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Abstract. Lidar-derived particle backscatter coefficient is
commonly used to assess air pollution levels; however, hy-
groscopic growth can amplify particle backscatter and hin-
der accurate assessment of particle concentration. This study
investigated the hygroscopic growth characteristics of urban
anthropogenic aerosols in Wuhan (30.5° N, 114.4° E), central
China, using ground-based 532 nm polarization lidar obser-
vations during 2010–2024. A total of 192 cases were iden-
tified based on the following criteria: (1) the presence of a
layer thicker than 300 m; (2) a lidar-derived backscatter co-
efficient that increases monotonically with simultaneously-
measured relative humidity (RH) from radiosonde, and (3)
limited variations in key meteorological parameters, includ-
ing water vapor mixing ratio, potential temperature, and
wind speed and direction. Using the Hänel parameteriza-
tion method, the hygroscopic growth parameter γ was es-
timated as 0.62 (± 0.24), corresponding to a backscatter co-
efficient enhancement factor of 2.36 at 85 % RH. No evident
differences in γ were observed between the boundary layer
(0.63± 0.25) and free troposphere (0.60± 0.24). The annual
mean γ increased from 0.49 in 2015 to 0.63 in 2017 and sta-
bilized within 0.6–0.7 after 2018, closely following the evo-
lution of the annual mean NO2-to-SO2 concentration ratio.
The minimum seasonal average γ occurred in winter (0.56),
while the maximum was observed in autumn (0.64). These
results provide a comprehensive characterization of the long-
term and seasonal hygroscopicity of pollutants over central
China, enhancing our understanding of the influence of hy-
groscopic growth on lidar-observed particle backscatter coef-

ficients and offering valuable insights for urban air pollution
control strategies.

1 Introduction

Atmospheric aerosols impact global climate directly by scat-
tering or absorbing solar radiation (Liu and Matsui, 2021),
and indirectly via aerosol-cloud interactions by acting as
cloud condensation nuclei (CCN) or ice-nucleating particles
(INP) (Rosenfeld et al., 2014; He et al., 2021, 2022). In the
atmosphere, soluble aerosols can take up water vapor un-
der high relative humidity (RH) conditions, causing them to
grow in size through so-called hygroscopic growth (Hänel,
1976). This process alters aerosols’ optical and microphys-
ical properties, thus changing their impact on climate. Ji et
al. (2025) found that the aerosol infrared radiation effect in
the Arctic is 1.45 W m−2 under dry atmospheric conditions,
which increases 7-fold when RH is between 60 %–80 % and
even up to 20 times when RH exceeds 80 %. In addition,
aerosol hygroscopicity plays a vital role in activating cloud
droplets, with activation efficiencies of 0 %–34 % for low hy-
groscopicity particles and 57 %–83 % for high hygroscopic-
ity particles, respectively (Väisänen et al., 2016). Further-
more, in urban environments, when aerosols take up water
vapor and grow, the atmospheric visibility could significantly
reduce, leading to severe haze events (Liu et al., 2013; Chen
et al., 2019). Aerosol hygroscopicity also affects the deposi-
tion efficiency in the respiratory tract and influences human
health (Sorooshian et al., 2012).
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The hygroscopic enhancement factor f (RH) quantita-
tively describes aerosol hygroscopicity, defined as the ratio
of the particle scatter or backscatter coefficient (Granados-
Muñoz et al., 2015; Zhang et al., 2024) or particle diameter
(Zieger et al., 2013) at a given RH to the corresponding val-
ues under dry conditions (typically ∼ 40 %) (Hänel, 1976;
Titos et al., 2016). To determine this factor, in-situ measure-
ments commonly use humidified nephelometers (Zieger et
al., 2010, 2013) and humidified tandem differential mobility
analyzer (HTDMA) (Deshmukh et al., 2025; Yu et al., 2025).
These instruments first dry the collected aerosol samples and
then re-humidify them to a target RH, enabling comparisons
of scatter coefficients or particle diameters under dry versus
humid conditions. This approach provides general insights
into the hygroscopicity of different aerosol types. However,
this process can be affected by particle sampling losses (Titos
et al., 2016) and by variations in aerosol size or scatter co-
efficient (e.g., deliquescent aerosols, Zieger et al., 2016). In
addition, accurately determining hygroscopic enhancement
factors at RH above 90 % remains challenging for both neph-
elometers and HTDMA (Lv et al., 2017).

In addition to in situ measurements, lidar also has the ca-
pability to measure aerosol hygroscopicity, a technique first
demonstrated by Ferrare et al. (1998). From then on, lidar-
based experiments have been widely used to derive the hy-
groscopic particle backscatter coefficient enhancement factor
fβ(RH), (Granados-Muñoz et al., 2015; Haarig et al., 2017,
2025; Sicard et al., 2022; Miri et al., 2024; Veselovskii et
al., 2025; Zhang et al., 2025), defined as the ratio of the
particle backscatter coefficient at a given RH to that under
dry conditions (e.g., 40 %). Unlike in situ measurements,
lidar observations provide hight-resolved particle backscat-
ter coefficient with high vertical resolution, and thus, enable
the estimation of aerosol hygroscopicity under real atmo-
spheric environments and within the entire atmospheric col-
umn, instead of in controlled laboratory settings. However,
lidar-based studies of aerosol hygroscopic growth require si-
multaneous profiles of meteorological parameters as input
(Granados-Muñoz et al., 2015); as a result, most existing li-
dar studies have focused on individual case analyses rather
than long-term monitoring. At our observatory in Wuhan
(30.5° N, 114.4° E), a megacity in central China, continuous
(24/7 and regardless of bad weather conditions), long-term
(except for the time of hardware maintenance) lidar observa-
tions have been conducted since 2010 (Yin et al., 2021; He
et al., 2024; Jing et al., 2024, 2025). This dataset, spanning
more than a decade, provides a solid basis for a statistical
analysis of the hygroscopicity growth characteristic of urban
anthropogenic aerosols.

Due to the rapid urbanization and industrialization in
China since the early 21st century, high aerosol loading and
complex pollutants have attracted increasing attention (Xie
et al., 2016). In response, the Chinese government has im-
plemented a series of emission control policies. Our earlier
study showed that annual variations in the anthropogenic

aerosol optical depth (AOD) at 532 nm over Wuhan during
the past 15 years can be divided into two stages: a rapid de-
cline with a rate of−0.068 yr−1 from 2010 to 2017, followed
by a fluctuation period from 2018 to 2024 (Jing et al., 2025).
These findings highlight that emission control policies were
highly effective in the first stage, whereas their impact weak-
ened in the second stage. We also identified an imbalance
in SO2 and NO2 emission reductions, with the NO2-to-SO2
concentration ratio rising sharply from 1.8 in 2014 to 5.3 in
2017 (Jing et al., 2025). This shift likely promoted the for-
mation of secondary aerosols (e.g., particulate nitrate) and
partly explained the cessation of the declining trend in the
second stage (Liu et al., 2018). Therefore, it is essential to
investigate how aerosol hygroscopicity responds to changes
in pollutant components, for interpreting the long-term AOD
patterns.

In this study, we statistically analyze the hygroscopic
growth characteristics of anthropogenic aerosols from 2010
to 2024 using ground-based polarization lidar observations
over Wuhan, together with associated radiosonde and reanal-
ysis meteorological data. This paper is organized as follows.
Section 2 briefly describes the adopted instruments and data
processing methods. Section 3 presents a case study illus-
trating the identification of aerosol hygroscopic growth cases
and the estimation of the hygroscopic growth parameter. Sec-
tion 4 offers a statistical analysis of the hygroscopic growth
parameter γ for anthropogenic aerosols over Wuhan. The last
section summarizes the main findings and presents the con-
clusions.

2 Instrumentation and data

2.1 Study area

Wuhan (30.5° N, 114.4° E) is a major industrial city in central
China with a population of over 13 million, producing abun-
dant urban anthropogenic emissions from sources such as ve-
hicle exhaust and industrial fossil fuel combustion (Zhang et
al., 2015a). The city lies in the subtropical monsoon region
and experiences four distinctive seasons. In winter, the north-
east monsoon brings cold, relatively dry weather (Wu and
Wang, 2002). Frequent temperature inversions in the lower
troposphere suppress vertical convection and often lead to
severe air pollution (Zhang et al., 2021). In summer, the
southeast and southwest monsoons cause high temperatures
and heavy rainfall, creating favorable conditions for pollu-
tion dispersion (Ding et al., 2015). Spring and autumn are
the transition phases between these two regimes. Addition-
ally, regional air mass transport also plays a significant role
in aerosol loading over Wuhan. In spring and winter, mineral
dust from deserts in north and northwest China as well as
in Mongolia is frequently long-range transported to Wuhan
(He and Yi, 2015; Jing et al., 2024). In summer and au-
tumn, agricultural biomass burning in neighboring provinces
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sometimes contributes to the poor air quality and severe haze
events over Wuhan (Zhang et al., 2014; Jing et al., 2025).

Among the major aerosol types in Wuhan, mineral dust is
generally considered hydrophobic. In contrast, all the non-
dust components are classified as anthropogenic aerosols,
which exhibit varying degrees of hygroscopicity due to the
inclusion of water-soluble inorganic ions and organic mat-
ter. Our lidar site is located in central Wuhan, an area sur-
rounded by an extensive water network (the Yangtze River
and numerous urban lakes; Fig. 1), which creates a humid
atmospheric environment that facilitates aerosol water up-
take. Therefore, particle hygroscopic growth may contribute
to the lidar-derived particle backscatter coefficients. In this
study, all lidar-derived aerosol optical properties discussed,
including the particle backscatter coefficient, extinction coef-
ficient, and AOD, are attributed exclusively to anthropogenic
aerosols.

2.2 Polarization lidar and data processing

Height-resolved aerosol optical properties over Wuhan have
been observed using a 532 nm ground-based polarization li-
dar since October 2010 (Yin et al., 2021; He et al., 2024; Jing
et al., 2024, 2025). Detailed specifications of the lidar sys-
tem were provided in Kong and Yi (2015). In 2017, a trans-
parent waterproof window was installed on top of the lidar
container, enabling uninterrupted lidar operations regardless
of rainy or snowy weather conditions (Yi et al., 2021). Raw
data are stored with a time resolution of 1 min and a verti-
cal resolution of 30 m. The lowermost height with complete
field-of-view (FOV) observation is 0.3 km. Specifications of
the polarization lidar system are listed in Table 1.

The volume depolarization ratio δv (VDR) is defined as the
ratio of perpendicular- to parallel-oriented signals, multiplied
by the gain ratio between the two polarized channels, and
is used to derive the particle depolarization ratio δp (PDR)
(Freudenthaler et al., 2009). The particle backscatter coeffi-
cient βp and particle extinction coefficient αp are retrieved
using the Fernald method (Fernald, 1984), assuming a fixed
lidar ratio of 50 sr (Wang et al., 2016). In addition, the non-
dust particle backscatter coefficient βnd is calculated using
the polarization-lidar photometer networking (POLIPHON)
method as follows (Tesche et al., 2009; Mamouri and Ans-
mann, 2014):

βnd (z)= βp (z)−βp (z)

[
δp (z)− δnd

]
(1+ δd)

(δd− δnd)
[
1+ δp (z)

] (1)

where z represents the altitude; δd = 0.31 and δnd = 0.05 are
the particle depolarization ratios for dust and non-dust, re-
spectively. For each profile, we set βnd (z)= βp (z) if δp (z) <

δnd and βnd (z)= 0 if δp (z) > δd (Mamouri and Ansmann,
2014). As noted in the previous section, the non-dust com-
ponent primarily corresponds to anthropogenic aerosols over
Wuhan; thus, βnd and αnd represent the optical properties of

anthropogenic aerosols. Table 2 lists the uncertainties in the
lidar-derived aerosol optical property parameters.

Cloud-free profiles with signal accumulation times of 30–
80 min are obtained using a cloud screening algorithm (Yin et
al., 2021). For each cloud-free profile, the particle backscat-
ter coefficient (i.e., total, dust, and non-dust components),
and both volume and particle depolarization ratios are re-
trieved. We utilize the same methodology as Yin et al. (2021)
and extend the aerosol profiles to September 2024 (Jing et
al., 2025). A total of 24 910 cloud-free profiles are identi-
fied from 2139 observational days between October 2010 and
September 2024. To avoid potential contamination from se-
vere haze or fog, cloud-free profiles containing one or more
vertical bins with extinction coefficients exceeding 1.5 km−1

are excluded. In total, 676 (2.7 % of all) cloud-free profiles
are removed from the analysis. This mature dataset is used to
further investigate hygroscopic growth.

2.3 HYSPLIT model

The Hybrid Single Particle Lagrangian Integrated Trajectory
(HYSPLIT), developed by the National Oceanic and Atmo-
spheric Administration Air Resources Laboratory (NOAA
ARL), was used to simulate both forward and backward air
mass trajectories (HYSPLIT, 2025). These simulations are
driven by meteorological field data from the GDAS archive
(Kanamitsu, 1989) and require initialization parameters such
as start time, altitude, and geographical location (Draxler and
Rolph, 2003; Stein et al., 2015). In this study, three backward
trajectories arriving at Wuhan at different altitudes were sim-
ulated to trace the potential origins of aerosols at those alti-
tudes.

2.4 Radiosonde data

Two radiosonde launches were conducted daily at 08:00 local
time (LT) and 20:00 LT, at 30.6° N, 114.1° E, approximately
24 km away from our lidar site. The sondes measured verti-
cal profiles of temperature, pressure, relative humidity (RH),
water vapor mixing ratio, and wind speed/direction from the
surface to up to ∼ 30 km altitude. The measurement error for
temperature is less than 1 °C, and the uncertainty in RH is
below 5 % when the temperature exceeds −10 °C (Nash et
al., 2011). The potential temperature θ is defined as (Bolton,
1980):

θ = T ·

(
P0

P

)0.286

(2)

where T is the temperature (K), P is the atmospheric pres-
sure (hPa), and P0 is the reference pressure of 1000 hPa. In
this study, radiosonde data were interpolated to match the
corresponding altitude bins of the lidar profiles using a cu-
bic spline interpolation method. This interpolation ensured
consistent alignment between radiosonde and lidar mea-
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Figure 1. Location of Wuhan and our lidar site (Map data © 2025 Google).

Table 1. Specifications of the polarization lidar system at Wuhan University (He et al., 2024).

Transmitter Receiver

Laser Continuum Inlite II-20 Telescope 300 mm Cassegrain
Wavelength 532 nm Diameter 300 mm
Energy/pulse ∼ 120 mJ Field of view 1 mrad
Repetition rate 20 Hz PMT Hamamatsu 5783P
Pulse duration 6 ns Digitizer Licel TR40-160

Table 2. Estimated uncertainties of the lidar-derived optical proper-
ties at 532 nm (Jing et al., 2025).

Parameter Uncertainty

Volume depolarization ratio δv < 5%
Particle depolarization ratio δp 5 %–10 %
Particle backscatter coefficient βp < 10%
Particle extinction coefficient αp < 20%
Non-dust backscatter coefficient βnd 10 %–30 %
Non-dust extinction coefficient αnd 30 %–40 %

surements, facilitating our analysis of aerosol hygroscopic
growth.

2.5 ERA5 reanalysis data

The European Center for Medium-Range Weather Forecasts
(ECMWF) reanalysis version 5 (ERA5) (Copernicus Climate
Change Service, 2025) provides global atmospheric reanaly-
sis data from January 1940 onward. ERA5 combines model
outputs with worldwide observations into a globally con-
sistent and physically constrained dataset (Hersbach et al.,
2020). It offers hourly estimates of atmospheric, land, and
oceanic climate variables. The boundary layer height (BLH)
is the depth of the boundary layer (BL) directly affected by
dynamic, thermal, and other surface interactions (Peng et al.,
2023). Above the BL is the free troposphere (FT), where
aerosols primarily originate from non-local sources (Bour-

geois et al., 2018). In this study, ERA5 hourly BLH data
(Hersbach et al., 2023) for Wuhan were used to distinguish
respective hygroscopic growth cases occurring in the BL and
FT. Considering the presence of an aerosol residual layer,
the diurnal maximum BLH from ERA5 was adopted as the
boundary between the BL and FT.

3 Methodology of estimating the hygroscopic growth
parameter

Veselovskii et al. (2009) established a methodology to quan-
titatively estimate aerosol hygroscopicity from lidar mea-
surements under conditions of increasing particle backscat-
ter coefficient with altitude and a constant water vapor mix-
ing ratio, which has been applied and refined in subsequent
studies (Granados-Muñoz et al., 2015; Navas-Guzmán et al.,
2019; Sicard et al., 2022). In this study, dust and non-dust
(anthropogenic) aerosols are assumed to be externally mixed,
with their optical properties considered relatively indepen-
dent. Accordingly, the variation of the anthropogenic particle
backscatter coefficient βnd with RH can be analyzed sepa-
rately. The particle backscatter coefficient enhancement fac-
tor fβ (RH) is defined as the ratio of particle backscatter co-
efficient at a given RH to that under dry conditions (Hänel,
1976):

fβ (RH)=
βnd (RH)
βnd

(
RHdry

) (3)
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Figure 2. Time-height contour plots of (a) range-corrected signal (RCS) and (b) volume depolarization ratio (VDR) measured by polarization
lidar over Wuhan at 18:00–20:00 local time (LT) on 19 July 2019. Profiles of (c) backscatter coefficient and relative humidity (RH), (d)
particle depolarization ratio (PDR), (e) water vapor mixing ratio (WVMR) and potential temperature, (f) wind speed and direction. The lidar-
derived profiles in (c) and (d) are obtained during 18:30–19:00 LT. All the meteorological parameter profiles are obtained from the radiosonde
launched at around 20:00 LT on the same day. The grey-shaded areas around the lidar profiles in (c) and (d) denote the uncertainty of lidar-
derived optical properties.

Lidar-derived cloud-free profiles within 2 h before or after
the radiosonde launches (around 08:00 or 20:00 LT) were se-
lected (Sicard et al., 2022). To estimate fβ (RH), we identi-
fied the aerosol layers exceeding 300 m thickness and ful-
filling the criterion that βnd increase monotonically with
simultaneously measured radiosonde RH within the layer.
The analysis was limited to altitudes below 7 km. The min-
imum βnd within an identified aerosol layer was required
to exceed 0.5 Mm−1 sr−1 to reduce interference from low
signal-to-noise ratios. In addition, the maximum variations
in radiosonde meteorological parameters within the identi-
fied aerosol layer were constrained as follows to ensure anal-
ysis under well-mixed atmospheric conditions (Sicard et al.,
2022):

1. 1 water vapor mixing ratio (WVMR) < 2 g kg−1;

2. 1 potential temperature (θ ) < 2 K;

3. 1 wind speed (WS) < 2 m s−1;

4. 1 wind direction (WD) < 15°.

These criteria ensure that the observed increase in βnd was
solely due to particle growth through hygroscopic water up-
take, rather than additional emissions or changes in aerosol
composition (Granados-Muñoz et al., 2015).

Figure 2 shows an aerosol hygroscopic growth case
observed at 18:30–19:00 LT on 19 July 2019. As alti-
tude increased from 0.4 to 1.2 km, βnd rose from 2.4 to
3.6 Mm−1 sr−1, while RH increased from 54 % to 82 %. In
contrast, the PDR gradually decreased from 0.07 to 0.04,
indicating that the particles became more spherical due
to water uptake (Miri et al., 2024). The maximum varia-
tions in WVMR, θ , WS, and WD were 0.64 g kg−1, 0.28 K,

Figure 3. HYSPLIT three two-day backward trajectories starting
from Wuhan (30.5° N, 114.4° E) at 19:00 LT on 19 July 2019 at al-
titudes of 0.5, 0.8, and 1.2 km. The solid dots represent 00:00 LT for
each day.

1.06 m s−1, and 9.49°, respectively, reflecting a homoge-
neous aerosol layer under well-mixed atmospheric condi-
tions. Three two-day backward trajectories, initialized at
19:00 LT on 19 July at altitudes of 0.5, 0.8, and 1.2 km, all
traced back to the coastal region northeast of Wuhan (Fig. 3),
suggesting a similar aerosol source across these altitudes.
This case is therefore considered representative of the hy-
groscopic growth behavior of anthropogenic aerosols over
Wuhan.
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For the selected case, the particle backscatter coefficient
enhancement factors fβ (RH) for each altitude bin were cal-
culated using Eq. (3), with a minimum RH (RHmin) of 54 %,
as shown by the black dots in Fig. 4. To obtain fβ (RH) for
any RH > RHmin, parameterization of the relationship be-
tween fβ (RH) and RH is required. Titos et al. (2016) eval-
uated 11 parameterization fitting methods based on neph-
elometer measurements and found that, for ambient aerosols,
the differences among fitting curves were small, with most
showing good agreement with measurements. Among them,
the Hänel parameterization has been proved to be feasi-
ble and is now widely applied to estimate aerosol hygro-
scopic growth using lidar and radiosonde data (Veselovskii
et al., 2009; Granados-Muñoz et al., 2015; Pérez-Ramirez et
al., 2021; Sicard et al., 2022). To ensure comparability, we
adopted the Hänel parameterization to fit fβ-Hänel(RH) start-
ing from RHmin as given by Hänel (1976):

fβ-Hänel (RH)=

(
1− RH

100

1− RHmin
100

)−γ
(4)

where γ is the hygroscopic growth parameter that character-
izes aerosol hygroscopicity. In this case, the fitting yielded an
R-square of 0.99, indicating excellent agreement with the ob-
servations (black line in Fig. 4). The derived γ value of 0.48
suggests that the particles are moderately hygroscopic, typi-
cal of urban pollution (Bedoya-Velázquez et al., 2018). This
result further indicates that although the trajectory traced
back to coastal regions, marine aerosols (e.g., sea salt) have
been largely removed by sedimentation, leaving an extremely
limited influence of sea salt in Wuhan.

Although γ is independent of RHmin, fβ-Hänel(RH) de-
pends on the specific RHmin chosen in each case. To ensure
comparability and consistency, we define fref(RH) as the par-
ticle backscatter coefficient enhancement factor referenced to
a unified RH value (RHref). Both fref(RH) and its parameter-
ized fitting fref-Hänel(RH) can be extrapolated from fβ(RH)
and fβ-Hänel(RH) using the following equations (Sicard et al.,
2022):

fref (RH)= fβ (RH)

(
1− RHmin

100

1− RHref
100

)−γ
(5)

fref-Hänel (RH)=

(
1− RH

100

1− RHref
100

)−γ

= fβ-Hänel (RH)

(
1− RHmin

100

1− RHref
100

)−γ
(6)

where RHref = 40 %. For RH< 40%, fref(RH) was set to 1.
This assumption may underestimate fref(RH) by up to 25 %
for highly hygroscopic aerosols (γ > 1), and by 10 %–15 %
for moderately hygroscopic aerosols (γ < 0.5) (Titos et al.,
2016). Moreover, the uncertainty in the particle backscat-
ter coefficient enhancement factor can reach 38 % at RH

Figure 4. The particle backscatter coefficient enhancement factors
between RH values of 54 % and 82 % (black dots) and the corre-
sponding Hänel fit (black line). The extrapolated particle backscat-
ter coefficient enhancement factors and Hänel fit referenced to
RHref = 40% are also shown (blue dots and dashed line).

> 95% (Adam et al., 2012). The resulting fref-Hänel(RH) is
shown in Fig. 4 by the blue dashed curve. At RH = 85%,
fref-Hänel(RH) is 1.93, indicating that the backscatter coeffi-
cient increases by a factor of 1.93 compared to dry conditions
as RH increases from 40 % to 85 %.

In this study, only anthropogenic aerosols were consid-
ered, while the influence of natural aerosols, such as mineral
dust or sea salt, was excluded. Hygroscopic growth parame-
ters for mineral dust are known to be very low, with γ values
of 0.20 at 355 nm and 0.12 at 1064 nm (Navas-Guzmán et al.,
2019). For marine aerosols, γ has been estimated as 1.49 for
pure sea salt (Haarig et al., 2017) and 1.1 for a mixture of sul-
fate and sea salt (Granados-Muñoz et al., 2015). As Wuhan
is an inland city far from the ocean, the impact of marine
aerosols is minimal; therefore, cases with γ < 0.2 or γ > 1.1
were treated as outliers and excluded from the analysis.

4 Results

4.1 Statistics of hygroscopic growth parameter

Figure 5 presents the probability density distribution of the
particle backscatter coefficient enhancement factor fref(RH)
for 192 identified cases from lidar observations during 2010–
2024. The average R2 value of 0.91 indicates a good fit
with the Hänel parameterization for most cases. The aver-
age γ value was 0.62± 0.24, represented by the blue curve
and shaded area, corresponding to fref-Hänel(85%) of 2.36,
with a range of 1.69–3.29 when including the standard devi-
ation. The γ value in the BL (0.63± 0.25) was comparable to
that in the FT (0.60± 0.24). The mean RH in the lower and
middle troposphere was 71.2± 12.5 % (68.4± 12.0 % in the
BL and 75.3± 12.1 % in the FT), corresponding to the high-

Atmos. Meas. Tech., 19, 389–403, 2026 https://doi.org/10.5194/amt-19-389-2026



D. Jing et al.: Hygroscopic growth characteristics of anthropogenic aerosols 395

Figure 5. Probability density distribution of the particle backscatter coefficient enhancement factors (RHref = 40%) of (a) 192 selected
hygroscopic growth cases describing the aerosol conditions in the low and middle troposphere (0–7 km); (b) 106 cases in the boundary
layer; (c) 86 cases in the free troposphere during 2010–2024. The Hänel fits (blue solid line) were calculated with the mean hygroscopic
growth parameter γ = 0.62. The shaded area represents the standard deviation of the Hänel fit line. (d) Bar plot of the annual mean γ during
2010–2024. The case number for each year is presented at the top of each bar. The red dashed line represents the evolution of the annual
mean NO2-to-SO2 concentration ratio during 2014–2024 (Jing et al., 2025).

est probability density area (in yellow). This suggests that
most hygroscopic growth of urban anthropogenic aerosols in
Wuhan occurred under high RH conditions of around 60 %–
80 %. The particle backscatter coefficient enhancement fac-
tor fref-Hänel(85%) exhibited a broad distribution from 1.32
to 4.53, corresponding to γ values of 0.20–1.09, likely re-
flecting the diverse hygroscopicity properties of urban parti-
cles in Wuhan. Rapid urbanization over the past decades has
exposed the city to numerous pollutants, including various
water-soluble inorganic ions, elemental carbon, and organic
matter, etc. (Zhang et al., 2015a). Both chemical composition
and particle size significantly influence aerosol hygroscopic-
ity characteristics (Zieger et al., 2010, 2013), resulting in a
variety of hygroscopic aerosol types.

In the previous section, dust and anthropogenic aerosols
are assumed to be externally mixed. However, the inter-
nally mixing conditions are unavoidable for East Asian dust
events (Xu et al., 2020), which may lead to misclassifica-
tion of “coated dust” as “anthropogenic” by the POLIPHON
method. To assess the potential influence of internally mixed
dust, a sensitivity analysis was conducted. Given that the δp
during dust events over Wuhan varies between 0.1 and 0.3
(Jing et al., 2024), the threshold value for pure dust δd (in
Eq. 1) was reduced to lower values of 0.10–0.25, thereby
making the extraction of “anthropogenic aerosols” more con-
servative. As a result, the γ increases only slightly by 0.02
(0.62 to 0.64). Moreover, approximately 54.7 % cases in this

study show no dust interference, and for the remaining cases
the dust optical depth (DOD) does not exceed 0.05. It can be
concluded that the error introduced by potential misclassifi-
cation is limited.

The annual mean γ from 2010–2024 is presented in
Fig. 5d, with the number of identified cases for each year in-
dicated at the top of each bar. The annual mean γ generally
ranged from 0.5 to 0.7. Notably, the annual mean γ sharply
increased from 0.49 in 2015 to 0.63 in 2017, and stabilized
high between 0.6 and 0.7 after 2018. The evolution of the an-
nual mean NO2-to-SO2 concentration ratio in Wuhan from
2014 to 2024 is also presented in figure 5d (red dashed bro-
ken line), which closely follows the trend of γ . The NO2-to-
SO2 concentration ratio increased sharply from 1.8 in 2014 to
5.3 in 2017, and varied between 4 and 6 during 2018–2024,
suggesting that the disparity in emission control measures for
these two gaseous precursors, i.e., favoring more particulate
nitrate formation, likely contributes to the increase in γ after
2017. Chen et al. (2019) reported that a higher nitrate fraction
in an aerosol mixture enhances aerosol hygroscopicity un-
der the same RH conditions. In addition, our previous study
showed that the anthropogenic AOD at 532 nm over Wuhan
declined during 2010–2017 due to strict emissions control
policies, but this downward trend ceased from 2018 onwards
(Jing et al., 2025). The relatively higher γ values post-2017
result in a larger backscatter coefficient enhancement factor,
indicating that AOD values after 2017 contain more contri-
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butions from hygroscopic growth effect, which partly offsets
the effectiveness of emission control policies.

Figure 6 presents the seasonal variation of the particle
backscatter coefficient enhancement factors, derived from
the 192 identified cases. Seasons are defined as spring
(March–April–May), summer (June–July–August), autumn
(September–October–November), and winter (December–
January–February). Most cases occurred in summer (80) and
autumn (81), as dust is commonly present in spring and win-
ter (Jing et al., 2024) and was therefore excluded from the
analysis. There is no significant seasonal difference in γ ,
with a maximum of 0.64 in autumn and a minimum of 0.56 in
winter, corresponding to fref-Hänel(85%) values of 2.43 and
2.17, respectively, i.e., a difference of approximately 11 %.
Urban pollutants emitted from human activities do not vary
substantially with seasons, except for nitrate, which shows
the highest fraction in PM2.5 during winter (Zhang et al.,
2015a).

To explain why the fraction of nitrate in Wuhan is the high-
est in winter, while γ is the lowest (0.56), the mean layer
heights (MLH) for cases in the four seasons are presented in
Fig. 6. The MLH in winter is 2.5 km, higher than the 1.4–
1.5 km observed in other seasons, likely due to frequent dust
intrusions below 1.5 km in winter (Jing et al., 2024). How-
ever, anthropogenic aerosols in winter are usually concen-
trated below 1.5 km (Jing et al., 2025). Therefore, the winter
analyzed here represents hygroscopic growth effect at higher
altitudes in the free troposphere, where the atmosphere is rel-
atively clean, rather than surface-level pollution. Chen et al.
(2019) reported an extremely low γ of 0.1 under clean con-
ditions, revealing that the hygroscopicity of clean air is lower
than that of polluted air. Similarly, Sicard et al. (2022) found
only slight seasonal variation in γ values in Barcelona, with
a maximum of 0.58 in summer and a minimum of 0.53 in au-
tumn. They interpreted this season-independent γ as recircu-
lation layers of pollutants above the BL, caused by strong in-
solation, weak synoptic forcing, sea breezes, and mountain-
induced winds (Pérez et al., 2004).

Table 3 summarizes hygroscopic growth parameters from
this study in Wuhan and from the existing literature measured
elsewhere. A variety of aerosol mixtures was examined, with
γ values varying from 0.24 for mixtures dominated by hy-
drophobic particles, such as dust, to 1.1 for highly hygro-
scopic aerosols (e.g., marine aerosols and inorganic salts). To
analyze the causes of the lidar-observed aerosol hygroscopic
growth, many studies indirectly inferred the aerosol compo-
sition through backward trajectories and optical properties
(e.g., Ångström exponent, complex refractive index, depo-
larization ratio) (Veselovskii et al., 2009; Granados-Muñoz
et al., 2015; Sicard et al., 2022; Haarig et al., 2025). Miri et
al. (2024) introduced fluorescence capacity, which was not
affected by water vapor, to distinguish aerosol components
(with biological aerosols exhibiting higher fluorescence, and
pure dust or urban aerosols demonstrating lower fluores-
cence). Ground-based aerosol chemical speciation monitor

(ACSM) was also used to explain the hygroscopic growth
behavior of aerosols through ground-level chemical com-
position analysis (Lv et al., 2017; Bedoya-Velásquez et al.,
2018; Chen et al., 2019; Wu et al., 2020). Pérez-Ramirez
et al. (2021) provided the first airborne in situ measure-
ments for chemical composition determination, confirming
that sulfates and water-soluble organic carbon are the main
contributors to the aerosol hygroscopic growth observed by
lidar, with γ values of 0.38–0.39. In addition, Laly et al.
(2025) combined lidar-based hygroscopic growth estimation
with chemical species data from the Copernicus atmospheric
monitoring service (CAMS), showing that γ was signifi-
cantly higher in regional pollution cases affected by sea salt
(0.87 and 1.52) compared with those without sea salt influ-
ence (0.30–0.75).

The γ value from this study (0.62± 0.24) is slightly higher
than that reported by Sicard et al. (2022) (0.55± 0.23), who
conducted a statistical analysis of hygroscopic growth pa-
rameters for local/regional pollutants and sea salt aerosols
without dust interference in Barcelona, Spain. Several fac-
tors may explain this difference. First, although sea salt was
not considered in the present study, we speculate that the di-
verse inorganic salts emitted from extensive human activities
in Wuhan probably contributed significantly to the observed
strong hygroscopicity. Liu et al. (2014) found that the frac-
tions of ammonium, nitrates, and sulfate are strongly corre-
lated with aerosol hygroscopicity. Similarly, He et al. (2016)
identified a region of high hygroscopic growth in Eastern
China, corresponding to large-scale industrial districts with
substantial emissions of inorganic salts, such as sulfates and
nitrates. Wu et al. (2020) also measured a γ value of 1.14
for fine-mode inorganic salts in urban pollution over Beijing.
Second, both Sicard et al. (2022) and this study are based
on lidar observations within two hours before and after the
radiosonde launches (00:00 and 12:00 UTC). During this pe-
riod, Barcelona corresponds to noon or midnight (UTC+1
in winter and UTC+2 during daylight saving time). In con-
trast, Wuhan (UTC+8) experienced the morning and evening
rush hours, which contribute substantially to traffic emitted
NO2. Zhang and Cao (2015b) found two NO2 emission peaks
in Chinese megacities (Beijing, Shanghai, and Guangzhou,
which have traffic patterns similar to Wuhan) between 07:00–
10:00 and 19:00–22:00 local time. As discussed previously,
higher NO2 emissions favor the formation of hygroscopic ni-
trate particles, contributing to the larger γ values observed in
Wuhan.

4.2 The uncertainty introduced by assuming a fixed
lidar ratio

In Sect. 2, the backscatter coefficient βp is retrieved by the
Fernald method with a fixed lidar ratio (LR) of 50 sr (Fernald,
1984). However, the hygroscopic growth process can lead to
an increase in LR under high RH conditions in previous stud-
ies: Veselovskii et al. (2025) found that during the hygro-
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Figure 6. Probability density distribution of the particle backscatter coefficient enhancement factors (RHref = 40%) of selected hygroscopic
growth cases in (a) spring, (b) summer, (c) autumn, and (d) winter. The Hänel fits (blue solid curve) were calculated with the mean hygro-
scopic growth parameter γ for each season. The shaded areas represent the standard deviation of Hänel fits.

Figure 7. A case to illustrate the difference of hygroscopic parameter γ between using a fixed LR and a variable LR over Wuhan at 18:30–
19:00 LT on 19 July 2019. Profiles of (a) lidar ratio and RH, (b) backscatter coefficient; (c) the particle backscatter coefficient enhancement
factors calculated by the Hänel method are presented. The black and red lines represent profiles derived by a fixed LR of 50 sr and variable
LR, respectively.

scopic growth, the extinction increases more rapidly than the
backscatter; Haarig et al. (2025) estimated the LR enhance-
ment factor of 1.43 when RH= 90%. While the polarization
lidar cannot measure the LR for specific cases like the Raman
lidar. Zhao et al. (2017) have estimated a relational expres-
sion between LR and RH through 532 nm micro-pulsed lidar
and Mie model:

LR= LRdry×
(

0.92+ 2.5× 10−2 (RH− 40)− 1.3× 10−3

(RH− 40)2+ 2.2× 10−5(RH− 40)3
)

(7)

where LRdry represents the LR under dry conditions. The
fixed LR of 50 sr represents an average value derived from
combined lidar and sun photometer measurements in the
ambient troposphere (Takamura et al., 1994). Based on ra-
diosonde data, the average RH in the lower troposphere over
Wuhan is approximately 40 %–70 % (Guo et al., 2023). Ac-
cordingly, LRdry = 47 sr in Eq. (7) was set, such that an LR
of 50 sr corresponds to RH values of approximately 50 %–
55 %. It should be mentioned that our analysis focuses on the
variation of LR within the identified particle-hygroscopic-
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Table 3. Comparisons of the 532 nm lidar-estimated hygroscopic growth parameter γ at RHref = 40%, obtained using the Hänel fitting
method for pollutants or aerosol mixtures. The results from this study alongside those reported in previous studies are provided.

Research type Location Instrument Aerosol mixture γ Reference

Statistics Wuhan, China polarization lidar Local/regional pollution 0.62± 0.24 This study
(192 cases) (30.5° N, 114.4° E)

Statistics Barcelona, Spain multi-wavelength lidar Local pollution, sea salt 0.55± 0.23 Sicard et al. (2022)
(76 cases) (41.2° N, 2.1° E) micro-pulse lidar Local/regional pollution,

sea salt

Case study Granada, Spain multi-wavelength Marine aerosols, sulfates 1.10 Granados-Muñoz
(37.2° N, 3.6° E) Raman lidar et al. (2015)

Marine aerosols, sulfates, 0.56
smoke, dust

Case study Granada, Spain multi-wavelength Smoke, urban pollution 0.48 Bedoya-Velásquez
(37.2° N, 3.6° E) Raman lidar et al. (2018)

Case study Baltimore–Washington DC, multiwavelength Sulfate 0.9 Veselovskii et al. (2009)
USA (38.99° N, 76.84° W) Mie–Raman lidar

Case study Baltimore–Washington DC, multiwavelength Sulfate, water-vapor-soluble 0.39 Pérez-Ramirez et
USA (38.99° N, 76.84° W) Mie–Raman lidar organic carbon al. (2021)

(more organic content)

Sulfate, water-vapor-soluble 0.38
organic carbon

Case study Xingtai, China Raman lidar Organics, nitrates, sulfates 0.65 Chen et al. (2019)
(37° N, 114° E)

Case study Clean condition 0.10

Case study Xinzhou, China three-wavelength Mie Dust, organic, inorganic salts 0.24 Lv et al. (2017)
(38.4° N, 112.7° E) polarization Raman lidar

Anthropogenic aerosol, organic, 1.09
inorganic salts

Case study Beijing, China micro-pulse lidar Dust, organic, inorganic salts 0.30 Wu et al. (2020)
(39.5° N, 116.2 ° E) Raman lidar

Organic, inorganic salts 1.14

Case study Leipzig, Germany Raman–polarization Continental aerosol 0.45 Haarig et al. (2025)
(51.3° N, 12.3° E) lidar

Case study Cabauw, Netherlands multi-wavelength Organics, nitrates, 0.88 Fernández et al. (2015)
(52.0° N, 4.9° E) Raman lidar marine aerosols

Organics, nitrates 0.59

Case study Lille, France Mie–Raman– Urban pollution 0.47 Miri et al. (2024)
(50.6° N, 3.1° E) fluorescence lidar

Smoke 0.50

Case study Saclay, France Water Vapour and Regional pollution 0.30–0.75 Laly et al. (2025)
(48.7° N, 2.1° E) Aerosols Lidar

Paris, France Sea salts, regional 0.87, 1.52
(48.8° N, 2.3° E) pollution

growth layers. Taking the case from 19 July 2019, presented
in Sect. 3 as an example, Fig. 7 illustrates the influence of
variable LR on hygroscopic parameter γ . The LR increases
with rising RH, and the derived backscatter coefficient (in
red curve) shows a slight deviation from the original profile
(in black curve). The derived γ increases by 2.1 % from 0.48
to 0.49. Furthermore, Table 4 summarizes 10 cases cover-
ing RH ranges of 40 %–100 %. The variable LR generally

causes an increase in γ of < 10%, with the largest increase
up to 12.5 % under high RH conditions. The uncertainty in-
troduced by assuming a fixed LR becomes more pronounced
under higher RH conditions.
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Table 4. Comparisons of hygroscopic growth parameter γ : fixed LR versus variable LR.

Date RH range γ1 by fixed LR γ2 by variable LR γ2−γ1
γ1

2013.07.09 71 %–84 % 0.42 0.46 9.5 %
2018.08.21 84 %–95 % 0.48 0.54 12.5 %
2018.10.17 65 %–80 % 0.53 0.56 5.7 %
2019.07.19 54 %–82 % 0.48 0.49 2.1 %
2019.08.09 72 %–96 % 0.45 0.50 11.1 %
2020.08.15 72 %–89 % 0.37 0.41 10.8 %
2021.10.03 42 %–58 % 0.70 0.72 2.9 %
2022.10.01 68 %–89 % 0.63 0.66 4.8 %
2022.11.10 53 %–68 % 0.22 0.22 0 %
2024.01.04 59 %–77 % 0.49 0.53 8.2 %

5 Summary and conclusions

In this study, we analyzed the statistical characteristics of
the hygroscopic growth parameter γ over Wuhan during
2010–2024. The dataset is based on 532 nm ground-based
polarization lidar observations, meteorological data from ra-
diosonde measurements, and ERA5 reanalysis. Simultaneous
lidar-derived particle backscatter coefficients and radiosonde
RH profiles were matched, and the use of meteorological pa-
rameters allowed the application of stringent constraints to
the dataset. This approach identified 192 suitable cases for
our analysis. The Hänel parameterization method was em-
ployed to estimate the hygroscopic growth parameter γ . A
representative case observed on 19 July 2019 is presented
to illustrate the methodology for identifying hygroscopic
growth cases and estimating the hygroscopic growth param-
eter γ . In this case, γ was 0.48, suggesting moderately hy-
groscopic particles, typical of urban pollution. The corre-
sponding fref-Hänel(85%) value was 1.93, showing that the
backscatter coefficient increases by a factor of 1.93 as RH
rose from 40 % (dry condition) to 85 %.

For the statistical characteristics, the average and stan-
dard deviations of γ were 0.62± 0.24, corresponding to an
fref-Hänel(85%) value of 2.36, with a range of 1.69–3.29
when incorporating the standard deviation. All identified
cases were classified by altitudes into the boundary layer and
free troposphere clusters. No significant difference in γ was
observed between the BL (0.63± 0.25) and FT (0.60± 0.24).
The hygroscopic growth of anthropogenic aerosols in Wuhan
generally occurred under high RH conditions around 60 %–
80 %. The annual mean γ increased sharply from 0.49 in
2015 to 0.63 in 2017 and stabilized between 0.6 and 0.7 after
2018. This trend closely matches the evolution of the annual
mean NO2-to-SO2 concentration ratio, which rose from 1.8
in 2014 to 5.3 in 2017 and was situated between 4 and 6 after
2018. These results indicate that the presence of nitrates in
the aerosol mixture enhanced hygroscopicity under similar
RH conditions (Chen et al., 2019). Regarding seasonal vari-
ation, most cases occurred in summer (80) and autumn (81).
The seasonal average γ showed minimal variation, with a

minimum in winter (0.56) and a maximum in autumn (0.64),
corresponding to fref-Hänel(85%) values of 2.17 and 2.43,
respectively, i.e., a difference of approximately 11 %. The
lower γ (0.56) in winter is due to the higher MLH of 2.4 km
compared with other seasons, indicating that the winter an-
alyzed cases reflect hygroscopic growth effect of relatively
clean aerosols at higher altitudes rather than severe surface-
level pollution. Finally, we tried to estimate the error intro-
duced by a fixed LR. The incorporation of variable LR gen-
erally causes an increase in γ of < 10%, with the largest
increase reaching up to 12.5 % under high RH conditions.

Leveraging long-term polarization lidar observations, we
characterize the hygroscopicity of local/regional pollutants
over Wuhan. The hygroscopic growth parameter in this study
demonstrates how RH amplifies lidar-derived backscatter co-
efficients and implies the potential influence on long-term
AOD variation. In our previous work (Jing et al., 2025), long-
term lidar observations over Wuhan from 2010 to 2024 re-
vealed a two-stage evolution of anthropogenic aerosols: a
rapid decline from 2010 to 2017, followed by a fluctuating
period during 2018–2024. The larger γ values after 2017
may have amplified the hygroscopic growth effect on the
backscatter coefficient, and thus also the integrated AOD,
which may partially offset the efforts of emission control
policies and contribute to the cessation of the AOD decline
post-2018. Furthermore, AOD is a major source of uncer-
tainty in estimates of direct aerosol radiative forcing (DARF)
(Elsey et al., 2024); in future work, we will assess the influ-
ence of particle hygroscopic growth on DARF. However, po-
larization lidar cannot distinguish aerosol chemical composi-
tion in urban environments. To better assess the hygroscopic
parameter γ for specific aerosol types, it would be benefi-
cial to combine HYSPLIT trajectory simulations, chemical
analysis instruments, satellite data, and Raman lidar obser-
vations. In addition, radiosondes are launched approximately
24 km away from our lidar site at 08:00 and 20:00 LT, lim-
iting the availability of co-located and simultaneous mete-
orological data (He et al., 2023). Raman lidar can provide
real-time and co-located, height-resolved measurements of
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temperature and RH (Liu et al., 2019; Dawson et al., 2020;
Pan et al., 2020; Yi et al., 2021), enabling a more accurate
analysis of aerosol hygroscopicity property over Wuhan.
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