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Abstract. Traditional hygroscopicity bulk measurements of
aerosols using humidified tandem differential mobility ana-
lyzer (HTDMA) are limited to population-averaged proper-
ties, potentially overlooking individual particle growth pro-
cesses. Although aerosol optical tweezers enable single-
particle measurements, no universal and accurate method ex-
ists to determine particle dry radius and hygroscopic growth
factor (GF). Here, we develop a robust method using op-
tical tweezers to quantify GF of individual particles accu-
rately. Solution densities were accurately predicted via ap-
parent molar volume, and refractive indices were predicted
using the molar refraction method. By fitting particle ra-
dius and refractive index across multiple relative humidi-
ties under the conservation of solute mass, we retrieve dry
particle size and hygroscopic growth curves. Application to
typical aerosols, including ammonium sulfate, sodium chlo-
ride, and sucrose, yields GF in excellent agreement with re-
ported values and thermodynamic models, while extension to
mixed-component particles also demonstrates broad applica-
bility. This study provides the first accurate characterization
of single-particle hygroscopic growth with optical tweezers,
yielding a self-consistent set of physical parameters and a
framework to test and refine thermodynamic models, while
improving the representation of aerosol-radiation—cloud in-
teractions in climate models.

1 Introduction

Aerosol-water interaction is fundamental to the Earth’s cli-
mate system, influencing cloud microphysics, atmospheric

radiation, climate feedbacks, and multiphase chemistry
(Boucher et al., 2013; Kreidenweis and Asa-Awuku, 2014).
The hygroscopicity of aerosols — the ability to take up
water from ambient air — directly alters their size, opti-
cal properties, reactivity, and atmospheric lifetime (Tang et
al., 2019). Consequently, hygroscopic growth affects climate
both through direct scattering and absorption of solar radi-
ation and through activation into cloud condensation nuclei
(CCN), thereby influencing the Earth’s radiation budget and
modulating cloud formation (Wall et al., 2022; Pariyothon
et al., 2023; Pohlker et al., 2023). Moreover, aerosol hygro-
scopicity can influence particle aging, the formation of sec-
ondary pollutants, and deposition in the human respiratory
tract, thereby impacting environmental quality and human
health (Lee et al., 2012; Vu et al., 2015).

Despite its importance, accurately characterizing aerosol
hygroscopicity remains a major challenge due to the extreme
complexity of ambient particles, which span wide size distri-
butions, diverse chemical compositions (inorganic salts, or-
ganics, black carbon, etc.), and heterogeneous mixing states
(Yao et al., 2022; Li et al., 2025). Therefore, to fully un-
derstand aerosol hygroscopicity, it is essential to track the
dynamic evolution of particle size with RH under well-
controlled conditions. During the measurement and charac-
terization process, Hygroscopic growth is commonly quanti-
fied by the diameter growth factor (GF), mass growth factor
(GFmass), and the hygroscopicity parameter (k), which link
dry and humidified particle properties (Petters and Kreiden-
weis, 2007; Tang et al., 2019).

Several experimental techniques have been developed to
probe aerosol hygroscopicity. Humidified tandem differen-
tial mobility analyzer (HTDMA) is widely used to provide
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population-averaged growth factors of accumulation mode
aerosol in field campaigns, which is useful for climate model
evaluations (Tang et al., 2019). However, HTDMA provides
only bulk averages, potentially obscuring key hygroscopic
details in chemically complex aerosols, and is further lim-
ited by assumptions of sphericity, short residence times, and
semi-volatile losses, introduced additional measurement un-
certainties (Shingler et al., 2016). Electrodynamic balances
(EDB) is a single particle measurement technique that mea-
sures particle mass from equilibrium voltage and retrieves
size and refractive index from scattering patterns (Tang and
Munkelwitz, 1994). Despite its accuracy, the method is re-
stricted to large (~ 20um), charged particles and suffers
from density assumptions and iterative fitting errors.

To address these limitations, aerosol optical tweezers have
emerged as a complementary tool for single-particle hygro-
scopicity studies (Qiu et al., 2024). A tightly focused laser
beam can stably trap a single particle without requiring net
charge, while simultaneously enabling Raman spectrum for
chemical composition analysis (Ashkin et al., 1986). More-
over, whispering gallery modes (WGMs) superimposed on
the background Raman spectrum and Mie resonance fitting
provide highly accurate retrievals of particle radius and re-
fractive index under different RHs (Preston and Reid, 2013).
Nevertheless, a key limitation of optical tweezers is the ab-
sence of a reliable dry-size reference, since trapped particles
must be liquid and spherical, preventing direct determination
of their initial dry radius. Previous attempts have relied on
empirical approximations, such as assuming half the wet ra-
dius at 80 % RH for sea salt in Qiu et al. (2024), but such
approaches lack universal applicability and accuracy (Har-
greaves et al., 2010). Given optical tweezers’ accurate size
measurements (~ 10nm), high temporal resolution (~ 1s),
controllable environment, and chemical insights from Raman
spectroscopy, developing a universal method to accurately
determine dry particle size and hygroscopic growth factors
is highly warranted.

In this work, we develop a refractive-index-constrained
(RIC) retrieval method that enables robust determination of
dry particle size and hygroscopic growth curves from op-
tical tweezers measurements. Using sodium chloride, am-
monium sulfate, and sucrose as representative inorganic and
organic aerosols, we combine density and refractive index
data with molar refraction theory to constrain solute mass
in particles. This approach yields internally consistent esti-
mates of dry radius, refractive index, density, and mass across
RH conditions. The measured hygroscopic growth factors
agree well with literature values, demonstrating the valid-
ity of our method. Our study establishes the first systematic
and universal framework for quantifying aerosol hygroscop-
icity with optical tweezers, offering a pathway to test thermo-
dynamic models (e.g., Kohler theory, Zdanovskii—Stokes—
Robinson mixing rules) and to advance single-particle anal-
yses of aerosol chemistry and microphysics. Beyond the
methodological advance, this framework can also improve
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predictions of aerosol climate effects in climate models, ow-
ing to the accurate characterization of aerosol hygroscopicity
and its strong extensibility.

2 Methodology
2.1 Optical Tweezers System and Sample Materials

The aerosol optical tweezers system used in this study has
been described previously (Fan et al., 2025; Qiu et al., 2024),
here we provide a brief summary. As shown in Fig. 1, a
200 mW Gaussian beam from a semiconductor laser (Laser
Quantum, Opus-6000, 532 nm) was collimated, expanded,
and focused through a high-numerical-aperture objective
(Olympus UIS2 PlanC N, 100x, 1.25N.A.). The tightly fo-
cused beam formed a stable optical potential well capable
of trapping individual aerosol particles with diameters of 6—
12 um inside the sample cell. Smaller particles become un-
stable in the trap as the optical gradient force is too weak,
causing them to escape from the trap. While stably levitated
particles, the same trapping laser also served as the excita-
tion source for Raman scattering. The scattered light was col-
lected, passed through optical filters to remove the excitation
beam, and directed into a spectrometer (Zolix Omni-300i,
1200 grooves mm™~! grating) for detection, enabling subse-
quent determination of particle size and refractive index.

Aerosol particles were generated using an ultrasonic neb-
ulizer (Yuyue 402AI model) and introduced into the sam-
ple chamber. The nebulizer solution was prepared with high-
purity chemicals dissolved in ultrapure water (18 M2 cm;
SIMGEN, Hangzhou SIMGEN Biotechnology Co., Ltd.).
Because trapped droplets can achieve hygroscopic equilib-
rium within the chamber eventually, their equilibrium state
is independent of the initial solute concentration. Therefore,
only the solute mass ratios were recorded, not the abso-
lute concentrations. Ammonium sulfate (NH4)2SO4, 99.0 %
AR; Sinopharm Chemical Reagent Co., Ltd.) and sodium
chloride (NaCl, 99.5 % AR; Shanghai Titan Scientific Co.,
Ltd.) were used as representative inorganic aerosol com-
ponents, and sucrose (C12H22011, 99.9 % AR; Sinopharm
Chemical Reagent Co., Ltd) was selected as the organic com-
ponent.

The relative humidity (RH) inside the chamber was
controlled in real time by adjusting the mixing ratio of
dry and humid nitrogen flows via two mass flow con-
trollers (MFCs, Dmass, DFC10-1/4-N2-3000SCCM-BO01).
Humidity-temperature probes (Rotronic, HC2A-S) were
placed at both the inlet and outlet to monitor RH and temper-
ature within the chamber, and an additional probe (Shenzhen
Yowexa Sensor System CO., Ltd., DWL-21E) was placed in-
side the chamber for offline RH calibration. All experiments
were conducted at 20 °C and ambient pressure. Considering
probe uncertainties and environmental fluctuations, the over-
all RH uncertainty was estimated to be £1 %.
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Figure 1. Schematic of the aerosol optical tweezers.

Trapped spherical droplets inside the chamber acted as
high-quality optical microcavities. Under specific wave-
length conditions, spontaneous Raman scattered light un-
derwent internal reflection at the droplet interface, form-
ing standing waves. This resulted in sharp, high-intensity
peaks superimposed on the broad Raman background, a phe-
nomenon known as WGMs (Fig. S1 in the Supplement; Ben-
ner et al., 1980). The WGM s positions are highly sensitive to
both particle radius and refractive index. Using the Mie fit-
ting algorithm developed by Preston and Reid (2013), both
parameters were retrieved simultaneously by minimizing the
squared error between calculated and measured WGM wave-
lengths to below 1 x 10* nm~2. Accounting for RH perturba-
tions and fitting uncertainties, the typical precision achieved
was ~ 10nm in particle radius and 0.002 in refractive index.
All refractive index values reported in this study were ad-
justed to 589 nm using the dispersion relation provided by
the fitting algorithm.

2.2 Refractive Index and Density Calculations

Before introducing the method for determining the dry par-
ticle radius, it is necessary to outline the calculation of re-
fractive index for mixed particles. In this study, we employ
the physically based molar refraction method to predict the
refractive index of mixtures, rather than relying on the empir-
ical volume-weighted approach (Liu and Daum, 2008; Cai et
al., 2016). According to the molar refraction method,

2

-1\ M N

Re = ("3 ) — = )
ni+2) pe 3

where R., M, and o, represent the effective molar refrac-
tion, molecular weight, and polarizability of the mixture, re-
spectively, all of which are additive on a molar basis. Here,
ne is the refractive index, N4 is Avogadro’s number, and pe is
the density of the mixture. Cai et al. (2016) demonstrated that
when experimental density values are used, the molar refrac-
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tion method can predict refractive indices with an accuracy
of ~ 0.2 %. In contrast, adopting the ideal mixing density as-
sumption — where both mass and volume are treated as addi-
tive — introduces errors of up to ~ 3.5 % in density and ~ 1 %
in refractive index, with the refractive index error scaling di-
rectly with density error. The failure of the ideal mixing den-
sity assumption arises from solute—solvent interactions dur-
ing dissolution (e.g., electrostriction) and the structural mod-
ification of water, both of which alter the overall solution vol-
ume and thereby cause density deviations (Clegg and Wexler,
2011). Thus, accurate prediction of the refractive index via
the molar refraction method requires reliable estimation of
the mixture’s density.

In this work, solution density is predicted using the ap-
parent molar volume Vy, which represents the volume in-
crement caused by dissolving one mole of solute in a large
amount of solvent (Clegg and Wexler, 2011). At constant
temperature, Vy is a function of solute concentration (typi-
cally molality, c, or ionic strength, I =1/ ZZiciziz, where ¢;
is the molar concentration of ion i and z; is its charge). lonic
strength is chosen because it integrates both ion concentra-
tion and charge, providing a more accurate measure of the
overall electrostatic interaction strength governing non-ideal
behavior in electrolyte solutions.

Experimental density data for single-solute solutions,
combined with the database of Extended Aerosol Inorganics
Model (E-AIM) (Wexler and Clegg, 2002; Clegg and Wexler,
2011; U.S. Department of Agriculture [USDA], 2025), were
used to compute V4 for each solute via Eq. (2):

M 1—x —
Vo= — My— L o)
Pe Xg Pe Pw

where Mg and M,, are the molecular weights of solute and
water, x; is the solute mole fraction, and py, is the density of
water. The derived V values were further expressed as con-
tinuous functions of ionic strength (for inorganics) or molal-
ity (for organics) using spline interpolation.

For single-solute solutions, the solution density can be
computed by substituting the solute-specific Vy into Eq. (3):

e (1 — x5) My, + xs M
TV (1=x) Vi + x5V (I or c)

Pe 3)

where m; and V; are the total mass and volume of the so-
Iution. For multi-solute mixtures, Young’s rule is applied to
account for the combined contribution of different solutes to
the total volume (Young and Smith, 1954; Clegg and Wexler,
2011). The core idea is that the Vi of a mixture can be ap-
proximated by the weighted average of V; of its components
at the same total ionic strength. Meanwhile, for mixtures con-
taining both inorganic salts and organics, the contributions of
each are calculated independently. After simplification, the
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density of a multi-component solution is given by:

(1 - sz,i) My, + sz,iMi
Pe = d ! (4)
(1 - sz,i) Vw + ZXS,,' Vy,i(I orc)
i i

where the subscript i denotes the i-th solute.

As shown in Fig. S2, validation against experimental
data shows that, for inorganic salt systems, the method
predicts the density of ammonium nitrate—ammonium sul-
fate mixtures with a mean error of only 0.1 % (Che et
al.,, 2012). While for inorganic—organic systems such as
ethanol-ammonium sulfate, the maximum error is below 1 %
(Hervello and Sénchez, 2007). Applying the molar refrac-
tion method further yields refractive index errors below 0.5 %
(Urréjola et al., 2010). Overall, this integrated framework
achieves prediction accuracies of better than 1 % for density
and 0.5 % for refractive index, providing a robust basis for
subsequent hygroscopicity retrievals.

2.3 Determination of Dry Particle Radius and
Hygroscopic Growth Factor

In this study, refractive index data of single-solute solutions
at different solute mass fractions reported in the literature
were taken as reference values (Tan and Huang, 2015; Ur-
réjola et al., 2010; USDA, 2025). Assuming the molar re-
fraction of a solute to be Ry, we used the functional relation
between apparent molar volume and solute concentration to-
gether with the molar refraction method to calculate the re-
fractive index at different solute mass fractions. As shown in
Fig. S3, by constraining Ry to minimize the total squared er-
rors between calculated and reference values, we determined
the molar refractions of individual solutes: 9.33 for NaCl,
23.52 for (NH4)>SOq4, and 70.22 for sucrose. For water, the
molar refraction was calculated using Eq. (1), yielding 3.71.

For a single particle stably trapped in the chamber, the so-
lute mass remains constant during hygroscopic equilibration
because the solute is non-volatile. In this work, we varied the
RH in the chamber and measured the particle radius and re-
fractive index (nmea) at equilibrium under each RH. At each
stable RH, we measured the particle for at least 1000 s to
obtain the averaged radius and refractive index at that hu-
midity (as shown in Fig. S4). In addition, under our exper-
imental RH conditions, the particle radius changed almost
simultaneously with RH, indicating that the particle indeed
reached hygroscopic equilibrium at the stabilized RH. For
single-solute particles, we assumed the solute mass to be my
and adopted the molar refraction obtained from solution data.
Using Egs. (3) and (5), the solute mass fraction and density
at different particle radii were calculated as:

Pe (s Vs (1 (s) or c(s))) - 4/371° - b = mg Q)

The corresponding refractive index ny was then computed
with Eq. (1). By constraining mg to minimize the total er-
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ror (> (n“’”a#, j denotes the j-th measurement data
' j

point)j, we obtained the solute mass of the particle, which
is referred to as the refractive-index-constrained retrieval
method. The dry particle volume and radius were subse-
quently derived from the crystallized solute density, and hy-
groscopic growth factors at different RH were determined.
It is important to note that the dry particle refers to a parti-
cle containing no water, at which point it is fully crystallized
and its density and refractive index correspond to those of
the pure solid. Data from both humidification and dehumid-
ification cycles are jointly used to constrain the dry-particle
mass. Moreover, at any given RH, the particle radius obtained
during humidification and dehumidification agrees within the
measurement uncertainty, as shown in Fig. S4(b). Therefore,
the direction of RH change does not influence the retrieved
dry particle size or the calculated growth factors. Besides the
volume growth factor, we also calculated the mass growth
factor to facilitate comparison with literature values.

Since the measured particle radius and refractive index
inevitably involve uncertainties, we assumed that the mea-
surements follow a normal distribution characterized by their
mean and standard deviation, and performed Monte Carlo
sampling from this distribution. Normal distribution is cho-
sen due to the detection noise and stochastic fitting processes.
A total of 10000 samples were generated and constrained to
obtain the mean and standard deviation of mq. We also tested
simultaneous retrieval of mo and Ry, and the resulting Ry
agreed with values derived from solution data within the er-
ror margin, consistent with Tang and Munkelwitz’s (1994)
observation on the stability of molar refraction in supersatu-
rated states and the validity of the molar refraction method.

For multi-solute particles, the solute composition was as-
sumed to match that of the pre-prepared solution. Based on
known mass ratios, the mass of one solute was fixed, and
Egs. (4) and (5) were applied to calculate solute fractions
and particle density at different radii. The refractive index
was then computed, and RIC method was used to determi-
nate of the dry radius and hygroscopic growth factor of the
particle.

3 Results and discussion

3.1 Measurement of Hygroscopic Growth Factors of
Single-Solute Particles

We first validated the accuracy of RIC method using ammo-
nium sulfate as a standard reference particle. As shown in
Fig. 2a, the apparent molar volume as a function of ionic
strength provides the basis for calculating the particle den-
sity. For a representative ammonium sulfate particle, we
measured the radius and refractive index across 65 % RH-
95 % RH and obtained a constrained dry radius of 2.99 um
(£0.014 pm) using RIC method. Data at lower RH were not
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Table 1. Summary of fitting parameters for the GF curves.

AS&NaCl

Ammonium Sodium (mass ratio

Parameters  Sulfate (AS) Chloride  Sucrose =1:1)
a 1.158 4.171 0.394 —0.622
—0.620 —2964 —0.456 5.512

c —0.146 —0.045 0.190 —4.266

measured because particles shrink as RH decreases, eventu-
ally becoming too small (approximately 3—4 um) to be sta-
bly captured by the optical tweezers. Figure 2b compares
the measured refractive indices with those calculated using
the constrained optimal solute mass, showing a maximum
deviation of less than 0.002. Additionally, the error bars for
the optical tweezers measurements represent the standard de-
viation, obtained either directly from the statistics of mea-
surements or calculated through error propagation. Figure 2¢
presents the GF of ammonium sulfate, together with a fit us-

ing Eq. (5):
1/3
- ) ©)

1 —ay

GF = <l + (a—i—baw—}—cag,)

which agrees well with predictions from the thermodynamic
E-AIM model within the experimental uncertainty. Compar-
isons with HTDMA and EDB measurements further confirm
the reliability of the proposed method, as shown in Fig. 2d for
GFmass of ammonium sulfate (Tang and Munkelwitz, 1994;
Zardini et al., 2008). Similar consistency is also observed for
sodium chloride, another major inorganic component of at-
mospheric aerosols, as shown in Fig. S5.

For sucrose, representing organic aerosols, Fig. 3a shows
the apparent molar volume as a function of molality, derived
from density data of sucrose solutions at different concentra-
tions. We further measured the radius and refractive index of
a typical sucrose particle over 75 % RH-95 % RH, yielding
a constrained dry radius of 3.57 um (£0.015 um). As illus-
trated in Fig. 3b, the measured and calculated refractive in-
dices agree well, with the maximum deviation again below
0.002, demonstrating that the method is also applicable to
organics. Figure 3¢ compares the GF fitted curve of sucrose
particles with literature HTDMA data (Estillore et al., 2017)
and the fitting parameters for the GF curves are summa-
rized in Table 1. Good agreement is observed for RH < 85 %,
whereas at RH > 85 %, HTDMA data exhibit systematically
lower values and a plateau, while the GF measured by opti-
cal tweezers increases rapidly with RH, consistent with the
general trend of aerosol water uptake at high humidity. We
therefore attribute the HTDMA underestimation to incom-
plete equilibration or error caused by statistical averaging.
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3.2 Measurement of Hygroscopic Growth Factors of
Multi-Solute Particles

We further applied RIC method to multicomponent aerosols.
A mixed solution of ammonium sulfate and sodium chloride
at a 1 : 1 mass ratio was nebulized to generate aerosol parti-
cles, which were subsequently trapped by optical tweezers.
The mass ratio of ammonium sulfate to sodium chloride in
the trapped particles was assumed to remain unchanged. For
a representative mixed particle, the radius and refractive in-
dex were measured over 65 % RH-95 % RH, yielding a con-
strained dry radius of 3.03 um (40.012 um). As shown in
Fig. 4a, the measured and calculated refractive indices agree
closely, with a maximum deviation of less than 0.002. Fig-
ure 4b further presents the GF of the mixed particle, along
with E-AIM predictions. Good agreement is observed for
RH > 75 %, while at RH < 75 %, E-AIM results are slightly
higher. This discrepancy may arise from the stronger ion—
ion and solute—solvent interactions in highly supersaturated
droplets, where the empirical basis of E-AIM becomes less
accurate. Nevertheless, the overall consistency demonstrates
the applicability of our method to multicomponent particles.

It is worth noting that although we assumed the solute
mass ratio in mixed particles to be identical to that of the
precursor solution, the framework also allows both solute
masses to be treated as free variables during constraint re-
trieval. In practice, the retrieved solute mass ratio remained
1 : 1 within experimental uncertainty. This suggests that our
approach can also be used to test and validate the assumed
composition of mixed aerosol particles in future applications.

However, our method is currently applicable only to in-
ternally mixed particles. This is because the optical tweezers
can trap only liquid droplets, and the retrieval framework re-
quires the particle to be homogeneous. For externally mixed
aerosols, insoluble inclusions may be present, leading to a
heterogeneous refractive-index distribution. In such cases,
both optical trapping stability and the spherical, homoge-
neous Mie scattering assumption may break down. For these
types of particles, techniques such as HTDMA, or the de-
velopment of Bessel-beam optical tweezers capable of trap-
ping solid particles, would be more suitable for hygroscopic-
ity measurements (Zhao et al., 2020). For particles contain-
ing substantial organic material or surfactants, liquid-liquid
phase separation (LLPS) may occur at low RH. This would
invalidate the standard Mie-fitting procedure, and additional
models — such as core—shell Mie calculations — would be re-
quired to retrieve the radii and refractive indices of the in-
dividual phases before applying further thermodynamic con-
straints (Vennes and Preston, 2019). In contrast, if no LLPS
occurs, changes in surface tension induced by organics are
unlikely to affect the results, because Kelvin effects are neg-
ligible for micron-sized droplets.

Although a detailed treatment of these scenarios is beyond
the scope of the present study, we suggest that the method
could be extended in the future by incorporating more so-

Atmos. Meas. Tech., 19, 323-332, 2026



328

C. Fan and C. Zhao: Hygroscopic growth factor of single-particle aerosol

Apparent Volume of AS

(b) Refractive Index of AS Particle

— 1.43 T T T T T T T
s0d © Original Data
— Cubic Spline Fit 0
42 e Pre| 7
Fidg
1.41 4 *i:§-< e
g ey,
S 1.40 4 E
s H
mE 65 c 130 '_§_| ]
= i HH
Bs HH
S 60
1.38 HH i
3l
55
1.37 J
HH
>0 1.36 4 E
0 10 20 30 40 50 60 70 80 65 70 75 80 85 % 95
| I/k
(molke) RH (%)
(c) GF of AS Particle (d) GF 56 Of AS Particle
22 T T T T T T T T T T T T T T
= AOT 64 o B
E-AIM .
2.0 Fitting B A HTDMA(Zardini, 2008) )
5 EDB(Tang, 1994) Ji T
/"
/
1.8 g %4 y |
) e i
o §
1.6 B 34 o 4
Apa
o 1O
24 «*d)v“'d’ E
1.4 4 E A‘G-m‘
T T T T T T T 1 T T T T T T T
65 70 75 80 85 90 95 100 60 65 70 75 8 8 90 95 100
RH (%) RH (%)

Figure 2. Measurement of ammonium sulfate hygroscopicity. (a) Apparent molar volume of ammonium sulfate as a function of ionic
strength. (b) Measured refractive index and corresponding values derived from the constrained solute mass. The error bars for the optical
tweezers measurements represent the standard deviation. (¢) Hygroscopic growth factors of ammonium sulfate particles, together with the
fitted growth curve and the E-AIM prediction. AOT means data from aerosol optical tweezers and the standard deviation for growth factors
is sufficiently small that it is largely obscured by the data markers. (d) Mass growth factor of ammonium sulfate compared with E-AIM
predictions, HTDMA measurements (Zardini et al., 2008), and EDB measurements (Tang and Munkelwitz, 1994).
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Figure 3. Measurement of sucrose hygroscopicity. (a) Apparent molar volume of sucrose as a function of molality. (b) Measured refractive
index and corresponding values derived from the constrained solute mass. (¢) Hygroscopic growth factor of sucrose with fitted growth curve
and HTDMA measurements (Estillore et al., 2017). AOT means data from aerosol optical tweezers.

phisticated optical models (e.g., core—shell Mie theory) as
well as trapping techniques compatible with multiphase par-

ticles.
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3.3 Advanced Error Analysis and Applicability of the
RIC Approach

In principle, each measurement point at a given RH allows

one to calculate a solute mass using the particle’s refrac-
tive index, radius, and the molar refraction method. How-
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AOT means data from aerosol optical tweezers.

ever, since both refractive index and radius carry inherent
uncertainties, back-calculating the solute mass from a single
measurement point and then inferring the GF would intro-
duce large errors. To address this, the present method ele-
gantly exploits the conservation of non-volatile solute mass
and applies refractive index constraints across multiple mea-
surement points simultaneously, thereby minimizing errors
arising from uncertainties in refractive index and radius.

Idealized calculations show that with typical uncertainties
of 0.002 in refractive index and 10 nm in radius, the relative
error in retrieving the dry radius of a single-solute particle
falls below 0.5 % when more than ten measurement points
are used, as shown in Fig. 5a, whereas the error exceeds 2 %
when relying on a single point. Figure 5b further illustrates
how, with radius error fixed at 10 nm, the relative error in dry
radius decreases with smaller refractive index error. When
the refractive index error is reduced to 0.0005, the relative
errors corresponding to the two measurement scenarios fall
to 0.2 % and 0.7 %, respectively, enabling accurate applica-
tion of this method to particles undergoing interfacial chem-
ical reactions or containing volatile solutes. Figure 5c shows
that, with refractive index error fixed at 0.002, the dry radius
precision is nearly insensitive to radius error, indicating that
refractive index precision plays a dominant role in reducing
uncertainty. This is because the proposed RIC method pri-
marily derives particle composition and dry radius from their
refractive indices. Consequently, improving the accuracy of
refractive index measurements leads to a more pronounced
reduction in errors of the inferred dry radius.

At present, this framework can constrain solute mass and
calculate hygroscopic growth factors for aerosol particles
with known composition, showing strong versatility. For par-
ticles generated from solutions with unknown components,
some limitations remain. Nevertheless, the approach could
be extended by adopting Tang and Munkelwitz’s (1994) idea
of fitting the solution density—concentration relationship with
a three-parameter ternary equation (fixing the constant term
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as pure water density), while treating the unknown solute’s
molecular weight, molar refraction, and mass as free parame-
ters. In this case, six unknowns can be solved simultaneously
through multi-point constraints. Provided sufficient measure-
ment points across RH and very small refractive index errors,
this method still holds promise for retrieving both the com-
position and hygroscopicity of such particles.

4 Summary and Conclusions

Aerosol hygroscopic growth critically influences particle size
and optical properties, thereby affecting the Earth’s radiation
balance and climate (Kreidenweis and Asa-Awuku, 2014;
Tang et al., 2019). Current measurement techniques, such as
HTDMA, primarily provide bulk statistics and may obscure
important single-particle processes and details. Although
aerosol optical tweezers enable accurate single-particle mea-
surements, a universal method for determining particle dry
radius and hygroscopic growth factor is still lacking. In this
study, we developed a universal RIC method using opti-
cal tweezers to accurately measure the hygroscopic growth
factor of individual aerosol particles. Using apparent molar
volume, we first predicted the density of mixed solutions
within 1 % error, and subsequently applied the molar refrac-
tion method to predict refractive indices within 0.5 % error.
For single trapped particles, the conservation of non-volatile
solute mass was combined with measurements of particle ra-
dius and refractive index under varying RH to constrain so-
lute mass, enabling accurate determination of dry particle ra-
dius and hygroscopic growth factor.

We validated the method using common aerosol compo-
nents — ammonium sulfate, sodium chloride, and sucrose
— and found excellent agreement with literature values and
thermodynamic models. Measurements were also success-
fully extended to multi-component particles, demonstrating
the method’s broad applicability. Further analysis suggests
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Figure 5. Error analysis of the RIC method. (a) Relative error of the dry radius as a function of the number of measurement points, with
refractive index and radius errors fixed at 0.002 and 10 nm, respectively. (b) Relative error of the dry radius as a function of refractive index
error for different numbers of measurement points, with radius error fixed at 10 nm. (c) Relative error of the dry radius as a function of radius
error for different numbers of measurement points, with refractive index error fixed at 0.002.

that, given sufficient measurement points and improved re-
fractive index precision, the approach has potential to resolve
the composition and hygroscopic behavior of particles con-
taining volatile solutes or undergoing interfacial chemical re-
actions. Potential applications to particles of unknown com-
position were also discussed.

This work represents the first systematic application of
optical tweezers to determine dry particle radius and hy-
groscopic growth factors with high precision. It provides a
self-consistent set of particle physical parameters, including
mass, density, and refractive index, and offers a framework
for testing and refining thermodynamic models (e.g., Kohler
theory, Zdanovskii—Stokes—Robinson mixing rules), improv-
ing our understanding and representation of aerosol-cloud
and aerosol-radiation interactions in climate studies.
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