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Abstract. Surface precipitation measurements are essential
for Earth system model (ESM) evaluation and understanding
cloud processes. An ever-growing need for robust, tempo-
rally evolving, and easy-to-use statistical datasets provides
motivation for a baseline ground-based precipitation prop-
erties data product. The U.S. Department of Energy Atmo-
spheric Radiation Measurement (ARM) user facility oper-
ates an extensive suite of precipitation instruments with var-
ious sensitivities and operating mechanisms, which render
the decision of which instrument to use based on one or
more fixed thresholds challenging and prone to errors and
bias. Using a long-term instrument inter-comparison from
a unique per-precipitation event perspective, rather than in-
stantaneous sample comparison, we demonstrate that ARM
rainfall-measuring instruments are generally consistent with
each other at the statistical level. Inter-instrument deviations
at the single event level can be large, especially for spe-
cific rainfall event properties such as maximum precipitation
rates. A machine-learning (ML) analysis using a random for-
est regressor indicates that in some cases, depending on in-
strument, local site climatology, and/or specific deployment
configuration, certain atmospheric state variables influence
the measured quantities in an unpredictable manner. Thus,
a-priori weighting of different instruments does not neces-
sarily lead to more accurate and less biased synthesis of in-
strument data. These results motivate the design of the ARM
precipitation best-estimate (PrecipBE) value-added product,
which incorporates all valid precipitation data while consid-
ering data quality and other instrument limitations.

PrecipBE consists of time series and tabular statistics
datasets in an easy-to-use and insightful per-precipitation
event format. It provides a large set of precipitation event
properties supplemented with ancillary data from ARM
datasets that correspond to the detected precipitation events.
We describe the PrecipBE algorithm and demonstrate its use
via the examination of a single-day output as well as a long-
term trend analysis of precipitation events at the ARM South-
ern Great Plains (SGP) site, covering more than 30 years
of data. The trend analysis tentatively suggests a long-term
temporal tendency for mainly shorter and less intense pre-
cipitation events at the SGP site, but a long-term increase in
annual rainfall by more than 36 mm (5 %) per decade. This
rainfall trend is catalyzed primarily by more extreme event
properties of relatively rare, intense precipitation events, with
event total and 1 min maximum precipitation rate at a 1 year
timeframe increasing up to 5 mm and 9mmh~! (several per-
cent) per decade, respectively. While the currently available
PrecipBE datasets (at https://adc.arm.gov/discovery/, last ac-
cess: 8 December 2025) cover rainfall from multiple ARM
deployments up to March 2025, PrecipBE is planned to be
expanded to include solid-phase precipitation and will soon
become an operational product with a several-day lag from
real-time. We invite the ARM user community to leverage
this new product and welcome user feedback to further en-
hance the dataset.
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1 Introduction

Surface precipitation measurements serve as a crucial
benchmark in Earth system model (ESM) evaluation (e.g.
Emmenegger et al., 2022; Mikkelsen et al., 2024; Zhang
et al., 2017) and aerosol-cloud interactions (ACI) studies
(e.g. Christensen et al., 2024; Martin et al., 2017), among
other process understanding efforts. Detailed case studies us-
ing surface precipitation data often require temporally evolv-
ing precipitation rate and accumulation data to account for
the dynamic nature and short time scales of cloud evolution
relative to the typically slower-evolving atmospheric state
(e.g. Bretherton et al., 2010). These time series data serve
as target quantities (benchmarks) for model simulations or
analytical models. Certain precipitation-characterizing dis-
drometers, such as laser and video disdrometers, provide ad-
ditional observational constraints on the precipitation proper-
ties, such as hydrometeor particle size distributions (PSDs).
ESM evaluation studies, on the other hand, often rely on
bulk statistics or data subsets and, therefore, utilize isolated
precipitation event statistics after conditioning on quantities
such as surface temperature, for example.

The U.S. Department of Energy Atmospheric Radi-
ation Measurement (ARM) user facility (Mather, 2024;
Mather et al., 2016) operates multiple types of precipitation-
measuring instruments, including impact (Bartholomew,
2016a), video (Bartholomew, 2020b), and laser disdrome-
ters (Bartholomew, 2020a), as well as tipping and weigh-
ing bucket rain gauges (Bartholomew, 2019; Kyrouac and
Tuftedal, 2024). Each instrument tends to have higher sensi-
tivity and/or better accuracy during certain precipitation con-
ditions (e.g. Ciach, 2003; Fehlmann et al., 2020; Ro et al.,
2024; Wang et al., 2021). For example, the Pluvio2 weigh-
ing bucket operated by ARM tends to be robust at high
rainfall rates (Ro et al., 2024; Saha et al., 2021). The OTT
Parsivel2 (LDIS; Bartholomew, 2020a), distributed in many
ARM sites, is generally considered robust, but has been
shown to suffer from biases at a specific drop size range
(e.g. Raupach and Berne, 2015) and to underestimate the
vertical velocity of drops larger than 1 mm, which translates
to precipitation rate underestimation (Tokay et al., 2014).
Similarly, the two-dimensional video disdrometer (VDIS;
Bartholomew, 2020b) is often treated as a reference precip-
itation instrument, specifically when the drop PSDs are of
interest (e.g. Tokay et al., 2020). However, this instrument is
more likely to underestimate rainfall amounts in cases with
drops smaller than roughly 0.3 mm (corresponding to its first
size bin) or when large drops (>~ 2.4 mm; often commensu-
rate with heavy precipitation) are observed, due to terminal
velocity underestimation (e.g. Tokay et al., 2013).

The availability of independent studies evaluating the per-
formance of precipitation instruments under strict labora-
tory conditions (e.g. Colli et al., 2013; Lanza et al., 2010;
Lanza and Vuerich, 2009; Saha et al., 2021) is still scarce.
Moreover, comprehensive analyses of precipitation errors as
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a function of various background conditions (high wind, etc.)
and deployment configurations (e.g. Montero-Martinez et al.,
2016; Montero-Martinez and Garcia-Garcia, 2016; Wang
et al., 2021), let alone snowy conditions (e.g. Battaglia et al.,
2010; Milewska et al., 2019; Yuter et al., 2006), is still lim-
ited and requires additional research. In the interim, however,
determining the “true” precipitation properties or weighting
different ARM instrument samples based on the current lit-
erature is prone to unpredictable errors and biases. There-
fore, as comprehensively discussed below, straightforward
statistics combining data from measurements collected (per
deployment) would ostensibly provide the best estimates of
precipitation event properties (onset and ending, accumula-
tion, precipitation rates, etc.).

Here, we first present a long-term multi-instrument inter-
comparison of rainfall event data collected at the ARM
Southern Great Plains (SGP; Sisterson et al., 2016) obser-
vatory (Sect. 2). Supported by the application of a machine
learning (ML) algorithm (a random forest regressor), this
analysis underscores the challenge in such cases of multi-
instrument data without a clear and consistent “true” bench-
mark. The results from this comparison serve as a strong
motivation for a best-estimate data product implementing
straightforward statistics. These comparison results are also
used to guide the design of the ARM precipitation best-
estimate (PrecipBE) value-added product (VAP), the pro-
cessing algorithm of which is elaborated on in Sect. 3.
Section 4 describes PrecipBE’s data structure, and Sect. 5
presents a brief trend analysis using more than 30 years of
ARM precipitation data from the ARM SGP site, available
on the ARM Data Discovery (https://adc.arm.gov/discovery/,
last access: 8 December 2025). Conclusions and a short out-
look are given in Sect. 6.

2 Instrument Inter-Comparison as Motivation for a
Best-Estimate Data Product

2.1 Data Processing

Which precipitation instrument has the most reliable precip-
itation readings and should be used by default in given con-
ditions? An answer to this question is not trivial. First, pre-
cipitation instruments have different sensitivities, which are
influenced by ambient conditions and are often impacted by
the same variables they aim to measure, namely, precipitation
amount, rate, or particle properties, as noted above. In ad-
dition, those instruments have minimum quantization sizes,
which could result in inconsistencies concerning precipita-
tion event onset and ending times, leading to differences in
event totals. As such, data mining efforts aimed at deter-
mining those instrument strengths and weaknesses require a
baseline definition of precipitation events instead of typical
instantaneous sample comparisons. In this section, we per-
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form an inter-comparison on a per-event basis by examining
inter-instrument differences in rainfall event properties.

The analysis focuses on rainfall data collected at the
ARM SGP site’s co-located central (C1) and extended fa-
cility 13 (E13) over a 14 year period, from 10 January
2011 to 10 January 2025. A list of the instruments and data
products analyzed is provided in Table 1. (Refer to https:/
armgov.svcs.arm.gov/capabilities/observatories/sgp, last ac-
cess: 8 December 2025, for site information and central fa-
cility layout.) For a given instrument, we define a rainfall
event as a set of accumulated precipitation samples (at tem-
peratures greater than 3 °C) with gaps between neighboring
precipitation readings (samples) shorter than 30 min. (larger
gaps in event definition such as 60 min were tested and exhib-
ited minor changes; not shown). Instrument events continu-
ing to the next day are concatenated as long as they follow the
same 30 min maximum gap logic. If the total accumulation in
a given instrument event is smaller than 0.1 mm, it is omitted
from this analysis. Instrument events that failed quality con-
trol (QC) checks (for calibration issues, bad samples, etc.) in
some or all event samples are also omitted from this analy-
sis. Finally, a given event is also omitted if it indicates highly
unlikely statistics; specifically, event total > 300 mm, event
period > 5d, mean precipitation rate > 120mmh~!, and/or
1 min average maximum precipitation rate > 300 mmh~!.
Some of these thresholds have been met and confirmed in
recorded history (e.g. Koralegedara et al., 2019; Lagouvar-
dos et al., 2013), but to our knowledge, have not previously
occurred during ARM deployments. However, these thresh-
olds are rarely exceeded in instrument samples, for vari-
ous reasons, and account for up to a few percent (< 2.5 %)
of precipitation events detected using all ARM SGP instru-
ments (counting from 2011), except for the optical rain gauge
(ORG; Bartholomew, 2016b), with nearly 9 % of detected
events having one or more variables exceeding these thresh-
olds. We note that ARM is in the process of retiring the ORG,
which will not serve as a data source going forward.

To streamline the interpretation of analysis results, we se-
lect a “reference” instrument to examine deviations of events
from one instrument to another. Thus, we inter-compare pairs
of instruments, with one of them being the “reference” in-
strument. This “reference” instrument is not a “true” bench-
mark, as in the case of the World Meteorological Organisa-
tion (WMO) rainfall intensity intercomparison, for example
(Lanza et al., 2010; Lanza and Vuerich, 2009; Vuerich et al.,
2009), during which only maximum precipitation rates per
event were evaluated against a reference set of carefully cal-
ibrated rain gauges. Here, however, the related biases of the
“reference” instrument can still be characterized. For exam-
ple, in cases where most or all other precipitation instruments
show a consistent deviation from the reference, we can ten-
tatively conclude that the observed bias originates in the ref-
erence instrument.

Ideally, the best reference instrument would be the tipping
bucket rain gauge (TBRG), because it was the first deployed
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precipitation instrument at the ARM SGP site (since 1993),
and is still operational, covering the whole operation period
of all other precipitation instruments. However, the TBRG
has a very coarse precipitation amount least count (minimum
detection of 0.254 mm; 0.1 in.; cf. Table 1), rendering its sen-
sitivity and general accuracy (in weak events) inadequate for
serving as a reference instrument (as demonstrated below),
especially compared to other instruments such as disdrome-
ters. Therefore, we chose to use the Present Weather Detector
(PWD), which is integrated in the ARM Surface Meteoro-
logical System (MET; Kyrouac and Tuftedal, 2024), as the
reference instrument. The PWD has a very long record at the
ARM SGP site, starting on 10 January 2011, enabling inter-
comparison with a wide range of instruments.

One of the main challenges in a per precipitation-event
multi-instrument inter-comparison is associating individual
instrument precipitation events with the reference instrument
event, primarily due to the different onset and event duration
times. This could explain why, to our knowledge, event char-
acterization is typically limited to the synthesis of only two
instruments (i.e. instrument pairs), a specific case that is more
straightforward to resolve (e.g. Keefer et al., 2008), or operat-
ing on fixed-duration windows such as defining an event as a
day with recorded precipitation above a certain set of thresh-
olds as in the case of the WMO intercomparison (which in
practice, also used the “instrument pairs” approach). This
challenge is exemplified in the simplified diagram shown in
Fig. 1. In this case, three precipitation events are identified
in the PWD data (reference instrument). One or more events
detected with other instrument data can be aggregated and
become associated with a given reference instrument event
(as a single event). For example, events 1 and 2 detected us-
ing the LDIS are associated with the PWD’s event number
1, while events 3, 4, and 5 detected using the TBRG data
are associated with the PWD’s event number 2. However, to
prevent event conflicts in the inter-comparison, multiple ref-
erence instrument events cannot be associated with a single
event detected using a different instrument. In such cases, the
instrument events are omitted from the inter-comparison. For
example, event 1 detected using the VDIS or the LDIS event
4. In the latter case, we have interlacing conditions, resulting
in the exclusion of LDIS event 3 as well since including it
would likely result in a negative bias when comparing it to
the PWD’s event number 2.

This event association and aggregation exercise results in
the removal of some instrument pair events. Removal per-
centages range from 0.7 % of TBRG events to 53 % of the
PWD event pairs with the Belfort weighing bucket rain gauge
(RAINWB). Smaller conflicting percentages, such as in the
case of the TBRG or the Pluvio2 weighing bucket (WBPLU-
VIO2) with 4.5 % of events being conflicted with the refer-
ence instrument, are often the result of the compared instru-
ment tending to record shorter events than the reference (see
the TBRG vs. PWD example in Fig. 1). Larger conflicting
percentages, such as in the case of the RAINWB or the Joss—
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Table 1. Precipitation instruments and data products included in the analysis presented in Sect. 2 and incorporated in the PrecipBE value-

added product. The effective quantization increments refer to the reported precipitation variable’s increments converted to mmmin™ .

1

Abbreviated name

Description

Temporal resolution
and effective quanti-
zation increments

Reference

PWD!-2

Vaisala RAINCAP acoustic sensor as
part of the Present Weather Detector, a
component of the surface meteorologi-
cal system (MET) at the main observa-
tory

1 min

0.01 mmmin~!

Kyrouac et al. (2021), Kyrouac and
Tuftedal (2024)

AOSMET!2

Vaisala RAINCAP acoustic sensor as
part of the meteorological station asso-
ciated with the Aerosol Observing Sys-
tem (~ 10 m above ground)

1s
0.00016 mm min~!

Kyrouac (2019a), Kyrouac and Tuftedal
(2010)

DISDROMETER!+23

Joss—Waldvogel impact disdrometer

1 min
0.00001 mmmin~!

Bartholomew (2016a), Wang (2006)

VDISQUANTS!+2

Joanneum Research two-dimensional
video disdrometer quantities value-
added product

1 min
0.00006 mm min ™~

Bartholomew (2020b), Hardin et al.
(2020, 2021)

LDQUANTS!:2

OTT Parsivel2 laser disdrometer quan-
tities value-added product

1 min
0.00006 mm min~!

Bartholomew (2020a), Hardin et al.
(2020, 2021)

WBPLUVIO2!:2

OTT Pluvio2 weighing bucket rain
gauge

1 min

0.01 mmmin~!

Bartholomew (2019), Zhu et al. (2016)

TBRG!2 Novalynx Tipping bucket rain gauge; 1min Kyrouac et al. (2021), Kyrouac and
commonly part of the MET system 0.256 mmmin~—! Tuftedal (2024)

METWXT, Vaisala RAINCAP acoustic sensor 1s Holdridge and Kyrouac (2012), Howie

PRECIPMET, as part of the Vaisala WXT520 or 0.00016 mmmin~! et al. (2016), Kyrouac (2019b), Ky-

MARINEMET, and WXT530 meteorological instrument rouac et al. (2017), Kyrouac and Shi

ABMMET? systems installed at various ARM and (2018), Reynolds et al. (2017)
ARM-related facilities

pws24 Vaisala FD12P Present Weather Sensor 1 min; Kyrouac and Tuftedal (2001), Ritsche
meteorological system 0.00016 mm min~! (2008)

RAINWB!4 Belfort weighing bucket rain gauge 5 min; Bartholomew (2016c¢), Shi et al. (2010)

0.001 mmmin~!
ORG!4 Optical Scientific, inc optical rain 1min; Bartholomew (2016b), Kyrouac et al.

gauge; commonly part of the MET sys-
tem

0.00015 mmmin~! (2021)

! Included in the analysis presented in Sect. 2. 2 Incorporated in PrecipBE (where available). 3 ARM changed the DISDROMETER code name to IDIS starting 8 April 2025.

outside the date span examined in this study. 4 Retired instrument.

Waldvogel impact disdrometer (DISDROMETER) data, with
47 %, often occur when the compared instrument tends to
longer events than the reference instrument (see the VDIS
events vs. PWD example in Fig. 1). We note that the filter-
ing of QC-flagged or anomalous reading events prior to the
aggregation exercise had minor influence on analysis results
(not shown), but it could theoretically be more impactful in
other cases.
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2.2 Inter-Comparison Results

Figure 2 shows probability density functions (PDFs) of pre-
cipitation (rainfall) event total amount based on the PWD
(panel a) and event total deviations of different ARM instru-
ments from the reference (i.e. the PWD; panels b—i). The dis-
tribution of event total amounts is strongly skewed (Fig. 2a)
with a PWD-estimated average of 5.3 mm, within the third
distribution tercile. The three terciles are mapped to the de-
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Figure 1. Simplified diagram exemplifying the challenge of associating precipitation events detected using different instruments when a
reference instrument is used. Here, the present weather detector (PWD) serves as the reference instrument, and its events are designated
using different font colors. Precipitation events detected using the laser disdrometer (LDIS), the video disdrometer (VDIS), or the tipping
bucket rain gauge (TBRG) become associated with PWD events only if they are not conflicting with it (event font colors match the associated

PWD events). Conflicting events are designated using the red font color.

viation PDFs in panels b—i, and indicate that the smallest de-
viations tend to be associated with the first tercile, whereas
the largest deviations between instruments and the reference
occur in top-tercile events, with deviations consistently being
smaller than their associated terciles’ right edge. Combined
with the shape of the PDFs, it is suggested that the vast ma-
jority of ARM precipitation instruments tend to be consis-
tent with each other, with mean deviations () smaller than
3 mm in magnitude and variability (represented here by the
standard deviation; o) being smaller than 10 mm. The PWD
appears to be consistent to the greatest extent with the TBRG
and the WBPLUVIO2 (means of 0.5 mm or less; o on the
order of 5mm; in Fig. 2b and i, respectively). Some instru-
ments and data products tend to record larger event totals
relative to the PWD (e.g. LDQUANTS in Fig. 2f, AOSMET
in Fig. 2g) whereas others exhibit a tendency for smaller
totals (e.g. VDISQUANTS in Fig. 2d, DISDROMETER in
Fig. 2h). These patterns are robust with the same qualitative
results and minor quantitative variations if only events with
totals greater than 1 mm are analyzed, for example, and de-
viations appear directly susceptible only to the magnitude of
the evaluated variable (i.e. event total) in the reference instru-
ment, as indicated by the mapped terciles (and examined via
linear regression; not shown). While the RAINWB is statisti-
cally consistent on average with the PWD (Fig. 2e), its vari-
ability is somewhat greater than the other instruments. How-
ever, it is the ORG’s deviations that stand out with a much
larger variability (~ 12 mm) and an average overestimation
by more than 4 mm (Fig. 2c) (see also Kyrouac and Tuftedal,
2024). This overestimation becomes stark when conditioning
on event totals greater than 1 mm with an average deviation
from the reference of +8 mm.

The differences between instrument precipitation event
measurements are relatively more variable when examining
event periods (Fig. 3). Similar to the event total, event pe-
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riods are positively skewed (Fig. 3a), averaging at 105 min,
just above the second tercile. The ORG measurements sug-
gest precipitation events that are even more strongly skewed
than the PWD, with durations longer by more than 40 min,
on average, and considerable relative inconsistency (devia-
tion o exceeding 130 min; Fig. 3c). (Note that some of the
positive PDF skewness is influenced by the aggregation and
filtering methodology discussed above). The DISDROME-
TER shows a greater tendency, with precipitation events last-
ing 120 min longer on average, and a trend toward extreme
values in cases within the third tercile (yellow-shaded areas
in Fig. 3h). The RAINWB exhibits an even more substan-
tial positive bias, exceeding 6 h (Fig. 3e). These long-event
tendencies reflect the challenge in aggregating precipitation
events, which resulted in the exclusion of a large subset of
samples taken by those instruments from this analysis. In
fact, the RAINWB event period bias and errors are so large,
to an extent that is highly challenging to reconcile in an inte-
grated dataset without introducing significant biases. In this
regard, the PWD role as a reference instrument can be justi-
fied in the current analysis by the instrument’s precipitation
measurement properties being “somewhere in the middle”
across the ARM precipitation instrument suite. The PWD’s
event period statistics and general instrument behavior is in
good agreement with the VDISQUANTS and LDQUANTS
VAPs (Fig. 3d and f, respectively), with average deviations
of a few minutes, as well as with the AOSMET with aver-
age deviations of 12 min (Fig. 3g). The TBRG (Fig. 3b) and
WBPLUVIO2 (Fig. 3i) display negatively skewed deviation
distributions, with mirror-like patterns compared to the ORG
and DISDROMETER, with some TBRG events lasting a few
minutes, all the while the corresponding PWD events exceed-
ing 1 h (see the second tercile’s edge in Fig. 3b).

The event 1 min-average maximum and event-mean pre-
cipitation rate comparisons (Figs. 4 and 5, respectively)

Atmos. Meas. Tech., 19, 485-506, 2026
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Figure 2. (a) Probability density function (PDF) of ARM SGP precipitation (rainfall) event total amount based on the PWD (bin width of
1.0 mm) and (b-i) PDFs of instrument deviations from the PWD, serving in this inter-comparison as the reference instrument (bin width of
0.5 mm). The purple, green, and yellow colored bars denote the three terciles of the PWD data (see legend in panel a), which are mapped
to the histograms in panels (b)—(i). The blue and orange curves designate histograms calculated while conditioning on event-mean relative
humidity (omitting likely foggy conditions) and wind speed (omitting strong winds), respectively, both derived from MET observations. In
each panel, see the legends for the total number of event samples (N), mean deviation (1), and standard deviation (o). Legend quantity units
are mm.
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Figure 3. As in Fig. 2, but for the event period (bin widths of 10 min; legend quantities are given in units of min).

suggest that most instruments are generally consistent with
each other at the bulk level, especially in the case of mean
rates, with all instruments except for the TBRG having av-

https://doi.org/10.5194/amt-19-485-2026

erage differences from the reference smaller than 2 mmh~!
(0.4mmh~! or less in the case of the VDISQUANTS and
LDQUANTS; Fig. 5d and f, respectively). All instruments
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Figure 4. As in Fig. 2, but for event 1 min-averaged maximum precipitation rate (bin widths of 2 and Immh~! in panels (a) and (b)—
(i), respectively; legend quantities are given in mmh~! units). The inset panels show feature importance analysis of various PWD event
properties and event-mean atmospheric state variables derived from MET observations. The feature importance results are derived from a
random forest regression model fit (see text) with the coefficient of determination specified at the top of the inset.
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Figure 5. as in Fig. 2 but for event-mean precipitation rate (in mmh~!; bin widths of 1 mmh~1).
except for the TBRG and ORG also exhibit standard devia- We do not see any indications for a significant negative
tions of 4mmh~! or less. bias of the event maximum precipitation rate by the PWD or

a positive bias by the LDQUANTS product (Parsivel2), as
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suggested by the WMO intercomparison (cf. Lanza et al.,
2010). Single-event deviations can be quite large, as de-
picted by distribution tails, but from a bulk perspective, the
instrument pair deviations generally tend to be evenly dis-
tributed around O mmh~! in most cases, and the PWD is
most consistent with the LDQUANTS (Fig. 4f) and WB-
PLUVIO2 (Fig. 4i). The agreement with the WBPLUVIO2
averages at 0.0mmh~! when conditioning on event totals
greater than 1 mm and wind speed smaller than 10ms~!
(not shown), close to the operation and filtering conditions
of the WMO intercomparison (see Lanza and Vuerich, 2009;
Vuerich et al., 2009; Sect. 3.1). This result contrasts with
the WMO intercomparison, where the Pluvio exhibited the
highest performance (Lanza et al., 2010; their Table 2). This
contrast is potentially influenced by deployment setup, site-
specific factors, and/or sample size (the WMO intercompar-
ison used approximately 1/10 the number of precipitation
events analyzed here).

In both the mean and 1 min maximum precipitation rates,
the TBRG (Figs. 4b and 5b) exhibits a distinct bi-modal PDF
shape, which originates in its coarse minimum least count of
0.254 mm. The events associated with the secondary peak in
the mean precipitation rate histogram (Fig. 5b) are at the third
PWD distribution tercile (yellow-shaded area), i.e. intense
enough to be detected by the TBRG, but too weak and/or
short to form consistent correspondence with the other in-
struments, and possibly influenced by some residual water
on the bucket’s “spoon”. The coarse TBRG least count, com-
bined with the 1 min sampling resolution, also results in weak
events being below the TBRG’s detection limit, as evident
by the lack of first tercile events (purple-shaded areas) based
on the maximum precipitation rate (Fig. 4b) and very few
weak events when partitioned based on mean event precip-
itation rate (Fig. 5b). Accounting for this instrument limita-
tion by omitting precipitation events with total amounts less
than 1 mm results in behavior consistent with the aforemen-
tioned instruments and the disappearance of the bi-modal
PDF artifact (not shown), suggesting that higher event to-
tal thresholds should be used for the TBRG in an integrated
data product. The negative (positive) event period tendency
of the TBRG in Fig. 3b (DISDROMETER in Fig. 3h) are
compensated by the positive (negative) event-mean precipi-
tation rates observed in Fig. 5b (Fig. 5h), resulting in a net
event amount that is in agreement with other instruments,
as indicated in Fig. 2. While the 1 min maximum precipita-
tion characteristic is generally the most variable across the
various instruments (Fig. 4) due to the irregular, potentially
tempestuous nature of precipitation over the commonly-used
1 min precipitation instrument averaging period, combined
with sensitivity limitations of different instruments, the ORG
and RAINWB exhibit a much more erratic behavior. Specif-
ically, The RAINWB significantly underestimates both the
event 1 min maximum precipitation rate (Fig. 4e) and event-
mean precipitation rate (Fig. Se), which provides an extreme

Atmos. Meas. Tech., 19, 485-506, 2026

case of error compensation resulting in a moderate bias, as
seen in the event total amount PDF (Fig. 2e).

2.3 Instrument Sensitivity, Deployment Configuration,
and Atmospheric State Effects on the
Inter-Comparison Results

Ambient conditions can influence deviations between instru-
ment measurements, often as a function of the instrument
operation mechanism (e.g. Bartholomew, 2016¢, 2020a; Ky-
rouac and Tuftedal, 2024; Montero-Martinez et al., 2016;
Wang et al., 2021). In the secondary (curved line) PDFs il-
lustrated in Figs. 2-5, we examined the impact of some of
these influencing factors. Specifically, by excluding events
with event-mean relative humidity exceeding 99 % (likely
foggy conditions; accounting for the MET system’s uncer-
tainty) or events with event-mean wind speeds higher than
10ms~! (high winds), some of the potential impact of these
forcings on event statistics can be evaluated. The effect of rel-
ative humidity (RH) appears somewhat limited, with mixed
behavior of increasing or decreasing the deviation magnitude
or standard deviations. This mixed and weak behavior could
be due to the RH threshold used and/or because the examined
instruments are less influenced by ambient moisture effects.
The wind speed PDFs, however, indicate that conditioning
for high winds tends to reduce the instrument deviation mean
and standard deviations in all four examined parameters.

To further demonstrate the often site-dependent challenge
of disentangling the influence of different parameters on dif-
ferences in precipitation event measurements and statistics,
we conduct a feature importance analysis using the Ran-
dom Forest (RF) regressor in the Scikit-Learn Python pack-
age (Pedregosa et al., 2011). We also perform the analysis
using datasets from two additional ARM deployments: The
main site at Houston, Texas, of the Tracking Aerosol Convec-
tion Interactions Experiment (TRACER; Jensen et al., 2023)
spanning 1 October 2021 through 2 October 2022, and the
Eastern North Atlantic central site at Graciosa Island (ENA;
see Mather, 2024; Wood et al., 2015) spanning 1 October
2013 through 14 January 2025, representing convective- and
stratiform-dominated regimes, respectively. (From this as-
pect, the SGP site, often characterized by continental shallow
convection, serves as a season-dependent mixture of the two
regimes).

The feature importance analysis enables ranking the fac-
tors (features) that are most influential on the fitted RF
model; i.e. features that have the most impact on the pre-
diction of the model’s target variable (in this case, inter-
instrument deviations). Using the default algorithm’s hyper-
parameters (100 estimators/trees, unlimited tree depth, etc.),
we input as features the four precipitation event properties
from the reference instrument (total, period, mean, and 1 min
maximum precipitation rates) as well as the event-mean tem-
perature, RH, pressure, wind speed, and wind direction mea-
sured by the MET system. We run the algorithm separately
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Figure 6. As in Fig. 4 but for the Tracking Aerosol Convection Interactions Experiment (TRACER) main site.

for instrument pairs and event properties; that is, a single RF
algorithm run examines the deviations of an instrument pair
across the four event properties (the target variable). Because
the purpose of this ML exercise is qualitative, for brevity, we
only present the results for the run using the event-maximum
precipitation rate, depicted for the SGP, TRACER, and ENA
sites in the insets shown in Figs. 4, 6, and 7, respectively. We
present, but overlook, RF fits in which the resultant coeffi-
cient of determination (R?) is negative, indicating a fit with
no predictive skill.

The PWD’s 1 min maximum precipitation rate distribution
for the TRACER main site (Fig. 6a) supports its designation
as a “convective” site with an average value (23.7 mmh~1)
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greater by roughly 20 % than the SGP and second tercile val-
ues greater than the SGP site’s value by nearly 40 %. The
ENA distribution, on the other hand, exhibits a tendency to-
ward weaker instantaneous precipitation rates, around 40 %
lower than at the SGP site, based on mean values and second-
tercile statistics in Fig. 7a. However, the general patterns of
instrument deviations relative to the reference (PWD in all
cases) indicate similar tendencies with regard to the average
deviation and variability, noting that the ENA PWD (Fig. 7)
tends to report lower maximum rates relative to all other in-
struments, which might be an indication of an instrument bias
(cf. Lanza et al., 2010).
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Figure 7. As in Fig. 4 but for the ARM Eastern North Atlantic (ENA) central site.

Focusing on the SGP feature importance results (Fig. 4b—
i), all instrument pairs with the PWD, except for the
RAINWB-PWD pair, are most influenced by a large mar-
gin by the event-max precipitation rates, suggesting the ex-
istence of some proportionality between the deviations and
the variable itself. This proportionality was also indicated in
joint distributions we tested, and the general dominance of
the examined target variable with its deviation feature (es-
timated relative errors for that matter) was seen in the vast
majority of cases (not shown). In those analyses, the other
examined features typically showed very weak, if any, pro-
portionality (not shown). The RAINWB-PWD pair (Fig. 4¢)
has the event-mean rate as the most dominant feature, which
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is also highly impactful in the case of the DISDROMETER
(ranked 2nd; see Fig. 4h), reflecting the tendency for some in-
consistent behavior of those instruments, as discussed above.

The feature importance analysis of the 1min maxi-
mum precipitation rates is less conclusive for the TRACER
dataset, with the two most important features being one of
the event maximum precipitation rate, the mean precipitation
rate, and the event total (Fig. 6b—g). This result is likely influ-
enced by the convective nature of this site’s dataset, reflecting
the tendency of heavy precipitation events to be associated
with large amounts, high intensity, and relatively short dura-
tion (hence, the mean rates are relatively high as well). How-
ever, in some cases, such as the wind speed in the AOSMET-
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PWD pair (Fig. 6f), lower-ranked variables are comparable
in amplitude, suggesting site- or deployment-specific con-
straints, some of which are not predictable in advance with-
out a detailed analysis. The wind speed is also the most in-
formative (ranked 1st) for the AOSMET-PWD pair in the
ENA dataset (Fig. 7c). This might suggest a wind-dependent
AOSMET instrument bias, but could alternatively indicate a
more general issue in the deployment configuration and/or
the combination of site climatology and weaknesses of some
instruments given that wind speed is ranked 2nd in the ORG-
PWD and the VDISQUANTS-PWD pairs (Fig. 7b and g)
and wind direction and speed are ranked 2nd and 3rd, re-
spectively, in the LDQUANTS-PWD pair (Fig. 7e). As noted
earlier, the accuracy of those instruments is known to be sus-
ceptible to high winds; hence, they are likely more influenced
by the climatologically stronger winds at the ENA site than at
the TRACER site. (None of the TRACER events are associ-
ated with event-mean winds stronger than 10 ms~!; compare
the orange and black curve statistics in Fig. 6b—g).

A tentative conclusion that can be drawn from these results
is that weighting different instruments based on their evalu-
ated sensitivities and accuracies from the literature can result
in greater bias due to unmatching background conditions as
well as unanticipated confounding factors, particularly when
combining climatological factors with specific deployment
setups. While additional quantitative characterization of in-
strument susceptibilities to deployment properties and condi-
tions is essential, a deployment-dependent study of this type
requires significant effort. The outcomes of such extensive
efforts are highly challenging to predict in advance. There-
fore, these data characterization studies often take place post-
deployment, when the collected dataset is sufficiently large to
produce substantial results (beyond the scope of this study).

Suppose one wishes to develop an operational, unbiased
(or at least, bias-mitigated) precipitation best-estimate data
product. In that case, given that they do not have a true bench-
mark, they need to be aware of all the factors described above
by performing robust characterization, which would ideally
require a best-estimate product — this presents a conundrum.
A first step towards resolving this conundrum would be to
assume, given the evidence from this inter-comparison about
instrument consistency, that the suite of ARM instruments
measure some perturbations from the true value, such that
their mean could serve as a best-estimate of the actual precip-
itation value, and that other statistics (e.g. minimum, maxi-
mum, and standard deviation) could be used to estimate con-
fidence intervals. (Note that because the number of available
instruments is typically limited, the traditional 10th and 90th
percentiles of a quantity as confidence intervals are of little
meaning in this case). This approach serves as the basis for
PrecipBE, ARM’s best-estimate precipitation data product,
described and demonstrated in the section below.
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3 The PrecipBE Algorithm

The PrecipBE VAP processing is performed on a per-
precipitation-event basis, leveraging ARM measurement ca-
pabilities, depending on instrument data availability per de-
ployment, while considering QC samples and ARM data
quality reports (DQRs). The VAP currently only synthesizes
rainfall data (with future expansion to solid precipitation); its
processing workflow is described in the flowchart shown in
Fig. 8.

Processing begins separately for each instrument. How-
ever, because given precipitation events can persist for more
than a day or through 23:59:59 UTC of a given day, data from
all available instruments are loaded for up to 7d following
the currently processed day, depending on whether a contin-
uing event is indicated by one or more of the available instru-
ments. This buffer data loading prevents precipitation event
biases driven by day-transition artifacts. Consistent with the
inter-comparison discussed above, a continuing event suspect
is identified if precipitation instances (precipitation amount
sample greater than 0 mm) are detected by a given instru-
ment less than 30 min from the end of the given day, i.e. after
23:30UTC.

Precipitation event processing is generally similar to the
methodology discussed in Sect. 2.1 until the event aggrega-
tion step of the flowchart. Following the inter-comparison re-
sults, the 0.1 mm cumulative precipitation event minimum is
applied to all instruments, except for the TBRG, in which
case a 1.5 mm threshold is used due to its coarse measure-
ment (equivalent to a minimum effective error of ~ 8.5 %),
and because it is more prone to sporadic counts (not shown).
In addition, given the RAINWB and ORG biases demon-
strated above, those two instruments are entirely omitted
from the PrecipBE algorithm (see Table 1).

During the aggregation stage, all valid instrument events
are aggregated together while following the 30min no-
precipitation logic discussed above. As such, if during the
aggregation stage, a continuing event suspect (precipitation
instances after 23:30 UTC by one or more instruments) is ul-
timately gapped by more than 30 min from the closest pre-
cipitation instance(s) during the following day, the event is
not a continuing event, and the loaded buffer day data are
discarded.

The PrecipBE algorithm robustly addresses potential is-
sues stemming from problematic data. Here, flagged events
(events with one or more QC samples or anomalous read-
ings) or events with associated DQRs are not omitted before
aggregation, as in the comparison above. Instead, all events
detected by a given instrument are still included in the ag-
gregation stage to resolve a PrecipBE event but are excluded
from the PrecipBE event statistics calculations if one or more
of them have one or more problematic samples. For example,
in the case of the diagram shown in Fig. 1, the commonly
occurring interlaced event configuration will end in a single
resolved PrecipBE event incorporating all four instruments
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Figure 8. PrecipBE processing flowchart.

(PWD, LDIS, VDIS, and TBRG), regardless of whether one
or more instrument events have problematic samples or an
associated DQR. Assuming that all instrument events are
valid, all four of them will be included in the statistics cal-
culation. However, assuming an issue with TBRG event 3,
for example, all TBRG events will be removed from the re-
solved PrecipBE event statistics, which will only incorporate
three instruments (PWD, LDIS, and VDIS). Assuming in-
stead that LDIS event 4 has problematic samples, PrecipBE
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will still resolve a single event, even if the period between
the end of VDIS event 1 and the onset of PWD event 3 is
greater than 30 min. In that case, statistics will be based on
the PWD, VDIS, and TBRG events. We note that other ap-
proaches, such as omitting those problematic events from the
aggregation stage as well, were extensively tested and re-
sulted in significant PrecipBE event biases driven by the spo-
radic nature of anomalous samples across instruments (not
shown). The currently implemented approach, therefore, pre-
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vents event onset and ending inconsistency issues at the ex-
pense of fewer incorporated instruments. This approach also
served as the main incentive for excluding the RAINWB in-
strument from the algorithm due to its substantial positive
event period biases (see Fig. 3e).

As suggested by the flowchart in Fig. 8, once the resolved
PrecipBE event statistics are calculated, they are used to gen-
erate time series data, followed by the export of daily Pre-
cipBE files, which are described below.

4 PrecipBE Dataset Structure and SGP Output
Demonstration

PrecipBE includes two datastreams (data set types) stream-
lining both process understanding and model evaluation
studies using ARM surface precipitation data. The first datas-
tream provides time series (evolving) precipitation data at
1 min temporal resolution, whereas the second includes per-
event statistics in an easy-to-use one-dimensional (tabular)
format. (PrecipBE data file structure and the utilization of
each of these datastreams is demonstrated in a Juypter note-
book available on the ARM Notebooks Github repository at:
https://github.com/ARM-Development/ARM-Notebooks/
blob/main/VAPs/precipbe/precipbe_intro.ipynb, last access:
8 December 2025).

The time series datastream (precipbetseries) provides the
temporally-evolving instrument-mean, minimum, maximum,
and standard deviation of event-cumulative precipitation and
1 min precipitation rates. Each timestamp indicates the num-
ber of instruments used, and flags are provided for events
detected using only a single instrument. The time series files
also include bitwise flag arrays for instrument availability,
invalid instrument samples, and instrument DQRs. Figure 9
shows an example of the PrecipBE time series output for two
events that started at the SGP site on 8§ November 2024, with
the second event ending just after 04:00 UTC of the follow-
ing day. Note that the cumulative precipitation (top panel)
zeros out after the end of the first event until the beginning
of the second event, enabling straightforward, low overhead,
analysis. For example, in the first depicted event, cumulative
precipitation increases at a varying rate with a short burst
around 09:45 UTC, during which a 1 min averaged precipi-
tation rate exceeding 200 mmh~! is observed by one of the
instruments (lower panel), with very weak and intermittent
precipitation in the final 4.5 h of this event.

The PrecipBE time series data suggest that none of the 7
available instruments were omitted from the statistics calcu-
lations of these two events due to flags, bogus samples, or ex-
isting DQRs. The time series data file provides information
about which instruments were available via its bitwise “avail-
able_instruments” field — in this case, the SGP C1 facility’s
VDISQUANTS and LDQUANTS VAPs, DISDROMETER,
and the WBPLUVIO2, and the SGP E13 facility’s PWD,
AOSMET, and TBRG. However, while this datastream pro-
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vides all available precipitation data converted to accumu-
lated totals in 1 min increments (in units of mmmin™'), ex-
amining statistics of particular events, such as the two de-
picted in Fig. 9 would require additional processing. Alter-
natively, one could use the PrecipBE statistics datastream
(precipbestats) files, which are only generated for days with
precipitation event onsets, having the number of timestamps
equal to the number of precipitation events that started on a
given day. In case of 8 November 2024, illustrated below, the
corresponding statistics data file includes two timestamps.
In each timestamp, precipbestats informs about statistics
of the given event such as the instrument-mean, minimum,
maximum, and standard deviation of onset, end time, period,
total amount, mean precipitation rate, 1 min-averaged maxi-
mum precipitation rate, and precipitation rate standard devi-
ation, as well as various flags and information such as which
instrument recorded the highest precipitation rate or smallest
total amount for that event. For example, the major precipita-
tion event depicted in Fig. 9 resulted in a cumulative amount
of ~ 54 &9 mm with an instrument minimum and maximum
of 43 and 75 mm, respectively. The statistics data file indi-
cates that the DISDROMETER recorded the maximum pre-
cipitation rate of 218 mmh~! during that event. In compar-
ison, the instrument-mean maximum precipitation rate was
more moderate yet still rather intense at 85 mmh~!. Finally,
the statistics dataset contains statistical information about the
surface-level atmospheric state during precipitation events,
with data harvested from (in order of preference) the MET,
the automatic weather station (MAWS; Holdridge and Ky-
rouac, 2017), or one of the Vaisala WXT systems operated by
ARM (see Table 1), as well as drop distribution moment data
derived using the VDISQUANTS or LDQUANTS, depend-
ing on availability. For example, the surface temperature dur-
ing the major 8 November 2024, event ranged between 9.3—
13.6 °C, with an average of 10.0 °C, while the event-mean
RH was 97.5 %. The even-mean liquid water content derived
by the VDISQUANTS VAP was 0.3 gm~>, and the average
mass-weighted mean drop diameter was ~ 1.5 mm.

5 Long-term Trend Analysis of PrecipBE Output for
the ARM SGP Site

Using PrecipBE statistics data files generated for the
SGP site, spanning 2 September 1993—4 March 2025 (~
31.5 years), we can easily examine precipitation event trends
at the ARM site. Figure 10 shows running-mean time se-
ries data that facilitates basic trend analysis. We depict both
curves calculated using the full dataset and curves calcu-
lated using a data subset derived only from multi-instrument
events. Ideally, one should be inclined to use precipitation
event properties and statistics derived from more than one
instrument, as they are considered more robust than those
based on a single instrument. However, ARM operated only
the TBRG starting in September 1993, ~ 14 months after the
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Figure 9. PrecipBE time series of two precipitation events that occurred on 8 November 2024, at the ARM SGP site, the second of which con-
tinued into 9 November. (Top) Per-event cumulative precipitation, (bottom) precipitation rates. The plot illustrates the instrument-minimum,
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SGP site launch, until April 2006, when the DISDROME-
TER was deployed as the first addition to the growing suite
of precipitation instruments ARM operates at the site. The re-
sults of the instrument inter-comparison in Sect. 2 indicated
that the TBRG is generally consistent with other advanced
precipitation instruments in event totals. It is also consistent
with other instruments in event precipitation rates, as long as
it is conditioned for event total greater than its least count by
some factor (e.g. effective uncertainties of 12.7 % and 8.5 %
at event total of 1 and 1.5 mm, respectively). We follow these
conclusions to derive the statistics depicted in Fig. 10, which
are also part of the motivation to examine 1 year-windows.
The 1 year running sum (annual) precipitation record
(Fig. 10a) largely shows little difference in annual amount
between the full dataset and multi-instrument subset, with
annual means of ~ 800 and ~ 750 mm (respectively) in
agreement with previous studies (cf. Sisterson et al., 2016).
The SGP annual rainfall is quite variable, with some years in
which the site experienced significant amounts (e.g. 2008 and
2019 exceeding 1100 mm), and others when the site exhib-
ited small amounts (e.g. below 400 mm in 2006 and 2011).
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Statistically significant linear fits suggest a decadal increase
in annual rainfall of more than 36 mm per decade (~ 5 %).
Those positive rainfall trends are qualitatively consistent with
studies that examined single-day precipitation amount trends
in station data over the south-central US, where the SGP
site is located (e.g. Harp and Horton, 2022; Sun et al., 2021,
their Fig. 2). The number of significant precipitation events,
referred to here as events with totals exceeding 1 mm, ten-
tatively suggests a statistically significant increasing trend
(Fig. 10b), commensurate with ~ 18 min (~ 7 %) decadal re-
duction in event period (not shown). Here, the higher event
total amount threshold mitigates the positive (negative) bias
in the number of events (event period) in the earlier years
of the SGP site, when the TBRG was the only operating
precipitation-measuring instrument, such that event proper-
ties are strongly influenced by the TBRG’s tendencies dis-
cussed in Sect. 2.2. Yet, between the full dataset and multi-
instrument subset during overlapping periods, a limited pos-
itive bias is still observed in the case of the number of events
(Fig. 10b). Therefore, all else being equal, it is more likely
that the decadal trend leans towards the multi-instrument
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Figure 10. Long-term trends in PrecipBE precipitation event properties for the ARM SGP site between 2 September 1993—-4 March 2025.
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subset, with an increasing trend in the number of events on
the order of 10 more events per year per decade. Given the
definition of precipitation events in PrecipBE (precipitation
instances gapped by less than 30 min), these results could in-
dicate a growing tendency to more precipitation from bro-
ken cloud systems, which could be related to observed trends
and feedbacks (e.g. Goessling et al., 2025; Loeb et al., 2024;
Sherwood et al., 2020; Song et al., 2023), yet additional re-
search using PrecipBE and other datasets is required to sup-
port this hypothesis.

From a bulk perspective, all else being equal, the re-
duction in the precipitation event period can be translated,
on average, to a trending decrease in event totals, which
is indeed suggested from Fig. 10c, consistent in both the
full dataset and the multi-instrument subset. Following the
same logic, one might expect an increasing average precip-
itation rate, but the 1 year running median of the event-
mean precipitation rates indicates a statistically significant
decreasing trend, consistent between the full and multi-
instrument datasets (Fig. 10d). By examining event period
in the multi-instrument subset, thereby mitigating the effect
of the TBRG’s negative event period bias (e.g. Fig. 3b), a
1 year running sum (annual) precipitation time (not shown)
indicates a minimal and statistically insignificant reduction.
Therefore, these results raise an apparent inconsistency be-
tween higher annual rainfall and shorter yet less intense
events, on average. However, this inconsistency can be rec-
onciled via examination of precipitation extremes in a 1 year
timeframe of event maximum 1 min-averaged maximum pre-
cipitation rates and maximum event totals (Fig. 10e and f,
respectively). These curves exhibit general consistency be-
tween the full dataset and the multi-instrument subset and all
except the maximum precipitation rate using the full dataset
indicate a statistically significant increasing trend in both
metrics: more than 9mmh™! per decade increase in max-
imum precipitation rate (6.5 %) using the multi-instrument
subset and between 2-5 mm per decade increase in extreme
event totals (~ 3 %—7.5 %) over a 1 year timeframe. Taken
together, this precipitation event trend analysis indicates that
the observed increase in annual rainfall could be catalyzed by
a few more extreme precipitation events taking place at the
SGP site. Examination of the causal sources of these trends
via counterfactual exercises and their attribution to potential
drivers such as regional natural variability (e.g. Higgins et al.,
2007; McKinnon and Deser, 2021) or changes to the local
land use (e.g. Krishnamurthy et al., 2025) remain a topic of
future studies.

6 Conclusions and Outlook

In this study, we presented an analysis of differences in ARM
precipitation instrument measurements from a unique per-
event perspective. Supported by an ML application to in-
strument differences to examine the importance of various
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atmospheric state variables and parameters, the analysis in-
dicates that, by and large, most ARM instrument rainfall ob-
servations are consistent with each other. Yet, deviations, oc-
casionally of significant magnitudes, often occur, and could
be driven by specific parameters such as relative humidity
and wind properties, which could be site and deployment-
dependent, or by differing instrument response functions to
the same parameters those instruments are aimed at measur-
ing (e.g. precipitation rates). Without additional prior knowl-
edge, these results suggest that, on a first-order basis, the best
estimate of precipitation properties is ostensibly that which
incorporates all available valid data, which motivates the de-
sign of the PrecipBE value-added product (VAP). That said,
while the analysis indicated that specific instruments show
some tendency for certain behaviors, such as shorter pre-
cipitation event periods in the case of the TBRG and WB-
PLUVIO2, other instruments, specifically, the RAINWB and
ORG exhibit clear and significant biases, which cannot be
ameliorated and therefore integrated into PrecipBE. Fortu-
nately, ARM retired the RAINWB several years ago, and the
ORG is in the process of being retired in 2025.

PrecipBE provides time series and tabular statistics
datasets that are easy to use and comprehensive, including
precipitation event properties, and are supplemented with an-
cillary data from various ARM datasets. Therefore, it is likely
that this VAP would become the baseline (go-to) precipita-
tion product for the ARM user community, augmenting the
derivation of scientific insights and streamlining model eval-
uation. Those features of this VAP were demonstrated via
the examination of a single-day output as well as a long-
term trend analysis of precipitation events at the ARM SGP
site. The trend analysis tentatively suggests mainly shorter
and less intense precipitation events at the SGP site, but also
a long-term increase in annual rainfall driven primarily by
more extreme event properties (event totals and maximum
precipitation rates) of relatively rare, highly intense precipi-
tation events. While we believe that numerous additional in-
sights about surface precipitation at the SGP and other ARM
sites can be derived via conditioning on various metrics re-
lated to drop size distribution moments, temperatures, diur-
nal cycle, time of year, etc. provided in the PrecipBE data
files, we leave such analyses for the ARM user community.
PrecipBE will soon become an operational product with a
several-day lag from real-time, and hence, its datasets will be
continuously updated and made available via the ARM Data
Discovery (https://adc.arm.gov/discovery, last access: 8 De-
cember 2025). Future planned VAP updates include the ad-
dition of solid precipitation properties at applicable sites and
the potential integration of radar-based low-level precipita-
tion estimates. We invite the ARM user community to lever-
age PrecipBE and provide feedback to further enhance this
new and exciting data product.
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Data availability. Current and future releases of PrecipBE
time series (Silber, 2025c, d; https://doi.org/10.5439/2523643,
https://doi.org/10.5439/2523642) and statistics datasets
(Silber, 2025a, b; https://doi.org/10.5439/2523641,
https://doi.org/10.5439/2523640) are and will be available on the
ARM Data Discovery (https://adc.arm.gov/discovery/#/results/s::
precipbe, last access: 8 December 2025). A Jupyter note-
book demonstrating the structure and application of PrecipBE
datasets is available on the ARM Notebooks Github repository
at: https://github.com/ARM-Development/ ARM-Notebooks/
blob/main/VAPs/precipbe/precipbe_intro.ipynb,  last  access:
8 December 2025. The precipitation datasets of the PWD

(Kyrouac et al, 2021, https://doi.org/10.5439/1786358),
AOSMET (Kyrouac and Tuftedal, 2010,
https://doi.org/10.5439/1984920), DISDROMETER  (Wang,

2006, https://doi.org/10.5439/1987821), VDISQUANTS (Hardin
et al, 2021, https://doi.org/10.5439/1592683), LDQUANTS
(Hardin et al.,, 2019, https://doi.org/10.5439/1432694), TBRG
(Kyrouac et al., 2006, 2021, https://doi.org/10.5439/1224827,
https://doi.org/10.5439/1786358), WBPLUVIO2 (Zhu et al., 2016,
https://doi.org/10.5439/1338194), RAINWB (Shi et al., 2010,
https://doi.org/10.5439/1224830), and ORG (Kyrouac et al., 2021,
https://doi.org/10.5439/1786358) from the ARM SGP, ENA,
and TRACER sites are available on the ARM Data Discovery
(https://adc.arm.gov/discovery/; last access: 10 March 2025).
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