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Abstract. Microplastics (MPs) are environmental contami-
nants of global concern, and the atmosphere may play an im-
portant role in their environmental distribution. In this study,
we developed a tailored analytical chain – including sam-
ple collection, processing, and analysis based on optical mi-
croscopy and focal plane array µ-Fourier transform infrared
spectroscopy (FPA-µ-FTIR) – to quantify 20–215 µm MPs
(excluding tire wear particles) in wet and dry atmospheric
deposition samples. We present a novel sampling setup to
collect particulate wet deposition, which consists of an on-
site precipitation filtration device. Validation of the sampling
setup via spike-recovery experiments using surrogate stan-
dards resulted in average recoveries of approximately 90 %,
suggesting limited MP losses. Additionally, we developed
a custom software platform that combines the results from
optical microscopy and chemical imaging obtained through
FPA-µ-FTIR. Furthermore, an assessment of the total mea-
surement uncertainty was made by addressing each step
of the analytical chain individually. The resulting total ex-
panded uncertainty was approximately 90 % for determining
MP numbers in a single wet or dry deposition sample. The
conversion of MP numbers and associated size information
into MP mass was estimated to generate an additional sys-
tematic error of 50 %. Based on analyses of blanks, the criti-
cal level and the limit of detection, number-based thresholds
for minimizing false positives and false negatives, were 29
and 58 MPs per analyzed subsample, respectively. The ana-
lytical chain was applied to quantify the MP content in wet
and dry atmospheric deposition samples collected at a sub-
urban site in Switzerland. The principles and methodology

used in this study to calculate the uncertainties, recoveries
and limits of detection are transferrable to other analytical
methods intended for MP analysis. Such an assessment of
method-specific uncertainties is an important step towards
enhancing the comparability of MP (monitoring) data.

1 Introduction

Microplastic particles (MPs) are defined as solid plastic par-
ticles smaller than 5 mm and larger than 1 µm in size (Hart-
mann et al., 2019; Thompson et al., 2024). Composed pri-
marily of synthetic, non-biodegradable polymers, MPs are
highly persistent in the environment, with estimated half-
lives spanning from decades to centuries (Chamas et al.,
2020). Their occurrence across various environmental com-
partments and in remote regions has made them an environ-
mental contaminant of global concern (Allen et al., 2021;
Obbard, 2018; Thompson et al., 2024; Wang et al., 2022b).
Recent research has highlighted the importance of the at-
mosphere in facilitating the (long-range) transport of MPs
(Allen et al., 2019).

Studies on atmospheric MPs have relied on sampling
methods well established in classical atmospheric sciences,
including active and passive sampling techniques. Active air
sampling techniques have been used to determine airborne
MPs concentrations, with results reported as MP numbers
or total MP mass per unit volume of air. Some of these
studies targeted MPs in the PM10 or PM2.5 fractions that
are relevant for inhalation exposure (Costa-Gómez et al.,
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2023; Kirchsteiger et al., 2023; Peñalver et al., 2021; Wu et
al., 2025), whereas others collected total suspended particles
without well-characterized upper particle size limits (Gan et
al., 2025; Rindelaub et al., 2025; Wang et al., 2022a). Passive
sampling techniques, such as bulk deposition collectors, cap-
ture particles deposited in a given area over a given time pe-
riod. Although bulk deposition collectors are cost-effective,
corresponding results do not allow distinguishing between
wet and dry deposition. To do so, a separate collection of
MPs deposited during precipitation events and dry periods
is necessary. The results from such measurements allow for
a more detailed assessment of the impact of precipitation
events on MPs deposition. Deposition rates are usually re-
ported as MP numbers deposited per unit area and time or
as total MP mass deposited per unit area and time (Allen et
al., 2019; Brahney et al., 2020; Dris et al., 2016; Fan et al.,
2022; Klein and Fischer, 2019; Sun et al., 2022; Szewc et al.,
2021).

In addition to the different sampling methods, there is
a large variety of sample processing steps and analytical
techniques used by different laboratories. Analytical tech-
niques for MP analysis are typically categorized as ei-
ther particle-based methods or mass-based methods. Most
frequently applied particle-based methods include Fourier
transform infrared (FTIR) spectroscopy and Raman spec-
troscopy, whereas mass-based methods include pyrolysis-gas
chromatography-mass spectrometry (Py-GC-MS) and ther-
mal desorption-GC-MS (Caldwell et al., 2022; Ivleva, 2021).
Each analytical technique requires tailored sample process-
ing steps. As a result, there are diverse and non-standardized
analytical chains (i.e. sequences of sample collection, pro-
cessing and analysis steps), which hinders the comparison of
results of MP monitoring studies (Lu et al., 2021; Rochman
et al., 2017; Thompson et al., 2024). In the absence of a
standardized method, a comparison of results from different
methods would be facilitated if the respective measurement
precision or uncertainties were reported. However, only a few
studies have considered such method-specific analytical un-
certainties (Ciornii et al., 2025; Isobe et al., 2019; Morgado
et al., 2022; She et al., 2022; Yang et al., 2023), which raises
concerns about the reliability, interpretability and compara-
bility of reported MP concentrations.

The goals of this study were, therefore, (i) to develop an
analytical chain tailored for the quantification of MPs (ex-
cluding tire wear particles) in wet and dry atmospheric de-
position samples, (ii) to estimate the total measurement un-
certainty associated with the analytical chain by separately
addressing the uncertainties of each step, (iii) to calculate
MP number-based detection limits of our method and (iv)
to illustrate the strength of our approach by quantifying the
MP content in selected wet and dry atmospheric deposition
samples. It is noted that although the analytical chain pre-
sented here relates to atmospheric deposition samples, all
steps other than sample collection, such as sample process-
ing, analysis, quality assurance/quality control (QA/QC) and

uncertainty assessments, are transferrable to other MP anal-
ysis approaches and data reporting.

2 Chemical reagents and standards

The following chemicals were used in this study: ultra-
pure water (Arium Pro, Sartorius, Germany), ethanol (70 %,
Reuss-Chemie, Switzerland), glycerol (> 99%, Merck, Ger-
many), hydrogen peroxide (H2O2, 35 %, Carl Roth, Ger-
many), protocatechuic acid (> 97%, Merck, Germany), iron
sulphate (FeSO4 · 7 H2O, > 99%, Carl Roth, Germany),
sodium polytungstate (SPT, > 99.9%, Carl Roth, Germany).
Furthermore, we used differently colored polyethylene (PE)
spheres (diameter: 53–63 µm, color: red, blue, Cospheric,
USA), and polystyrene (PS) spheres (diameter: 104 µm,
color: blue, Spherotech, USA). These spherical MPs served
as surrogate standards for the purpose of QA/QC.

3 Description of an analytical chain for the
quantification of microplastics in wet and dry
atmospheric deposition

A schematic of the analytical chain – including sample col-
lection, processing, and analysis, as well as QA/QC steps –
developed in this study for the quantification of MPs in wet
and dry atmospheric deposition is shown in Fig. 1. Briefly,
prior to sample collection, a known number of red PE spheres
is added to the respective sampling vessels, i.e. glass dish for
dry deposition and aluminium filtration device for wet depo-
sition (step 1, Fig. 1; Sect. 3.5.1). Samples are then collected
in a passive sampler (step 2, Fig. 1; Sect. 3.1). After samples
are collected and brought to the laboratory, a known num-
ber of blue PE spheres is added to the respective dry and
wet sampling vessels (step 3, Fig. 1; Sect. 3.5.1). The sam-
ples undergo the following processing steps to isolate parti-
cles of interest (steps 4i–iii, Fig. 1; Sect. 3.2): size fraction-
ation by vacuum filtration through a series of stainless steel
meshes, oxidative digestion to destroy natural organic matter
and optionally, density separation to remove heavier parti-
cles like mineral dust. The extracted particles are then fil-
tered onto an aluminium oxide membrane (step 4iv, Fig. 1).
The aluminium oxide membrane is analysed by optical mi-
croscopy (step 5, Fig. 1; Sect. 3.3.1) and focal plane array
µ-FTIR spectroscopy (FPA-µ-FTIR) to identify MPs (step
6, Fig. 1; Sect. 3.3.2). Detailed descriptions of each step,
including data interpretation, are provided in the following
subsections.

3.1 Sampling of wet and dry atmospheric deposition

Wet and dry atmospheric deposition were collected with a
dedicated passive sampler (Nesa Srl, Italy) (Fig. 2a). Prior to
deploying the sampler in the field, the plastic tubing of the
sampler was replaced with copper tubing, and the capacitive
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Figure 1. A tailored analytical chain for the quantification of microplastics (MPs) in wet and dry atmospheric deposition samples. The
analytical chain includes sample collection (2), processing (4) and analysis by optical microscopy and focal plane array µ-Fourier transform
infrared spectroscopy (FPA-µ-FTIR) (5, 6), as well as quality assurance/quality control (QA/QC) (1, 3) using surrogate microplastic standards
(red and blue polyethylene spheres, ∅ 53–63 µm).

precipitation sensor was replaced by an optical precipitation
sensor (Meteorologische Messtechnik GmbH, Germany) to
enable faster switching between wet and dry deposition sam-
pling. A 2 L glass dish (Duran Crystallizing Dish, DWK Life
Sciences, Germany) was placed at the (closed) bottom of the
cylinder labelled “dry”, to collect gravitationally depositing
particles. The bottom end of the cylinder labelled “wet” has
a funnel and a copper tube, which guides the precipitation to
a custom-made filtration unit made of anodized aluminium
(Fig. 2b) installed at the end of the tube. The filtration de-
vice was fitted with a stainless-steel mesh (Haver & Boecker,
Germany) of diameter 47 mm and mesh size 15 µm to collect
particles > 15 µm present in rainwater or snow (that melted
over time). The mesh size was chosen as this is close to the
lower particle size detection limit of 20 µm for (automated)
FPA-µ-FTIR spectroscopy (Philipp et al., 2022), the analyt-
ical technique of choice in this study. The mesh size may
be adapted according to the desired measurement technique
and the corresponding particle-size detection limit. The out-
let of the filtration device was connected to a membrane

pump (FP 70, KNF, Germany) that turned on when the op-
tical rain sensor detected precipitation. This setup enabled
the on-site filtration of wet deposition samples directly on
stainless-steel meshes, which simplifies subsequent sample
processing by eliminating the need of (glass) bottles typi-
cally used to collect wet deposition samples. The filtration
device was warmed using a heating strip to prevent freezing
and facilitate the melting of snow.

For collecting dry deposition samples, we added 70–
100 mL of glycerol to cover the bottom of the glass dish and
placed it in the cylinder labelled “dry”. The added glycerol
served as a particle trap to prevent the remobilization of de-
posited material under windy conditions, as glycerol is vis-
cous and does not evaporate easily under typical field condi-
tions. Furthermore, after transporting the glass dish back to
the lab, deposited particles were easily resuspended by dilut-
ing the glycerol in ultrapure water.

The suitability of the setups for collecting wet and dry de-
position was assessed through spike-recovery tests using red
and/or blue PE spheres (see Supplement, Sect. S1 for full de-
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Figure 2. Dry (left cylinder, ∅ 23 cm) and wet (right cylinder, ∅ 23 cm) deposition passive sampler (a). Dry deposition samples were
collected in a glass dish (∅ 19 cm) containing a layer of glycerol placed in the cylinder. Wet deposition samples were collected using a
custom-made on-site aluminium filtration device (b). The filtration device was fitted with a stainless-steel mesh (∅ 47 mm, 15 µm mesh
size).

tails). The average recovery of red PE particles from the wet
deposition sampling setup (filtration device with 15 µm stain-
less steel mesh) was 98± 2 % under laboratory conditions
(n= 6) and 92± 4 % under field conditions (n= 3). Recov-
eries of red and blue spheres from the dry deposition sam-
pling setup (glass dish with glycerol) under field conditions
were 87± 7 % and 85± 6 % (n= 3), respectively. These re-
coveries were considered acceptable for the application of
the sampling setup for field monitoring.

To assess its appropriateness for field sampling and for
method development purposes, the sampler was installed
at a suburban location in Duebendorf, Switzerland [lat:
47°24′17.5′′; long: 8°36′30.5′′], which is one of Switzer-
land’s National Air Pollution Monitoring Network (NABEL)
stations. Wet and dry atmospheric deposition samples were
collected at four week intervals. During the transport of sam-
ples between the laboratory and the sampling site, the filtra-
tion device (containing the filtered wet deposition samples)
was sealed with a brass cap (Swagelok, USA), and the glass
dish (containing the dry deposition samples and the glycerol)
was tightly covered with a wooden lid equipped with a sili-
cone O-ring. The filtration device and glass dish were trans-
ported between the field and laboratory in cardboard boxes.

3.2 Sample processing steps

3.2.1 Size fractionation by filtration

After transporting the collected field samples back to the
laboratory, the glass dish used for dry deposition samples
was rinsed sequentially with pre-filtered ultrapure water and
ethanol (see Sect. 3.5.3), and the contents were vacuum fil-
tered through a cascade of stainless steel meshes of two mesh
sizes, 215 and 15 µm. An upper mesh size of 215 µm was
chosen (1) as it is expected to be large enough to include MPs
that can undergo long-range atmospheric transport, but small
enough to prevent larger objects, e.g. insects, leaves etc. from
overloading samples, and (2) due to challenges in measuring
larger particles in transmission mode using FPA-µ-FTIR.

In the case of wet deposition samples, the 15 µm mesh
on which particulate wet deposition was collected was first
removed from the aluminium filtration device using metal
tweezers and placed in a clean 250 mL glass beaker (Duran
Beaker, DWK Life Sciences, Germany). The inner surface
of the aluminium filtration device was rinsed sequentially
with pre-filtered ultrapure water and ethanol over the same
beaker. Placing the beaker in an ultrasonic bath for 10 s and
subsequently rinsing the steel mesh with water and ethanol,
the particulate wet deposition was detached from the steel
mesh and resuspended within the beaker. The contents of the
beaker were vacuum filtered through a cascade of stainless
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steel meshes of two mesh sizes, 215 and 15 µm, as done for
the dry deposition sample.

3.2.2 Oxidative digestion

After filtration, the 15 µm mesh was placed in a 250 mL glass
beaker and underwent oxidative digestion using Fenton’s re-
action based on a protocol similar to the one described by
Philipp et al. (2022). Briefly, 10 mL of hydrogen peroxide,
5 mL ultrapure water, 1 mL 2 mM protocatechuic acid and
1 mL 2 mM iron sulphate were added to the beaker. The
beaker was placed in an incubator (Incubator 1000, Unimax
1010, Heidolph, Germany) and allowed to shake at 100 rpm
at 40 °C for up to three days. In this step, iron(II) acts as
a catalyst to produce hydroxyl radicals from hydrogen per-
oxide, which can oxidize natural organic matter to produce
gaseous carbon dioxide and water. The resulting suspension
was finally filtered on the same 15 µm mesh.

3.2.3 Density separation

In samples in which dust was visible to the naked eye after
the oxidative digestion step, an additional density separation
step was carried out using an SPT solution of density 1.6–
1.8 g mL−1 (Philipp et al., 2022). For that purpose, particles
remaining on the 15 µm mesh were suspended in ∼ 40 mL
SPT solution via ultrasonication, transferred into 50 mL
polypropylene (PP) centrifugation tubes (TPP, Switzerland),
and centrifuged for 40 min at 2900 g-units. After centrifuga-
tion, the particles of interest were separated from denser par-
ticles, which formed a pellet at the bottom of the centrifuga-
tion tube, by carefully pouring the supernatant and filtering
it through the same 15 µm stainless steel mesh. The walls
of the centrifugation tube as well as filtration funnel were
rinsed using ultrapure water, ensuring that the pellet would
not be disturbed and resuspended. The mesh was then placed
in the same 250 mL beaker, and the particles on the mesh
were resuspended in ultrapure water via ultrasonication. The
contents of the beaker were filtered onto an aluminium oxide
membrane (∅ 25 mm, 0.2 µm pore size, Whatman Anodisc,
Cytiva, Germany), hereafter referred to as an Anodisc filter,
for subsequent analysis of MPs.

3.3 Analytical techniques for MP identification and
quantification

3.3.1 Optical microscopy

Optical images of the entire Anodisc filters, on which ex-
tracted particles were deposited, were recorded at a magni-
fication of either 50× (resolution of ∼ 2.1 µm per pixel) or
80× (resolution of ∼ 1.3 µm per pixel) using an automated
optical microscope (VHX-7000, Keyence, Japan). The opti-
cal images of the filters were used to obtain information on
the spatial distribution of the particles across the entire fil-

ter as well as on the size and on the color of each individual
particle.

3.3.2 Focal plane array µ-Fourier transform infrared
spectroscopy (FPA-µ-FTIR)

To identify MPs on the Anodisc filters, hyperspectral data
were recorded using an FPA-µ-FTIR system (64× 64 pixel
detector, Cary 670 FTIR instrument, Cary 610 IR micro-
scope, Agilent, USA). A 15× IR objective was used which
resulted in a resolution of 5.5 µm per pixel and an area
of 352 µm×352 µm for each FPA measurement. All analy-
ses were conducted in transmission mode and covered the
wavenumbers between 3900 and 1250 cm−1 at a spectral res-
olution of 8 cm−1. The measurements were integrated 24
times and the background was integrated 64 times. To ac-
count for the time-consuming FPA-µ-FTIR measurements, a
random window subsampling method was employed (Jacob
et al., 2023). Typically, 11 subsampling windows of 8×8 FPA
squares were randomly generated, corresponding to roughly
one-third of the filter’s analysable area. For each subsam-
pling window, the respective area was (manually) set in focus
by adjusting the height of the stage (z-coordinate).

The data from the FPA-µ-FTIR measurements were evalu-
ated using the Microplastics Finder software (Purency, Aus-
tria), which is based on a random forest decision algorithm
for MP classification (Hufnagl et al., 2019, 2022). Microplas-
tics Finder relies on two proprietary parameters for classifi-
cation – similarity and relevance – which range from 0 to
1. Similarity describes the quality of the fit between the ex-
perimental spectra and the reference spectra of polymers,
whereas relevance indicates how confident the model is with
the polymer classification. Thresholds for similarity and rel-
evance applied in this study (see Supplement, Table S2)
were determined on a polymer-specific basis based on ex-
pert judgement, which entailed a visual confirmation that the
experimental spectra, obtained through the analysis of real
atmospheric deposition samples, agreed well with the refer-
ence spectra of the respective polymers.

3.3.3 Custom software platform for combining results
of optical microscopy and FPA-µ-FTIR

For extracting particle related information from optical mi-
croscopy and to correlate images from optical microscopy
to chemical images derived from FPA-µ-FTIR measure-
ments, we developed a software environment called “YA-
MANAKA” in Python.

Key features of YAMANAKA are outlined in Fig. 3 and
include: (i) Referencing the coordinates of the optical mi-
croscopic image of the filter to the stage coordinates of
the FPA-µ-FTIR instrument, thus enabling correlative mi-
croscopy, e.g., overlay of optical and chemical (FPA-µ-
FTIR ) images, (ii) generating randomized subsampling win-
dows on Anodisc filters for automated FPA-µ-FTIR mea-
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Figure 3. Features of a custom software platform “YAMANAKA” for the quantification of microplastics (MPs) based on correlative optical
microscopy and FPA-µ-FTIR spectroscopy. (a) Generation of random subsampling windows across Anodisc filter (optical image shown) for
FPA-µ-FTIR spectroscopy; (b) Analysis of the total number of particles on an Anodisc filter based on its optical image (processed image
shown); (c) Analysis of the total number of surrogate standards on an Anodisc filter based on its optical image; (d) correlation of results
obtained through FPA-µ-FTIR spectroscopy (left panel) and optical microscopy (middle panel) for the calculation of surrogate recoveries as
well as determination of environmental MPs in a sample (right panel).

surements (Fig. 3a), (iii) detecting individual particles (in-
cluding non-MPs) on a filter based on optical microscopy im-
ages (Fig. 3b), and thereby enabling the quantification of sub-
sampling uncertainties, and (iv) identifying surrogate stan-
dards based on optical microscopy (Fig. 3c) and correlating
the results to chemical images (Fig. 3d). Based on the lat-
ter, recoveries of surrogates were calculated. These features
greatly facilitated and streamlined the sample analysis steps
of the analytical chain. Further details about YAMANAKA,
such as the models used for optical image analyses, are pro-
vided in the Supplement (Sect. S3).

3.4 Data interpretation

3.4.1 Microplastic particle size-to-mass estimation

Measurements by FPA-µ-FTIR provide 2D projections of
particles from which the length (L), width (W ) and area of
the particles are derived. These were calculated directly by
Microplastics Finder. The area of the particle’s 2D projection
was used to calculate the circle-equivalent diameter, defined
as the diameter of a circle with an area equivalent to the area
of the particle’s 2D projection. The circle-equivalent diame-
ter was used as the primary metric for reporting particle size.

The values ofL andW are defined as the dimensions of the
smallest rectangle enclosing individual projected particles.

However, there is no information on the third dimension, i.e.
the height or thickness (H ) of the particles, for which as-
sumptions have to be made.

To estimate the mass of MPs in a given sample, it is often
assumed that the particles are of ellipsoidal shape (Barchiesi
et al., 2023) and that they are deposited on the filter in their
most stable position. Thus, H is smaller than W and L. We
used in our study the particle volume calculation done by Si-
mon et al. (2018), which assumes that H/W is equal to the
median of the ratio of W and L of all particles in a given
sample analyzed by 2D imaging. The volume of an individ-
ual MP particle in the sample can then be expressed as:

VMP =
4π
3
·
W

2
·
L

2
·

(
W

L

)
median

·
W

2
(1)

The mass of individual MPs was calculated by multiplying
the ellipsoid-based volume of the MPs using Eq. (1) with
the density of their respective polymer type obtained from
selected literature (Bellasi et al., 2021; Caldwell et al., 2022;
Horton et al., 2017; Lusher et al., 2020; Huo et al., 2022). The
polymer densities applied in this study are available in the
Supplement (Table S2). The total mass of MPs in a sample
was then calculated by summing the masses of all individual
MPs identified in a subsample and extrapolating the mass of
the subsample to that of the full sample as outlined for MP
numbers in Sect. 4.5.
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3.4.2 Determination of atmospheric microplastic
deposition rates

Deposition rates, referring to the number or mass of MPs de-
posited per area and time, were calculated based on the area
of the opening of the wet and dry sampling setups (0.042 m2),
sampling duration (28 d) and the MP number counts or re-
spective MP masses in the corresponding samples. For mass
deposition rates, we assume that the determined distribution
of MP particles in the (sub)sample is representative of the
true mass distribution of MPs at the measurement location
during the measurement period.

3.5 Quality assurance and quality control steps

3.5.1 Positive controls

For field samples, a known number of red PE spheres of 53–
63 µm diameter were added to the respective sampling ves-
sels (glass dish for dry deposition and filtration device for wet
deposition) before sample collection. After sample collection
and after samples had returned to the laboratory, a known
number of blue PE spheres of 53–63 µm diameter were ad-
ditionally added. The procedure for counting and adding the
PE spheres to the samples is described in the Supplement
(Sect. S1). These added PE spheres served as surrogate stan-
dards and were used to quantify sample-specific recoveries,
referring to the amount of PE spheres recovered at the end
of our analytical chain divided by the amount of PE spheres
spiked, as described by Philipp et al. (2022). The use of red
and blue PE spheres allowed us to distinguish between losses
during sample collection and/or transport versus losses oc-
curring during sample treatment in the laboratory.

3.5.2 Negative controls

Negative controls (n= 12), i.e. field- or procedural blanks,
were used to quantify contamination levels, and to minimize
false positives and false negatives (see Sect. 5). Field- and
procedural blanks were handled exactly as the field samples
were, except for the exposure to the atmosphere. A procedu-
ral blank here refers to a clean stainless-steel mesh placed in
a clean 250 mL glass beaker. A wet deposition field blank
refers to an aluminium filtration device fitted with a steel
mesh taken to the sampling site. A dry deposition field blank
refers to a glass dish with glycerol taken to the sampling site.

3.5.3 Measures to limit contamination in the
laboratory

To minimize the contamination of samples with MPs from
the laboratory, all reagents were filtered through either
0.2 µm polycarbonate membranes (Whatman Nuclepore, Cy-
tiva, Germany) or 15 µm stainless steel meshes before use.
All glassware and metallic vessels were muffled for four
hours at 450 °C prior to use. A white, cotton lab coat was

worn during sample processing. Sampling vessels and other
glassware were covered with aluminium foil whenever stored
or not actively undergoing treatment.

The use of plastic-based lab equipment was avoided as
much as possible. However, for the vacuum filtration step in
the laboratory, we used a filtration funnel made of polysul-
fone. We therefore excluded polysulfone from our analyses
of field samples and corresponding blanks.

To monitor potential contamination by airborne MPs in
the lab, a clean Anodisc filter was placed in a glass petri
dish, which was put on the bench where sample processing
steps were carried out, and exposed to laboratory air for six
months. The filter was analyzed by FPA-µ-FTIR, which re-
vealed negligible contamination by airborne lab MPs even
after six months of exposure, corresponding to < 1 MP per
filter and day.

4 Assessment of total measurement uncertainty

Each step in the analytical chain described above involves
actions that can lead to measurement uncertainties, includ-
ing random and systematic errors. Measurement uncertain-
ties can be estimated in two main ways – directly by com-
paring the results of measurements of true replicates, or in-
directly by identifying individual components of uncertain-
ties, assessing their standard uncertainties and adding them
to obtain a total uncertainty (International Organization for
Standardization, 2007).

In this study, the indirect approach was used and the mea-
surement uncertainty of our analytical chain was assessed
following the approach of the Guide to the expression of
uncertainty in measurement (Joint Committee for Guides in
Metrology, 2008). In doing so, three so-called “levels” of un-
certainty were quantified. Level 1 (L1) uncertainties refer to
those that relate to the direct results of the sample analysis;
in this case, the quantification of the number of MPs on an
Anodisc filter.

To identify L1 uncertainties, first, the key steps of the ana-
lytical chain that contributed to the overall measurement un-
certainty on the number of MPs were identified. These were
(1) the losses of particles during sample collection, transport
and treatment, (2) repeatability of FPA-µ-FTIR measure-
ments, (3) impact of filter topography or differential MP sizes
on FPA-µ-FTIR measurement results, (4) (mis)classification
of MPs when assigning experimental FPA-µ-FTIR spectra,
and (5) subsampling uncertainty during FPA-µ-FTIR mea-
surements. The identified components of uncertainty aligned
well with those identified in an interlaboratory comparison
study by Ciornii et al. (2025).

Level 2 and level 3 uncertainties are those arising when
additional data extrapolations are made, such as converting
the number of MPs on an Anodisc filter to a wet or dry atmo-
spheric deposition rate at a given location (L2) or converting
particle numbers and their size and composition information
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to mass (L3). Table 1 gives an overview of the determined
individual components of uncertainty and their standard un-
certainties, which are discussed below.

4.1 Recovery of surrogate MPs (L1)

Microplastic particles, including surrogate standards, can ad-
here to container walls during collection, storage and pro-
cessing, leading to sample losses along the analytical chain.
These losses were estimated by assessing the recovery rates
of added surrogate standards, assuming that environmental
MPs experience similar losses as the surrogates during trans-
port and processing. Based on the analysis of 59 field sam-
ples using the YAMANAKA software, average recoveries
of red and blue PE surrogate standards were found to be
65± 19 % and 73± 20 %, respectively (Table S3). These re-
covery values and the variabilities are within the range re-
ported in the literature (e.g. Hagelskjær et al., 2023). The
variabilities likely reflect manual handling steps, such as rins-
ing and transferring particles between containers.

The sample-specific recovery of red PE spheres is then
used to correct the final MP number in the given sample.
However, the variability of recoveries across multiple sam-
ples adds uncertainty to such a correction. To illustrate its
contribution to the overall uncertainty in MP numbers, we
attribute 19 % (Table 1) based on the variability of the recov-
ery of red PE surrogates across 59 samples, as the relative
uncertainty associated with particles losses that occurred be-
tween sample collection and the end of sample processing
(steps 2 to 4 in Fig. 1).

4.2 Repeatability of FPA-µ-FTIR measurements (L1)

To assess the repeatability of FPA-µ-FTIR measurements,
we prepared an Anodisc filter on which red PE and blue
PS particles were deposited (see Supplement, Fig. S1). An
area corresponding to 6 % of the Anodisc’s analyzable area,
which contained 44 red PE spheres and 22 blue PS spheres,
and therefore a total of 66 MP spheres, was analyzed six
times consecutively using the same measurement parameters.
Figure 4a, b shows the results of six replicate measurements
of the same particles (n= 66) measured with the same pa-
rameters. The total number of red PE and blue PS spheres
measured across replicates was variable, and ranged between
59 and 65 particles, with a mean of 62 and a standard de-
viation of 2.8. This translated into a relative uncertainty of
∼ 5 % (Table 1), i.e. standard deviation ·100/mean, which
was included in the calculation of the total measurement un-
certainty.

4.3 Impact of filter topography or differential MP sizes
on FPA-µ-FTIR measurement results (L1)

As our FPA-µ-FTIR spectrometer does not feature an aut-
ofocus routine, every individual subsampling area is inves-
tigated at a fixed z-coordinate. Variations in the topography
of the Anodisc filter and/or MPs of different sizes (heights)
therefore result in an over- or under-focused IR beam with
respect to the MPs. To quantify the uncertainties related to
such changing focal heights (variable degree of defocus of
the IR beam), 219 MPs (76 red PE and 143 blue PS spheres,
same Anodisc filter as described in Sect. 4.2) were analyzed
by FPA-µ-FTIR at three different z-coordinates. The three
z-coordinates corresponded to (i) IR beam focused on the fil-
ter surface (red PE and blue PS spheres appeared blurry), (ii)
IR beam focused ∼ 50 µm above the filter surface (red PE
spheres in focus, blue PS spheres slightly blurred) and (iii)
IR beam focused ∼ 100 µm above the filter surface (red PE
spheres slightly blurred, blue PS spheres in focus). Polyethy-
lene and PS particles were identified based on FPA-µ-FTIR
data using Microplastics Finder in combination with YA-
MANAKA. The numbers of identified red PE and the blue
PS spheres were between 53 and 73 (red PE), and 167 and
208 (blue PS) across the measurements (Fig. 4c, d). The re-
sults indicated that when the z-coordinates were set such that
the IR beam focused 50 or 100 µm above the filter surface,
the particles were detected with a higher success rate than
when only the surface of the Anodisc was in focus.

The associated relative uncertainty was calculated using
the largest deviation in measured particle numbers from the
true particle number observed across the three focal height
test measurements. This was estimated as 24 % (Table 1),
which was included in the estimation of the overall uncer-
tainty of the analytical chain.

4.4 Assignment of experimental FPA-µ-FTIR spectra
(L1)

Experimental FPA-µ-FTIR spectra of MPs found in the en-
vironment can substantially differ from the FTIR spectra of
the respective (pure) polymers that are included in reference
databases. Exposure to UV light can for example lead to pho-
tooxidation of the MP surfaces, which is reflected in the ap-
pearance of a carbonyl peak (Rouillon et al., 2016; Yan et al.,
2023). Furthermore, MP particles are often polymer blends
composed of more than one polymer type. The assignment
of the experimental spectra to specific polymer types is there-
fore associated with uncertainties and misclassifications can-
not be excluded. A quantitative assessment of these uncer-
tainties and degree of misclassifications would require a pri-
ori knowledge of the MP types present on the filter substrate.
Such information, however, is not available when investigat-
ing environmental samples.

Based on expert judgement following a visual compari-
son in Microplastics Finder of measured spectra of particles
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Table 1. Individual components of uncertainty of our analytical chain for the quantification of microplastics in wet and dry atmospheric
deposition samples and their relative standard uncertainties. The individual standard uncertainties can be combined to calculate the total
measurement uncertainty of the analytical chain (see Sect. 4.8). MPs = microplastics; PE = polyethylene, FPA-µ-FTIR = focal plane array
µ-Fourier transform infrared spectroscopy; L1 = level 1 uncertainties related to the quantification of MP numbers on an Anodisc filter; L2
= level 2 uncertainty related to the extrapolation of MP deposition rates; L3 = level 3 uncertainty related to the conversion of MP number
and size information to MP mass.

Component of uncertainty Standard
uncertainty

Comments

Recovery of surrogate MPs
(L1)

19 % Variability of recoveries of red PE surrogates across n= 59
field samples; indicates losses of particles during sample
collection, transport and processing

Repeatability of FPA-µ-FTIR
measurements (L1)

5 % Based on six replicate analyses of MP standards; indicates
inherent uncertainties associated with the measurement device

Impact of filter
topography/differential MP
sizes on FPA-µ-FTIR results
(L1)

24 % Based on analyses of MP standards at three z-coordinates;
indicates uncertainties associated with uneven filter topography
or different particle sizes

Subsampling error associated
with FPA-µ-FTIR (L1)

26 % Indicates the uncertainty associated with the extrapolation of
MP counts when scaling up the FPA-µ-FTIR analysis of a
subsample to the entire sample. Note that the percentage
uncertainty is sample-specific. Here the mean subsampling
uncertainty across n= 59 field samples is given.

Assignment of experimental
spectra (L1)

17 % Based on a pooled analysis of total MP numbers from n= 59
samples after incrementally increasing and decreasing spectral
similarity thresholds in Microplastics Finder, and comparing
the range of MPs detected when these thresholds were applied

Sampling representativeness
(L2)

23 % Based on parallel measurements of total (water-insoluble)
aerosol mass deposition at similar sampling stations

Conversion of particle
dimensions to mass (L3)

50 % Systematic over- or under-estimation of (ellipsoid-equivalent)
particle volumes due to assumptions of (unmeasured) particle
thickness/height

identified as plastic with reference FTIR spectra of polymers,
we defined similarity thresholds on a polymer-specific ba-
sis above which the measured and reference spectra showed
good agreement (see Table S2). The thresholds were set such
that false positives and false negatives would be minimized.

To determine the uncertainty value arising from the se-
lection of these thresholds, we performed a sensitivity anal-
ysis to see how the MP numbers changed if the polymer-
specific similarity thresholds were increased or decreased by
a value of 0.05, which we considered as realistic variations.
The difference in the number of polymers detected with the
upper and lower thresholds was calculated for each polymer
type. A relative misclassification uncertainty was calculated
by first dividing the difference by two and then further di-
viding this by the detected number of the given polymer at
the selected threshold. Table S4 shows total and polymer-
specific MP counts at three similarity thresholds (i.e. selected
threshold, upper threshold and lower threshold) pooled from
the analyses of n= 59 environmental samples, together with

polymer-specific uncertainties. For reasons of consistency
and simplicity, and because not all uncertainties along the
analytical chain could be determined for all polymers, we
applied the uncertainty value of 17 % (Table 1) calculated
across all polymer types rather than polymer-specific uncer-
tainties when calculating the total measurement uncertainty.

4.5 Subsampling error (L1)

Vacuum filtration as we used in our study (step 4i in Fig. 1)
can result in uneven deposition patterns of the particles on
a filter (Schymanski et al., 2021). An extrapolation of the
MP numbers detected in the analyzed subsample to the total
number of particles present on the whole filter can therefore
lead to a bias in the total amount of MPs present in the in-
dividual samples, if the extrapolation is based simply on the
area fraction analyzed. We, therefore, applied a scaling ap-
proach based on the fraction of particle numbers analyzed as
proposed by Schwaferts et al. (2021), which is based on the
theory of random sampling.
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Figure 4. (a) Number of spherical red polyethylene (PE) particles
identified during replicate FPA-µ-FTIR measurements compared to
the true value of 44 particles observed on an optical microscopy im-
age, (b) number of spherical blue polystyrene (PS) particles iden-
tified during replicate FPA-µ-FTIR measurements (true value: 22
particles), (c) number of spherical red PE particles identified during
FPA-µ-FTIR measurements at different focal heights (true value:
76 particles), (d) number of spherical blue PS particles identified
during FPA-µ-FTIR measurements at different focal heights (true
value: 143 particles). In (c) and (d), “bottom”: IR beam focused
on the filter surface (red PE and blue PS spheres appeared blurry),
“middle”: IR beam focused∼ 50 µm above the filter surface (red PE
spheres in focus, blue PS spheres slightly blurred), “top”: IR beam
focused ∼ 100 µm above the filter surface (red PE spheres slightly
blurred, blue PS spheres in focus).

To apply this approach, the total number of particles on
the entire filter (N ) and the number of particles in the sub-
sampled windows (S) must be known. These were derived
from automated analyses of optical images using the YA-
MANAKA software. Next, the number of MPs in the sub-
sampled windows (SMP) was determined from FPA-µ-FTIR
measurements in combination with the analysis of spectra
by Microplastics Finder. The ratio of MPs to all particles in
the subsample rS = SMP/S was calculated and considered as
representative for the ratio of MPs to all particles deposited
on the entire filter. The number of MPs on the entire filter
(NMP) was estimated as:

NMP = rS ·N (2)

The determined rS can be regarded as an estimate of the true
ratio of the number of MPs and total number of particles on
the entire filter. The relative subsampling error erel can be
expressed as:

erel =
z1−α/2 · sd(rS)

rS
(3)

with sd(rS) the standard deviation of rS

sd(rS)=

√
rS · (1− rS)

S
·
N − S

N − 1
(4)

and z1−α/2 the (1−α/2)-quantile of the normal distribution,
where α denotes the confidence level. For the 95 % confi-
dence level as applied here, α = 0.05 and z1−α/2 = z0.975,
which has a value of 1.96. We refer to Schwaferts et al.
(2021) for a detailed discussion and derivation of Eqs. (2)
and (3).

The sample-specific subsampling uncertainties of n= 59
field samples were determined using this approach. On aver-
age, the subsampling uncertainty value was 26 % (raw data
in Table S3). This average value was used to illustrate the
typical contribution of subsampling uncertainty to the over-
all uncertainty budget of the analytical chain (Table 1). It
is noted that when reporting the total uncertainty of a given
sample’s measurement, the subsampling uncertainty specific
to that sample should be used, rather than the average sub-
sampling uncertainty of 26 % mentioned above.

The subsampling uncertainty calculations could indeed
also be used prior to FPA-µ-FTIR analysis to optimize mea-
surement time or limit subsampling uncertainty. By estimat-
ing the expected proportion of MPs in a sample based on
gained experience from prior measurements and calculating
the total number of particles in an individual sample via opti-
cal image analysis, one could proactively determine the num-
ber and size of random subsampling windows that need to be
analyzed to achieve a subsampling uncertainty below the de-
sired threshold.

4.6 Representativeness of sample collection (L2)

The heterogeneous wet and dry deposition rates of particulate
matter, including MPs, at the local scale additionally con-
tribute to uncertainty when quantifying MPs in atmospheric
dry and wet deposition samples. Understanding to what ex-
tent the MP content in a wet or dry deposition sample col-
lected in a 0.042 m2 catchment area is representative of a
larger area, e.g. a measurement station, would require mul-
tiple parallel measurements at corresponding scales. Due to
the limited number of atmospheric dry and wet deposition
samplers available for this study, such measurements were
not conducted. Moreover, given the other sources of uncer-
tainties in the quantification of MPs with our analytical chain
discussed above (total uncertainty> 80%), it would be chal-
lenging to attribute any observed variability in MP numbers
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across replicates as being caused by unrepresentative sam-
pling.

Therefore, to get an estimate on the intra-site sampling
uncertainty, we relied on available data of duplicate mea-
surements of total water-insoluble aerosol deposition taken
at four-week intervals from January 2024 to May 2025 at
seven stations of the Swiss National Air Pollution Monitor-
ing Network that operate similarly to the one in Duebendorf,
where we collected our wet and dry deposition samples. The
relative standard deviation of parallel bulk aerosol deposition
measurements (rsdaerosol) was calculated as

rsdaerosol =

√∑n
i (xi,1−xi,2)

2

2·n
1

2·n
∑2
i (xi,1+ xi,2)

(5)

where xi,1 and xi,2 are the results of parallel bulk aerosol
deposition measurements and n is the number of measure-
ments that have been pooled from the seven sampling loca-
tions (n= 139). We determined rsdaerosol = 0.23. Based on
these data, and assuming that (i) the uncertainty of the bulk
aerosol deposition measurements is negligible and (ii) wet
and dry MP deposition patterns are similar to that of bulk
aerosol deposition, the rsdaerosol of 23 % can be seen as an
estimate for the dependence of the number of measured MPs
in the choice of the exact sampling point.

4.7 Estimation of mass (L3)

The L3 uncertainty components are related to the conversion
of particle dimensions and numbers to overall MP mass on
an Anodisc filter. For such a conversion, the uncertainties as-
sociated with the measurement of particle dimensions, esti-
mation of particle volumes and the selection of polymer den-
sities play a role.

4.7.1 Uncertainty in particle size measurements by
FPA-µ-FTIR

The uncertainty associated with the determination of particle
dimensions (e.g. length and width) by FPA-µ-FTIR was cal-
culated by comparing the diameters of surrogate standards
measured by FPA-µ-FTIR versus those measured based on
optical microscopy. Based on diameter measurements of n=
4452 surrogate standards across 59 atmospheric deposition
samples, we identified a systematic underestimation of 9 %
by FPA-µ-FTIR (details in Sect. S5). This was taken into ac-
count when propagating the error associated with converting
particle size to volume and eventually to mass.

4.7.2 Uncertainty in ellipsoid volume estimations

The magnitude of the error to be expected when applying
the Simon model (Eq. 1) for particle volume estimations was
investigated by Contreras et al. (2024), where a set of 203
plastic particles with sizes of a few millimeters was collected

in marine environments and where the size of all three di-
mensions as well as the mass of the individual particles were
measured experimentally. The data set consists of plastic par-
ticles of different shapes that could be classified into three
classes according to their elongation (1D) (e.g. fibers), flat-
ness (2D) (e.g. films) and uniformity in all three dimensions
(3D) (e.g. fragments). Note that the mean size of these parti-
cles is larger than five millimeters (length of longest dimen-
sion), so these particles cannot be regarded as MPs. Gener-
ation of a similar test data set for MP particles is, however,
hardly possible.

Contreras et al. (2024) showed that the accuracy of the
Simon model strongly depends on the particle shape. For 3D
particles, the ellipsoidal shape is a reasonable approximation,
and the mass of 3D particles is only slightly overestimated.
However, the mass of elongated 1D particles is systemati-
cally underestimated, on average by about 44 %. The largest
errors occur with the thin 2D particles, for which the calcu-
lated thickness H is too large. For a distribution of particle
shapes as in the test data set from Contreras et al. (2024)
(1D: 44.3 %, 2D: 24.1 %, 3D: 31.5 %), the error in the cal-
culated particle mass is dominated by the overestimation of
the mass of the thin 2D particles and about 70 % in total.
However, these uncertainty estimations assume that the mea-
sured dimensions have no error. Applying the 9 % underesti-
mation of particle dimension described in Sect. 4.7.1. to the
data set kindly provided to us by the authors of Contreras et
al. (2024), the resulting uncertainty in the particle mass cal-
culation using the Simon model was found to range between
an underestimation of 53 % for 1D particles and an overesti-
mation of 142 % for 2D particles. For the distribution of par-
ticle shapes as in the test data set of Contreras et al. (2024),
the percentage error of MP mass calculation reduces to 29 %
(see Sect. S5). Given that the distribution of particle shapes
in atmospheric deposition samples is unknown, a conserva-
tive but realistic systematic error range of± 50 % is consid-
ered when calculating the MP volume based on the measured
number and size information.

4.7.3 Selection of polymer densities

For several polymers, there is a range of densities reported in
the literature (see Table S5). To estimate the uncertainties as-
sociated with using a specific density when there is a range of
possible densities, we selected seven polymers that were fre-
quently detected in our samples – namely PE, polyethylene
terephthalate (PET), PP, polyurethane, polymethyl methacry-
late, PS and polyvinyl chloride – and listed their respective
minimum and maximum density values as reported in se-
lected literature (Bellasi et al., 2021; Caldwell et al., 2022;
Horton et al., 2017; Lusher et al., 2020; Huo et al., 2022).
The density value we chose when converting the volume to
mass was the mean of the minimum and maximum densities
reported across those studies. Considering the deviations of
the mean from the respective minimum and maximum densi-
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ties, we calculated polymer-specific percentage uncertainties
associated with the use of the mean densities of each polymer
when converting volume to mass. The range of uncertainties
in the densities of the selected polymers was 2 %–15 %. The
most common polymers – PE, PET and PP – had an uncer-
tainty of 5 %. Compared to the large uncertainties of ∼ 50 %
associated with volume estimations, we assumed the selec-
tion of polymer densities to play a minor role in the total
uncertainty of mass estimations and we did not consider it in
the overall mass uncertainty calculation.

4.8 Total uncertainty budget

The individual standard uncertainties (ui , i = 1, . . . , m) of
the individual components of L1 uncertainty presented above
are assumed to be independent and random. Therefore, the
combined standard uncertainty (u) can be expressed as:

u2
=

∑m

i=1
u2
i (6)

The expanded measurement uncertainty U of the considered
components of uncertainty is then calculated asU = k·uwith
the coverage factor k. We applied a coverage factor of k = 2
so that U corresponds to a confidence level of 95 %.

The uncertainty that is related to the representativeness of
the sample collection (L2), which impacts the results when
converting the number of MPs in a sample to an atmospheric
deposition rate at a given location, can also be assumed to
be a random uncertainty. Thus, the expanded measurement
uncertainty of atmospheric deposition rates can be calculated
from the propagation of L1 and L2 uncertainty components,
i.e. including the representativeness of the sample collection
as an additional component of uncertainty in Eq. (6).

The L3 uncertainty components related to the conversion
of MP particle numbers into mass most likely results in a sys-
tematic error, of which the estimation of particle volume has
the highest contribution. This is caused by the fact that the
actual shape of the particles deviates from the assumed ellip-
soidal shape, and the magnitude of over- or under-estimation
depends on the actual morphologies of MPs found in sam-
ples. Therefore, they cannot be treated as random uncertain-
ties, and the expected systematic error in the conversion from
the number to the mass of MPs is considered separately and
added to the random measurement uncertainties caused by
L1 and L2.

Based on the individual components of L1 uncertainties
described in Sect. 4.1 to 4.5, the extended total uncertainty
when quantifying MP numbers on an Anodisc filter was de-
termined to be approximately 88 %. Note that the contribu-
tion of the subsampling error is sample-specific and there-
fore the uncertainty of MP numbers in a sample may vary
between samples.

Although such a quantitative estimation of total measure-
ment uncertainty for MPs is, to our knowledge, not available
in the literature, we could compare the contributions of un-
certainty from individual steps in our analytical chain to sim-

ilar steps identified in the interlaboratory comparison study
by Ciornii et al. (2025). For example, the contribution of
sample losses during filtration was described as being “high”
and estimated at 10 %–30 % (Ciornii et al., 2025). This cor-
responds well with the average sample losses of 35 % that
we observed in our study (based on an average recovery of
red PE surrogates of 65 %). It is noted that our losses may
be higher because they capture more than only the losses
occurring during the filtration step. Similarly, the contribu-
tion of “extrapolation of results” was described by Ciornii et
al. (2025) as having a “middle-high” contribution. This type
of uncertainty corresponds to what we describe as subsam-
pling uncertainty, which on average was 26 % and rather high
relative to other components of uncertainty in our analytical
chain. “Instrumental settings”, which included the threshold
to positively identify spectra by comparison against spectral
databases as well as optical focus, were considered to have a
“middle-high” contribution (Ciornii et al., 2025). In our case,
the assignment of experimental spectra was associated with
an uncertainty of 17 % and the influence of focus related to
filter topography or differential MP sizes was 24 %, which
also translated to middle-high contributions to the total mea-
surement uncertainty relative to other components in our an-
alytical chain. The quantitative assessment of uncertainties
carried out in our study therefore agreed well with the quali-
tative assessment of uncertainties by Ciornii et al. (2025).

The L2 uncertainty component that is related to the repre-
sentativeness of the sample collection was determined based
on co-located measurements of total atmospheric particle de-
position and found to be 23 %. Combining this additional L2
uncertainty component with the L1 uncertainties resulted in
a total expanded uncertainty of approximately 99 % for the
estimation of MP number deposition rates of individual wet
and dry atmospheric deposition samples. Note that L1 and L2
uncertainties can be regarded as random uncertainties and the
uncertainty for their mean values derived from analyses of a
number n of atmospheric deposition samples decreases with
the size of n; more specifically, it decreases as a function of
the inverse of the square root of n.

For the overall uncertainty of the mass of microplastics in
a sample and the associated mass deposition rate, we also ap-
ply the relative overall uncertainty of the number of MPs to
the calculated total MP mass in the sample. This approach
implicitly assumes that the measured size distribution and
type of MPs in the collected sample is representative of the
true mass distribution of MPs during that sampling time at
the sampling location. This results in an uncertainty interval
for the calculated total MP mass due to the L1 and L2 uncer-
tainty components. The systematic error caused by convert-
ing the MP number into MP mass is then taken into account
by assuming a systematic overestimation of the upper limit
and a systematic underestimation of the lower limit of the
uncertainty interval by 50 % in each case. This leads to the
range in which the true MP mass in a sample could lie, given
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all the uncertainties associated with the measurements, cal-
culations, and assumptions.

5 Critical level (LC) and limit of detection (LOD) of
the analytical chain

The LC and LOD for the quantification of MP numbers spe-
cific to our analytical chain were determined following an
approach outlined by Currie (1968). Based on the number of
MPs detected in individual blank samples, first the LC was
defined as

LC = µB + tn−1,1−β · σB (7)

where µB is the mean number of MPs in n blank samples and
tn−1,1−β the 1−β quantile of the t distribution given n−1 de-
grees of freedom. The LC is the threshold value above which
a signal can be interpreted as “detected” and above which
the risk that a measurement of MP is interpreted as an ac-
tual signal even though no MP is present (false positives) is
minimized. We set the confidence level β = 0.05, and there-
fore t11,0.95 = 1.796. Note that the one-sided quantile applies
here.

Next, the LOD of the method was considered. While the
LOD is often defined as 3σB or µB+3σB , with σB being the
standard deviation of blank samples (Dawson et al., 2023;
Keith et al., 1983), this definition does not take the variance
of a real test sample into account and therefore only accounts
for Type I errors (false positives) but not for Type II errors
(false negatives) (Holstein et al., 2015). We therefore defined
LOD as the threshold value above which both false positives
and false negatives are minimized, the latter is the risk that an
actual signal is incorrectly not recognized as such. The LOD
is given as

LOD= LC +ULOD (8)

with ULOD being the expanded measurement uncertainty of
the measurement of MPs at a signal that is in the range of the
LOD (expressed as absolute MP number per sample). With
the selection of the confidence level β and the coverage fac-
tor used for the calculation of the combined measurement
uncertainty (Sect. 4.8), the LOD has a confidence level of
95 %.

Measurements above LC are a reliable proof of the exis-
tence of MPs in the sample and used as the primary reporting
limit. Measurements between LC and LOD should, however,
be interpreted carefully, because the increased risk for a Type
II error might result in an underestimation of the true MP
number in a sample. A more detailed discussion of the cho-
sen approach for the specification of detection limits can be
found in Sect. S6.

To determine specific LC and LOD values for our method,
blank samples (n= 12) comprising four procedural, four wet
deposition, and four dry deposition field blanks, processed

identically to environmental samples, were analyzed by FPA-
µ-FTIR as described in Sect. 3.3.2. The most frequently ob-
served polymers were PP, PET, and PE, with average counts
of 5, 2, and 2 particles per blank, respectively (see Fig. S4).
Other polymers appeared at much lower frequencies.

With an average blank value of 13± 9 MPs in the analyzed
subsamples, an LC of 29 MPs and LOD of 58 MPs was de-
termined. The average blank value, scaled up for the entire
sample, is within the range of blank values reported in the
literature and would be considered a medium-level contam-
ination (i.e. average of 10–50 MPs in blanks) according to
Lao and Wong (2023). As the polymer-specific particle num-
bers were low, to ensure a conservative, yet robust, correction
across all samples, we integrated the blank values across all
polymer types when evaluating the method’s LC and LOD.

6 Quantitative assessment of MP content in wet and
dry atmospheric deposition samples

The above-described analytical chain was used to quantify
MPs in monthly samples of wet and dry atmospheric depo-
sition collected during a one-year monitoring campaign at
multiple sites. Here, we report specifically on the results for
a pair of wet and dry deposition samples collected between
18 July and 15 August 2024, at a suburban site in Dueben-
dorf, Switzerland, to illustrate the strength of our approach.
A description of the results of the entire monitoring cam-
paign would go beyond the scope of this study and will be
presented elsewhere.

The wet and dry deposition samples were treated accord-
ing to the steps described in Sect. 3, except for density sepa-
ration as it was deemed unnecessary. Following sample pro-
cessing and deposition of extracted particles onto Anodisc
filters, the recoveries of surrogate standards for the wet de-
position sample were 80 % for both red and blue surrogates,
whereas for the dry deposition sample, the recoveries were
81 % for red and 86 % for blue surrogates. The total number
of particles (including non-MPs) on the filters were 48 546
and 59 638, respectively for the wet and dry deposition sam-
ples. Random subsampling windows contained 15 588 and
18 856 particles (including non-MPs) each and were mea-
sured via FPA-µ-FTIR. In the subsampled fractions of the
Anodisc filters, 165 (wet deposition) and 109 (dry deposi-
tion) MPs were detected. As shown in Fig. 5, the most fre-
quently detected polymer types in the dry deposition sample
were PP, PET and ethylene-vinyl acetate, whereas the wet
deposition sample was largely dominated by PE.

The associated subsampling errors for these two samples
were 13 % and 16 %, respectively. Both number counts were
well above the method’s critical level LC of 29 MPs and
LOD of 58 MPs. After blank-correcting by subtracting the
mean blank value of 13 MPs, the likely numbers of MPs
in the analyzed subsamples were determined to be 152 MPs
(wet deposition) and 96 MPs (dry deposition). The detected

https://doi.org/10.5194/amt-19-371-2026 Atmos. Meas. Tech., 19, 371–388, 2026



384 N. M. Ashta et al.: Atmospheric deposition of microplastics

Figure 5. Number of microplastics by polymer type and size detected in the analyzed subsamples of dry deposition (left) and wet deposition
(right) samples collected from Duebendorf, Switzerland between 18 July and 15 August 2025. ABS = acrylonitrile butadiene styrene, EVAc
= ethylene vinyl acetate, EVOH = ethylene vinyl alcohol, PBT = polybutylene terephthalate, PE = polyethylene, PET = polyethylene
terephthalate, PMMA = polymethyl methacrylate, PP = polypropylene, PS = polystyrene, PU = polyurethane, PVC = polyvinyl chloride.
Circle-equivalent diameter refers to the diameter of a circle with an area equivalent to the measured area of the particle’s 2D projection.

number counts of MPs in the subsamples were scaled to the
entire filter area using Eq. (2) and multiplied with factors
1.25 and 1.23 to account for the incomplete recoveries of the
red PE surrogate standards. To calculate the total uncertainty
in the number count of MPs in the entire wet and dry de-
position sample, the sample-specific subsampling error and
the remaining L1 uncertainty components listed in Table 1
were propagated to calculate the expanded measurement un-
certainty, resulting in 592 (±446) and 375 (±291) MPs for
the wet and the dry deposition sample, respectively.

Based on a catchment area of 0.042 m2 and sampling du-
ration of 28 d and considering the additional L2 uncertainty
related to sampling representativeness, the number-based
wet and dry deposition rates were respectively calculated
as 528± 466 and 335± 302 MPs m−2 d−1. Although the ex-
panded uncertainties of the proposed analytical chain respec-
tively amount to 88 % and 90 % for the wet and dry deposi-
tion rate of MPs in these examples, which may seem large, it
is essential to have such realistic estimates of measurement
uncertainties to correctly interpret measurements and reli-
ably compare results from different (monitoring) studies. In
addition, it should be noted that the measurement uncertainty
becomes smaller when mean deposition rates are determined
from a larger number of samples collected at a given site.
Although the interpretation of results from the single sam-
ples presented above must be done with care, the deposition
rates we calculated for the suburban site in Duebendorf are
within the range of values reported in the literature for MPs
with particle sizes greater than 20 µm such as in the French
Pyrenees (365 with a standard deviation of 69 MPs m−2 d−1)
(Allen et al., 2019), protected areas in Western USA (range
of 48–435 MPs m−2 d−1) (Brahney et al., 2020), Hamburg,
Germany (range of 136.5–512 MPs m−2 d−1) (Klein and Fis-

cher, 2019), London, England (771 with a standard deviation
of 167 MPs m−2 d−1) (Wright et al., 2020), Lanzhou, China
(353.83 with a standard deviation of 159.17 MPs m−2 d−1)
(Liu et al., 2022), and South Africa (212 with a standard
deviation of 31 MPs m−2 d−1) (Mutshekwa et al., 2025). It
is noted that the studies cited here did not formally calcu-
late measurement uncertainties but rather reported the val-
ues (e.g. mean or range of MPs) across a range of samples
collected at different times or locations. The studies did not
include surrogate standards either.

Finally, MP mass deposition rates of 16 and 7 µg m−2 d−1

for wet and dry deposition, respectively, were estimated.
Based on considerations of L1 and L2 random uncertainties
as well as L3 systematic errors, we find corresponding plau-
sible values for the above mass deposition rates to range from
0.94–45.2 and 0.34–20.0 µg m−2 d−1 for wet and dry deposi-
tion, respectively. Few studies have reported mass-based at-
mospheric deposition rates. Compared to studies by Fan et al.
(2022) and Rindelaub et al. (2025), who reported MP mass
deposition rates of 334± 81 µg m−2 d−1 (Fan et al., 2022)
and 89± 9 µg m−2 d−1 (Rindelaub et al., 2025) at different
sites in New Zealand, our results were lower by a factor of 2
or up to 3 orders of magnitude. However, it should be noted
that the studies relied on Py-GC-MS measurements for MP
classification rather than the µ-FTIR-based approach used in
this study and may have targeted different size classes. More-
over, the ranges reported by Fan et al. (2022) and Rindelaub
et al. (2025) were not based on measurement uncertainties
but rather captured the variability of MP mass deposition
rates over multiple sampling sites. Therefore, the observed
difference in mass deposition rates may reflect methodologi-
cal and analytical uncertainties rather than geographical vari-
ability. Overall, this underscores the need for future studies
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to consider method-specific uncertainties and provide reli-
able ranges of possible values.

7 Conclusion and outlook

We developed an analytical chain for the collection, process-
ing and analysis of MPs in wet and dry atmospheric depo-
sition samples and quantified the uncertainties of each of
the steps. Key developments in this work included a tai-
lored setup for the separate collection of wet and dry at-
mospheric deposition samples, a custom software platform
that enabled correlative optical microscopy and FPA-µ-FTIR
spectroscopy, and a detailed assessment of the total uncer-
tainty budget associated with the entire analytical pipeline.
Although the usefulness of the tailored sampling setup is re-
stricted to researchers seeking to collect atmospheric depo-
sition samples, the software features for analyzing colored
surrogate standards and total particle numbers, as well as the
considerations used for the determination of the total mea-
surement uncertainty may be applied generally across MP
(monitoring) studies regardless of the matrix being investi-
gated.

The total measurement uncertainty of the number of MPs
in a single atmospheric deposition sample with our proposed
analytical chain was determined to be around 90 %, which
was deemed reasonable considering the various steps in-
volved, including several manual steps during sample pro-
cessing and analysis. The step-by-step assessment of uncer-
tainties identified steps where improvements could be made
to reduce uncertainties. In our analytical chain, the most
dominant components of uncertainty for the determination
of MP numbers were the subsampling error (26 %), influence
of topography/different MP sizes on FPA-µ-FTIR measure-
ment results (24 %) and the variable and incomplete recovery
of surrogate standards (19 %).

Reducing the subsampling error would require a larger
fraction of the filter or ideally the entire filter area to be an-
alyzed, which requires long measurement times in the order
of several days. The use of higher throughput instruments,
preferably with auto-focus capabilities, could substantially
reduce measurements uncertainties in the form of both sub-
sampling uncertainties as well as those caused by a loss of
focus due to uneven filter topography or differential particle
sizes on the filter. The incomplete and variable recovery of
surrogates is likely an indicator of slight differences in sam-
ple handling, which is largely unavoidable due to the many
manual steps involved in the analytical chain, such as the
rinsing of vessels and the transfer of samples from one vessel
to another. Such particle losses could be reduced if a closed
sample processing device where all sample processing steps
could be conducted were available.

Additionally, a major source of systematic error when es-
timating MP mass was the conversion of 2D particle size in-
formation from the FPA-µ-FTIR measurements to 3D ellip-
soid volumes in the absence of information regarding parti-
cle height. Developments in the automated detection of spe-
cific particle morphologies such as fibers and the calculation
of corresponding cylindrical volumes rather than ellipsoidal
volumes could minimize this error.

While many of the uncertainty values are specific to our
analytical chain and its operators, the fundamental concepts
of our uncertainty assessment are transferable to any analyt-
ical chain regardless of matrix. It is important that a careful
assessment of all uncertainties is done prior to their applica-
tion in monitoring MPs.
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