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Abstract. Recent hardware developments for the MicroPulse
DIAL enable the transmitter to switch between output pulses
that are “longer” (higher pulse energy) and “shorter” (low
pulse energy) in duration on a shot-to-shot basis. While the
longer laser pulses broadly result in higher signal-to-noise
ratio, they have the shortcoming of blanking the detector
in the lowest ranges and smearing out the scene in range.
Conversely, shorter pulses enable observations closer to the
instrument, smear the scene relatively little, but have low
signal-to-noise ratio. In this work, we show that leverag-
ing Poisson Total Variation with forward modeling enables
merged estimates of backscatter and water vapor. This sig-
nal processing technique leverages the advantages of each
pulse length configuration, providing better data availabil-
ity and higher resolution over a broader altitude range than
data processed using only one of the pulse lengths. An in-
tercomparison with radiosondes demonstrates that this new
hardware configuration and processing approach enable re-
trievals of absolute humidity starting at 100 m extending up
to 6 km, capturing complex water vapor structure through-
out this range. The retrievals are also contrasted with ERAS
reanalysis which suggests that there are instances where the
model and reanalysis products are unlikely to produce accu-
rate representation of water vapor fields in the atmosphere,
thus emphasizing the value of continuous, high-vertical-
resolution active thermodynamic profiling observations.

1 Introduction

The MicroPulse DIAL (MPD) is a lidar instrument designed
around the concept of multi-instrument network deployment
(Nehrir et al., 2011; Repasky et al., 2013; Spuler et al.,
2015, 2021). It leverages low-power, high-reliability semi-

conductor lasers that make it well suited for unattended op-
eration. The combination of the lasers’ narrow linewidth —
enabling narrow band filtering and interrogation of specific
absorption features — with an opto-mechanically stable coax-
ial transceiver architecture — enabling a narrow receiver field-
of-view (=100 urad) — allows the MPD to provide quan-
titative measurements of water vapor (water vapor DIAL
technique), temperature (oxygen DIAL technique) (Hayman
et al., 2024b; Stillwell et al., 2020) and aerosol backscat-
ter coefficient (high spectral resolution lidar) (Hayman and
Spuler, 2017) over an altitude range of 300 m to 6 km, during
day and night.

The MPD is unique in that it’s transmitter is entirely based
on low-power diode lasers but extends to robust quanti-
tative data products well beyond the qualitative undercon-
strained retrievals of backscatter lidar. MPD processing pro-
vides quantitative data products directly linked to atmo-
spheric and model state parameters more commonly asso-
ciated with high performance systems using more complex
transmitter architectures. Unlike solid state crystal lasers, the
laser pulse length of the MPD’s semiconductor transmitter
can be easily modified, setting up an opportunity to tune the
parameter. Longer pulses increase the average transmitted
power, allowing for a higher signal-to-noise ratio (SNR), bet-
ter long-range performance, and reduced integration times,
but they also reduce range resolution, by smearing out the
atmospheric scene. In addition, when used with a coaxial
transceiver such as in the MPD design, the lidar receiver is
effectively blinded by the outgoing laser pulse (with some
additional recovery time) and therefore the pulse length re-
stricts the minimum altitude of the vertically pointing in-
strument. This sets up an inherent trade-off between higher
altitude and shorter time-resolution observations (requiring
longer, higher energy pulses) and observing near the surface
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(requiring shorter pulses). For the standard MPD architec-
ture, a 1 us transmit pulse results in an absolute minimum
capture altitude of 150 m, but additional recovery time ef-
fects from the exiting pulse extend this actual minimum alti-
tude higher (300-500 m depending on instrument).

In the past, we have set the MPD laser pulse length to bal-
ance between the trade-offs of SNR, minimum altitude, and
range resolution (generally setting to 1us as an acceptable
balance in the trade space — we should note that the plethora
of scientific questions and lack of robust analysis on the ob-
servational requirements thereof for instrumentation make
any such trade a fairly flimsy analysis). The need to profile
close to the ground, in particular, has driven us to consider
how to better leverage the flexibility of the diode laser trans-
mitter. In this approach, we have developed a timing and con-
trol unit that allows us to program the laser pulse pattern of
the MPD (Stillwell et al., 2025). In our initial testing of this
hardware, we operated the water vapor DIAL channels of the
MPD in a mode where the lasers alternated between trans-
mitting long (1 ps) and short (200 or 100 ns) laser pulses. The
concept behind this development is that data collected using
long pulses would enable observations at long ranges and
other signal-starved regimes, while the short pulses would
enable observations closer to the surface and reduce range
smearing.

In Stillwell et al. (2025) the hardware development of
this concept is described and the potential of the approach
is demonstrated using a conventional water vapor DIAL re-
trieval (direct inversion with the DIAL equation). As such,
the inversion of water vapor and backscatter fields is over-
constrained (two unknowns — absolute humidity and attenu-
ated backscatter cross section! — with four observations — on-
line and offline wavelengths at two different pulse lengths).
In this configuration, applying the DIAL equation produces
two separate estimates of absolute humidity (one for each
pulse length); which must be subsequently merged to pro-
duce a unified water vapor estimate. This manual merging
process has some key drawbacks recognized in Stillwell et al.
(2025) in that the artifacts can appear in the merge region be-
tween the independently estimated products (see Fig. 5 of
Stillwell et al., 2025), information content is discarded and
therefore retrieval precision is not as high as it could be, and
the potential benefits of short pulses enabling recovery of
high resolution features (more apparent in cloud/aerosol li-
dar) are lost. In addition, leveraging joint retrievals with over
constrained systems tends to act as a useful quality control
check on the recovered data products because the inability to
fit all data sets indicates inaccuracies or invalid assumptions
in the instrument model used for the inversion algorithm. Fi-
nally, in addition to low altitude observations, short pulse

I The forward model employed here includes three variables, but
the only channel gain is broadcast across all range dimensions. For
any one pixel one might say there are slightly more than two un-
knowns but less than three.
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data tends to be valid nearer cloud edges than long pulse.
Manually adjusting weighing functions near clouds to lever-
age this benefit would be a fairly complex task as the tran-
sition regions would likely be quite variable. This makes it
impractical to merge long and short pulse data in and around
clouds and instead accept lower data availability.

In this work, we demonstrate how advanced processing
methods like Poisson Total Variation (PTV), which use for-
ward models, are well suited to the problem of retrieving
parameters that are over-constrained and can provide a high
quality estimate of products by seamlessly integrating all of
the observation channels. This is done in a way that balances
the uncertainties of each observation so that the data product
is most responsive to the observations that have the lowest
uncertainty based on the detector noise model. It also pro-
vides continuity in the estimated fields where data from one
pulse configuration may not be accurate or available (e.g. low
altitudes and near cloud edges).

PTV was originally introduced to the atmospheric lidar
field in Marais et al. (2016), where it was shown to provide
unprecedented denoising capability for High Spectral Res-
olution Lidar (HSRL) retrievals of backscatter coefficient,
lidar ratio, and extinction coefficient. That technique was
then adapted to retrieve water vapor from MPD observations
(Marais and Hayman, 2022), and shown to improve both
data quality and operational range of the instrument. The de-
noising capability of PTV was further demonstrated in Hay-
man et al. (2024a) where it was shown that extremely high-
resolution time-correlated single-photon counting (TCSPC)
data produced by the same low-power diode lasers could be
processed using the technique and enables backscatter obser-
vations of structures at 0.02 s and 0.75 m resolution. Finally,
the ability of PTV to denoise and account for complex cross-
dependencies in multi-parameter observations was shown in
Hayman et al. (2024b) where the temperature, absolute hu-
midity and backscatter ratio were simultaneously retrieved
from all six of the MPD observation channels comprising
a combination of water vapor DIAL, oxygen DIAL, and
HSRL architectures, enabling an entirely standalone thermo-
dynamic profiler (without assumptions or external data re-
quired).

Where in previous works we have focused on retrieving
data products with varying dependencies between channels,
in this work, we establish the potential for PTV to robustly
solve over-constrained retrieval problems and leverage ad-
vances in hardware uniquely enabled by diode-laser-based
lidar. The retrieval presented here aims to leverage informa-
tion content from both long- and short-pulse data to better
constrain backscatter and water vapor observations starting
at 100 m and extending up to 6 km. We roughly estimate the
effective resolution of MPD water vapor retrievals are about
100 m (not to be confused with a capture resolution of 7.5 m),
thus suggesting the MPD is effectively observing water vapor
to the surface.
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While deconvolving the laser pulse has always been a
component of PTV processing for MPD data, the multi-
pulse-length nature of this problem further leverages that ca-
pability through the hardware development that enables cap-
ture of data to better constrain the inversion problem. We
show here that by employing PTV with a forward model,
MPD retrievals have lower error over a larger altitude range
than long or short pulse data alone. This is demonstrated on
both backscatter and water vapor data, where the water va-
por retrievals are validated against collocated radiosondes.
While this work focuses on water vapor retrievals, there is
also sufficient demonstration that this hardware/processing
approach would likely have benefits aerosol and cloud lidars
(e.g. HSRL, Raman) and may have important implications
for airborne and space borne platforms. In addition, the con-
cept of capturing a single data product from multiple related
observations has potential beyond multi-pulse observations
(e.g. WV DIAL using more than 2 wavelengths).

2 Methods
2.1 Poisson Total Variation

PTV is a signal processing approach that simultaneously
inverts and denoises photon limited observations using a
regularized maximum-likelihood fitting approach. Estimated
variables are forward modeled and projected onto observed
photon counts then subsequently numerically optimized to
obtain the best fit while reducing sensitivity to noise.

Noise suppression is implemented through total variation
regularization (a penalty in the objective function for chang-
ing the estimated variable) which effectively fixes the solu-
tion basis set to be piece-wise-constant functions. The ulti-
mate effect is that PTV adaptively average across regions
of correlated signal, to produce an optimally averaged data
product that has low sensitivity to noise. Under standard pro-
cessing conditions, this optimal averaging is not heuristically
determined but rather verified against holdout data obtained
by splitting half the signal into validation data. The result
is a retrieved data product in which averaging occurs across
patches of correlated structure so that the resolution varies
across the 2D image and is not constant across the time or
range axis.

The general water vapor DIAL signal model used here
is similar to that employed in (Marais and Hayman, 2022)
where now the laser pulse may be varied to create differ-
ent channels for combinations of transmitted wavelength and
pulse width. The mean photon flux incident on the detector
for a given pulse length and wavelength is forward modeled
from estimated variables using the standard lidar equation for
DIAL convolved with the transmitted laser pulse.

https://doi.org/10.5194/amt-19-405-2026
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where [.(r) is the laser pulse width of channel configura-
tion ¢, * denotes a convolution in range, r is the range from
the lidar instrument, 7, is the channel gain (in practice set to 1
for the offline channels), & (r) is the backscatter flux common
to both online and offline wavelengths (low wavelength sen-
sitivity), o, (z) is the water vapor absorption cross section at
transmitter wavelength A, nyy(z) is the water vapor number
density and py, is the background flux estimated by averaging
the counts at the end of the lidar profile before another laser
pulse is fired. Note that because the background is a function
of receiver behavior and the same detector is used to acquire
optical signals from all four channels, it should be channel
independent in the WV DIAL. All estimated variables in the
processing are denoted with a tilde (~) over them.

Since the MPD architecture under consideration here
transmits two laser pulses (c € {1ps,0.2us}) and two wave-
lengths (A € {Aon, Aoff}) there are more observations than un-
knowns in a scene. However, the accuracy and precision of
the channels will be different depending on the amount of
smearing imposed by the laser pulse, the amount of backscat-
ter signal and whether (and for how long) the instrument is
blanked by the outgoing laser pulse. As an algebraic inver-
sion, estimating water vapor from all four channels is not
possible, but because lidar observations are inherently noisy,
there is a clear need to use as much information as possible
to recover a high resolution, low noise data product.

A natural way to solve this problem is to use a forward
modeling approach as employed with PTV. This approach es-
timates the desired parameters by finding estimated variables
that optimally project onto all the noisy photon count obser-
vations. In this way, one retrieval is produced for each esti-
mated variable, delivering an inherently merged data prod-
uct. The inherent trade-off in prioritizing the match between
different channels is handled through a maximum-likelihood
estimation approach, where a noise model for the photon de-
tection process favors better fits to areas of low uncertainty
over areas of high uncertainty. Missing data, for example, re-
sulting from proximity to clouds or blanking near the ground,
are also handled naturally in this way.

One benefit of over-constrained retrievals is that they can
identify weaknesses in the assumed forward models. For ex-
ample, we have seen instances where retrievals cannot simul-
taneously fit all channels and therefore indicated errors in the
assumption of lidar operation and model. While this outcome
can be challenging to address, it ultimately results in better
data product fidelity and increased confidence that when the
retrieval converges for all channels, the forward model and
detection statistical model (both of which represent inherent
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assumptions in all remote sensing retrievals) are valid for the
scene under consideration.

In the estimation process, only the channel efficiency
term, 7)., for the online channel is estimated. This accounts
for a scalar differential in the online and offline channels ef-
ficiency or transmit power. The offline channel is set to 1 and
any necessary scaling to fit backscatter data is absorbed in
the backscatter term ¢~5 (r).

In order to estimate the unknowns in the lidar forward
model, we minimize an objective function that consists of
a maximum likelihood loss function £(0) and total variation
regularization terms for each estimated variable.
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The loss function leverages the noise model for a non-
paralyzable photon counting detector with a known dead-
time derived and validated in Kirchhoff et al. (2025) and
given for this application by
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where w, ; ; is a weight applied to the data point which is
used to mask invalid data, z.; represents the detector active
time histogram that accounts for dead-time in the detector
(Kirchhoff et al., 2025), y.,; are the photon counts for laser
pulse ¢ and range bin i and p. , ; is the forward model de-
scribed by Eq. (1) which relates the estimated data products
to the incident photon flux. In this way, the maximum like-
lihood estimate is able to account for dead-time when the
photon flux is relatively constant over the accumulation in-
terval.

The total variation penalties in Eq. (2) force estimated vari-
ables to be piecewise constant and suppress fitting to noise.
The amount of total variation regularization is determined by
the scalar multiplier oy (for the estimated variable x), which
is not assumed to be identical for all estimated variables. In
order to determine these optimal regularization parameters,
we typically employ a thinning process where every other
recorded 2 s profile and the remaining profiles are used for
holdout cross-validation of the solution results. Those solu-
tions which optimally fit to the statistically independent val-
idation data are assumed to represent the best balance be-
tween bias (over averaging) and noise (under averaging). The
thinning process can also be performed randomly (as is used
in the masking scheme described below). We do not employ
Poisson thinning as has been done in some previous works
because observations are not necessarily Poisson distributed,
particularly in higher photon flux scenes.

The objective function is minimized using Sparse Poisson
Intensity Reconstruction Algorithm (SPIRAL), SPIRAL-TV

Atmos. Meas. Tech., 19, 405-420, 2026

(Harmany et al., 2012; Oh et al., 2013) with the Fast iter-
ative shrinkage algorithm used to calculate gradients Beck
and Teboulle (2009). Our Python implementation of this al-
gorithm, based on the PyTorch library, is publicly available
for use at https://github.com/NCAR/SpiralTorch (last access:
25 June 2025) with a custom CUDA kernel for accelerated
GPU implementation. We have previously detailed the pro-
cess for minimizing the objective function in Hayman et al.
(2024a).

2.2 Masking

It is common practice to mask cloud structure in DIAL esti-
mates due to the frequent occurrence of biases in retrieved
water vapor concentration. These biases are often easy to
identify because the retrieved quantities are non-physical
(e.g. negative water vapor or unrealistically large values) in
the cloud structures. There is relatively little published re-
search on the root cause of data quality issues for DIAL
in cloud, and the dominant sources of issues may vary be-
tween hardware architectures. Differences in online and of-
fline sample volumes, laser pulse length convolution, detec-
tor nonlinearity, and Rayleigh-Doppler effect are common
explanations for the error in most clouds; however, our own
efforts to demonstrate and isolate the impact of these and
other errors have been difficult to comprehensively validate
experimentally. It seems entirely possible that there are addi-
tional contributing factors. It is also likely that there are some
conditions where DIAL retrievals are valid in certain types
of clouds and under certain conditions. For example, Grof3
et al. (2014) showed DIAL retrievals in high altitude cirrus
that agreed well with an in situ sensor on a second aircraft
over a 30 min period. However, the analysis presented in that
work was fairly limited, making it difficult to generalize even
to other cirrus cloud cases. For now, it is not entirely clear
what all the interacting conditions are that influence DIAL
retrieval accuracy or if it is possible to know if those con-
ditions are satisfied from the lidar data alone (meaning no
external validation source would be required). For this rea-
son it is often generalized that DIAL data is valid in clear air
and most aerosol loaded conditions, but not in clouds.

Our masking routine developed here is based on the
hypothesis that much of the bias seen in DIAL observa-
tions of clouds originates from averaging over heteroge-
neous backscatter structure (Hayman et al., 2023)2. How-
ever, based on ultra-high-resolution observations of clouds
by MPD (similar to that reported in Hayman et al. (2024a)
captured at 8 kHz and 5 ns resolution and processed to 50 Hz
and 75 cm resolution) we do not believe that this represents a
fully comprehensive description of why most clouds produce
non-physical water vapor retrievals. Nevertheless, masking
data that produce errors is a necessary component of DIAL

2The presentation is available at minute 32 here https://ams.
confex.com/ams/103ANNUAL/meetingapp.cgi/Session/63551
(last access: 20 December 2025).
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processing. The masking approach described here represents
a heuristic approach based on the described reasoning. Al-
though masking would likely be further improved if more
comprehensive understanding of these errors were robustly
demonstrated, the approach outlined here represents an im-
provement over the methods we had described previously.

These cloud biases tend to be more problematic with PTV
retrievals than standard algebraic inversions, because, left un-
mitigated, clouds generally dominate regularizer selection.
As such, they tend to require very low values of water vapor
regularization (to support the potentially large swings in ap-
parent water vapor in clouds). Those low regularizer values
provide poor noise suppression in non-cloudy regions where
data are valid. Ideally, we would leverage a noise model (£)
that inherently accounts for, and optimally trades, the poten-
tial errors imparted on lidar signals in clouds; however, none
have yet been developed.

In order to enable PTV retrievals with the current noise
model, we require a means to identify and mask potentially
problematic regions prior to processing. We have previously
outlined methodologies based on fluctuations in the signals
(Hayman et al., 2024b). In this work, we have adopted a
slightly modified method using a bootstrapping approach to
estimate the inherent temporal variability of the observed
fluxes and how they affect the variations in the noise model.

The masking approach we implement here attempts to cap-
ture the problem with the currently employed noise model
by measuring a variation in the computed negative log-
likelihood between independent samples. For each channel,
the observed 2 s accumulated profiles are randomly split into
two sets of photon counts. Each set of photon counts is then
evaluated against the first set. This provides an estimate of
the difference in the NLL to the best possible value (the first
set evaluated against itself) and the independently sampled
instance. In cases where the noise model properly accounts
for the statistical variations (the temporal variations are not
large and so a product of Poisson point processes), the dif-
ferences will be relatively small. However, cases where the
noise model incorrectly attributes high certainty will tend to
produce large differences.

In implementation, we also treat the backgrounds between
the two datasets as independent but known, and as such, ob-
servations in the independent set (designated set 2) have their
background subtracted and the background from the evalua-
tion data (designated set 1) added to them. The NLL cal-
culation is then repeated several times with different ran-
dom sampling to obtain a pseudo-estimate the variance in
the NLL.
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where y; are the photon counts from the evaluation set, y; are
the photon counts from the independent set, b; is the back-
ground of the evaluation set and b, is the background of the
independent set.

The calculated variance in Eq. (4) is then used as the input
argument to a logistic function similar to that employed in
Hayman et al. (2024b) to provide a continuous deweighting
of image pixels with high variance in the NLL. This method
focuses on the suspected root cause of errors in clouds. It
is therefore not directly tied to the presence of clouds in a
pixel, but the underlying signal conditions causing errors in
the NLL calculation which are common in cloudy pixels. As
a result, other possible errors source (e.g. highly dynamic
aerosol structure) can also be deweighted or masked if they
are likely to contribute errors in the retrieval.

Note that this variance calculation accounts for effects of
temporal variability to some extent (preliminary work sug-
gests that MPD’s observational cadence of 2 s is still too long
to fully encapsulate variability in clouds), but does not ac-
count for accumulation over range variations. For this rea-
son, there could be further improvement over the method
employed here. However, the method has been more robust
than our previously employed methods and has generally in-
creased data availability.

In addition to masking due to potential errors in the noise
model, the long pulse channels tend to experience a bias in
the lower altitudes associated with the pulse length and re-
covery time of the detector. The way these potential errors
impact biases in the instrument and ultimately impacts the
minimum altitude of data products is discussed in detail in
Spuler et al. (2021). These errors are in part due to the fact
that data is not valid while the pulse is exiting and thus the
long 1 ps pulse blanks the receiver (which is electronically
gated during the pulse exit) for 150 m. However errors persist
in the recovered signals beyond this time and do not appear
to linearly scale with the laser pulse length. The exact causes
of this “recovery time” effect are still not fully understood
and may be related to stray light, detector recovery time after
exposure to high optical intensity (while gated), afterpulsing,
transient effects of detector gating or a combination of all
four. Ultimately, sloping baseline biases and transient detec-
tor responses can cause errors in the retrieval, particularly at
low altitudes where backscatter signals from the atmosphere
are relatively weak due to low overlap (see Fig. 11 in Spuler
et al., 2021). The recovery time after the pulse exits does not
appear to extend as high with the shorter pulse length. This
effect is not encapsulated in the NLL so a heuristic solution
of masking data below 500 m on the long-pulse observations
and below 65 or 80 m (for 100 and 200 ns pulses, respec-
tively) on the short-pulse channel is employed.

2.3 Uncertainty

Some measure of uncertainty is needed to quality control re-
mote sensing data. The best method we have found for li-
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dar analysis uses bootstrapping and random manual thinning
of the observational dataset. In this approach, sources of un-
certainty are randomly varied and the variance of the data
products are repeatedly calculated as described for our direct
inversion DIAL processing in Spuler et al. (2021). However,
this requirement to repeat the processing increases compu-
tational expense. As a quick assessment of uncertainty, we
take a simplified approach in which the processing is re-
peated only once but using different initial conditions. The
concept is that if the optimizer does not converge on a value
for a particular pixel, it likely indicates that there is higher
uncertainty in the product. For the DIAL retrievals presented
here, each scene is processed using two initial conditions:
low value (0 gm_3) and high value (10 gm_3). These are se-
lected because they provide a considerable spread in initial
conditions, so it is relatively easy to identify regions where
the solutions do not converge. This large difference in ini-
tial conditions also helps ensure that the data reported is well
supported by the measurements and does not represent a non-
unique solution dependent on the selection of initial condi-
tions.

3 Experiment

The processing method described above is applied to the data
collected from the MicroPulse DIAL (MPD) developed and
operated by NSF-NCAR (NCAR/EOL-MPD-Team, 2020;
Spuler et al., 2015, 2021). NSF-NCAR currently has five of
these instruments which leverage diode laser technology for
the transmitter source, and thus can implement various pulse
configurations that change on a shot-to-shot basis. The hard-
ware developed to enable multiple pulse configurations is de-
scribed in Stillwell et al. (2025) and has been tested on one
of the units. In most cases, long pulses are 1 us and short
pulses are 200 ns. During one day in the data presented here
(1 November 2024), the short pulses were set to 100 ns. The
long and short pulses are fired in alternating sequences where
the total pulse repetition frequency is 8 kHz and each individ-
ual channel (online-long, offline-long, online-short, offline-
short) is thus repeated at 2 kHz. Photon count histograms are
acquired at a base resolution of 2 s in time and 50 ns in time-
of-flight (i.e., range). That data is further integrated in time
during processing to a resolution of 10 s for backscatter-only
estimates and 5 min for water vapor DIAL retrievals.

3.1 Backscatter

This first demonstration of processing multi-pulse-length
data to retrieve the backscatter flux p(r) is illustrative of
how the retrieval can successfully leverage smeared observa-
tions with higher SNR using long pulses (1 us) in combina-
tion with sharper lower SNR observations using short pulses
(200 ns) to recover fine-scale atmospheric structure with low
noise contamination.

Atmos. Meas. Tech., 19, 405-420, 2026

The observations consists of a two hour time period where
photon counts from MPD’s WV offline channels are grid-
ded to a resolution of 10s and 7.5 m resolution. The scene
consists of cirrus clouds extending up to 12 km while mid-
level liquid clouds around 7 km are occasionally present with
very fine-scale features. The estimated photon flux po(r) re-
sulting from processing this scene using the algorithm de-
scribed here is shown in the top of Fig. 1 while the photon
fluxes directly estimated from the observed photon counts in
the offline-long and offline-short pulse channels are shown in
the middle and bottom images.

The long pulse observations show higher photon count
rates which result in higher SNR and allow better capture
of high-altitude cloud features, but fine-scale structures like
the liquid clouds are blurred significantly. The short pulse ob-
servations do much better at resolving fine-scale features in
the scene, but suffer from low SNR, particularly in the high-
altitude cirrus. The PTV retrieval using both of these obser-
vations is able to leverage the benefits of each. Fine-scale
features like the water clouds are well resolved, while the
high-altitude cirrus structure is also captured. In addition, the
overall denoising capability enabled by PTV improves image
quality by significantly reducing shot noise contamination,
over both the long- and short-pulse direct observations.

By implementing the proposed PTV processing with for-
ward modeling, there is no need to heuristically blend the
two separate observations. Instead, only one estimate of the
photon flux is obtained, which optimally describes the com-
bination of long- and short-pulse measurements.

Note that the varying levels of noise in the direct estimates
are the result of thinning 2 s profiles accumulated over a span
of 10s where the number of profiles used to accumulate a
given 10s bin vary. Because manual thinning is performed
to obtain a validation dataset (for regularizer optimization),
the number of 2 s profiles profiles in a 10s bin will vary be-
tween 2 and 3. This causes a striping appearance in the noise
of the images, but does not affect the PTV estimate.

An example of the forward model projection onto the ob-
served photon counts from this scene is shown in Fig. 2. The
smearing due to the different pulse lengths is encapsulated
in the forward model. As a result, the thin liquid cloud layer
at 7km appears as a rect function in the long-pulse data and
a narrow spike in the short-pulse data. The higher SNR from
the long-pulse data helps recover information in sparser pho-
ton count regions. Photon flux is still recovered in regions
where photon counts are in single digits. As was shown in
Hayman et al. (2024a), information content can still be ob-
tained in regions with low photon counts because PTV lever-
ages information based on the photon count clustering in ad-
dition to the counts in each bin.

3.2 Water Vapor

While backscatter observations are illustrative of how the
proposed PTV algorithm can leverage multiple complimen-
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Figure 1. Cloud observations from 7 May 2024. The top panel shows the estimated photon flux using PTV with long and short pulse, offline
channels. The middle figure shows the directly estimated flux from long pulse offline photon counts and the bottom shows directly estimated

flux from offline short pulse photon counts.

tary observations of the same scene, the actual scientific
value of such observations is relatively limited. In fact, the
principal motivation for developing multi-pulse-length con-
figurations for MPD is to enable lower-altitude retrievals.
The central issue with obtaining low-altitude retrievals from
MPD is that the instrument is unable to resolve atmospheric
returns for the duration of the pulse plus some recovery time
(the recovery time is believed to be a combination of time for
the detector to reenter a linear regime and decay of scattered
light in the instrument). This is due to a design trade, where
the instrument’s coaxial transmitter, which enables high me-
chanical stability to accommodate a narrow field-of-view,
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which critically minimizes solar background contamination,
also results in the receiver being blind during the outgoing
pulse duration. By transmitting a shorter pulse, the instru-
ment can observe at lower minimum altitudes.

For this evaluation, the raw data are binned at 5 min time
resolution and 7.5 m (50 ns) range resolution with observa-
tions between 50m and 6 km. In standard (long pulse) op-
eration, the minimum altitude for the MPD is between 300—
500 m depending on the alignment and amount of recovery
time needed by the detector. However, short pulses generally
enable retrievals starting at 100 m, due to the shorter duration
and a shorter recovery time as a resulting from the reduced
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Figure 2. Estimator fit to photon counts observed in Long and Short pulse data at 03:20 UTC in Fig. 1.

transmitted energy. As such, the data obtained from long
pulse mode are masked below 500 m, while short pulse data
are masked below 65 or 80 m (for 100 and 200 ns pulses, re-
spectively). In the backscatter example, we relied on the de-
tector noise model to handle the trade-off between observa-
tional channels and fitting priority. However, since the noise
model we use does not account for the errors contaminating
low-altitude returns (the sources of which remain somewhat
speculative), we resort to this manually masked approach.

During the fall of 2024, one of the MPD instruments
(unit 4) was operated at the Marshall field site south of
Boulder, CO, USA. During the operation period, nine ra-
diosondes were launched on seven different days. This data
was processed using the PTV method described above. The
processed data consisted of all four channels (online/offline
wavelengths with combined long/short pulses), only short
pulses, and only long pulses to assess if multi-pulse-length
data provides a benefit over a single pulse configuration. We
hypothesize that multi-pulse-length processing should pro-
vide retrieval performance that is comparable to the best of
the two individual pulse configurations at any given altitude
or time.

Because of its potential to significantly reduce computa-
tional expense, we also include combined processing with
fixed regularizers in this analysis (denoted “Combined Fixed
Reg.”). These fixed parameters were defined on the basis
of typical values obtained from other processing instances.
The regularizers are not optimized on a scene-by-scene ba-
sis, which significantly reduces the number of processing in-
stances that need to be run.

Atmos. Meas. Tech., 19, 405-420, 2026

An example absolute humidity scene consisting of 2 d (28—
29 October 2024) is shown in Fig. 3 with the combined re-
trieval, short pulse retrieval, long pulse retrieval, combined
with no regularizer search and ERAS Reanalysis (Coperni-
cus Climate Change Service, 2025) from top to bottom.

As per the masking scheme, the retrievals using short-
pulse data extend lower, near 100 m above the the surface,
where using long-pulse data in this region is not possible be-
cause the pulse is 150 m long and still exiting the instrument.
That ability to observe closer to the surface enables the MPD
to capture a dry layer below 500m on 29 October that is
otherwise difficult to observe with only the long-pulse data.
In higher altitude regions, the combined retrieval has similar
data availability, ability to resolve structure (PTV will com-
pensate for low SNR by integrating over larger patches) and
noise suppression to the long-pulse data. Thus, in this par-
ticular example, it would seem that the combined retrieval
blends the benefits of both pulse lengths.

The figures also highlight the substantial difference in wa-
ter vapor structure captured by the ERAS reanalysis and what
is observed by the MPD. While structure is largely smeared
out (in part due to the fact that the reanalysis is lower time
and altitude resolution than the MPD), we also note that in
this example ERAS tends to overestimate absolute humidity
near the surface and does not resolve the dry layer just above
the surface on 29 October.

An example of the forward model fit to the raw photon
count data from Fig. 3 is shown in Fig. 4. The color of each
data point shown indicates the weight (w, ;_; in Eq. 3) which
is used to de-emphasize or completely mask regions where
the loss function is not believed to be valid. For example, be-

https://doi.org/10.5194/amt-19-405-2026



M. Hayman et al.: Joint retrieval of water vapor from multiple pulse length observations 413

Absolute Humidity Combined

Altitude AGL [km]
glm?

0 — T T T T T T T T T T T T T :. ———— T : — .: — T
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Absolute Humidity Short Pulse

Altitude AGL [km]
w
w
glm?

———————— 7T
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Absolute Humidity Combined Fixed Reg.

Altitude AGL [km]
w
w
g/m?

"""
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Absolute Humidity ERAS5

Altitude AGL [km]
N w
-
1]
1.
|
— B e s B eess— ]
N w S w o
g/m®

6 6
5 5
i) o
< 3 g
ru3 35

°

2
£ 2/ 2

<
11 1
0

0-
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time [h-UTC]

Figure 3. Absolute humidity estimates for 28 and 29 October 2024 near Boulder, CO, USA. The absolute humidity is shown for (from top
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reanalysis interpolated onto the MPD location. White regions are masked due to pulse length, clouds or poor convergence in optimization.
Dashed lines indicate times where radiosondes were launched.
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low 500 m, all long pulse data is masked and therefore the
data points are purple. Note that below 500 m the long pulse
channels have poor agreement with the data. This indicates
that the forward model or noise model are not consistent
representations of the instrument operation between the two
pulse lengths in this altitude region (highlighting the bene-
fits of over constrained retrievals). By contrast, other altitude
regions fit both channel well, indicating that our physical un-
derstanding of the captured signals (and therefore forward
and noise models) is consistently accurate across both pulse
lengths. The forward model is described by Eq. (1) and it’s
projection onto photon counts while accounting for deadtime
by multiplying the estimated flux by active time z. ;.

4 Results

Nine radiosondes were launched while the MPD operated in
multi-pulse-length mode at the Marshall Field Site, Boulder,
CO, USA. These sondes provide some level of truth for eval-
uating the MPD retrievals. Figure 5 shows each radiosonde
profile with the MPD absolute humidity estimates, where
the approximate uncertainty is indicated by the shaded re-
gion. Retrievals are shown for each of the four processing
instances. In addition, we show the ERAS reanalysis (Coper-
nicus Climate Change Service, 2025) estimate of absolute
humidity at the MPD location to help assess if and where
the instrument may provide information about atmospheric
state that is not captured by the existing reanalysis product.
If the model accurately represents all observed atmospheric
structures, this would imply that the observations do not add
information content, and by extension, value.

Overall the MPD retrieved profiles tend to capture the wa-
ter vapor structure fairly well. The short pulse data tends to
deviate from the sonde more at higher altitudes and gener-
ally exhibits higher uncertainty than data making use of long

Atmos. Meas. Tech., 19, 405-420, 2026

pulse data. The long pulse data is not available below 500 m
due to biases in the signal below these altitudes. Notably, by
leveraging the short pulse data, the MPD retrieval is able
to capture a dry inversion layer below 500 m on 29 Octo-
ber 2024 14:33:07 UTC as can also be seen in the example
data in Fig. 3. This inversion is otherwise missed when us-
ing long pulse data and the ERAS data entirely misses the
feature. On the last sonde (1 November 2024 16:31:30) the
short pulse length was 100 ns. In this dataset, the short pulse
and the combined retrieval (with optimized regularizer) are
both very noisy. This suggests that some of the processing
criteria are not necessarily well tuned for this configuration
(e.g. masking criteria and minimum altitude of long pulse).
The forward model of the 100 ns short pulse may also be less
accurate as the rise time of the amplifier output is not neces-
sarily negligible at this short of a pulse length. However the
excessive noise likely stems from improper regularizer se-
lection, as the combined processing using a fixed regularizer
is not nearly as noisy and appears to recover the water vapor
structure relatively well. This demonstrates how optimization
of the regularizer may not always produce the best results
when corrupted data is used to estimate the optimal values. It
also demonstrates how further work on establishing optimal
pulse length combinations would be highly useful for estab-
lishing the best mode of operation for this multi-pulse-length
technique.

Performance statistics of the absolute humidity estimates
are conducted by interpolating the estimate onto the sonde’s
higher resolution altitude data (ensuring that lower resolu-
tion retrievals are appropriately penalized). The root-mean-
square-difference, mean difference, standard deviation of dif-
ference and correlation coefficient are then calculated for all
estimates using the sonde absolute humidity as reference. We
also calculate and report the data availability. For the pur-
poses of this aggregate analysis, MPD data with uncertainty
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regularizer optimization (red), and with radiosondes (gray) launched during the Marshall test in October/November 2024. Also shown are
the ERAS estimates of absolute humidity (dotted black) interpolated to the MPD location.

greater than 0.5 gm™> are masked in the data quality con-
trol process. It should be recognized that by making masking
more aggressive, most error analysis statistics will improve
(assuming effective error metrics). Thus, it is critical that we
also include metrics on data availability to balance the mask-
ing criteria.
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A summary of these metrics for all radiosonde launches
is shown in Table 1. Over the full 0-6km range, the best
retrieval is obtained from the combined processing with reg-
ularizer optimization. However, we note that the combined
processing without regularizer optimization performs nearly
as well and has the highest data availability. In the low-
est 1 km, the combined fixed regularizer also has the highest
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Table 1. Analysis of absolute humidity estimate differences with radiosondes over ranges from 0 to 6 and O to 1 km.

Range  Product datapoints RMSD mean std. Correlation
0-6km
Combined 8499 033 0.16 0.28 0.980
Long 7824 033 018 027 0.978
Short 6420 037 0.06 037 0.962
Combined Fixed Reg. 8931 034 0.14 031 0.975
ERAS 13478 042 017 038 0.959
0-1km
Combined 1647 047 035 031 0.936
Long 1307 045 036 025 0.967
Short 1700 046 022 040 0.893
Combined Fixed Reg. 1808 044 033 029 0.953
ERAS 2365 0.81 0.39 0.72 0.840

data availability and the lowest RMSD but is slightly out per-
formed by the long pulse in correlation coefficient. However
this improvement in correlation in long pulse data is likely
the product of simply not capturing lower altitude structure
(it has the lowest data availability). In this aggregate analysis
for both altitude ranges, ERAS has lower RMSD and correla-
tion coefficients than all MPD retrievals; however, it has full
data availability. The lower performance of ERAS is most
pronounced in the lower 1 km analysis, highlighting a poten-
tial area of weakness for the product in an area that maybe
very important for high impact weather analysis.

A range-resolved aggregate analysis of MPD products and
ERAS compared to all nine sondes is shown in Fig. 6. Here
we plot the fraction of data available as a function of altitude
(note that ERAS data availability is not shown as it is 1.0
in all cases) as well as range-resolved RMSD and correla-
tion coefficients. Both combined retrievals tend to have data
availability comparable to the long-pulse cases at higher al-
titudes, but comparable to short-pulse instances at lower al-
titudes. For most cases where data is available, the RMSD is
comparable across all the pulse length configurations. Be-
tween altitudes of 500 m and 4 km, the absolute humidity
of ERAS has similar RMSD to the MPD processing with a
slightly lower correlation coefficient. However below 500 m
the ERAS has noticeably larger RMSD and lower correla-
tion coefficient. Above 4km, the MPD correlation coeffi-
cients drops below that of the ERAS and continues to drop
in altitude while the RMSD remains somewhat similar to the
ERAS. Note that at higher altitudes, absolute humidity tends
to be lower, so RMSD will naturally tend to decrease if the
signal processing does not become excessively noisy. This
also means achieving high correlation coefficients at these
altitudes requires very high sensitivity to changes in absolute
humidity which may be below the uncertainty of the instru-
ment at these higher altitudes. It should be recognized how-
ever, that the MPD is still well suited for capturing atypical
(non-canonical) cases of higher absolute humidity at higher
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altitudes which may be missed or poorly resolved by model-
s/reanalysis and passive profilers. An example of this is seen
in Fig. 3 between 05:00 and 10:00 UTC at 3 km. This feature
is not included in the aggregate analysis as no sondes were
launched during that time.

The aggregate analysis supports the claim that a joint re-
trieval of absolute humidity with both long and short pulse
data captures the best of both approaches. This combined ap-
proach enables low-altitude data collection (below 500 m)
and comparable or better data availability throughout the
6 km profiles as either pulse configuration.

While this analysis has focused on treating 1pus pulses
as “long”, we should note that this pulse length was orig-
inally selected as a reasonable compromise between mini-
mum altitude and SNR. As such, it might be the case that
even longer pulses would be more advantageous and provide
a better compliment to the short-pulse observations. Further-
more, there is also no reason to expect that a combination
of only two pulse lengths would be optimal. The hardware
developed for this capability and the signal processing pre-
sented here could be applied to a variety of pulse length com-
binations and are not restricted to just two. Finally, this work
makes use of individual square laser pulses; however, simi-
lar processing could be applied to a variety of pulse shapes
and sequences. In short, there is considerable need for fur-
ther research into lidar pulse configurations to maximize the
capture of information content from atmospheric scenes.

In baselining MPD results against ERAS, it should be rec-
ognized that the sonde sampling represents a small dataset
and most of the cases considered here do not represent com-
plex or high-moisture scenes that are difficult for models to
resolve, nor are they necessarily associated with high impact
weather. Assuming that the MPD profiles of absolute humid-
ity structure are representative of the true atmosphere, Fig. 3
serves as a demonstration of how the ERAS5 may miss sig-
nificant amounts of structure in the water vapor field and
have substantial errors particularly at the lowest altitudes.
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Figure 7. Processing cost in GPU hours for all dates considered in
this work using different approaches. Processing considered here
are based on what channels are processed (Combined, long pulse
data, short pulse data) and whether a regularizer search is per-
formed.

Recent work showed that low vertical resolution observa-
tions (equal or coarser than 500 m) “are not sufficient for
profiling with the intention of calculating PBL convection
parameters” (Hoffman and Demoz, 2025). The question as
to whether ERAS is a sufficiently accurate representation of
the water vapor field likely depends on how the data drives a
particular analysis and how smaller-scale features, or vertical
distribution of water vapor, impact the results. ERAS reanal-
ysis is frequently used in case studies attempting to identify
the atmospheric state that leads to convection (e.g., Tuck-
man and Emanuel, 2024) and has been adopted as a stan-
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dard for the field in training Al numerical weather models
(e.g. Schreck et al., 2025; Price et al., 2025). The results pre-
sented here (particularly the example shown in Fig. 3) raise
some questions about whether over reliance on convenient
products (high coverage and data availability) could eventu-
ally hinder or impose a performance ceiling on developments
in atmospheric science and Earth system prediction. The ca-
pability to continuously profile at horizontal and vertical res-
olutions capable of capturing shortcomings in models and re-
analysis (where and why they fail or succeed) is likely a key
step in advancing models of the Earth system beyond current
limitations.

4.1 Optimization time

Processing a single day with a full regularizer search took
between 4-10h depending on resource availability (number
of GPUs) on the Casper computing cluster, termination cri-
teria, and the complexity of the observed scene. The com-
putational cost to fully process a day of data ranges from
50-200 GPU hours. However, if we omit the regularizer opti-
mization step, this significantly reduces processing time and
cost. Typically, processes on the GPU are completed in less
than two hours. For the scenes considered here, the median
GPU hours used to process the combined (using both long-
and short-pulse data) data is 145. However, for fixed regular-
izer (which has been selected based on typical values), the
median GPU hours are 0.86. Note that all processing hours
calculated include two processing runs for uncertainty esti-
mation, as described before. A plot showing the total GPU
processing hours for all cases considered here is shown in
Fig. 7. While processing cost can be significant, omitting the
regularizer search significantly reduces this cost.

The PTV processing routine can run on CPUs but with
significantly reduced speed compared to GPUs (highly par-
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allel GPU architecture is well optimized for accelerating
image processing routines). The speed of processing varies
significantly depending on the number of CPUs employed.
We found with some cursory benchmarking that a single
CPU process is relatively slow with the PTV optimiza-
tion running at 0.03 iterations per second. Four CPUs in-
crease the speed to 0.2 iterations per second and eight CPUs
0.3 iterations per second. This is in contrast to the GPU exe-
cution speed which is 3—6 iterations per second. Thus, there
is clearly a significant speedup achieved with GPU hard-
ware, but executing daily processing without optimizing reg-
ularizer can be performed on CPU-based servers. Process-
ing a single day’s worth of data with fixed regularizer set-
tings would typically take about 8 h (assuming no paralleliza-
tion for multiple runs to calculate uncertainty), which is fast
enough to keep up with the daily data stream.

All processing that includes regularizer optimization was
conducted on the Casper computing system operated by
NSF-NCAR which, at the time of this work, has 52 Nvidia
V100 GPUs. The number of GPUs available to parallelize the
regularizer search depends on the amount of GPU use from
other users and can vary throughout the process.

Processing without regularizer optimization is conducted
on a standalone server which has two Nvidia Quadro RTX
5000 GPUs. Having two GPUs enables simultaneous pro-
cessing of both initial conditions for uncertainty estimation.
There does not appear to be a substantial difference in pro-
cessing speed or performance between the Quadro and V100
hardware models.

5 Conclusions

In this work we demonstrate an approach to denoising and
inverting absolute humidity from an MPD transmitting al-
ternating long (1 ps) and short (200 or 100 ns) laser pulses.
In doing this, we are able to obtain water vapor estimates at
lower altitudes than is possible with the longer pulses, but
also at higher altitudes than are possible with just the short
pulses. Through a validation analysis with sondes, we show
that the combined method has comparable performance to
the better of the two individual pulses. We also note that the
selection of pulse lengths for this analysis was fairly arbi-
trary. Further investigation of the optimal pulse lengths (in-
cluding the number of different variants) may further im-
prove the performance of the retrieved products.

A baseline comparison to ERAS reanalysis shows the cur-
rent combined MPD retrieval produces a clear water vapor
profiling improvement below 500 m with comparable aggre-
gate performance above this altitude. This highlights the im-
portance of the new short pulse observations as this region is
difficult to interrogate with the long pulses alone. However
the example data also highlights how reanalysis may struggle
with atypical water vapor structure and vertical distribution.
For the limited cases shown here, the benefits of MPD water
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vapor observations are most apparent in the lowest altitudes.
However, models will likely need other corrections from ob-
servations, and the specific factors influencing this need are
not presently well known. Given that ERAS has been adopted
as a standard for the field as training and validation data in Al
numerical weather models, it raises some questions the how
that practice may impose a limit the performance of those
models.

PTV processing has consistently been shown to produce
more accurate data products than standard inversions. In this
case, PTV also merges products that would otherwise be very
difficult to combine due to the variable pulse length struc-
ture. However, PTV performance typically comes at the cost
of longer processing times. In this work, we show that some
performance sacrifices can be made to significantly speed
up the PTV processing and make it practical for rapid de-
livery of results. By omitting optimization the regularizer to
the scene, processing of an entire day typically completes in
less than an hour. The omission of this optimization step is
equivalent to setting a fixed smoothing kernel across scenes,
which, to our knowledge is more common than optimizing
them on a scene-by-scene basis. Our analysis suggests that
this fixed regularizer approach to processing MPD data per-
forms nearly as well as the full processing approach (in some
cases better such as on 1 November 2024) when the regular-
izer parameters are chosen well.

Overall, this work demonstrates the advantages of diode-
laser flexibility in lidar architectures. In spite of their rela-
tively low peak powers, it is possible to operate diode-lasers
and process the data to produce high quality, low error esti-
mates of water vapor from 100 m up to 6 km. This, in com-
bination of a number of practical benefits such as cost, eye
safe transmitters (class 1M) and invisible wavelengths makes
such approaches well suited to potential large scale network
deployment. By developing complimentary hardware config-
urations and signal processing approaches, we have shown
clear benefits in both water vapor retrievals and backscatter
estimates. Development of these techniques may enable high
performance observational capabilities on airborne and space
borne platforms with instruments of lower size, weight and
power.

Code and data availability. MPD data is cataloged in the NSF
NCAR Earth Observing Laboratory’s Field Data Archive with
the following URL and digital object identifier: https://data.
eol.ucar.edu/dataset/100.034 (last access: 25 June 2025) and
https://doi.org/10.26023/MX0D-Z722-M406 (NCAR/EOL-MPD-
Team, 2020). The optimizer used for regularized maximum like-
lihood estimation in this work has been made publicly available at
https://github.com/NCAR/Spiral Torch (Hayman et al., 2025).
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