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Abstract. New high-resolution hyper and multispectral
satellite instruments enable the retrieval of aerosol optical
depth (AOD) at spatial resolutions of tens of meters. The eX-
tensible Bremen AErosol Retrieval (XBAER) AOD retrieval
algorithm has previously been developed for use with Ocean
and Land Colour Instrument (OLCI) and MEdium Resolu-
tion Imaging Spectrometer (MERIS) radiance data. With the
intention of later modifying XBAER to use the full 30 m spa-
tial resolution data from the Hyper-Spectral Imager (HSI)
on board the Environmental Mapping and Analysis Program
(EnMAP) satellite, the present study investigates how HSI
data compare to OLCI data. For the bands of interest, top of
atmosphere reflectances generally compare well (R > 0.9),
the intercept of the best fit line is less than 0.05 from the
origin, and the slope is less than 0.1 from 1. However ex-
ceptions exist and these are explained as the result of differ-
ences in the spectral response functions of the instruments
in the region of the spectrum around the O, A-Band ab-
sorption feature, or as a result of differences in the view-
ing geometry of the satellites which produces differing bidi-
rectional reflectance distribution function (BRDF) effects.
XBAER s then used to retrieve OLCI and HSI surface re-
flectance (SRF) and AOD. For SRF the comparison between
OLCI and HSI yields R =0.953, best fit intercept = 0.003
and best fit slope = 1.082. The respective comparison for
AQD yields R =0.809, best fit intercept = 0.153 and best
fit slope = 0.785. These comparisons are then separated by
surface type and insights are gained into the performance of
the algorithm. Finally, the unmodified XBAER algorithm is
run using the full spatial resolution HSI data. Plumes from

biomass-burning are identified in a single scene, and a com-
parison with AErosol RObotic NETwork (AERONET) AOD
is performed for multiple scenes, achieving R = 0.631.

1 Introduction

Aerosol optical depth (AOD) is a measure of atmospheric
aerosol, defined as the columnar integration (between sur-
face and top of atmosphere) of the extinction coefficient
(the sum of the absorption and scattering coefficients) of
aerosol (Di Antonio et al., 2023). The most accurate mea-
surements for AOD come from sparse surface-based mea-
surements, such as the numerous sun-photometry measure-
ment sites of the AErosol RObotic NETwork (AERONET)
(Holben et al., 1998), which are often used as comparison
to space-based retrievals. Airborne instruments can provide
extended spatial coverage, for example AOD has been re-
trieved from Airborne Visible/Infrared Imaging Spectrome-
ter (AVIRIS) data (Isakov et al., 1996), the Aerosol Cloud
Meteorology Interactions over the Western Atlantic Experi-
ment (ACTIVATE) mission (Sorooshian et al., 2025), and the
KORea-US Air Quality) atmospheric experiment (KORUS-
AQ) (LeBlanc et al., 2022). However airborne measurements
can only be performed during infrequent campaigns.

Several decades of AOD retrievals from satellites are now
available (Wei et al., 2020) that offer increased spatial cover-
age over both surface-based and airborne measurements. The
spatial resolution of a satellite instrument’s measurements
gives an upper limit on the spatial resolution of an AOD re-
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trieval. For example the Moderate Resolution Imaging Spec-
troradiometer (MODIS) has a spatial resolution of 250 or
1000 m depending on the band. The Dark Target (Levy et al.,
2013; Gupta et al., 2018), Deep Blue (Hsu et al., 2013),
and Multi-Angle Implementation of Atmospheric Correc-
tion (MAIAC) (Lyapustin et al., 2018) algorithms have all
been applied to MODIS data and obtained spatial resolutions
of 3, 10 and 1km, respectively. The Advanced Very High
Resolution Radiometer (AVHRR) has a spatial resolution of
about 1.1 km at nadir and Deep Blue has been applied to its
4 km spatial resolution Global Area Coverage dataset to ob-
tain AOD at 8.8 km spatial resolution (Hsu et al., 2017). The
Advanced Along-Track Scanning Radiometer (AATSR) pro-
duces data with a spatial resolution of 1 km and the combined
AATSR Dual-View (ADV) and AATSR Single-View (ASV)
algorithms can produce AOD at the full AATSR resolution
of 1 km (Kolmonen et al., 2016).

While these AOD datasets are invaluable, higher resolu-
tion AOD could reveal regional small scale air pollution and
bio-mass burning plumes, which can help improve exposure
studies of the health effects of aerosols. New multi and hyper-
spectral satellite instruments with higher spatial resolution
allow for increased spatial-resolution of an AOD retrieval. A
non-exhaustive list of examples includes data from the 2019-
launched hyperspectral PRecursore IperSpettrale della Mis-
sione Applicativa (PRISMA) satellite being used to retrieve
AOD of industrial plumes at sub 100 m spatial resolution
(Calassou et al., 2024). The Multispectral Instrument (MSI)
of Sentinel-2 has being used to retrieve 60 m AOD for urban
areas (Yang et al., 2021). Landsat 8 data has been used to
retrieve AOD at 30 m spatial resolution for dark pixels over
Beijing (Ou et al., 2017).

The eXtensible Bremen AErosol Retrieval (XBAER) algo-
rithm (Mei et al., 2017a, b, 2018) retrieves AOD, surface re-
flectance (SRF), and cloud parameters such as cloud optical
thickness and cloud effective radius from satellite measure-
ments. It was originally developed for use with data from the
MEdium Resolution Imaging Spectrometer (MERIS) (Mei
etal., 2017a, b), before being adapted to data from the Ocean
and Land Colour Instrument (OLCI) (Mei et al., 2018). Al-
though both of these instruments have a spatial resolution of
up to 300m, XBAER used the reduced resolution datasets
with spatial resolution of 1.2km to produce data products
with a spatial resolution of 10 km. The Hyper-Spectral Im-
ager (HSI) on board the Environmental Mapping and Anal-
ysis Program (EnMAP) satellite (Chabrillat et al., 2024;
Storch et al., 2023) has a much higher spatial resolution of
30 m. This paper investigates the possibility of adapting the
XBAER algorithm for use with HSI data.

In Sect. 2 the XBAER algorithm and the MERIS, OLCI
and HSI instruments are introduced. In Sect. 3, as a first step,
the radiometric calibration of HSI is investigated by com-
paring its top of atmosphere reflectances (RTOA) to OLCI’s
for colocated scenes at OLCI’s spatial resolution. In Sect. 4
XBAER is run using the same colocated HSI and OLCI
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scenes from the previous section, and the resulting SRF and
AOD retrievals are analysed. First results of using the full
30m HSI spatial resolution with XBAER to retrieve AOD
are presented in Sect. 5, including examination of biomass
burning in a single scene, and a comparison with AERONET
data for multiple scenes. In Sect. 6 the challenges of further
developing the XBAER algorithm for use with HSI data are
discussed.

2 Methods and Data

The XBAER algorithm performs retrievals of AOD as well
as surface and cloud parameters (Mei et al., 2017a, 2019).
It uses RTOAs derived from radiances measured in the visi-
ble and near-infrared (VNIR) range. It was originally devel-
oped using reduced spatial resolution (1.2 km) MERIS data
achieving outputs at a spatial resolution of 10 km.

The XBAER retrieval begins by applying a cloud mask
to minimize cloud contamination in AOD retrieval. Clouds
are identified by comparing measures of scene-brightness,
RTOA homogeneity and cloud height information to cali-
brated threshold values. The threshold values are determined
by a combination of radiative transfer modeling and an anal-
ysis of different cloud, aerosol and surface scenarios. Cloud
adjacent pixels are also screened. A full description of the
cloud mask is given in Mei et al. (2017b).

Once clouds are screened, SRF and AOD can be deter-
mined simultaneously in an iterative procedure. The surface
contribution is determined by a linear function in one vari-
able, where the variable is the soil-adjusted vegetation in-
dex (SAVI) and the parameters are determined by a gener-
ated dataset of spectral coefficients with spatial resolution
of 0.1° x 0.1° and monthly temporal resolution. The surface
contribution can then be separated from the RTOA using the
Chandrasekhar equation relating RTOA and surface bidirec-
tional properties (Mei et al., 2017a; Kaufman et al., 1997).
Thus AOD may be retrieved using static lookup tables of
aerosol parameterisation pre-generated by radiative transfer
modeling. The use of lookup tables of appropriate resolution
increases the speed of the algorithm over one which must do
its own radiative transfer modeling, while preserving suffi-
cient accuracy. A full description of the XBAER algorithm’s
processing chain, surface treatment, lookup tables and AOD
retrieval can be found in Mei et al. (2017a). Subsequent ver-
sions of XBAER allow retrievals of cloud optical thickness,
cloud effective radius and aerosol above cloud for aerosol-
contaminated cloudy scenes.

MERIS was a pushbroom spectrometer with 15 spectral
bands from 412 to 900 nm. It had a full spatial resolution
of 300m, but also provided a reduced resolution product
with spatial resolution of 1.2km. It was on board the EN-
VISAT satellite which flew in a sun-synchronous orbit. Con-
tact was lost with it in 2012. The OLCI instrument (also
a pushbroom spectrometer) on Sentinel-3 (also in a sun-

https://doi.org/10.5194/amt-19-293-2026



S. Laffoy et al.: Application of the XBAER AOT algorithm to EnMAP satellite data 295

synchronous orbit) is a successor to MERIS and XBAER
was subsequently adapted for use with OLCI (Mei et al.,
2018). OLCI has 21 spectral bands from 400 to 1020 nm,
14 of which have the same centers and full width at half
maximums (FWHM) as MERIS bands. The recreation of
the 15th MERIS band (MERIS Band 11) at the oxygen A-
Band (O, A-Band) absorption feature differs in center and
FWHM by 0.625 and 1.25 nm respectively. The OLCI swath
width is 1270 km and crosses the equator at approximately
10:00 a.m.LT. There are two OLCI instruments, A and B,
onboard Sentinel-3A and Sentinel-3B respectively. Between
the two satellites there is almost daily global coverage (some
regions in the tropics are missed). Although small differences
in spectral response functions exist between the two instru-
ments, this paper treats them as interchangeable. OLCI spa-
tial resolution is 300 m, but there is also a reduced resolution
product of 1.2km. This paper and XBAER use the reduced
resolution Level-1B data product.

Like MERIS and OLCI, HSI on board the EnMAP satel-
lite is a pushbroom imager. Unlike MERIS and OLCI it is a
hyperspectral imager with 224 bands. More importantly for
the purposes of high-spatial resolution AOD retrieval, HSI
measures radiance data with a spatial resolution of 30m,
ten times the full spatial resolution of OLCI and MERIS.
The drawback to high spatial and spectral resolution is low
daily global coverage (with a swath width of 30km and a
daily limit on swath length of approximately 5000 km), mak-
ing global retrievals of dynamic variables with HSI data not
possible. A HSI scene actually consists of two almost over-
lapping scenes; the VNIR scene has 91 bands from 418 to
993 nm and the shortwave infrared (SWIR) scene has 133
bands from 901 to 2445 nm. As XBAER only uses wave-
lengths within the VNIR, this study uses HSI’s Level 1B
VNIR data. Finally, note that EnMAP is also in a sun-
synchronous orbit and crosses the equator at approximately
11:00 a.m. LT, an hour later than Sentinel-3 and OLCI.

3 Comparison of OLCI and HSI RTOA

To verify the calibration of HSI data for its use in XBAER
it must be determined that HSI radiance data are consis-
tent with data of previous satellite instruments used with
XBAER, in this case OLCI. This must be done for every
band used as input for XBAER, see Table 1 for a list of those
bands.

Overlapping OLCI and HSI scenes for a selection of sur-
face types (36 vegetation scenes, 50 desert and 45 urban)
are identified. Note that whereas an OLCI scene is an en-
tire descending node of an orbit, with the entire swath, a
HSI scene is 1000 pixels x 1024 pixels of area approximately
900 km? (30km x 30km). Throughout this paper, references
to an OLCI scene that is colocated with a HSI scene, means
only the small portion of the OLCI scene that overlaps with
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the much smaller HSI scene. The locations of the scenes are
shown in Fig. 1.

For each 1.2km OLCI pixel which is fully within a HSI
scene, as much as 1600 of the 30 m HSI pixels may overlap
it either fully or partially. Due to differences in angle and ori-
entation of the instruments, these HSI pixels will not form
a perfect square, but they will approximate one with up to
40 pixels to a side. Thus, 160 pixels of the 1600 would over-
lap the edge of an OLCI pixel, meaning approximately 90 %
of these HSI pixels will be fully within that OLCI pixel. A
weighted mean RTOA of the 30 m HSI pixels intersecting
that OLCI pixel is calculated, weighted by the proportion of
corners of each HSI pixel inside the OLCI pixel. If all four
corners of a HSI pixel are within the OLCI pixel, then that
pixel is assumed to be entirely within the OLCI pixel, and is
assigned the maximum weight of 1. If only 3, 2 or 1 corners
of a HSI pixel are within the OLCI pixel, then the propor-
tion of the HSI pixel within the OLCI pixel is assumed to
be within the range of 50 %—100 %, 0 %—100 % or 0 %—50 %
respectively, and the midpoint of those ranges (0.75, 0.5, and
0.25) are assigned as the weight. In this way, a HSI RTOA is
obtained for a 1.2 km pixel colocated with the OLCI pixel.

When processing a HSI and OLCI scene in the way just
described, all OLCI pixels which are fully within the HSI
scene are used. This includes pixels for surface types that
differ from the general scene surface type, for example set-
tlements in predominantly vegetation scenes, rural hinterland
in urban scenes and small or peripheral water bodies in all
surface types.

HSI and OLCI measure radiances using different bands
and different spectral response functions. For each OLCI
band, a HSI band must be selected to compare to it. A sta-
tistical analysis of the performance of various band selec-
tion or composite band construction methods was performed.
The five methods compared were (1) nearest HSI band to an
OLCI band, (2) mean of HSI bands overlapping an OLCI
band, (3) weighted mean of HSI bands overlapping an OLCI
band, weighted by amount of overlap, (4) and (5) linear re-
gression of HSI bands overlapping an OLCI band, with the
intercept term ineligible and eligible for regression respec-
tively. Note that here a HSI band and an OLCI band over-
lap if their FWHMs intersect. It was determined that method
(1) the nearest HSI band to an OLCI band performed as well,
or nearly as well, as other more sophisticated methods. Go-
ing forward, this method is used. See Table 1 for details of
which HSI bands are nearest to each OLCI band.

Scenes which are cloud-free at the time of both satellite
overpasses were determined as follows. If one or both scenes
are cloudy or partially cloudy, then a very poor RTOA com-
parison is produced for all wavelengths, or just some wave-
lengths if the cloud is thin. Visual inspection of a scene can
then be performed to confirm the presence of clouds, and
such scenes are then discarded. If visual inspection fails to
identify clouds, then the scene is not discarded.
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Table 1. Band information. OLCI bands used in XBAER, their central wavelength and full width at half maximum (FWHM), equivalent

information for the nearest HSI band, and what that band is used for in XBAER.

S. Laffoy et al.: Application of the XBAER AOT algorithm to EnMAP satellite data

OLCI bands Nearest HSI bands Usage in XBAER
Band Central FWHM | Band Central FWHM | Cloud Surface AOD
no. wavelength no. wavelength mask  reflectance
2 412.5 10 1 418.4 7 X X X
3 442.5 10 4447 6.1 X X
4 490 10 16 491.8 5.8 X X
5 510 10 20 510.8 5.9 X X
6 560 10 30 561.1 6.5 X X
7 620 10 41 622.9 7.2 X X
8 665 10 48 666.6 7.7 X X
10 681.25 7.5 50 679.7 7.8 X X
11 708.75 10 54 706.6 8.1 X X
12 753.75 7.5 61 756.4 8.7 X
13 761.25 2.5 62 763.7 8.8 X
18 885 10 78 887.7 10 X

[
\\Q‘ A T
h .
lﬂwﬂi

B e/
1 d

Figure 1. Scene locations. Locations of scenes chosen for RTOA comparison. Green circles are vegetation, orange triangles are desert, blue

squares are urban.

Presented in Fig. 2 is the OLCI vs. HSI RTOA compari-
son for all 12 bands in Table 1 and all 50 desert scenes. Note
that the contribution to the RTOA from Rayleigh scattering
(which overwhelmingly affects the lower wavelength bands)
has been subtracted from the RTOAs (Frohlich and Shaw,
1980). Going forward, when referring to the RTOA compar-
ison for band i (B;), this means the comparison of RTOA for
OLCI band i (O;) with the RTOA for the nearest HSI band.
lei is the Pearson correlation coefficient of RTOA for all pix-

els in all desert scenes for B;. If R?’j represents the RTOA
correlation for B; and desert scene j, then the mean of R?’]

for all j is represented by E? For each B;, the best fit for
all pixels in all scenes is depicted as a green line, and the
intercept and slope of this line are denoted by Il.d and Sf.
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With the exception of By, and Bi3, all other bands have
an excellent comparisons with lei > 0.96, |Iid| < 0.05, and
|Slfjl — 1] < 0.05. B3 has the worst comparison with SfS =
0.431. As can be seen in Table 1, HSI band 62 (Hpgp) is the
closest to O13, and is significantly wider. Moreover, the nar-
row 013 is centered near the deepest trough of the Oy A-
Band, meaning that Hg, will measure higher radiances, see
Fig. 3b. To a lesser extent the O, A-Band also affects the
RTOA comparison for Bj>. O12 does not intersect the ab-
sorption feature, but Hg; does slightly, see Fig. 3a. Thus it
is expected that Hg; measures lower radiances than Op;, and
this is seen in sz = 1.156 and the greater than zero 1{12 =
0.021. Despite the poor slopes of the comparison for By, and
By3, they have strong correlation and intercept close to 0;

RY, =0.978, R, =0.929, I}, = 0.021, and I{; = 0.014.
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Figure 2. Desert scene RTOA comparison. RTOA comparison for 50 desert scenes. If R?‘j represents correlation of RTOA between OLCI

band i (O;) and the nearest HSI band for all pixels in scene j, then lel is the correlation of all pixels in all scenes at band i, and ﬁ? is the

mean of R?’j forall j. I l.d and S;i represent the intercept and slope of the green best fit line.

OLCI band 12 and HSI band 61 spectral response functions

OLCI band 13 and HSI band 62 spectral response functions

104 —
0.8 1
0.6 Radiance
—— OLCI Band 12
—— HSI Band 61
0.4 4 Half-Maximum
0.2 4
0.0
740nm 745nm 750nm 755nm 760nm 765nm
(a)

1.0 — } .
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0.6 Radiance
—— OLCI Band 13
—— HSI Band 62
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775nm

Figure 3. Oy A-Band. The spectral response functions of (a) O1, and Hg) and (b) O3 and Hgp, overlain on a 1 nm rolling-average of
radiances simulated using SCIATRAN (Mei et al., 2023) at 0.1 nm spectral resolution (red line). All curves are plotted relative to their
maximum within the range. The orange line is intended as a visual aid to help identify the FWHM of the two spectral response functions.
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017 and O13 are only used in XBAER as part of the cloud
mask. To be more specific, their ratio is compared to a thresh-
old value and used as an indicator of cloud top height. As
such, it is planned to modify the XBAER cloud mask thresh-
old values for use with HSI data. Thus these poor compar-
isons for By, and Bj3 are not considered to be a problem for
adapting XBAER for HSI data.

The above analysis of 50 desert scenes is repeated for 45
urban scenes and 36 vegetation scenes, see Figs. 4 and 5. For
urban scenes R;' > 0.94 for all bands, with the 3 uppermost
bands (B2, B13, Big) the only bands below 0.96. However
the slope is not as good; only for Bj is it within 0.05 of 1. For
6 bands it is more than 0.1 from 1 with bands S, (1.383), Si3
(0.508) and S13 (1.250) performing worst. The explanation of
the poor slope for B> and B3 of desert scenes also applies
to other scene types, but S, is much higher than Sf2 (1.156)
and some other effect may be occurring.

The vegetation scenes (Fig. 5) perform worse than urban
scenes, with R above 0.95 for only two bands (R; =0.956,
Ry =0.959), and below 0.8 for all upper bands (R}, =
0.774, R}, =0.614, R};=0.780, R}y =0.583) However,

despite this, mean scene correlation, F;’ remains everywhere
above 0.9. Thus pixels within a scene are usually very well
correlated, meaning that low R} is caused by some property
at the scene level. As with urban scenes, slope is also a prob-
lem, usually below 0.95, and reaching as low as S}y = 0.760.
(For band 13, slope is worse, SIV3 =0.385, but this is ex-
plained by the spectral response function and the O A-
Band).

To explain the poorer comparisons of RTOA for urban and
vegetation scenes, the effect of the bidirectional reflectance
distribution function (BRDF) is considered. A strong back-
scattering “hotspot” effect is expected when the viewing
zenith and azimuth angles approach the solar zenith and az-
imuth angles respectively. Sunlight scattered from the sur-
face back to the sun does not encounter any surfaces to im-
pede its path. In the general case, as the viewing geome-
try approaches the solar geometry less surfaces are expected
to be encountered that can block light’s path to the satellite
(Gatebe and King, 2016). Increased complex vertical struc-
tures within a scene, such as canopy, is presumed to increase
the hotspot effect, as it increases the potential for light scat-
tered in the direction of the observer to encounter another
surface. As 20 of the 36 vegetation scenes are dense vege-
tation, a strong mean hotspot effect across these vegetation
scenes is expected. Further, urban scenes offer less com-
plex structure than trees or crops, but do have large vertical
structures (buildings, bridges, etc) increasing the potential
for the existance of surfaces blocking light scattered towards
the satellite as the viewing geometry deviates from the so-
lar geometry. Though vertical structure is possible for desert
scenes, it is a less mandatory feature of such scenes than it
is for vegetation or urban scenes, and so the effect of BRDF
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hotspot over multiple desert scenes on the RTOA reflectance
comparison for the two satellites is expected to be weaker.

To analyse this further a measure of error for the RTOA
comparisons is required. For each surface type and each
scene, an analysis was performed of the relative distances
of both OLCI and HSI viewing geometries from the optimal
hotspot geometry. For each scene and band, each instrument
is assigned a distance to the hotspot between 0 (if the viewing
geometry is exactly on top of the hotspot) and 1. A distance
of 1 means that both the viewing angles differ from the solar
angles by some cutoff amount. The cutoff zenith and azimuth
angles are determined per scene type and band as those which
maximise the pearson correlation coefficient between abso-
lute difference in the two satellite’s distance to the hotspot
(a number between 0-1) and the root mean squared error
(RMSE) per scene. This correlation is presented in Figs. 2, 4,
and 5 as HS;

With some exceptions, in general HSE1 is between 0.62—
0.75, HS} is between 0.84-0.9 and HS] is between 0.81—
0.88. Exceptions to this include B3 for which O, A-band is
already a known major source of error. B1; is below or at the
low end of the range for desert and vegetation scenes where
the Oy A-band contributes to the error. Interestingly HSY, is
not affected by this. The lower bands are also exceptions for
all scene types with HS decreasing steeply from HS4 to HS3
to HS,. The analysis was repeated for these bands without
applying Rayleigh correction to the RTOAs. This resulted in
HS for the lower bands similar to that of the higher bands,
for each scene type.

In general we see that RMSE most correlates with a
hotspot effect for urban scenes (0.84 and 0.9), followed only
slightly behind by vegetation scenes (0.81 and 0.88). Desert
scenes have the least correlation, but still show some corre-
lation (0.62 and 0.75). Note that we cannot draw any conclu-
sion about a hotspot effect for any scene from this data. We
can only conclude that some mean hotspot effect emerges
across scenes of similar type, and this correlates with er-
ror in the RTOA comparison. This correlation is strong for
urban scenes and vegetation scenes, and weaker for desert
scenes. This gives us no information about how strong a
BRDF hotspot effect may be for any one scene. The low HS§1
only demonstrates a weak contribution of any mean hotspot
effect that emerges from multiple desert scenes to overall er-
ror, but says nothing about how strong hotspots may be for
desert scenes. But desert scenes have the best comparison of
RTOA (with R;i, Sld, and Iid deviating least from the ideal),
and desert scenes are where a mean hotspot effect of small-
est magnitude is expected. Urban scene RTOA comparisons
perform worse than desert, and we see that HS}J > HS?. A
stronger mean hotspot effect is expected to emerge for urban
scenes than for desert scenes, as urban scenes are expected
to have more vertical surfaces which can impede the path of
scattered light to a satellite not directly between the sun and
the surface. The effect of canopy and crops on Vegetation
scenes are also expected to produce a strong hotspot effect,
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Figure 4. Urban scene RTOA comparison. RTOA comparison for 45 urban scenes.

and vegetation scenes do have more error than urban scenes,
and similar HS.

Finally on BRDF, for all three scene types HSI tends to
underestimate OLCI (the exception being B3 where spectral
response functions ensure HSI overestimates OLCI). For all
scene types, the mean distance of OLCI to a hotspot is closer
than the mean distance of HSI, which would contribute to
OLCI producing higher radiances. Thus two sources of error
between HSI and OLCI RTOA are identified; the effect of the
0> A-Band on B3 (and to a lesser extent Bj), and the effect
of BRDF hotspots on all bands.

4 Application of XBAER to HSI at 10 km Resolution

After gaining confidence in the HSI radiometric calibration,
and understanding reasons for RTOA differences, we now
wish to compare SRF and AOD retrievals from the two satel-
lites. As XBAER is an established algorithm that can re-
trieve both, we use it to process the same colocated OLCI
and HSI scenes from the previous section, and compare the
resulting SRF and AOD. As discussed above, the XBAER
cloud mask (Mei et al., 2017b) compares RTOA derived from
various bands against calibrated threshold values. Updating
the cloud mask for use with HSI data is intended as future
work, but the very large RTOA differences for Bj3 mean that
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XBAER identifies nearly every HSI pixel as either cloud or
cloud adjacent. For now, and for the rest of this paper, cloud
mask checks involving the O, A-Band are deactivated and
only cloud free scenes are considered. Using the same cloud-
free scenes and colocated pixels from Sect. 3, Fig. 6 presents
OLCI vs. HSI scatter plots for XBAER-derived SRF and
AOD at 550 nm. The spatial resolution of the XBAER out-
put is 10 km. This means that each 30 km scene will have a
maximum of 9 output pixels. In the previous section the mean

scene correlation (R{ ) for B; was used as a central measure

of scene correlation (RZ.J ) for scene j and B;. The small num-
ber of output pixels per scene results in more outliers for
scene correlation of SRF (Rg¢) and AOD (R,0q). Thus the
median will now be used as a central measure of scene cor-
relation (med(Rg), med(R,04)) rather than the mean.

The SRF comparison is very good, with Rgs=0.953,
Iy¢ = 0.003, and only the slope deviating slightly from what
would be ideal; Ssr = 1.082. For higher surface reflectances
(predominantly desert scenes, but some urban scenes too)
HST underestimates OLCI and this is generating the slope.
The AOD comparison has Ryoq = 0.809, 09 = 0.153, and
Saod = 0.785. Most AOD values are low, in the region of the
graph before the red best fit line intersects the black 1 : 1 line,
thus HSI underestimates OLCI for AOD too.

Separating these graphs by scene type may allow us to
generate insights in this result. Figure 7 separates the graphs
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Figure 6. OLCI vs. HSI SRF and AOD. Comparison of XBAER-derived SRF and AOD at 550 nm using all colocated, cloud-free HSI and
OLCI scenes. Retrieved SRF and AOD are at 10 km resolution.

(cities within dry, bright landscapes) which are contributing
to the high slope of SRF, with I;f = —0.018, S;lrf = 1.245.
In spite of this, SRF correlates well for urban scenes, R;‘rf =
0.896. The darker vegetation scenes also contribute to the
high slope for all scenes, although less strongly than urban

of Fig. 6 by scene type. For SRF the desert scenes perform
best with Rgrf =0.951, Isdlrf = 0.024, and a slope slightly be-
low 1; Sgrf = 0.997. This appears to contradict the SRF com-
parison for all scenes where HSI’s underestimation of OLCI
appeared to be stronger for brighter scenes (/g f=0.003,
Sorf = 1.082). It turns out it is the brighter of the urban scenes
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scenes with ISVrf =0.003, S;’rf = 1.073. Vegetation scenes also
have the lowest correlation for SRF; R} = 0.75.

This SRF comparison for the different surface types is ex-
plained using the Bjg RTOA comparisons from the previous
section. Bjg plays a very important role in retrieving SRF in
XBAER. XBAER treats the surface contribution of the sig-
nal as a linear function with SAVI as the variable (Mei et al.,
2017a, 2018). Bjg is used to calculate SAVI, thus a poor
RTOA comparison of Big between HSI and OLCI will have
an effect on the SRF comparison between HSI and OLCI at
any wavelength. Hence the effect of BRDF hotspots on the
comparison of Bjg can propagate to the SRF comparison at
any wavelength. It can be seen that the desert, urban and veg-
etation correlations for Big and SRF follow a similar trajec-
tory; 0.978, 0.940, and 0.583 respectively for Byg, and 0.951,
0.896, and 0.75 respectively for SRF. It can also be seen that
the median scene correlation for desert, urban and vegetation
scenes are all high; med(Rfrf) =0.957, med(R;) = 0.943,
and med(RY;) = 0.973, meaning that pixels within a scene
tend to be very well correlated, and that what error does ex-
ist is primarily introduced by varying properties at the scene
level, such as relative distance of the two satellite instruments
to a BRDF hotspot.

Another explanation for the SRF comparisons of different
scene types is the difficulty in separating atmospheric and
surface contributions from satellite data. The theory behind
the XBAER algorithm uses the Chandrasekhar equation for
RTOA (Mei et al., 2017a; Kaufman et al., 1997) which sepa-
rates RTOA into surface and atmospheric contributions. The
difficulty in separating the surface and atmospheric signals
produces error. The larger the signal to be removed, the larger
this error will be, following from the law of propagation of
error (Ku, 1966). AOD retrieval over bright surfaces (desert,
snow) introduces more error than AOD retrieval over dark
surfaces (water, vegetation). The inverse is also true; retriev-
ing the surface contribution introduces more error for darker
scenes where the atmospheric signal is a higher proportion
of the total. Further, this error should be similar for all pix-
els of the same scene (assuming similar viewing geometry
and atmospheric effects for all pixels, which is reasonable for
small HSI scenes), but different for pixels of different scenes
of similar surface type (assuming dissimilar viewing geom-
etry or dissimilar atmospheric effects), reducing the correla-
tion for all pixels in all scenes, but not reducing correlation
for pixels of a single scene. And the darker vegetation scenes
have the lowest overall correlation of SRF (Rsvl,f =0.75) and
the brighter desert scenes have the highest overall correlation
(RS =0.951).

Similarly, the brighter desert scenes should have the
highest error in AOD retrieval, and this is the case with
RS, =0.645, I8  =0.168, S¢  =0.711. There are also
more desert scenes (50) than any other scene type (45 urban
scenes and 36 vegetation scenes), so this has a downward ef-
fect on the overall comparison of AOD for all scene types;
Raod = 0.809, 1,04 = 0.153, and S,0q = 0.785. Nevertheless,
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the AOD for desert scenes are not enough to explain the per-
formance of AOD for all scene types. As discussed, vege-
tation scenes (R] ;= 0.747, I ; = 0.161, S} ; = 0.834) are
expected to have the largest BRDF hotspot effect, and this is
expected to propagate into the AOD retrieval. Urban scenes
perform better (R;‘Od = 0.930, I;od =0.132, S:Od =0.836)
but HSI still underestimates OLCI, and as with vegetation
scenes a BRDF hotspot effect may be responsible. Neverthe-

less, the overall results (Fig. 6) are encouraging.

5 Application of XBAER to HSI at 30 m Resolution

Having demonstrated good results at 10 km resolution, as a
trial, XBAER is used to retrieve AOD at the full 30 m spatial
resolution of HSI. At present, with the exception of the re-
moval of cloud mask checks related to cloud top height, no
changes to XBAER have been made to reflect the higher spa-
tial resolution nature of the input data. The purpose of this
exercise is to demonstrate the potential for high spatial reso-
Iution AOD retrieval using XBAER.

As a first qualitative exercise, a single scene on the Myan-
mar/Thailand border with visible smoke plumes is selected
for closer examination, see Figs. 8 and 9. The scene contains
Thailand’s Doi Pha Hom Pok national park, a more forested
upland region running north to south through the center of the
scene, and also extending to the north east. The west (Myan-
mar) and south east (Thailand) of the scene is lower land with
higher levels of human activity and these are the regions of
the scene for which AOD has been retrieved.

An exception to this is two biomass burning events (Fig. 9)
in the center of the scene, with expected aerosol type of black
and brown carbon. The more westerly fire’s source is across
the Thai border in Myanmar, and so not in the national park,
but still in a relatively forested and upland region that tends
to be characterised by low AOD. In general the area of the na-
tional park has no or very low AOD retrieved, but the plumes
of the fires are the most obvious exception to this.

A more quantitative exercise is a comparison of the 30 m
XBAER AOD with AERONET Level 2.0 AOD at 550 nm,
Fig. 10. The spatial-temporal colocation scheme of Ichoku
et al. (2002) is often used to compare spatially-averaged
satellite measurements with temporally-averaged ground site
measurements. We follow their temporal averaging scheme
for a ground site by averaging AERONET measurements
for the 1h period centered on the HSI overpass time. Their
spatial averaging scheme presents us with difficulties. The
smallest spatially-averaged region investigated by Ichoku
et al. was 30km x 30km which they rejected as their pixel
size was 10km x 10km, and the nine pixels of a 30km x
30km region was considered too small a sample. As the HSI
pixel size is 30m x 30 m, this does not present us with a prob-
lem. However, as HSI scenes are of area 30km x 30km, and
as only a minority of colocated AERONET sites are near the
center of a scene, we reject 30km x 30km as a spatially av-
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Figure 7. OLCI vs. HSI SRF and AOD by scene type. Comparison of XBAER-derived SRF and AOD at 550 nm using colocated, cloud-free
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Figure 8. High resolution XBAER AOD. Scene on the Myanmar/Thailand border. (a) HSI RGB Image of the VNIR scene provided as part
of the EnMAP data (© DLR 2023. All rights reserved). WGS 84 latitude and longitudes for each of the four corner pixels are indicated.

(b) 30 m spatial resolution, XBAER-retrieved AOD at 550 nm.

Figure 9. Biomass burning plumes. Two biomass burning events
are visible in the RGB image (top, ENMAP data, © DLR 2023. All
rights reserved); one in the center, one in the south west. The plumes
are visible in the AOD retrieval (bottom). The white lines indicate
the borders of the Doi Pha Hom Pok national park. The western
border is also the Myanmar/Thailand border.

https://doi.org/10.5194/amt-19-293-2026

eraged region. Instead we choose a circular region of radius
10km centered on the AERONET site. Further, as it can be
expected that 8 out of every 9 AERONET sites within a HSI
scene will be within 10 km of the scene border, we do not
exclude colocations where some of the 10 km radius circle is
outside the HSI scene. Due to the sparse daily global cover-
age of HSI, colocations with AERONET sites are rare, and
so to increase the amount of colocations further, we include
matchups where the AERONET site is as much as 1 km out-
side the HSI scene. In this way we found 116 cloud-free colo-
cations from 8 June 2022 to 15 April 2024 for a variety of
surface and aerosol types. Retrievals of negative AOD (which
are possibly due to uncertainties in surface parameterization)
are excluded, as well as AOD above 2. To further exclude
outliers, spatial averaging is then only performed across pix-
els which are within one standard deviation of the mean.

The overall comparison has R = 0.631, I =0.085, and
S =0.724. 85 % of the colocations have low aerosol load-
ing (AOD < 0.3). Presumably high AERONET/low XBAER
colocations are due to XBAER not being adapted for high
resolution HSI data, and high XBAER/low AERONET AOD
are due to cloud contamination. Some cloud contamination
is expected as the XBAER cloud mask has had the cloud top
height checks deactivated (as discussed in the previous two
sections), and other threshold values have not yet been cali-
brated to HSI radiances.
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AERONET vs XBAER for HSI AOD at 550nm
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Figure 10. XBAER AOD vs. AERONET. Preliminary 30 m spatial
resolution XBAER AOD retrieval vs. AERONET at 550 nm.

6 Conclusions

In general, a very good comparison of 36 RTOA vari-
ables (for 12 bands and 3 surface types) between colo-
cated OLCI and HSI pixels was demonstrated. Bands and
surface types where good comparisons (Pearson correlation
coefficient > 0.95, intercept and slope of the best fit line
within 0.05 of 0 and 1 respectively) were not found could
be ascribed to one of two reasons; (1) differences in spectral
response functions at or near the O» A-Band, and (2) relative
difference of the two satellite viewing geometries from the
expected location of a BRDF hotspot. The spectral response
function over the O, A-Band explain the bad comparison
between OLCI band 13 and HSI band 62. This reason also
contributes to a less than optimal fit between OLCI band 12
and HSI band 61. BRDF hotspots can occur when the view-
ing geometry is the same as the solar geometry; increased
reflectance is measured by the viewer as this is the only di-
rection in which all sunlight scattered from the surface to
the viewer encounters no other surface blocking its path. A
strong mean hotspot is expected across all urban scenes and
all vegetation scenes, and in general there is a high Pearson
correlation coefficient between the RMSE of the RTOA com-
parison and the relative distance of the two satellites from
the hotspot location; generally between 0.84—0.9 for the ur-
ban scenes, and between 0.81-0.88 for the vegetation scenes.
Desert scenes are expected to have a lesser mean hotspot ef-
fect than urban and vegetation scenes, and as well as having
the best RTOA comparison, they also have the least corre-
lation between RMSE and the relative distance of the two
satellites from the hotspot location; generally between 0.62—
0.75.

These colocated OLCI and HSI pixels were then used to
retrieve SRF and AOD using XBAER at 10km spatial res-
olution. SRF in particular had a very good comparison with
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correlation of 0.953 and a best fit line with intercept of 0.003
and slope of 1.082. Separating the comparison by scene type
it was shown that desert scenes performed best, but vege-
tation and urban scenes hurt the comparison. BRDF hotspot
effects which most affect vegetation and urban scenes are be-
lieved to be the cause. The AOD comparison is not as strong
as the SRF comparison, with correlation of 0.809 and a best
fit line with intercept of 0.153 and slope of 0.785. These re-
sults are particularly impacted by reduced performance over
the more numerous bright desert scenes. The consequences
of BRDF hotspots on SRF retrieval may also be hurting AOD
retrieval for urban and vegetation scenes.

The 30m spatial resolution XBAER AOD was able to
identify plumes from biomass burning in a local region that
otherwise would be expected to have low AOD. A compari-
son of multiple scenes with AERONET AOD produced good
results, considering that XBAER has not yet been modified to
produce data at this resolution; (R = 0.631, I = 0.085, and
S =0.724). This points the way to necessary modifications
to XBAER that will allow it to produce high spatial resolu-
tion data products with higher accuracy.

Finally, further development of XBAER is required to im-
prove its retrievals for high spatial resolution EnMAP data.
The cloud top height threshold of the cloud mask needs to
be modified to handle the much wider HSI spectral response
functions near the Oy A-Band. The effects of BRDF may
need to be taken into account, particularly regarding its effect
on XBAER’s surface treatment. That surface treatment itself
relies on a surface parameterization dataset with 0.1° x 0.1°
spatial resolution and monthly time resolution. The spatial
resolution in particular of this dataset can be expected to
introduce localised error into a 30m x 30 m resolution data
product. Lastly an analysis of how best to compare surface-
based measurements to satellite retrievals is needed as the
very small HSI scene size makes the usual spatial-temporal
averaging scheme of Ichoku et al. (2002) difficult.

Code availability. Code available on request.

Data availability. All EnMAP data are freely available through
the EnMAP data access portal at the following link: https://www.
enmap.org/data_access/ (last access: 19 November 2025). The En-
MAP data are licensed products of DLR (2022), all rights re-
served. Sentinel-3 OLCI data are available through the Coper-
nicus data portal: https://dataspace.copernicus.eu/explore-data/
data-collections/sentinel-data/sentinel-3 (last access: 19 Novem-
ber 2025). AERONET data are available through the following
link: https://aeronet.gsfc.nasa.gov/new_web/data.html (last access:
19 November 2025). Information on the EnMAP and OLCI scenes
used in this paper, as well as the AERONET sites used, is available
on request.
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