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Abstract. Atmospheric concentration of methane (CH4), a
potent greenhouse gas, increased significantly since pre-
industrial times, with anthropogenic emissions originating
primarily from agriculture, fossil fuel sector and waste man-
agement. However, considerable uncertainties persist in the
detection and quantification of anthropogenic CH4 emis-
sions. In this study, we present first CH4 observations, plume
detections and emission estimates from the new state-of-
the-art Airborne Visible InfraRed Imaging Spectrometer 4
(AVIRIS-4), which participated in a blind controlled re-
lease experiment in September 2024 in southern France.
We used an albedo-corrected matched filter to retrieve CH4
maps from the spectral images and estimated CH4 emis-
sion with the Integrated Mass Enhancement (IME) and
Cross-Sectional Flux (CSF) methods. Our results demon-
strate that AVIRIS-4 can reliably detect emissions as low as
5.5 kgCH4 h−1 under good weather conditions at low flight
altitudes (< 1500 m) and 1.45 kgCH4 h−1 under ideal con-
ditions. These low-altitude detection limits are substantially
lower than published detection limits for the predecessor
instrument AVIRIS-NG, which were in the order of 10–
16 kgCH4 h−1 under comparable conditions. While AVIRIS-
4 provides highly accurate CH4 maps at < 0.5 m resolution,
emission estimation is limited by the accuracy of the ef-
fective wind speed, whose uncertainty and natural variabil-
ity contribute substantially to the overall uncertainty. Us-
ing wind speed at source height performs well for small
releases (below 20 kgCH4 h−1) (rRMSE = 1.065; rMBE =

0.361) and overall (rRMSE = 0.702; rMBE =−0.204). Us-
ing literature-derived effective wind speeds improves the ap-
parent fit between estimated and reported CH4 emissions, but
degrades performance both in overall agreement (rRMSE =
2.098; rMBE = 0.964) and for low-emission events (rRMSE
= 2.367; rMBE = 1.711). Interestingly, the high spatial res-
olution makes it possible to retrieve the cast shadow of the
CH4 plume, which can be used to estimate source and plume
height, and could provide an approach for better constraining
the height-dependency of the effective wind speed. On the
bottom line, the controlled release experiment provides crit-
ical insights into the sensor’s capabilities and guides further
improvements to detect and quantify low intensity sources in
the fossil fuel and waste management sectors, with implica-
tions for more accurate global greenhouse gas monitoring.

1 Introduction

Methane (CH4), a potent greenhouse gas with a global warm-
ing potential 28 times higher than CO2 on a timescale of
100 years, has seen an almost threefold rise from 700 ppb
pre-industrial levels to over 1900 ppb due to natural and an-
thropogenic sources (Seinfeld and Pandis, 2016). Major con-
tributors include agriculture, fossil fuels, and waste. Due to
its short lifetime of only 9 years, CH4 is removed more
quickly compared to most other greenhouse gases. Reducing
CH4 emissions is therefore considered an effective measure
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to mitigate anthropogenic climate change in the near term.
However, there are still significant uncertainties in the quan-
tification of anthropogenic CH4 emissions (Saunois et al.,
2020).

For instance, Saunois et al. (2020) estimated that uncer-
tainties in emissions from the fossil fuel sector are around
20 %–35 % with strong regional variations. Reducing these
uncertainties is challenging for several reasons. One of them
is the fact that an important fraction of anthropogenic CH4
emissions, e.g., from the fossil fuel sector, result from un-
intentional leakage, which cannot be accurately quantified.
Additionally, global CH4 emission estimates depend on a
network of monitoring stations, which is dense and accu-
rate in northern and mid-latitudes but sparser in other re-
gions (Saunois et al., 2020). For these reasons, satellite re-
mote sensing observations of CH4 have been used to esti-
mate the emissions in a top-down approach (e.g. Alexe et al.,
2015; Bousquet et al., 2018; Fraser et al., 2013). These re-
mote sensors can be separated into area flux mappers (e.g.
Sentinel-5P, MethaneSAT and GOSAT-GW) which are de-
signed to have a global to regional coverage and point flux
mappers (e.g. Landsat-8, Sentinel-2, GHGSat, PRISMA and
EnMAP) which are used to observe regional to local emis-
sions (Jacob et al., 2022).

Most of the currently available CH4 imagers are limited
by spatial and/or spectral resolution which hinders the preci-
sion and accuracy of the emission estimates (Bousquet et al.,
2018). This results in high detection limits in the range of
a few 100 to several 1000 kgCH4 h−1 for spaceborne in-
struments such as Sentinel-2 and Sentinel-5, PRISMA, En-
MAP or GHGSat (e.g. Jacob et al., 2022; Gorroño et al.,
2023; Joyce et al., 2023). For airborne instruments with a
higher spatial resolution such as MethaneAIR, GHGSat-AV
and the Airborne Visible InfraRed Imaging Spectrometer –
Next Generation (AVIRIS-NG), the detection limit decreases
to 10 to 100 kgCH4 h−1 under favourable conditions (e.g.
Cusworth et al., 2021; Duren et al., 2019; Jongaramrungru-
ang et al., 2022; Kuhlmann et al., 2025; Guanter et al., 2025).

CH4 emissions from sources with small emission strengths
that cannot be quantified from space (< 100 kgCH4 h−1) are
crucial for two reasons: First, leakages from the production
and use of fossil fuels are often small and remain unde-
tected by satellite-based approaches. Second, CH4 emissions
from oil and gas production have a lognormal distribution
with many small sources but only a few large ones (e.g. Bal-
combe et al., 2018; Stavropoulou et al., 2023; Williams et al.,
2025). Accurate knowledge of the emission distribution of
sources from a given sector or country is crucial for extrapo-
lating CH4 emissions from the entire sector or country by
accounting for sources below the detection limit (Zavala-
Araiza et al., 2015; Zhang et al., 2023; Kuhlmann et al.,
2025).

The detection of low intensity CH4 sources requires a sen-
sor that combines high spatial resolution with a good signal-
to-noise ratio. One such state-of-the-art sensor is the new

Airborne Visible InfraRed Imaging Spectrometer 4 (AVIRIS-
4). It was developed by NASA JPL as a successor of AVIRIS-
NG in parallel to its sister instruments Earth Surface Mineral
Dust Source Investigation (EMIT) and AVIRIS-3 which are
in service on board the ISS and as airborne sensor respec-
tively (Hueni et al., 2025). In comparison with its predeces-
sor, AVIRIS-4 has traded some of its spectral resolution in
order to enhance its spatial resolution and SNR (see Table 1).
In this paper, we present the processing chain for retrieving
CH4 emissions from AVIRIS-4 measurements, show CH4
maps and emission estimates from a blind controlled release
experiment and characterise the capabilities and limitations
of AVIRIS-4 for CH4 emission quantification. The analysis
considers the influence of flight altitude, meteorological con-
ditions such as wind speeds and atmospheric stability, illu-
mination and viewing conditions, and surface reflectance on
the detection limit and the quality of the emission quantifica-
tions, providing guidance for future campaigns.

2 Data and Methods

This section covers the description of AVIRIS-4 (Sect. 2.1)
used for the acquisition of remote sensing data in the con-
trolled release experiment (Sect. 2.2) and the data process-
ing chain from radiance data processing (Sect. 2.3), CH4 re-
trieval (Sect. 2.4) and CH4 emission estimation (Secti. 2.5)
to the estimation of uncertainties (Sect. 2.6).

2.1 AVIRIS-4 sensor specification

AVIRIS-4 is a state-of-the-art imaging spectrometer with
identical core components as NASA JPL’s AVIRIS-3 and the
EMIT spectrometer (Green et al., 2022; Shaw et al., 2022;
Hueni et al., 2025). The spectrometer is equipped with a
1280-pixel sensor array and records hyperspectral data in 328
bands spanning the ultraviolet (UV) to the shortwave infrared
(SWIR). In practice, 1241 pixels receive sufficient illumina-
tion and SNR, and 287 bands are retained for data processing.
Detailed sensor specifications are provided in Hueni et al.
(2025). Compared to its predecessor it offers enhanced sta-
bility, spatial sampling interval (hereafter referred to as spa-
tial resolution) and signal-to-noise ratio (SNR) (see Table 1).

2.2 Controlled release experiment

The data for this analysis was acquired during a single-blind
controlled release experiment organised by the Environmen-
tal Assessment and Optimization Group at Stanford Univer-
sity between the 16 and 20 September 2024 at the TotalEner-
gies Anomalies Detection Initiatives (TADI) site in Lacq in
the south of France (latitude: 43.412°, longitude: −0.636°,
elevation a.m.s.l.: 95 m) (see Fig. 1a). A total of 13 com-
mercial and academic teams, using a range of technologies
– including continuous monitoring, vehicle-based measure-
ments, drones, airborne in-situ measurements, remote sens-
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Table 1. Specifications of AVIRIS-4 compared to AVIRIS-NG, adapted from Green et al. (2022) and Hueni et al. (2025).

Category AVIRIS-4 AVIRIS-NG

SPECTRAL

Range 375 to 2504 nm 380 to 2510 nm
Sampling 7.4 nm 5 nm
Response (FWHM) 1 to 1.5 × sampling 1 to 1.5× sampling
Calibration ±0.1 nm ±0.1 nm

RADIOMETRIC

Range 0 to max Lambertian 0 to max Lambertian
Signal-to-noise ratio (SNR) > 3000 @ 600 nm > 2000 @ 600 nm

> 1200 @ 2200 nm > 1000 @ 2200 nm
Calibration 97 % (< 3% uncertainty) 95 % (< 5% uncertainty)

SPATIAL

Swath samples 1241 600
Swath angle 40.2° field-of-view 34° field-of-view
IFOV 0.6 mrad 1 mrad
FPS 213 10–100
Response (FWHM) 1 to 1.5× sampling 1 to 1.5× sampling

ing from aircraft, and satellites – participated in the exper-
iment. The results of all teams were collected and anal-
ysed in McManemin (2025). On each campaign day (08:00–
18:00 CEST), up to 9 individual controlled releases with
rates varying between 0.02 and 350 kgCH4 h−1 were con-
ducted at different unknown heights between 0.01 to 6.5 m
above ground and at different unknown locations on the study
site (see Fig. 1b). Each release lasted for 45 min and was fol-
lowed by a 15 min break before the start of the next release.
In some periods, no CH4 was released to enable the detec-
tion of false positives. Additionally, the wind speed was mea-
sured using a ZX 300 Doppler wind lidar positioned 100 m
from the emission sources. The instrument recorded horizon-
tal and vertical wind speeds, as well as wind direction, at pre-
selected heights between 10 and 300 m above ground level,
with a temporal resolution of approximately 20 s. Participat-
ing teams were aware of the timing of releases while loca-
tions and flow rates of the releases as well as the wind data
were only made available after all teams had submitted their
initial emission estimates. Details of the release experiment,
the participating teams and the synthesis can be found in Mc-
Manemin (2025). For the campaign, AVIRIS-4 was mounted
on a hydraulic stabilisation mount and built into a Cessna
208B Grand Caravan EX. The aircraft flew over the release
site in either north-south or east-west direction at different
altitudes of 12 000, 9000, 6000, 4200 and 3300 ft or 3660,
2740, 1830, 1280, 1000 m above mean sea level (a.m.s.l.)
(see Fig. 1a). This resulted in average spatial resolutions of
2.0, 1.5, 1.0, 0.7 and 0.5 m across-track and 0.35 m along-
track. For the remainder of the article, all wind speed heights
are given in metres above ground level and all flight altitudes
in feet a.m.s.l.

2.3 Data processing

2.3.1 Radiometric and spectral calibration,
georeferencing

The level 0 data acquired by AVIRIS-4 consists of raw
digital numbers organized into along-track and across-track
spatial dimensions and a spectral dimension. The level 0
data was converted into level 1 at-sensor radiances (in
µWcm−2 nm−1 sr−1) using laboratory-measured calibration
coefficients. The level 1 data was georeferenced using a para-
metric approach (Schläpfer and Richter, 2002), where the ge-
ometry of the sensor, its location and orientation acquired
from global navigation satellite system (GNSS) and inertial
navigation system (INS) data were combined with a digital
elevation model (IGN, 2018) to project the radiometrically
corrected data onto the surface with sub-pixel accuracy. De-
tails on the processing are described in Hueni et al. (2025).

2.3.2 Masking of shadows and water surfaces

Observations over dark surfaces such as cast shadows and
water bodies have a low SNR and therefore produce artefacts
when processing the data. Additionally, cast shadows only
contain diffuse radiance, which is inconsistent with the non-
scattering assumption in CH4 retrieval. Cast shadows were
especially pronounced in our data, as the controlled release
experiment took place in late September under low solar
zenith angles (SZA). For this reason, we masked these ar-
eas using a modified version of the cast detection method de-
scribed in Schläpfer et al. (2018), using radiances at 450 nm
for blue (Lb), 670 nm for red (Lr) and 780 nm for near-
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Figure 1. (a) Location of the controlled release experiment at the TADI site in the south of France (red polygon in the inset map). Super-
imposed are the imaging footprints of AVIRIS-4 for overpasses at 3300 and 12 000 ft. (b) Aerial view of the site with the locations of the
wind lidar as well as the potential release locations. Imagery: © 2025 Airbus, CNES, Landsat, Copernicus, Maxar Technologies, map data:
© 2025 Google.

infrared (NIR) (Ln):

ish =
Lr+ kn(Ln−Lr)>0

Lb
·

1
a eb Lb,dark

. (1)

We used the default parameters kn = 0.1, a = 1.58 and b =
−0.04 from Schläpfer et al. (2018). Next, we divided the in-
verse of the resulting index by the integrated radiance over all
wavelengths. After empirical evaluation, values larger than
0.25 were masked prior to applying the matched filter.

2.4 CH4 retrieval

We retrieved CH4 maps from the AVIRIS-4 radiance
cubes using the computationally efficient matched filter ap-
proach following Foote et al. (2020) and further refined by
Kuhlmann et al. (2025). The filter detects a known signal
within a noisy background by enhancing the signal relative to
the noise, effectively maximising the output signal-to-noise
ratio under the assumption of additive Gaussian noise.

2.4.1 Matched filter

Using a linearised form of the Beer-Lambert law, the
matched filter (MF) takes the form

αε =
(Lobs− µ̂) · Ŝ−1

· t

t> · Ŝ−1 · t
(2)

where αε represents the CH4 column enhancement, Lobs the
observed spectrum in the two wavelength ranges 1480 to
1800 and 2080 to 2500 nm, µ̂ and Ŝ the median and covari-
ance of the observed spectrum and t = µ̂ ·−s the target spec-
trum. We used the negative of the unit absorption spectrum
of CH4 s to align Eq. (2) with derivations in other studies.
Thereby, s is calculated using the radiative transfer equation

assuming a geometric air mass factor (AMF), no atmospheric
scattering according to Kuhlmann et al. (2025) and a CH4
enhancement ε in the lowest 1000 m layer respectively. The
calculation of the plume-specific enhancement was achieved
through an iterative approach, wherein the CH4 maps were
initially derived under the assumption of an enhancement
of 0.01 ppm. The mean enhancement in the detected plume
was then used for the subsequent iteration of the matched
filter, which converged after three iterations with changes
between successive iterations falling below a 5 % threshold.
Our iterative approach reduces the approximation error in-
troduced by the linearisation of the Beer-Lambert law by ex-
panding around the current estimate of α rather than α = 0,
which decreases the linearisation error quadratically in the
update step. For large enhancements, this substantially miti-
gates non-linear absorption effects. The mathematical deriva-
tion can be found in the Supplement.

2.4.2 Lognormal matched filter

Due to the linearisation of the Beer-Lambert law used in
the derivation of most matched filter approaches, they are
only valid for weak CH4 enhancements. Therefore, Schaum
(2021) argued that a lognormal matched filter (LMF) pro-
vides the uniform most powerful solution for the detection of
trace gas plumes, which takes the following form:

αε =
(ln(Lobs)− µ̂) · Ŝ−1

· s

s> · Ŝ−1 · s
(3)

where s is the same unit absorption spectrum as above. This
approach has been implemented and evaluated by Pei et al.
(2023) for synthetic WRF-LES and observed data from the
PRISMA satellite. According to Schaum (2021), the LMF
could improve the detection performance for pixels with at-
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tenuated signal, e.g. with weak enhancement or at higher
flight altitudes, due to the more realistic mean spectrum
µ̂ in logarithmic space. In the present study, we evaluated
the LMF only exploratively to illustrate its behaviour on
AVIRIS-4 data with an emphasis on the smallest and largest
release events.

2.4.3 Albedo correction

We applied the matched filter to the at-sensor radiance of
each across-track position to avoid striping caused by dif-
ferences in radiometric and spectral calibration of the sen-
sor pixels. However, as outlined in Fahlen et al. (2024), the
assumption that the reference solar spectrum L0 can be ap-
proximated by the mean spectrum µ̂ introduces a bias in the
CH4 column enhancement αε over heterogeneous surfaces,
which must be corrected as follows:

αcorr =
1
R
×αε with R =

(Lobs×−s) · Ŝ−1
· t

t> · Ŝ−1 · t
(4)

While the correction factor helps mitigate biases in CH4 en-
hancements, it also amplifies retrieval noise for dark surfaces
with a low signal-to-noise ratio. This effect could be mit-
igated by masking cast shadows and water surfaces before
applying the matched filter.

2.4.4 Plume shadow correction

In some of the AVIRIS-4 observations, we observed double
plumes due to plume shadows (see Sect. 3.5.4). They present
a challenge for emission estimation because the CH4 retrieval
assumes that the light traverses the plume twice, assuming a
geometric AMF that depends both on the solar zenith angle
(SZA) and viewing zenith angle (VZA):

AMFgeom = sec(SZA)+ sec(VZA) (5)

At the source location, however, the signal originating from
the plume does not pass through the plume a second time
after ground reflection, and thus it is independent of the
VZA. Consequently, CH4 enhancements should be scaled by
cplume:

cplume =
AMFgeom

sec(VZA)
(6)

For the plume shadow enhancement, the respective correc-
tion factor is given by

cshadow =
AMFgeom

sec(SZA)
(7)

When the plume and its shadow were clearly resolved, we es-
timated the emissions and applied the corresponding correc-
tion factor. However, when the plumes partially overlapped,
this separation was not feasible, limiting the applicability of
the correction method. In such situations, we employed the

integrated mass enhancement (IME), which aggregates all
detected pixels without explicitly distinguishing between the
plume and its shadow.

2.5 CH4 emission estimation

To estimate the CH4 emissions, we used the integrated mass
enhancement (IME) and cross-sectional flux (CSF) method
implemented in the Python library for data-driven emission
quantification (ddeq) (Kuhlmann et al., 2024). We used the
CSF for longer plumes and more turbulent conditions as it
averages the fluxes along several cross-sections. Conversely,
the IME was used for short plumes and plumes that deviate
from a Gaussian plume shape such as for overlapping dou-
ble plumes. Both methods assume steady-state conditions of
wind speed and emission rate. Limits of this assumption are
further discussed in Sect. 4.2.

All mass-balance based methods require an estimate of
the wind speed U . Ideally, U would correspond to the ef-
fective wind speed Ueff, which is the mean speed at which
the plume is transported (Kuhlmann et al., 2024). However,
as the vertical CH4 profile is unknown, we used four different
approaches to obtain a wind speed estimate:

1. 10 m wind speeds U10 from ERA5 reanalysis data
(Hersbach et al., 2018) as used for the initial reporting
in McManemin (2025) as ground-based lidar measure-
ments were not available prior to unblinding.

2. 10 m wind speeds U10 from wind lidar measurements.

3. A linear scaling of the 10 m wind speed derived from
model simulations for GHGSat (Varon et al., 2018):

Ueff = 1.47 ·U10 (8)

4. Wind speed at source height Us, assuming a logarithmic
wind profile (Fleagle and Businger, 1980; Seinfeld and
Pandis, 2016). Wind profiles were derived assuming a
surface roughness of 0.1 m and using on-site measure-
ments of temperature and wind speed, combined with
sensible heat fluxes from ERA5 reanalysis data (Hers-
bach et al., 2018). While plume rise and vertical mixing
were not explicitly incorporated into the wind speed cal-
culations, their potential influence was accounted for in
the uncertainty analysis.

We also conducted a sensitivity analysis using lidar wind
speeds at other elevations above ground level.

2.5.1 Integrated mass enhancement

The IME approach derives the emission rate Q based on
the integrated mass enhancement M of a plume and a resi-
dence time τ during which CH4 resides within the detectable
plume. This residence time is approximated by the wind
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speedU and the length L of the detectable plume (Kuhlmann
et al., 2024).

Q= τ ·M =
U

L
·M (9)

The plume length L was calculated as the arc length of the
centre line curve fitted to the detected plume.

The integrated mass M was computed as

M =

n∑
(i,j)∈Pa

(Vi,j −Vbg) ·Ai,j (10)

where Vi,j is the vertical column density, Vbg is the back-
ground vertical column density, and Ai,j is the pixel area.
The trace gas mass was summed up over the n pixels of the
integration area Pa which was obtained by a sufficient ex-
tension of the detected plume in the crosswind direction to
include pixels with enhancements below the detection limit.
A local CH4 background Vbg was calculated by applying a
low-pass Gaussian filter to the CH4 maps after masking the
enhancements including a buffer (Kuhlmann et al., 2024).

2.5.2 Cross-sectional flux method

For the CSF, the detected plume is divided into multiple poly-
gons. As in Kuhlmann et al. (2024), a Gaussian curve with
linear background trend was then fitted to the CH4 enhance-
ments of each polygon to obtain the line densities q:

g(y)=
q
√

2πσ
exp

(
−
(y−µ)2

2σ 2

)
+my+ b (11)

here, y is the across-plume direction, σ to the standard width
and µ to the mean of the fitted Gaussian curve with linearly
changing background with slope m and offset b.

The emissions Q were then calculated as the product of
the wind speed U and the uncertainty-weighted mean of all
line densities q:

Q= U · q (12)

2.6 Estimation of uncertainty

Below we describe how uncertainty components are esti-
mated and propagated for each input to the emission quan-
tification.

2.6.1 CH4 Columns

The uncertainty of CH4 columns σV was calculated as

σV =

√
σ 2
t + σ

2
CH4

(13)

where σCH4 is the standard deviation of retrieved CH4
columns in a plume-free region next to the release location
with similar surface properties. σt represents correlated un-
certainties in the target t due to no-scatter assumptions for
the calculation of the unit absorption spectrum s, which was
estimated at a conservative 5 % for this campaign based on
Kuhlmann et al. (2025).

2.6.2 Pixel area

Uncertainty in pixel area (σA) is treated as a systematic spa-
tial uncertainty, reflecting geolocation and georectification
errors. During this campaign, geolocation accuracy was re-
duced due to a faulty cable, which impaired the temporal
synchronization between GNSS data and AVIRIS-4 mea-
surements. To assess the resulting geolocation uncertainty,
AVIRIS-4 imagery was visually compared with Google Earth
reference imagery. Based on this comparison, a conservative
uncertainty of 5 % of the nominal pixel area was assumed.
The cable issue has since been resolved, and additional mea-
sures have been implemented to prevent similar problems in
future campaigns.

2.6.3 Wind speed

The uncertainty of the on-site measured wind speed σU is
assumed to consist of four terms:

σU =

√
σ 2

inst+ σ
2
rep+ σ

2
eff+ σ

2
var (14)

The term σinst represents the systematic measurement uncer-
tainty of the wind lidar which was estimated as 5 % of the
wind speed, based on guidance from the site operators. The
term σrep represents the error associated with the spatial dis-
placement between the wind lidar and the actual plume lo-
cations. Given the close proximity of the lidar to the source
positions in this study, this component is assumed to be neg-
ligible or already captured in σvar (see below). The term σeff
reflects the uncertainty introduced by the use of the wind
speed at source height instead of a concentration weighted
wind profile. It was quantified by calculating the mean rela-
tive difference between the wind speed at source height and
a Gaussian-weighted logarithmic wind profile. For the lat-
ter, we weighted the logarithmic wind profile with Gaus-
sian curves around the source height with standard devia-
tions ranging from 0.1 to 5 m and source heights between
0.01 and 6.5 m as experienced during the controlled release
experiment. σeff was found to be in the order of 30 % for
sources between 0 and 1.5 m above the ground and less than
5 % for sources which are more elevated. Here, we used an
estimate of 15 %. Finally, σvar represents the uncorrelated er-
rors due to the natural variability of on-site measured wind
data during the overpass. It was quantified as the standard
deviation of U10 over a one-minute window, consistent with
the typical residence time of most detectable plumes, which
was estimated to be no more than one minute.

2.6.4 IME

The uncertainties of the emission estimates σQ of the IME
were determined by the propagation of error:

σQ =Q ·

√(σU

U

)2
+

(σL

L

)2
+

(σM

M

)2
(15)
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The uncertainty of the plume length σL was estimated as
10 % of the plume length or at least half of a pixel. The un-
certainty of the integrated mass σM was calculated as

σM =

√√√√ n∑
(i,j)∈Pa

[
(Ai,j · σVi,j )

2+ (Ai,j · σVbg )
2+

(
(Vi,j −Vbg) · σAi,j

)2] (16)

where σVi,j corresponds to the pixel-wise uncertainty of the
vertical column density V . Using the trace gas column en-
hancement Venhi,j = Vi,j −Vbg, Eq. (16) simplifies to

σenh =

√√√√ n∑
(i,j)∈Pa

[
(Ai,j · σVenhi,j

)2+ (Venhi,j · σAi,j )
2
]

(17)

where σAi,j = σA and σVenhi,j
= σVenh

were assumed to be
constant and correspond to the mean within the plume.

2.6.5 CSF

The uncertainties of the emission estimates σQ of the CSF
were determined as

σQ =

√
q2
· σ 2

U+U
2 · σ 2

q (18)

The uncertainty of the mean line densities σq was obtained
as the uncertainty of the mean of the fitted fluxes q along the
plume, which accounts for uncertainties σq of the individual
cross sections. Since σq decreases with the square root of the
number of line densities and does not account for the corre-
lation of consecutive line densities, this uncertainty is set to
at least 10 % of the mean line density:

σq =min(σq ,0.1 · q) (19)

The uncertainty of each cross-section σq was calculated from
the uncertainty of the Gaussian fit to each sub-polygon σgauss
and the mean uncertainty of the pixel area σA within a sub-
polygon:

σq =

√
σ 2

gauss+

(
q

A
· σA

)2

(20)

3 Results

In what follows, we summarise the observing conditions
relevant to CH4 retrievals during the controlled-release ex-
periment (Sect. 3.1). We then present representative plume
images from multiple releases across varied conditions
(Sect. 3.2). Next, we assess how key parameters influence
retrieval performance (Sect. 3.5), derive detection limits
(Sect. 3.3), and compare estimated emissions with reported
values (Sect. 3.4). Summary figures and corresponding emis-
sion estimates for each detected plume are provided in the
Supplement.

3.1 Controlled release experiment

In contrast to previous efforts, this new generation of con-
trolled release experiments was planned to reflect more re-
alistic natural conditions. While this allows to assess sensor
performance in diverse terrain and meteorological conditions
it also introduces limitations associated to different surface
coverage, cast shadows and cloud conditions (see Fig. 2 for
detailed meteorological setting during all experiments, and
Figs. A3 and A4 as well as Tables A1 and A2 in the Ap-
pendix for wind information). Despite these challenges, we
were able to fly 100 overpasses at different hours of the day
(see Fig. 3a) and at five altitudes (see Fig. 3b), which allowed
us to evaluate the influence of wind speeds and spatial reso-
lution on the CH4 detection and emission estimation. Flights
at all flight levels were only scheduled for the first release in
the morning and afternoon after refuelling. The atmospheric
stability was estimated to be neutral to unstable for all obser-
vations based on the Pasquill stability classes using U10.

3.2 Examples of plume images

Figure 4 (upper row) presents three optimal examples of
plumes resulting from three different releases. The plumes
appear largely linear, with minimal influence from turbu-
lence, which is favourable for emission estimation. For
stronger sources, retrieval noise is barely noticeable, but at
lower intensities – such as the 26.4 kgCH4 h−1 release – it
can interfere with the plume signal and hinder accurate attri-
bution of enhanced pixels (see Sect. 3.5.5).

The lower row in Fig. 4 shows three turbulent plumes ob-
served during overpasses at 4200 ft, where local enhance-
ments caused by turbulent eddies are clearly visible. In these
cases, the CSF method outperforms the IME approach, as
the effect of turbulence is reduced through averaging across
multiple cross-sections.

In addition to challenging conditions, there was also a
case where turbulence impeded emission estimation, shown
in Fig. 5. A change in wind direction prior to the overpass
appears to have caused a large, dispersed “blob” of CH4 en-
hancements. Since these conditions violate the steady-state
assumption, this case was excluded from emission estima-
tion.

3.3 Detection limit

The median noise level of CH4 maps was estimated to
be around 450 ppm m or 0.3 gCH4 h−1 for the data of
the controlled release experiment. Out of 100 overpasses,
plumes were detected on 68 instances (Fig. 6). In the most
favourable case, the smallest observed plume corresponded
to a 1.45 kgCH4 h−1 release at U10 = 0.76 m s−1 and a flight
altitude of 4200 ft, representing the best-case detection limit
for AVIRIS-4. Under typical conditions, plumes from re-
leases of 5.5 kgCH4 h−1 and above were consistently de-
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Figure 2. Schedule of the controlled release experiment with the number of overpasses n for each release and a symbol for the average cloud
conditions during the release. As the releases started either at ’00, ’30 or ’45, the row label indicates the hour of the release end in local time.
If no number of overpasses is given, no release took place during that time window. Bold entries indicate releases observed at all altitude
levels; otherwise, observations were limited to 4200 and 3300 ft. The right-hand panel shows the average SZA for each hour.

Figure 3. (a) Number of overpasses at five different altitudes above
mean sea level. (b) Number of overpasses at different hours of the
day.

tected at altitudes ≤ 4200 ft, with the exception of two over-
passes where shadows from surface infrastructure obscured
the signal. At higher flight altitudes (6000–12 000 ft), de-
tection performance was more constrained: for release rates
≤ 9.23 kgCH4h−1, only one plume was detected (6000 ft,
U10 = 1.3 m s−1), while the others could not be observed due
to the combined effect of higher winds and lower emissions.
The original objective of conducting observations at multiple
flight altitudes was to determine an altitude-dependent de-
tection limit. However, because the CH4 release rates were
not known in advance, the largest release event captured at
all five altitudes was metered at only 9.23 kgCH4 h−1. This
emission rate was below the detection threshold at altitudes
above 6000 ft and therefore remained undetectable in those
overpasses. For the overpasses below 6000 ft, we computed
the probability of detection (PoD) for AVIRIS-4 according
to Conrad et al. (2023) as a function of reported emissions

Qrep, U10 and flight altitude h̃ using the flags “detected” and
“not detected” by optimising the predictor and inverse link
functions. This resulted in the following PoD function which
is plotted in Fig. 6.

PoD= 1−

1+
(

1.03× 1010
) (

5.18× 108)Q1.93(
h̃

1000

)3.88

(U10+ 97.0)9.97


−1.84

(21)

3.4 CH4 emission estimation

We were able to estimate the emission from 67 of the 68 de-
tected plumes, 54 of which were estimated using the CSF
method and 13 using the IME method. Figure 7 shows the
reported versus estimated CH4 emissions using four differ-
ent wind speed inputs. As outlined in Sect. 2.5, the initial
CH4 emission estimates were calculated using ERA5 U10,
shown in subplot (a) of Fig. 7. This approach yields a rela-
tively weak correlation, with a fitted slope of only 0.53 and an
R2 value of 0.55. Replacing ERA5 data with lidar-measured
U10 in subplot (b) of Fig. 7 substantially improves the agree-
ment, increasing the slope to 0.65 and an R2 value of 0.73.
This highlights the limitations of reanalysis wind data for ac-
curate emission quantification (further shown in Fig. A1). As
a result, the use of ERA5 introduces both correlated and un-
correlated uncertainties in emission estimates that are diffi-
cult to quantify or correct.

Even when using on-site lidar wind speeds (Fig. 7b), bi-
ases remain: emission rates for small release events tend
to be overestimated, while large releases (e.g. at 80.1 and
290 kgCH4 h−1) are significantly underestimated. This be-
haviour can be explained by plume dynamics: Small release
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Figure 4. Upper row: Linear CH4 plumes from release events with 26.4, 56.7 and 290 kgCH4 h−1, observed at 3300 ft at an average spatial
resolution of 0.40 to 0.43 m. Lower row: Turbulent CH4 plumes from release events with 290 and 80.1 kgCH4 h−1, observed at 4200 ft at an
average spatial resolution of 0.48 m.

Figure 5. CH4 plume from release events with 52.94 kgCH4 h−1, observed at 3300 ft at a spatial resolution of 0.42 m.

events result in short plumes which remain near the emission
height (< 10 m for all releases), making the use of U10 prone
to overestimation. In contrast, large releases produce longer
plumes that undergo greater vertical mixing. The actual ef-
fective transport height may thus be above 10 m, resulting in
an underestimation of emissions when using U10. Additional
influencing factors are specific to the release equipment, such
as the outlet ejection velocity and whether the emission was
oriented horizontally or vertically.

These limitations highlight the importance of estimating
an effective wind speed (Ueff) that accounts for both source
height and vertical mixing. Subplots (c) and (d) in Fig. 7
compare two approaches: the method of Varon et al. (2018),
which accounts only for vertical mixing, and the method de-
veloped in this study, which accounts only for source height.
In subplot (c), the overall fitted trend lies close to the 1 : 1
line, but the estimates for small releases are substantially
worse than when using U10. This reflects the fact that Varon

et al. (2018) derived the linear relationship between U10
and Ueff for GHGSat, which has a coarser spatial resolution
(50× 50 m). At that scale, plumes have more time to mix ver-
tically and are therefore transported by winds stronger than
U10. In contrast, subplot (d) shows a poorer overall trend than
(c) due to the strong influence of large release events, but
the estimates for small releases improve considerably. This
suggests that short plumes are well captured because they re-
main close to the emission height, whereas vertical mixing is
insufficiently accounted for in the case of larger releases.

To further investigate this hypothesis of strong vertical
mixing, we incorporated lidar wind speeds at 20 and 38 m
and calculated the uncertainty-weighted root mean squared
error (RMSE) and relative mean bias error (MBE) between
estimated and reported CH4 emissions, as shown in Fig. 8.
The results confirm that using Usrc substantially improves
emission estimates for low intensity release events. For re-
lease events above 30 kgCH4 h−1, however, using Usrc tends
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Figure 6. (a) Reported CH4 emissions vs. on-site lidar wind measurement at 10 m. (b) Probability of detection for a flight altitude of 1000 m.
above mean sea level using Eq. (21).

Figure 7. Comparison between reported and estimated CH4 emissions using (a) ERA5 10 m wind speeds, (b) lidar 10 m wind speeds, (c)
effective wind speeds using 1.47×U10 according to Varon et al. (2018) and (d) effective wind speeds at source height as described in
Sect. 2.5. Insets enlarge the low-emission range and have an independent fit to the emission estimates. It is important to note that the R2

value represents the coefficient of determination of the weighted regression, which can take negative values.

to underestimate emissions and performs worse than esti-
mates based onU10,U20 andU38. Although the relative MBE
decreases for larger releases, the high relative RMSE indi-
cates substantial variability around the true values. This pat-
tern may reflect the greater influence of turbulence on longer
plumes compared to shorter ones.

In addition to source strength and therefore plume length,
absolute wind speed appears to significantly influence the ac-
curacy of emission estimates. This is illustrated in Fig. 9,
which shows the scaling factor required to align estimated

emissions with reported values as a function of (a) plume
length and (b) effective wind speed. While subplot (a) of
Fig. 9 supports the previously discussed hypothesis regarding
plume length, subplot (b) reveals that lower wind speeds are
associated with larger and more variable scaling factors. This
observation aligns with the findings of Varon et al. (2018);
Sánchez-García et al. (2022); McManemin (2025), who re-
ported reduced accuracy in emission estimates across var-
ious techniques under low wind speed conditions. This is
likely due to the increased variability typically observed at
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Figure 8. Mean relative root mean squared error (RMSE) and relative mean bias error (MBE) between estimated and reported CH4 emissions
across emission bins.

lower wind speeds. In contrast, we did not observe larger
scaling factors for larger coefficients of variation (CoV) in
wind direction in subplot (c) of Fig. 9 as discussed in Mc-
Manemin (2025). The reason for this is that our method does
not depend on wind direction, as we do a nearly instanta-
neous measurement. The large spread in angles between the
wind direction and the curve fitted to the plume in subplot
(d) further highlights the strong influence of wind turbulence
on the observed plumes.

This hypothesis is further supported by individual cases
where estimated emissions diverge from reported values, as
illustrated in Fig. 10. Subplot (d) shows that the CH4 fluxes
across different cross-sections fluctuate strongly between
100 and 200 kgCH4 h−1 due to turbulent wind, likely reflect-
ing both temporal variability in wind speed and changes in
plume height that exposed it to different wind regimes. In
such cases, one might consider using only CH4 enhance-
ments close to the source, such as those from the first cross-
section, where Ueff is expected to better approximate the
wind speed at source height. However, this example shows
that even this approach leads to underestimation, indicating
that the measured wind speeds do not accurately reflect ac-
tual wind conditions. An analysis of the wind speed during
the two minutes of the overpass reveals that U10 varies be-
tween 1 and 3 m s−1. For comparison, a 20 m plume under
a 1 m s−1 wind has a residence time of about 20 s, which
matches the sampling interval of the wind lidar. As a result,
the wind speed fluctuations visible in the plume cannot be
resolved by the lidar, and the underestimation can likely be
attributed to larger-than-expected temporal variability that is
not captured at the instrument’s temporal resolution.

The analysis of uncertainty contributions to total emission
estimate uncertainty (Fig. A2) indicates that wind speed is
the dominant factor for both the CSF and IME methods. Most
of this contribution arises from the natural variability of wind

speed, with additional influence from uncertainty in the ef-
fective wind speed. In comparison, measurement errors in
wind speed account for only a minor portion of the overall
uncertainty.

Lastly, one source of deviation between estimated and re-
ported CH4 emissions is the presence of cloud shadows over
the release site as shown in Sect. 3.5.3, leading to the strong
underestimations of the 80.1 kgCH4 h−1 release event ob-
served in Fig. 7. Despite this underestimation, the plumes
were still reliably detected, indicating that observations un-
der suboptimal cloud conditions can still be valuable e.g. for
leak detection.

3.5 Factors affecting the CH4 retrievals

3.5.1 Spatial resolution

Figure 11 shows examples of AVIRIS-4 RGB images and
CH4 maps of the release site acquired at 12 000, 9000, 6000,
4200, and 3300 ft in the afternoon of the 16 September. The
across-track resolutions are 2.0, 1.5, 1.0, 0.7, and 0.5 m,
while the along-track resolution is approximately 0.4 m. For
the overpasses at 12 000 and 6000 ft, the across-track reso-
lution is represented on the x-axis, whereas for the others it
is represented on the y-axis. Black circles indicate an arte-
fact caused by a white object located at the release site. This
artefact arises because, first, the reflectance signal appears to
correlate with the CH4 signal, and second, the high albedo
of the object leads to increased radiance, which in turn pro-
duces an artificially elevated enhancement in the CH4 maps.
At higher altitudes (12 000 and 9000 ft), the spatial resolution
is too coarse to clearly distinguish this artefact from a true
enhancement. The CH4 plume from the release event with
an emission rate of 9.23 kgCH4 h−1 is only visible at higher
spatial resolutions during overpasses at 3300 and 4200 ft.
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Figure 9. Correlation of (a) plume length, (b) 10 m wind speed, (c) Coefficient of Variation (CoV) and (d) angle between plume curve and
wind direction with the scaling factor required to align estimated CH4 emissions using lidar 10 m wind speeds with reported values.

Figure 10. (a) RGB image of the release location, (b) CH4 map showing the detected plume and 12 cross-sections, (c) Gaussian fits to the
CH4 columns from the first and last three cross-sections, (d) along-plume flux of all cross-sections and retrieval metadata.

3.5.2 Cast shadows

The cast shadows of buildings and objects are clearly visi-
ble at high spatial resolution. Shadows compromise the CH4
retrieval, which assumes a non-scattering atmosphere, since
light in shadowed areas originates solely from scattering.
Therefore, an efficient shadow masking is necessary at these
resolutions. Figure 12 shows the effect of the shadow mask

for a scene with water bodies and cast shadows and the re-
lease site with a nearby photovoltaic plant. It can be seen
that the masking of cast shadows and dark surfaces such as
solar panels is important to prevent biases in the CH4 maps
which would interfere with plume detection. Furthermore, in
instances where the plume coincides with shadowed areas,
the artificially elevated enhancements would skew emission

Atmos. Meas. Tech., 19, 333–358, 2026 https://doi.org/10.5194/amt-19-333-2026



S. Meier et al.: Methane emissions AVIRIS 345

Figure 11. RGB images and CH4 maps for different flight altitudes with average spatial resolutions of 2.0, 1.5, 1.0, 0.7 and 0.5 m across-track
and 0.35 m along-track. All observations are from a release event on the 16 September with reported emissions of 9.23 kgCH4 h−1.

estimates. As a result of the shadow mask, CH4 emissions
can also be estimated if the plume is transported over shad-
owed areas.

The downside of shadow masking is that some short
plumes of small release events could not be detected because
they aligned with shadows. Furthermore, depending on the
threshold used for shadow masking, surfaces with low albe-
dos could be masked, preventing the detection of CH4 emis-
sions.

3.5.3 Cloud shadows

During all eight overpasses of the 80.1 kgCH4 h−1 release on
the 19 September, cloud shadows intersected the flight line
while on five out of eight overpasses, cumulus clouds ob-
scured the sun over the release site. Under such conditions,
the measured radiance is dominated by scattered light, violat-
ing the assumptions used in calculating the target spectrum.
Moreover, cloud shadows on the flight line render the mean
spectrum µ̂ unrepresentative of the observed radiance Lobs
over the release site. Consequently, subtracting µ̂ from Lobs
in Eq. (2) partially removes the CH4 signal. This effect is ev-
ident in Fig. 13, which contrasts an overpass with obscured
sun at 13:00 UTC with a clear-sun overpass at 12:5 UTC. The
lower row shows Lobs− µ̂ over the same plume-free area in
both cases. As can be seen, the cloud shadow strongly re-
duces the signal. As a result, emission estimates for shad-
owed cases, or for scenes with a substantial fraction of cloud
shadows along the flight line, tend to be underestimated.
Consequently, a refined retrieval algorithm would be neces-
sary to provide unbiased CH4 maps and emission estimates.

3.5.4 Plume shadows

As a consequence of the unprecedentedly high spatial reso-
lution of AVIRIS-4 and the high SZA for some of the over-
passes (see Fig. 2), we discovered that, out of 68 detected
plumes, 13 were found to contain two plumes that were occa-
sionally overlapping and occasionally distinct, as illustrated
in Fig. 14.

This phenomenon can be explained as plume shadows:
One plume appears at the actual release location and corre-
sponds to the CH4 absorption signal of the light path that first
travels from the sun to the ground and, after being reflected,
passes through the plume. The second plume is observable at
the upper end of the shadow cast by the pole of the source.
This plume corresponds to the absorption signal of the light
that first passes through the plume, is then reflected from the
ground and reaches the sensor without passing through the
plume a second time. This phenomenon has been shown in
simulations by Schwaerzel et al. (2020) and first observed
by Sánchez-García et al. (2022). It is important to note that
the effect of light passing through the plume only once in-
stead of twice occurs under all conditions with sufficiently
high SZA. For sensors with coarse spatial resolution, how-
ever, the plume and its shadow cannot be resolved separately
and have therefore never been explicitly considered in CH4
retrieval or emission estimation prior to this study. To cor-
rect for plume shadows, we applied the method outlined in
Sect. 2.4.4 to the four observed plumes that were clearly sep-
arated. This resulted in a mean correction factor of 2.6.

3.5.5 MF vs. LMF

For the analysis of this study we also tested the LMF which
was developed by Schaum (2021) and tested in Pei et al.
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Figure 12. Examples of scenes containing cast shadows and water bodies (upper row) and the release site during a release event with
56.7 kgCH4 h−1 (lower row), without and with shadow masking.

Figure 13. RGB image of 80.1 kgCH4 h−1 release on the 19 September (a) with and (b) without cloud shadow. The lower row shows the
mean Lobs− µ̂ over the same plume-free area within the wavelength window used for CH4 retrieval for both cases.

(2023). The plume images using the MF and LMF in Fig. 15
show that smaller enhancements (upper row) can be detected
more reliably and accurately using the LMF as worked out
in Schaum (2021). In our case, the LMF enabled the de-
tection of a release as small as 1.45 kgCH4 h−1 at a flight
altitude of 4200 ft. This improved detectability can be at-
tributed, in part, to reduced random background variability
in the retrieved CH4 maps, which facilitated more confident
identification of the plume signal. However, the LMF also in-
troduces larger systematic biases in background CH4 values
compared to the MF, as evident in both the upper and lower
rows of Fig. 15. An analysis of the eigenvalues of the co-

variance matrices for different surface albedos suggests that
these biases are associated with increased sensitivity of the
log-transformed radiances to pixels with low SNR, which is
the case for albedo surfaces with low albedo. Additionally,
we observed that the LMF had little to no effect on CH4 en-
hancements for the largest release events in the campaign,
such as the 290 kgCH4 h−1 release. This is likely because our
iterative MF already compensates for most of the non-linear
absorption associated with high optical depths.

Atmos. Meas. Tech., 19, 333–358, 2026 https://doi.org/10.5194/amt-19-333-2026



S. Meier et al.: Methane emissions AVIRIS 347

Figure 14. Left: RGB image of the study site with a marker on the release location at 6.5 m above ground. Right: CH4 map of the study site
with two plumes visible.

Figure 15. RGB images and CH4 maps obtained from MF and LMF for release events with 1.45 and 56.7 kgCH4 h−1, observed at 4200 and
3300 ft. Note that the upper row shows a zoomed-in subsection of the scene to be able to see the short plume.

3.6 Estimating the source height from (plume) shadows

The high spatial resolution of AVIRIS-4 offers the unique op-
portunity to estimate the height h of an emission source based
on the length of the shadow ls in the RGB image (Fig. 14a)
cast by the emission source using trigonometry:

h=
ls

tan(SZA)
(22)

Alternatively, the height can be estimated in the same way
from the horizontal separation of the starting points of the
two plumes (Fig. 14b). With increasing distance, the two
plumes move together more closely, suggesting that the
plume is pushed towards the surface directly after the release.

Knowledge of the emission height is an important parameter
for emission estimation, as it can be used to determine the
effective wind speed, which is a critical input for estimation
estimation. In the example shown in Fig. 14 with an SZA of
50° and a spatial resolution of 0.53 m, the emission plume
at the stack must be 6.4,± 1.1 m above ground which is in
agreement with the true emission height of 6.5 m.

We assume that this technique can be reliably applied
only if the measured shadow length exceeds its measure-
ment uncertainty by a sufficient margin. The uncertainty in
the shadow length is dominated by pixel discretization at the
shadow boundaries, where at most one mixed pixel can oc-
cur at both the upper and lower edge of the shadow. Requir-
ing the shadow length to be at least twice this uncertainty
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Figure 16. Minimum source height in metres above ground at
which shadows of emission sources extend over more than one
pixel, shown as a function of SZA and flight altitude above mean
sea level.

ensures that the shadow is sufficiently resolved. Under this
criterion, the minimum emission height that can be resolved
is given by

h >
2 · lp

tan(SZA)
(23)

For the campaign discussed in this study, this minimum
height is shown in Fig. 16.

4 Discussion

4.1 Capabilities and limitations of AVIRIS-4

Following the success of the AVIRIS Classic and AVIRIS-
NG sensors in detecting and quantifying CH4 emissions as
demonstrated in numerous previous studies, this study ex-
plores the potential of their successor, AVIRIS-4. Although
AVIRIS-4 was primarily developed for surface and vege-
tation studies, our results show that CH4 columns can be
determined with an unprecedentedly high spatial resolu-
tion, enabling the detection of short plumes from low in-
tensity sources. In combination with the enhanced SNR,
the detection limit is reduced to 5.5 kgCH4 h−1 under good
weather conditions and down to below 1.5 kgCH4 h−1 un-
der ideal conditions. Because the campaign took place in
mid-September, we expect the detection limit could be fur-
ther reduced under more favourable illumination conditions.
As discussed in Sect. 3.3, we were not able to determine
an altitude-dependent detection limit for AVIRIS-4, which
complicates direct comparisons with other airborne sensors.
For instance, studies with AVIRIS-NG operated at altitudes
between 3000 and 6000 m report detection limits of 10–
16 kgCH4 h−1 under favourable wind conditions (e.g. Ayasse
et al., 2023; Conrad et al., 2023). In our case, the lowest re-
lease of 9.23 kgCH4 h−1 could not be detected at a compara-
ble altitude of 2740 m, likely due to higher wind speeds. This

makes it difficult to assess whether and by how much the de-
tection limit has improved. In Thorpe et al. (2016), the low-
est detected release was 2.3 kgCH4 h−1, but at a much lower
flight altitude of 430 m and under higher wind speeds of 3–
5 m s−1. Kuhlmann et al. (2025) report a detection limit of
15 kgCH4 h−1 at a flight altitude of 6000 m with wind speeds
of 0.5 m s−1. Overall, comparing detection limits across stud-
ies is challenging, as they depend strongly on flight altitude,
wind speed, and spectral albedo (Conrad et al., 2023).

Decreasing the detection limit is pivotal because low inten-
sity CH4 sources are more numerous than high-emitting ones
(e.g., Williams et al., 2025; Kuhlmann et al., 2025). Conse-
quently, accurate estimates of total CH4 emissions depend
on detecting smaller sources. For instance, based on the best
detection limit of AVIRIS-NG of 15 kgCH4 h−1 reported in
Kuhlmann et al. (2025) and the distribution of oil production
sites in Romania across the outlined scenarios, AVIRIS-NG
was able to detect between 45 % and 62 % of total emissions.
In contrast, assuming a detection limit of 5.5 kgCH4 h−1,
AVIRIS-4 would increase this detection coverage to ap-
proximately 67 %–81 %. Moreover, the detection limit of
5.5 kgCH4 h−1 achieved by AVIRIS-4 effectively enables
the identification of all point sources listed in the E-PRTR
registry, which mandates reporting for emissions exceeding
100 000 kgCH4 yr−1 (equivalent to 11.4 kgCH4 h−1) (Euro-
pean Parliament and the Council of the European Union,
2006).

This study, along with comparisons to other airborne
imaging spectrometers with higher spectral but lower spa-
tial resolution such as MAMAP2DL (e.g. Krautwurst et al.,
2025), demonstrates that the trade-off of higher spatial and
slightly lower spectral resolution is beneficial for detecting
small-scale CH4 enhancements from low intensity sources,
whose plumes typically extend only a few decimetres to a
few metres.

The noise level of the CH4 maps was estimated as the stan-
dard deviation of the retrieved columns over the brightest
50 % of pixels. This resulted in a noise level of AVIRIS-
4 of 450 ppm m at an average resolution of 0.5 m which is
comparable to reported values of AVIRIS-NG at 5 m reso-
lution for suboptimal illumination conditions (e.g. Borchardt
et al., 2021). Such noise levels are expected, given that the
campaign was conducted in mid-September under low solar
zenith angles (SZAs). In addition, negative values were not
masked during the CH4 retrieval, which increases the appar-
ent noise.

The current study also shows that owing to the higher SNR
and higher spatial resolution, emissions can also be detected
and estimated with less illumination and under suboptimal
surface and atmospheric conditions, which are characterised
by inhomogeneous albedo, strong turbulence, cast shadows
and cloud shadows (see Sect. 3.1), compared to previous con-
trolled release experiments with AVIRIS-NG (e.g. Thorpe
et al., 2016; Duren et al., 2019). For example, the higher spa-
tial resolution allows for a more accurate filtering for shadow
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pixels and albedo artefacts which, if undetected, could lead to
biases in emission estimates, as outlined in Sect. 3.5.2. This
capability allows AVIRIS-4 to be effectively applied to built-
up sites with heterogeneous surface albedo and cast shad-
ows, conditions commonly encountered around CH4 sources
in the oil, gas, and coal mining sectors.

However, the higher spatial resolution also results in new
challenges. One of them is the occurrence of double plumes
originating from plume shadows illustrated in Fig. 14. We
corrected for this artefact when the true plume and its shadow
were clearly separated, but its impact on retrieved CH4 en-
hancements requires further analysis. In this context, a re-
cent study by Gorroño et al. (2025) systematically inves-
tigated the effect of different observation and illumination
geometries on the retrieved CH4 maps (i.e. parallax effect)
and the resulting emission estimates. They showed that large
VZAs and SZAs can lead to artificial elongation or compres-
sion of plumes along the plume direction. This bias in ap-
parent plume length L directly propagates into emission es-
timates and likely also occurred in the observations analysed
in this study. However, their influence is probably masked
by the comparatively large variability in wind speed. Fur-
thermore, Gorroño et al. (2025) found that the parallax ef-
fect substantially reduces the PoD due to lower apparent CH4
enhancements. In their simulations, the PoD varied between
approximately 0.5 and 0.8 depending on the angular configu-
ration. For the present study, the influence of parallax effects
is likely minor, as the detection outcomes shown in Fig. 6
are primarily controlled by wind speed and flight altitude.
The few non-detected plumes with emission rates exceeding
5 kgCH4 h−1 at low wind speeds are instead attributable to
overlaps with retrieval artefacts. Gorroño et al. (2025) also
demonstrated that when the effective wind speed Ueff is cal-
ibrated against the 10 m wind speed U10 using L, biases in
L translate into systematic errors in the calibration itself.
As a consequence, emission estimates exhibit errors below
10 % for mid-latitude summer conditions, but can reach up
to 30 % for wintertime observations. In the context of this
study, the parallax-induced bias in Ueff is only relevant for
emission estimates derived using the Ueff parametrisation of
Varon et al. (2018) and does not affect estimates based on
wind speeds at the source height. To mitigate the effect of
viewing geometry, Gorroño et al. (2025) recommended to ex-
plicitly account for observation and illumination geometry in
the planning of flight paths for airborne sensors and to cal-
ibrate Ueff using plume simulations that match the angular
configuration (“train as you measure”). Overall, additional
work is needed to correct for the parallax effect, especially as
this phenomenon also affects instruments with coarser spa-
tial resolution even if they do not spatially resolve the plume
shadow (Schwaerzel et al., 2020).

A second challenge that arises with higher spatial resolu-
tion are the higher per-pixel enhancements for larger sources.
As a result, the linearisation of the unit absorption spectrum
around α = 0 no longer holds and assumed enhancements for

the calculation of the absorption spectrum have greater influ-
ences on the retrieved enhancements. Therefore, careful se-
lection of the assumed enhancements, e.g. with the iterative
approach used in this study, is essential.

Lastly, the current study shows mixed results when using
the LMF introduced by Schaum (2021). On the one hand,
the proposed improvement for the detection of weak plumes
was also observed in this study and lowered the detection
limit even under challenging conditions. On the other hand,
the LMF increased local biases in the retrieved CH4 maps
which we attribute to the amplification of noise by the log-
transform in pixels with low SNR, caused by low albedo.
This spatially more heterogeneous background can obscure
small enhancements or produce false detections. In contrast
to Schaum (2021), we did not observe an improved perfor-
mance of the LMF for large release events. The iterative MF
applied in our study seems to successfully account for most
non-linear absorption in pixels with large CH4 enhancement.
Therefore, further systematic analyses will be required to de-
velop approaches that reduce or correct for this noise ampli-
fication in the LMF. Other approaches, such as WFM-DOAS
(e.g. Borchardt et al., 2021), may also help better account
for non-linear effects arising from strong emission sources.
However, they are computationally more expensive than the
MF and tend to work better for sensors with higher spectral
resolution.

4.2 Wind speed estimation

As seen in Sect. 3.4, estimated emissions linearly depend on
the wind speeds used. Therefore, accurate estimates of wind
speeds are crucial for accurate emission estimates. Addition-
ally, our analysis demonstrated that uncertainties in wind
speeds contributed disproportionately to the uncertainty of
the estimated emissions. Based on the analysis of this study,
the wind speed representation error (σrepr), uncertainties in
effective wind speed (σeff) and instrument precision (σinst)
likely need to be revised upward. Consequently, building on
the understanding of wind speed inputs (see Sect. 4.2.1), fu-
ture research on emission estimation from remote sensing
data should prioritise methods for deriving the effective wind
speed that governs plume transport (see Sect. 4.2.2).

4.2.1 Source of wind speed estimates

As clearly illustrated in Fig. A1, near-surface winds can be be
highly variable and gusty. We frequently found thatU10 mea-
sured by the lidar varied between 1.0 and 3.0 ms−1 within
one minute. These rapid fluctuations highlight that reanaly-
sis wind fields are insufficient for high-resolution emission
estimates with new-generation sensors, as they can intro-
duce substantial biases. A high-resolution model may be able
to represent this gustiness more realistically in a statistical
sense, but capturing the actual wind conditions at the mo-
ment of the overpass remains practically impossible. Alterna-
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tively, wind speed data from existing measurement networks
could be used for emission estimation. However, these net-
works have varying data quality and might not be available
in the vicinity of a CH4 source. Therefore, one could em-
ploy mobile instruments as it was used for the controlled
release experiment in the current study. Even if this would
provide the most accurate estimate of the wind speed, setting
up wind speed instrument would negate the advantage of re-
mote sensing instruments which is to image extensive areas
and estimate the emissions of a large number of sources. Ad-
ditionally, the current analysis has shown that under turbu-
lent conditions, wind speed representation errors can be sub-
stantial, even when wind measurements are taken just 100 m
from the source. Therefore, the best approach would be to
measure wind speed profiles in tandem with imaging spec-
trometry, e.g. by using an airborne wind lidar as investigated
in Thorpe et al. (2021).

4.2.2 Effective wind speeds

In addition to determining the small-scale and short-term
wind speeds, a further challenge is to determine the effec-
tive wind speed at which the plume was transported. Al-
though an increasing number of studies attempt to derive
Ueff from model simulations (e.g. Varon et al., 2018; Guanter
et al., 2021; Sánchez-García et al., 2022; Ayasse et al., 2023;
Guanter et al., 2025), none has systematically investigated
the effect of emission height, atmospheric stability or surface
roughness on Ueff. Moreover, existing simulations lack the
spatial and temporal resolution required for AVIRIS-4 appli-
cations. To advance our understanding of the effective wind
speed, high-resolution model studies are needed to analyse
the impact of the aforementioned factors. Ideally, these re-
sults could be parametrised to estimate the effective wind
speed based on known driving factors. While estimates for
the 3D wind field, surface roughness and heat fluxes could
be obtained from regional weather prediction models, infor-
mation about the emission height could be obtained directly
from AVIRIS-4 imagery as outlined in Sect. 3.6. Another in-
novative approach has recently been demonstrated in East-
wood et al. (2025) with AVIRIS-3 where a single plume was
observed multiple times during one overpass by adjusting the
flight path of the aircraft. Specifically, the aircraft ascended
while approaching the plume, maintained a level trajectory
while flying directly over it, and then descended after pass-
ing it. From the resulting three images, the plume velocity
was estimated by calculating optical flow vectors for consec-
utive CH4 images. While this method proved to significantly
improve the estimates of the effective wind speed compared
to reanalysis data and on-site wind lidar data, it requires a-
priori knowledge of the source location to plan the required
flight manoeuvres. One workaround would be to use real-
time in-flight retrieval of CH4 (e.g. Thompson et al., 2015)
in combination with pitching AVIRIS-4 using the already in-
stalled stabilisation platform. Alternatively, machine learning

based models could be used to estimate trace gas emissions
either directly from radiance data (e.g. Joyce et al., 2023;
Rouet-Leduc and Hulbert, 2024) or from plume images (e.g.
Jongaramrungruang et al., 2022; Bruno et al., 2024; Ouerghi
et al., 2025; Plewa et al., 2025). These approaches have re-
cently shown that it is possible to infer emission rates with-
out explicitly relying on external wind data. Their main ad-
vantages are that they can, just as the other approach outlined
above, bypass wind speed uncertainties and additionally, pro-
vide rapid and automated emission estimates at large scales.
While these models are very promising, they are still limited
in their representativeness due to a lack of wind speed in-
formation within a single image. Furthermore, they provide
limited interpretability and their uncertainty quantification is
still less mature than for the traditional approaches based on
the mass balance.

5 Conclusions

Detecting and quantifying the emissions from a large num-
ber of sources is essential for obtaining accurate inventories
of CH4 emissions. The current study shows that AVIRIS-
4 can be used for the improved detection of CH4 emis-
sions and subsequent quantification. The combination of
high spatial resolution with the unprecedentedly high SNR
of AVIRIS-4 decreases the detection limit of AVIRIS-4 to be-
low 5.5 kgCH4 h−1 under good weather conditions and down
to 1.5 kgCH4 h−1 under ideal conditions. This is below the
10–16 kgCH4 h−1 detection limits reported for its predeces-
sor AVIRIS-NG in previous studies. In practice, AVIRIS-
4 therefore extends the range of reliably detectable point
sources by approximately a factor of two to three relative to
AVIRIS-NG when flown at low altitudes, which effectively
enables the identification of all point sources listed in the E-
PRTR registry. As a result, previously undetected low inten-
sity and dispersed sources can be identified and accounted
for in emission budgets. We demonstrate that the high spa-
tial resolution of AVIRIS-4 enables its effective use under
challenging conditions and in heterogeneous environments,
which are frequently encountered in real-world applications.
Furthermore, we show how high-resolution AVIRIS-4 data
can be used for the estimation of the source height which
is critical information when estimating the effective wind
speed. As with earlier sensors and algorithms, emission es-
timation with AVIRIS-4 is affected by uncertainties in the
estimation of the effective wind speed, especially at the short
length and timescales presented in this study. Overall, this
study highlights that AVIRIS-4 represents a significant step
forward in airborne methane remote sensing, offering un-
precedented sensitivity to low-intensity sources under chal-
lenging conditions. At the same time, it underscores the im-
portance of advancing wind speed estimation techniques and
improving retrieval strategies to fully exploit the sensor’s ca-
pabilities. Future work should therefore focus on integrating
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AVIRIS-4 observations with dedicated wind measurements
and adapting the CH4 retrieval algorithm to the unprecedent-
edly high spatial resolution.

Appendix A: Additional figures and tables

Figure A1 reveals substantial systematic deviations, particu-
larly during daytime, likely caused by small- to mesoscale
atmospheric circulations influenced by local terrain. Such
features are not captured by the relatively coarse spatial
(0.25°× 0.25°) and temporal resolution of ERA5. Further-
more, ERA5 fails to resolve turbulent fluctuations in near-
surface winds that are evident in lidar observations.

Figure A2 shows that the uncertainty in the wind speed σU
contributes 99.4 % to the total uncertainty of the estimated
emissions σq for the CSF and 91.3 % for the IME. σU in turn
consists 90.4 % of natural wind speed variability σvar.

Figure A1. ERA5 U10 vs. on-site lidar U10. The blue shaded area represents the ERA5 ensemble spread while the red shaded area depicts
the min and max wind speed for 1 min intervals.
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Figure A2. Top row: Relative contribution of the individual uncertainty terms of the CSF and IME to the uncertainty of the estimated
emissionsQ. Bottom row: wind speed uncertainty contributions by natural variability σvar, effective wind speed σeff and instrument precision
σinst.

Figure A3. Pair plot of the wind speeds measured by the wind lidar at 10 and 20 m as well as from a meteorological station affixed to the
lidar, approximately 1 m off the ground.
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Table A1. Average and standard deviation of lidar 10 m wind speed during each release in local time [UTC+2]. Wind data has been resampled
to 1 min intervals. NA – not available.

Local time (UTC+2) 16 September 2024 17 September 2024 18 September 2024 19 September 2024 20 September 2024

09:00 NA 1.1± 0.5 1.7± 0.6 1.5± 0.3 1.8± 0.4
10:00 NA 1.4± 0.4 0.9± 0.3 0.9± 0.3 1.6± 0.4
11:00 1.7± 0.7 0.9± 0.3 0.9± 0.3 0.8± 0.3 0.8± 0.3
12:00 2.1± 0.8 1.1± 0.5 1.4± 0.5 1.1± 0.4 0.8± 0.4
13:00 2.5± 0.9 2.2± 0.8 1.5± 0.6 1.2± 0.6 1.0± 0.5
14:00 2.3± 0.9 1.5± 0.6 1.7± 0.7 2.0± 0.8 2.2± 0.6
15:00 3.2± 0.9 1.3± 0.5 2.0± 0.9 2.1± 1.0 1.8± 0.6
16:00 2.9± 0.8 1.2± 0.5 2.0± 0.8 2.4± 1.0 1.5± 0.6
17:00 NA NA 2.1± 0.9 3.1± 0.9 NA

Table A2. Average and standard deviation of lidar 10 m wind direction during each release in local time [UTC+2]. Wind data has been
resampled to 1 min intervals. NA – not available.

Local time (UTC+2) 16 September 2024 17 September 2024 18 September 2024 19 September 2024 20 September 2024

09:00 NA 15± 40 112± 26 153± 16 135± 78
10:00 NA 303± 32 143± 56 93± 44 131± 24
11:00 113± 35 292± 68 213± 52 122± 52 169± 61
12:00 139± 48 318± 63 246± 47 172± 45 222± 50
13:00 315± 38 321± 42 187± 45 236± 64 317± 55
14:00 319± 37 330± 44 130± 76 55± 39 301± 12
15:00 317± 24 258± 43 86± 34 57± 46 336± 44
16:00 329± 26 226± 39 66± 53 72± 33 114± 43
17:00 NA NA 53± 34 73± 28 NA
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Figure A4. Wind roses of lidar 10 m wind speed and direction during each release in local time [UTC+2].
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Figure A5. Uncertainty weighted average estimates for each release using Ueff derived in this paper. The number of observations n, emission
height h, plume length l and average wind speed u are indicated above each bar.
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