-
ings with enhanced PAN at 17.5° S, 55° W also have a strong
CO enhancement; while the false enhancements further north
in the AIRS PAN do not. This implies that users looking for
PAN plumes in the AIRS data can check for enhanced CO
to distinguish whether a small PAN plume is likely real. This
is not a entirely self-sufficient condition, as it is possible to
have a PAN plume without enhanced CO, but the presence of
enhanced CO can give more confidence in an observed PAN
plume. (See Sect. 4 for a summary of recommendations for
use.)

We also tested the correlation between AIRS and CrIS
Xpan with different amounts of spatial averaging. Figure 12
shows the results for four different spatial averaging box
sizes. While the data from our test cases does have some
fire-influenced observations, many of the observations vary
primarily from large-scale seasonal or latitudinal variations.
At 1° x 1°, the correlation is somewhat weak. The correla-
tion is more significant at 2° x 2°, 5° x 5°, and 10° x 10°.

Atmos. Meas. Tech., 19, 249-276, 2026
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However, averaging to 5° x 5° or 10° x 10° is needed for the
root mean squared error (RMSE) between AIRS and CrIS
Xpan values to drop below 0.1 ppb and for the visual cor-
relation (especially for high values) to be apparent. This is
a fair amount of averaging, but is not surprising, given the

Atmos. Meas. Tech., 19, 249-276, 2026

sounding-to-sounding variation seen in Fig. 11. Given the
amount of observations, this will still provide useful PAN
coverage. We discuss recommendations for use based on this
result in Sect. 4.
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standard TROPESS quality flag; the middle column uses the combined decision tree 4+ PC + emissivity filter described in Sect. 3.3.

In Fig. 12d, we see that the AIRS Xpan value is biased
low compared to CrIS Xpan. It is not clear if this bias in
the AIRS data is best parameterized as a function of H»O,
as was the case for CrlIS, or if another parameter is a better
predictor. Payne et al. (2022) were able to derive the CrIS
bias correction through comparison between CrlIS and in situ
background Xpan values. In this work, the need to average a
significant number of AIRS soundings to reduce the random
sounding-to-sounding noise makes it difficult to identify any
relationship between AIRS Xpan values and HpO column
amounts.

3.4 Uncertainty estimates and vertical sensitivity

The CrIS radiance noise is lower than the AIRS radiance
noise, which is a significant advantage when retrieving
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species, such as PANs, with only weak absorption features.
Figure 13 shows per-channel median and 25th to 75th per-
centile noise equivalent spectral radiance (NESR) values. Al-
though we use different frequencies in the AIRS and CrIS
retrievals, the AIRS NESR values are systematically greater
than the CrIS values. Taking all of our test cases for compar-
ing AIRS and CrIS (Table 4), we find that the median ratio of
AIRS to CrIS NESR across all channels is ~5.9. Assuming
that single sounding uncertainty scales linearly with radiance
noise, that suggests that the AIRS single sounding uncer-
tainty in Xpan should be approximately 0.5 ppb, that is, ap-
proximately six times the 0.08 ppb value Payne et al. (2022)
calculated for CrIS. This aligns with the correlation between
AIRS and CrIS Xpan shown in Fig. 12, which shows that
AIRS values below 0.5 ppb are dominated by random un-
certainty without significant averaging. We also checked the

Atmos. Meas. Tech., 19, 249-276, 2026
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correlation between individual AIRS and CrIS Xpan values
in Fig. 14, and similarly see that the values have a spread of
~ 0.5 ppb. While we expect the error of individual soundings
to vary depending on the specific atmospheric and surface
conditions for each sounding, we believe 0.5 ppb to be a rea-
sonable estimate of the typical uncertainty in the AIRS Xpan
data.

Figure 15 compares the pressure-weighted column averag-
ing kernels and the sum across the rows of the averaging ker-

Atmos. Meas. Tech., 19, 249-276, 2026

nel (Cady-Pereira et al., 2024) for AIRS and CrIS for good
quality land soundings within the US West Coast Fires do-
main on 11 September 2020. The averaging kernels shown
are the medians of averaging kernels for soundings binned
by surface temperature. For both instruments, maximum sen-
sitivity shifts to lower pressure with decreasing surface tem-
perature. However, compared to CrIS, AIRS maximum sen-
sitivity decreases more quickly as surface temperature de-
creases. We suspect this is due to the greater noise present in
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this is a comparison of individual soundings.

the AIRS radiances, with AIRS sensitivity decreasing more
with reduced thermal contrast due to the greater noise. How-
ever, we have not confirmed this hypothesis. Note that, for
both instruments, the averaging kernels shown in the left pan-
els incorporate the pressure weighting function, which is why
the values are well below 1.

Figure 16 shows the overall degrees of freedom (DOF) of
signal for both the AIRS and CrIS products in the 11 Septem-
ber 2020 US West Coast Fire scene. From Fig. 16a and b, we
can see that the DOFs for the CrIS PAN product are grouped
around 1, indicating that there is essentially always enough
information to retrieval a single piece of vertical informa-
tion in the form of a column average. In contrast, Fig. 16¢
and d show that the AIRS DOFs are lower (centered around
~(.5) with a wider distribution. Greater AIRS Xpan values
do tend to be associated with greater DOFs. This implies that
the AIRS product will retain influence from the prior, partic-
ularly in background conditions, but can detect sufficiently
large PAN enhancements.

4 Recommendations for use

The primary benefit to a retrieval of PAN from AIRS is the
longer record available from AIRS compared to CrIS. We
envision two primary use cases for this product. The first use
case is tracking long term changes in background PAN lev-
els. Given the sounding-to-sounding variation in the AIRS
Xpan values, this will require significant averaging to dis-
cern trends in Xpan from AIRS. However, Fig. 12 does show
that the root mean squared error between AIRS and CrIS
is < 0.1 ppb when averaged to a 5° x 5° or 10° x 10° box,
which is comparable to the CrIS PAN errors. This does not
imply that the overall error is <0.1 ppb (as the AIRS and
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Table 6. Distribution of the number of points in the different sized
boxes used for the AIRS-CrIS comparisons.

Box width  1stpct. 25thpct. Median 75thpct.  99th pct.
1° 10 12 15 22 46
2° 10 23 38 58 154
5° 12 62 137 238 747
10° 25 150 406 642 2140

Cr1lS retrievals could have similar systematic errors), only
that the AIRS and CrIS records will be consistent to within
0.1 ppb with similar averaging. Table 6 gives ranges of the
number of points in each box size from Fig. 12. Based on
this information, our first recommendation is that users inter-
ested in trends in background PAN from the AIRS product
choose a spatiotemporal averaging window that has a me-
dian of at least 140 soundings passing our quality screening
per window which will result in a typical difference versus
CrIS of about 0.1 ppb. This is chosen as the median number
of points (to two significant figures) in a 5° x 5° box (Ta-
ble 6), as Fig. 12 shows this box size is sufficient to reduce
the RMSE between AIRS and CrIS to < 0.1 ppb. In principle,
it should not matter whether the 140 soundings are accumu-
lated by averaging in time or space, as we assume the AIRS-
CrIS Xpan differences are similarly uncorrelated in time as
in space. We expect this assumption to hold true as long as
episodic events that significantly perturb PAN concentrations
(such as wildfires) are not included in the time period aver-
aged. We will test this assumption in the future as more data
becomes available.

The second use case is investigating PAN from extreme
events, such as wildfires, before the start of the CrIS PAN
product. We showed in Fig. 11 that the AIRS PAN prod-
uct does reliably see significant Xpan values of 0.5 to 1 ppb.
However, users should be aware that there are many cases
where a high AIRS Xpan value within a small spatial area is
false. Figure 14 shows that there is a large fraction of AIRS
soundings with Xpan > 0.5 ppb that match with CrIS sound-
ings with Xpan < 0.5 ppb. Therefore, users looking for PAN
caused by extreme events should

1. ensure that high Xpan values are spatially connected (as
a contiguous plume is more likely to be a real signal
than a spurious single-sounding error), and

2. check for other species expected to be generated by the
event of interest, such as CO for wildfires.

These two criteria should help users filter out false posi-
tive high Xpan values. When using other species of interest,
users need not restrict themselves to TROPESS products —
any good-quality dataset will be useful in this regard. Users
interested in extreme events with large Xpan values should
note that the decision tree-based filter can remove soundings
with clear PAN enhancements. Custom filtering using only

Atmos. Meas. Tech., 19, 249-276, 2026
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the PC- and emissivity- based filters can be used in such
cases to recover the soundings with enhanced PAN; however,
users must be aware that the difference with respect to CrIS
will likely be larger in such a case. Further, while we believe
that the PC-based filter is able to remove most cloud-affected
soundings, there may be cases where it is not fully effective.
Thus, we encourage users to engage with the algorithm team
if there is concern about whether a signal of interest in the
AIRS PAN is correct. As stated in Sect. 3.4, users should
use a 0.5 ppb uncertainty per sounding when using individ-
ual soundings in their analysis.

5 Conclusions

We have demonstrated the ability to retrieve free tropo-
spheric column amounts of PAN from AIRS spectra. This is
more challenging than the existing CrIS retrieval due to the
higher radiance noise in AIRS than CrIS and the presence of
a gap in the AIRS spectra on the low-frequency side of the
PAN spectral feature. The AIRS PAN retrieval is also sensi-
tive to low, warm clouds over oceans, which cause spurious

Atmos. Meas. Tech., 19, 249-276, 2026

PAN signals in the AIRS PAN retrieval. These spurious sig-
nals have been successfully removed with a PC-based filter
in testing, but further adjustment may be needed to make this
filter fully effective at removing these signals.

The AIRS product does have larger errors than the CrIS
product and requires care in its application. This is mitigated
by the use of a decision tree-based quality filter trained to
identify AIRS soundings with XpaN values significantly dif-
ferent than the nearest CrIS sounding and by averaging suffi-
cient numbers of AIRS soundings. For studies of background
PAN concentrations, we recommend averaging at least 140
AIRS soundings which will result in a ~ 0.1 ppb error rela-
tive to the existing CrIS PAN product. This product opens
up the potential for a global record of free tropospheric
PAN amounts from 2002 to the present, potentially allow-
ing the evaluation of trends in background PAN for over two
decades.

This product is planned for inclusion in the TROPESS
forward stream, provided AIRS continues to operate. This
would allow us to evaluate its performance over a larger
range of times than was possible during development. Fu-
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shown in Fig. 3. No soundings were removed by filtering.

ture work could take advantage of that data set to further
test the effectiveness of the PC-based filter on the effects of
clouds over ocean. This can also enable us to explore alterna-
tive methods of retrieving PAN from AIRS taking advantage
of, e.g., more advanced machine learning methods trained
to directly retrieve Xpan, that may reduce the sounding-to-
sounding noise. An interesting experiment would be to test
whether a well-designed machine learning approach could
be trained to directly predict the Xpan value CrIS would re-
trieve given only the AIRS radiances.

Appendix A: Decision tree explainability

We use SHapeley Addition exPlanations (Lundberg and Lee,
2017) to investigate what values most contributed to the deci-
sion trees’ prediction of AIRS quality in Sect. 3.3. The results
are shown in Fig. Al. Since these are classification decision
trees, the SHAP value represents an increase or decrease in
the probability of the sounding being classified as “good,”
with positive SHAP values indicating a high “good” proba-
bility.

Some of the relationships shown in Fig. A1 make physical
sense:

https://doi.org/10.5194/amt-19-249-2026

— Res. Norm. Init., the pre-PAN residual, follows the ex-

pected pattern where smaller residuals are more likely
to yield a good sounding. Since this is the pre-PAN re-
trieval residual, this suggests that a successful retrieval
is highly dependent on the previous steps minimiz-
ing the observation/model mismatch from other atmo-
spheric parameters. This is a reasonable relationship, as
PAN is a weaker absorber than the trace gases optimized
in a previous step (Table 3).

K -dL, which represents maximum of the absolute value
of the dot product of the residuals with the Jacobian,
is essentially a summary of the residual weighted to-
wards frequencies with strong absorbance. Therefore, it
is likewise sensible that decreasing values of this quan-
tity increase the chance of a sounding being classified
as “good.”

Rad. resid. mean, the mean of the post-PAN residual,
should indicate how well the posterior solution matches
the observed radiances. This is also a sensible metric,
as it indicates how well the optimization algorithm min-
imized the cost function, so lower values should cor-
relate with a higher probability of the sounding being

Atmos. Meas. Tech., 19, 249-276, 2026
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Figure Al. Beeswarm plot showing the Shapley values for the 13 input variables to the quality filtering decision trees that have non-zero
contributions to the output flag. The meaning of each input variable’s short name is given in Table 5.

marked as good quality, which is what we see in the
land model.

Several of the other relationships from Fig. Al are less
clear. For example, mean cloud optical depth and the max-
imum signal-to-noise (SNR) ratio seem backwards: higher
cloud optical depth and lower SNR seem unlikely to corre-
late with good soundings, as generally more optically thick
clouds should obfuscate the radiances of interest and lower
SNR spectra should be more difficult to extract a signal from.
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However, we must remember that these decision trees are
trained to predict if AIRS returned Xpan similar to CrIS.
Thus, we interpret this behavior to mean that these are cases
where AIRS and CrIS return similar Xpan values due to
these factors. Optically thick clouds likely mean that both in-
struments are not able to obtain much information about the
trace gas columns, and therefore return similar values. Like-
wise, low SNR spectra will have a low information content,
thus both retrievals are more likely to return the prior. Since
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we use a consistent prior in both retrievals, this would result
in similar XpaN.

Rad. resid. std. dev. shows another unexpected relation-
ship. This is the standard deviation of the post-PAN radiance
residuals. Larger values generally indicate that there is a lot
of variation in how well the posterior state matched the ob-
served radiances. This can occur if, e.g., narrow features in
the radiances were not fit well by the posterior state caus-
ing specific frequencies to have large residuals. Interestingly,
both models associate greater values with improved likeli-
hood of a sounding being good quality. This may indicate
that there are narrower absorption features than PAN which
the optimization can try to fit incorrectly with PAN, and thus
the decision tree is identifying that soundings were these
non-PAN absorption features are not erroneously fit are more
likely to be good quality. However, this is speculative. Alter-
natively, it may be similar to mean cloud optical depth and
SNR, where this is simply identifying cases where the poste-
rior is similar to the prior. Since the AIRS and CrIS retrievals
use the same prior, this would result in consistent values for
the same reasons as mentioned for cloud optical depth and
SNR.

For the remaining features, we mostly see them centered
on zero impact, with the long tails to either end having a mix
of high and low input values. This indicates that there is not a
clear correlation between these input values and the predicted
quality.
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Appendix B: Physical interpretation of emissivity
interference

Figure 9 showed that, in the region with low emissivity near
1025cm™!, very high AIRS XpaN was retrieved, but CrIS re-
trievals returned very low Xpan. These opposed effects of the
silicate feature discussed in relation to Fig. 9 arises from the
relative shapes of the emissivity and PAN spectral features
and the position of the AIRS and CrIS microwindows.

Figure Bla shows the surface emissivity near 1025 cm™!
again, and Fig. B1b shows the spectral shape of the emis-
sivity feature in two boxes marked in Fig. Bla. From this,
it is clear how the low emissivity near 1025cm™! used in
our quality filtering corresponds to a dip in the emissivity
in the frequency range of the PAN feature (the gray shading
in Fig. B1b). Figure Blc expands the PAN frequency range
and shows the emissivity features along with the PAN fea-
ture and AIRS and CrIS windows. Due to steps prior to the
PAN step, the emissivity versus frequency is set to a straight
line between 780 and 810cm™! with no fitting inside the
780-810cm~! window. We can see that the AIRS windows
fall primarily on frequencies where the slopes of the PAN
and southern box’s emissivity features versus frequency have
the same sign. Thus, in AIRS, the silicate emissivity feature
present in the southern box is fit by the retrieval as additional
PAN, as increasing the absorbance due to PAN will generally
reduce the residuals. However, the second CrlIS window cov-
ers frequencies where the PAN and emissivity features have
opposite slopes versus frequency. For CrIS therefore, the re-
trieval may attempt to invert the PAN feature to produce the
concave down shape seen in the emissivity, resulting in neg-
ative Xpan values over regions with this feature.
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Figure B1. (a) A map of surface emissivity at 1025 cm™!

Frequency (cm~1)

, as in Fig. 9, but with two boxes indicating areas with different emissivity values.

(b) Spectral shape of the emissivity values in the two boxes marked on panel (a). The lines indicate the mean emissivity and the shaded areas
=+ 1 standard deviation within each box. The grey area marks the frequency range plotted in panel (c¢). (¢) The mean emissivity from the
same boxes as (b), with the PAN spectral feature and microwindows from Fig. 1 overplotted. The AIRS and CrIS microwindows are offset

vertically solely to make them distinguishable where they overlap.

Appendix C: Using a single decision tree for quality
filtering

For the decision tree-based filter described in Sect. 3.3,
we tested using a single decision tree for both land and
ocean soundings instead of separate trees for those two cat-
egories of soundings. In principle, a single decision tree
would be preferable, as it would both simplify implementa-
tion and eliminate concerns that mixed land/ocean soundings
or soundings near a coast could be filtered using the less ap-
plicable decision tree. This section shows why we elected to
use separate decision trees instead.

Figure C1 shows the correlation between AIRS and CrIS
Xpan with different levels of averaging when using the single
decision tree in the filter, instead of separate decision trees for
land and ocean soundings. Comparison to Fig. 12 shows that,
on the gross scale represented by the averaging boxes used
here, neither option is clearly better than the other. Using a
single decision tree instead of separate trees yields similar
R and RMSE values, with the single decision tree perform-
ing better at some levels of averaging and the separate trees
performing better for others.

However, when we compare Fig. C2 to Fig. 10, we can
see in panels d and h that the single decision tree (Fig. C2)
removes more of the PAN plumes compared to the separate
trees (Fig. 10). This was the main reason we chose to use
separate decision trees to filter land and ocean soundings, as
the ability to examine plumes from extreme events is one of
our primary use cases.
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Figure C1. This figure is the same as Fig. 12, except the filtering uses a single decision tree trained on and applied to both land and ocean
soundings, rather than separate land and ocean trees.
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Code and data availability. A Jupyter  notebook to  re-
produce the figures in this paper is available at
https://doi.org/10.5281/zenodo.15305278 (NASA-TROPESS,
2025). The data used by that notebook are available at
https://doi.org/10.22002/stfgh-edj29 (Laughner et al., 2025).
AIRS level 1B radiances (AIRS Project, 2020) were obtained from
https://airsl1.gesdisc.eosdis.nasa.gov/data/Aqua_AIRS_Levell/
AIRIBRAD.005/ (last access: 12 March 2025). CrIS level 1B
radiances (Sounder SIPS and GES DISC, 2017) were obtained
from https://sounder.gesdisc.eosdis.nasa.gov/data/SNPP_Sounder_
Levell/SNPPCrISL1B.2 (last access: 12 March 2025). GOES im-
agery were obtained from https://registry.opendata.aws/noaa-goes
(last access: 8 December 2022, National Oceanic and Atmospheric
Administration, 2017). MODIS cloud properties from the MYDO06
product (collection 6.1, MODIS Atmosphere Science Team, 2017)
and the associated geolocation MYDO3 product were downloaded
from the Level-1 and Atmosphere Archive and Distribution
System (LAADS DAAC, https://ladsweb.modaps.eosdis.nasa.gov/
missions-and-measurements/products/MYDO06_L2/, last access:
1 September 2023).
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