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Abstract. Indoor fine particles (PMj 5) exposure poses sig-
nificant public health risks, prompting growing use of low-
cost sensors for indoor air quality monitoring. However,
maintaining data accuracy from these sensors is challenging,
due to interference of environmental conditions, such as hu-
midity, and instrument drift. Calibration is essential to en-
sure the accuracy of these sensors. This study introduces a
novel automated machine learning (AutoML)-based calibra-
tion framework to enhance the reliability of low-cost indoor
PM> 5 measurements. The multi-stage calibration framework
connects low-cost field sensors to be deployed with interme-
diate drift-correction reference sensors and a reference-grade
instrument, applying separate calibration models for low
(clean air environment) and high (pollution events) concen-
tration ranges. We evaluated the framework in a controlled
indoor chamber using two different sensor models exposed
to diverse indoor pollution sources under uncontrolled natu-
ral ambient conditions. The AutoML-driven calibration sig-
nificantly improved sensor performance, achieving a strong
correlation with reference measurements (R% > 0.90) and
substantially reducing error metrics (with normalized root-
mean-square error (NRMSE) and symmetric mean absolute
percentage error (SMAPE) roughly halved relative to uncal-
ibrated data). Bias was effectively minimised, yielding cal-
ibrated readings closely aligned with the reference instru-
ment. These findings demonstrate that our calibration strat-
egy can convert low-cost sensors into a more reliable tool for
indoor air pollution monitoring. The improved data quality
supports atmospheric science research by enabling more ac-
curate indoor PMj 5 monitoring, and informs public health

interventions and evaluation by facilitating better indoor ex-
posure assessment.

1 Introduction

Air quality monitoring is essential in understanding expo-
sure to pollutants in both outdoor and indoor environments,
which informs public health improvement strategies. In par-
ticular, indoor air quality (IAQ) has gained attention because
people spend the majority of their time indoors, yet histori-
cally it has been difficult to measure indoor pollutants con-
tinuously (Aix et al., 2023). Traditional approaches for IAQ
assessment relied on expensive reference instruments (e.g.
filter-based gravimetric samplers with pumps and impactors)
that require expert operation and maintenance. These practi-
cal challenges made long-term indoor monitoring infeasible
in most settings (Levy Zamora et al., 2018). Recently, how-
ever, dramatic advances in low-cost sensor technology have
transformed this landscape. Compact and affordable low-cost
sensors for particulate matter (PM) and gases have made it
possible to deploy dense monitoring networks and to track
air quality in homes, offices, and other indoor spaces in real-
time. For example, a consumer-grade PM sensor “PurpleAir”
is now widely used, and over 5600 devices reporting to an on-
line map, and about 18 % of these were deployed indoors as
of 2020 (Koehler et al., 2023). This surge in low-cost sensor
use highlights their promise for broad [AQ surveillance and
community engagement in air quality improvement efforts.
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As low-cost sensors proliferate, ensuring their data qual-
ity through proper calibration has become a critical con-
cern. These sensors often suffer from biases and interfer-
ences that can compromise accuracy. For example, low-cost
PM sensors that use optical scattering can be highly sensi-
tive to environmental factors like relative humidity (RH) and
aerosol properties. At high RH (> 80 %), condensation on
the sensor or particles can lead to overestimation of fine par-
ticles (PM3 5) concentrations (Crilley et al., 2020; Hagan and
Kroll, 2020). Cross-sensitivities are also common, electro-
chemical gas sensors may respond to non-target gases (e.g.
ozone sensors responding to nitrogen dioxide NO,). More-
over, the performance of air quality sensors can degrade over
time due to aging and fouling of components (so-called “drift
effect”). Studies have showed that low-cost sensors tend to
lose sensitivity or shift baseline after months of use, and elec-
trochemical sensor singles degrades within two years, neces-
sitating periodic recalibration (Zaidan et al., 2022; Zimmer-
man et al., 2018) .

To address these issues, a variety of calibration techniques
have been explored previously, ranging from simple correc-
tions to machine learning (ML) models. Traditional calibra-
tion methods typically include collocating low-cost sensors
with a reference-grade instrument (such as federal reference
methods, FRMs) and deriving a statistical correction (Liang,
2021). The simplest approach is a linear regression or affine
transformation that aligns the sensor readings to the reference
values. Additional environmental parameters are generally
incorporated into multi-variate calibration models, for exam-
ple, temperature and RH are included as independent vari-
ables to account for their influence on sensor response (Kang
and Choi, 2024). These methods, including one-point or two-
point calibrations and polynomial fits, have been shown to
improve sensor accuracy under stable conditions (Cowell
et al., 2023). In practice, laboratories or field researchers may
perform a pre-deployment calibration by exposing sensors
to known pollutant concentrations and fitting a curve. How-
ever, a calibration derived in one setting does not necessarily
transfer well to another. Studies have noted that calibrations
done in controlled lab environments often do not span the
full range of real-world conditions, limiting their generality
(Kim et al., 2019; Li et al., 2018; Mousavi and Wu, 2021).
Different particle compositions also affect the magnitude of
the sensor response (Crilley et al., 2020; Zou et al., 2021).
Therefore, in situ calibration is often recommended to cap-
ture local environmental effects to yield more robust calibra-
tion models, allowing necessary adjustments for factors like
aerosol composition and meteorological conditions (Raysoni
et al., 2023). Although the performance of these traditional
methods may be suboptimal when sensor response relation-
ships are highly non-linear or environment-specific, they are
still widely used due to their transparency and ease of imple-
mentation.

Recently, ML algorithms have been employed to improve
calibration accuracy and capture complex sensor behaviours.
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ML calibration methods can simulate non-linear relation-
ships and interactions that traditional linear methods might
neglect (Villanueva et al., 2023). A range of ML approaches
has been applied, including artificial neural networks (ANN),
support vector regression (SVR), random forests (RF), gaus-
sian process regression (GPR), and even semi-parametric
models like generalized additive models (GAM) (Mahajan
and Kumar, 2020). These data-driven models leverage not
only raw readings from the sensor but often additional fea-
tures (e.g., RH, temperature, timestamps) to learn the map-
ping to actual pollutant concentrations. Several studies have
presented the effectiveness of ML-based calibration. Nowack
et al. (2021) compared a regularized linear model (ridge
regression) against non-linear models (random forest and
GPR) for calibrating nitrogen dioxide (NO2) and particulate
matter with a diameter less than 10 micrometres (PMg) sen-
sors, finding that the machine learning approaches achieved
high out-of-sample accuracy (frequently coefficient of de-
termination R> > 0.8) and outperformed traditional multiple
linear regression models (Nowack et al., 2021). Mahajan and
Kumar (2020) observed that an SVR model provided better
calibration performance for PM sensors than both linear re-
gression and standard neural networks (Munir et al., 2019).
Nonetheless, ML-based calibrations also present challenges.
They typically require a substantial dataset of sensor as well
as reference readings for training, and their predictions can
be unreliable outside the range of training data. For instance,
an ANN or RF may struggle to extrapolate to pollutant lev-
els higher than it has been seen during calibration, whereas a
Gaussian process regression model may handle extrapolation
with less bias (Nowack et al., 2021). Additionally, the cali-
bration model learned at one location may not generalize to a
new location (i.e., site transferability issue) unless a wide va-
riety of conditions are considered. Despite these limitations,
ML-based calibration can significantly improve the perfor-
mance of low-cost sensors when carefully applied (Liu et al.,
2019; Nowack et al., 2021; Villanueva et al., 2023; Zimmer-
man et al., 2018).

While most field calibration studies to date have focused
on outdoor deployments, where sensors are co-located with
regulatory-grade monitors or used in ambient networks, a
critical gap in the current literature is the calibration of low-
cost sensors specifically for indoor environment.

Indoor air, however, can differ markedly from outdoor air
in composition and dynamics. Factors like indoor-generated
particles (from cooking, smoking, etc.), confined space, and
higher humidity or temperature fluctuations can all influ-
ence sensor readings. For example, cooking can release ul-
trafine particles and organic aerosols in short bursts, caus-
ing sharp concentration spikes. A study reported that indoor
PM, 5 levels peaking near 488 ugm™> during cooking in a
home, far exceeding typical outdoor concentrations (Cowell
et al., 2023). Tobacco smoke similarly produces dense par-
ticulate matter and complex chemicals in confined spaces.
Also, indoor spaces often have limited ventilation, allow-
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ing pollutants to accumulate and humidity to fluctuate in
ways not seen outdoors. These conditions test the limits
of calibration models. A calibration model trained mostly
on moderate outdoor pollution levels may not extrapolate
well to the abrupt spikes or ultra-low concentrations encoun-
tered indoors (Koehler et al., 2023). Compounding the is-
sue, gathering extensive indoor calibration datasets is diffi-
cult, reference-grade indoor measurements are rare because
deploying instruments indoors at scale is resource-intensive.
As aresult, there is a paucity of calibration methods tailored
to indoor use, and questions remain about how well the algo-
rithms proven in ambient air translate to indoor settings. This
gap is increasingly problematic as the adoption of indoor air
quality sensors grows; without reliable calibration, the data
from these sensors could mislead users or undermine trust in
sensor-based monitoring.

In this study, we aim to bridge the gap by introducing a
replicable calibration approach for indoor air quality sensors
using Automated Machine Learning (AutoML). AutoML is
an emerging technology that automates the selection of ma-
chine learning algorithms and hyperparameters to build op-
timal models (LeDell and Poirier, 2020). Our objective is to
develop a calibration framework that can be easily applied
to low-cost sensor data in indoor environment to improve its
accuracy and reliability. Unlike traditional calibration meth-
ods that might rely on fixed formulas or manually crafted ML
models, an AutoML-based approach automates the selection
and optimization of the calibration model. In our framework,
sensor readings (e.g., raw PM» s concentrations) are com-
bined with environmental variables (mainly indoor temper-
ature and RH), and an AutoML is employed to identify the
best-performing calibration model through automated testing
of many algorithms and hyperparameter settings. By allow-
ing the AutoML system to explore a wide range of potential
models (from linear regressions to complex ensemble meth-
ods), we ensure that the final chosen model is well-suited to
the characteristics of the indoor dataset, without requiring the
user to have advanced machine learning expertise. The pro-
posed approach is replicable in that it provides a general tem-
plate that can be applied to other indoor sensor deployments,
that is, researchers or practitioners can feed their co-location
data into the same AutoML pipeline to obtain a custom cali-
bration model for their specific environment.

The remainder of this paper is structured as follows.
Section 2 describes the experimental setup and calibration
methodology, including indoor air quality sensors, reference
instruments, data collection procedures, and the AutoML
workflow employed to generate calibration models. Section 3
presents the calibration results and discusses the implications
of the findings. Section 4 summarizes the key findings. We
also discuss limitations of our approach and provide recom-
mendations for future research.
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2 Method
2.1 Experimental Configurations

A controlled laboratory experiment was conducted within a
custom-built container designed to simulate realistic indoor
air pollution conditions (Fig. 1a). The chamber was equipped
with fans to ensure uniform pollutant distribution (Fig. 1b),
which minimized spatial concentration variations, essential
for maintaining stable and reproducible conditions during
sensor evaluation. An aerosol spectrometer (i.e., Palas Fi-
das 200; detectable particle size of 0.18—18 ug, ranges from
0 to 10000 ugm™3 with 9.7 % uncertainty for PM» 5 mea-
surements) was employed as the reference-grade instrument
to provide high-precision baseline measurements for sensor
performance evaluation and calibration. A total of 40 low-
cost air quality sensors was deployed within the chamber,
settled on a table at near the same height with Fidas 200
to minimize positional variability. Our air quality sensors
consisted of two different types, including 20 units of Air-
Gradient ONE (Model I-9PSL) and 20 units of AtmoCube.
AirGradient ONE sensors measure PM; 5 using a Plantower
PMS5003 laser-scattering sensor (detectable particle size of
0.3-10pg, with £10ugm=3 at 0-100pgm™3, +10% at
100-500 ugm~3), and temperature and RH through a Sen-
sirion SHT40 sensor. AtmoCube sensors detect particulate
matter using a Sensirion SPS30 laser-scattering sensor (de-
tectable particle size of 0.3—10ug, with &5ugm™3 at 0-
100 ugm~3, 4 10 % at 100—1000 ug m~3), temperature using
a Sensirion STS35-DIS, and RH using a Sensirion SHTC3.
To generate diverse and realistic indoor air pollution pro-
files, three indoor emission sources were introduced into the
experimental container, including incense sticks, cigarette
smoke from 7 to 21 October 2024, and cooking emissions
(i.e., frying vegetables, bacon, and fries) from 22 to 30 Oc-
tober 2024 (Fig. 1b and c). All AirGradient ONE and At-
moCube sensors and the Fidas 200 were exposed to the same
emission sources simultaneously. Temperature and RH levels
were allowed to exchange passively with the outdoor air with
no mechanical ventilation or windows/door opening, mim-
icking indoor conditions where these parameters may fluc-
tuate. Between each emission event, the container was ven-
tilated until pollutant concentrations returned to background
levels (mainly during the night), ensuring that there was no
cross-contamination between different test conditions, thus
generating a reliable dataset for subsequent sensor perfor-
mance evaluation and calibration (Qian and Dai, 2025).

2.2 Automated Machine Learning

We employed an AutoML framework to develop and select
calibration models for the indoor air quality sensors (Qian
and Dai, 2025). The AutoML approach generate a variety of
(i.e., 30 in this study) candidate models and optimised their
hyperparameters. Then the AutoML algorithm would iden-
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Figure 1. Overview of indoor air quality sensor calibration setup: (a) fully renovated half-size container, (b) emission sources and analytical
instrumentation, and (c) schematic of pollutant generation and instrument placement.

tify a model that best maps the sensor outputs to the reference
concentrations. In our implementation, the input features to
each model included the sensor’s raw readings, indoor tem-
perature, and RH, while the target output was the PM con-
centration measured by Fidas 200.

This study used H,O’s splitFrame with a fixed seed (1014)
to allocate 80 % of the rows to training and 20 % to a held-out
test set. During AutoML, we used k-fold cross-validation (5-
fold) on the training portion for model selection (sorted by
root mean square error, RMSE). The held-out 20 % test set
was never used for training or tuning; we report both cross-
validated training metrics and external test metrics (see Ta-
ble S1 in the Supplement). This choice ensured both train/test
and cross-validation folds contained comparable concentra-
tion distributions while avoiding temporal leakage, as the ex-
periment container was well-mixed and emission episodes
were interleaved.

Evaluation metrics were calculated for each candidate to
guide the selection of the best model. We primarily used the
RMSE, normalized root mean square error (NRMSE), mean
absolute error (MAE), symmetric mean absolute percentage
error (SMAPE), mean bias error (MBE), index of agreement
(I0A), and R? as the performance criteria. RMSE quantified
the average magnitude of prediction errors in units match-
ing the observed data, with lower values reflecting smaller
deviations. We also use NRMSE to provide a dimension-
less measure of error that allows model performance to be
compared fairly across different concentrations. MAE mea-
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sured the average absolute difference between observed and
predicted values, providing an interpretable measure of ac-
curacy independent of error direction. We also calculated
SMAPE because it expresses errors as a bounded percent-
age relative to both observed and predicted values, making
performance more comparable across different concentration
ranges and less sensitive to extreme values. MBE provides
the average bias in the predictions, where positive or negative
values indicated overestimation or underestimation, respec-
tively. IOA indicates the overall level of agreement (from —1
to 1) between reference measurements and predicted val-
ues, with 1 denoting perfect agreement (ideal model per-
formance), 0 with no agreement (predictions no better than
simply predicting the observed average), and —1 with com-
plete disagreement or systematic inverse relationship (Will-
mott et al., 2011). R? (values in [0, 1]) indicates the propor-
tion of the variance in the reference measurements explained
by the model, with values closer to 1 indicating a stronger
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linear association. The formulas are represented below:
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here o; denotes the ith value from the reference dataset, p; is
the ith predicted value from the calibration models, n repre-
sents the total number of data points in the dataset, and o is
the arithmetic average of all reference measurements.

After training the model, AutoML ranks candidates on
its leaderboard by the RMSE obtained from k-fold cross-
validation on the training set (Table S1). The highest-ranked
model (Leader Rank 1) is therefore the model with the small-
est cross-validated RMSE among all candidates. We adopt
this criterion to (i) keep the 20 % test set independent of
model selection (avoiding optimistic bias), (ii) obtain a more
stable, lower-variance estimate by averaging errors across
folds rather than relying on a single split, and (iii) prioritize
a loss that penalizes large deviations, which is appropriate
for PMj 5 calibration (RMSE in pg m~3). After selection, all
performance reported in the Results refers to the independent
test set.

2.3 Calibration Procedure

To ensure reproducible calibration of the low-cost sensors
against the Fidas 200, we first established a three-step pro-
tocol that accounts for variability among sensor units while
maintaining consistency with reference measurements. The
approach is designed to be scalable for large sensor networks
in real-world indoor monitoring applications. The key steps
include:

Field sensor-to-“Drift-reference sensor” calibration
(f2d). A subset of five sensors from each sensor type
(AtmoCube and AirGradient ONE) was randomly selected
to serve as “drift-reference sensors”. These drift-reference
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sensors were used exclusively for calibration purposes
and were not deployed for field indoor monitoring. The
remaining sensors, referred to as “field sensors”, were
intended for operational deployment. We employed AutoML
to develop calibration models that map the field sensors’ raw
readings to the corresponding averaged measurements of the
drift-reference sensors at each time step:

dj(t) = F{*(x; 1)) (8)
I =g [ —dn] ©)
xj(0) = [s;0), T;(0),RH; (]" (10)
A =31 du® (11)

where d ;(t) is calibrated PM concentration for field sen-
sor j (1,...,M) at a time index of calibration record f¢
(1,..., N); x;(¢) represents raw sensor reading, temperature,
and RH d (? denotes mean of K (= 5) drift-reference sen-
sors; and F represent best-performing model chosen for
sensor j (GBM in this study) from pool of AutoML candi-
date models F during this f2d process. Note that here T} (¢)
and RH;; (t) should be calibrated against averaged values of
the drift-reference sensors using a simple univariate transfer
function before being used as input features.

“Drift-reference sensor” to “Reference instrument” cal-
ibration (d2r). The averaged readings from drift-reference
sensors were calibrated against Fidas 200 following similar
procedure above:

F(t) = F (z(1)) (12)
F =arg 3" [£ @) ~r()] (13)
20y =[d), T), RAW®]" (14)

here 7(¢) represents calibrated PM concentration for drift—
reference sensors; r(¢) is PM concentration measured by the
reference instruments (Fidas 200); z(¢) represents a vector
of d(t), and calibrated T (t) and RH (t) (against Fidas 200);
and F9?" denotes best-performing model for the d2r calibra-
tion.

Our exploratory analysis (Fig. S1 in the Supplement) re-
vealed a clear threshold at 50 uygm™> where the sensor bias
flips. We chose this value because the scatter plot of sensor
versus reference measurements shows two distinct regimes
relative to the 1:1 line. At or below 50ugm~3, the data
cloud is tight and lies mostly above the 1 : 1 line, which indi-
cates a positive sensor bias (overestimation) at low concen-
trations. Conversely, above 50 ugm~ the cloud shifts below
the 1:1 line, and the fitted trend becomes flatter than the
1: 1 reference, a pattern consistent with signal compression
and underestimation at higher particle loads. This split is fur-
ther justified by the data distribution; most data lie below
about 25 ugm~3, with only a small number of points between
25 and 100 ugm—3. A split at 50 ugm—> produces two inter-
pretable regimes that align with the observed change in bias,
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keeps the rare high-concentration events together, and avoids
slicing the dense background data into very small groups,
which would reduce model stability. Therefore, we applied
a stratified calibration strategy, training separate AutoML
models for the low (< 50 ugm™?) and high (50-600 ugm~2)
regimes in both the field-to-drift (f2d) and drift-to-reference
(d2r) stages. This allows us to tailor the calibration to the
specific bias profile of each regime and thereby minimises
systematic error across the sensor’s full operating range.

Field sensor-to- “Reference instrument” calibration (f2r).
For every time stamp ¢, the field sensor’s raw reading is
first converted to a drift-reference proxy as in Step (1) f2d.
That proxy, combined with calibrated temperature and RH
(against Fidas 200), is then fed into the calibration models in
Step (2) d2r to calculate concentrations directly comparable
to the reference dataset:

70 = Hj(xy0) = (F2 0 F/*) () (15)

where rj(t) denotes final PM concentration of sensor j
aligned to Fidas 200; and H; represents shorthand for the

overall transfer function F4% o F]f s

The sensor performance drift over long deployments, the
calibration derived pre-deployment gradually becomes less
reliable. After retrieval we therefore rebuild the f2d and
d2r models with the post-deployment dataset, obtaining a
second set of predictions r’].(t). For any timestamp ¢ within
the deployment period 0 < ¢t < D (with D the total duration),
we fuse the two predictions with a simple linear weight that
shifts emphasis from the pre- to the post-deployment model:

r,-x(t)=<1—%>xr}(r)+%xr~}(r) (16)

thus, r; x (¢) equals the pre-deployment estimate at the cam-
paign start (r = 0), the post-deployment estimate at the end
(t = D), and a smoothly blended value in between, providing
a first order correction for drift.

The overall calibration framework is shown schematically
in Fig. 2.

3 Results and Discussions
3.1 Low-cost sensor raw readings

Figure 3 compares the timeseries responses of the two sen-
sor types, from AirGradient ONE and AtmoCube to indoor
emission events. During the combustion episodes (cigarette
smoking and incense-burning) that occurred between 12 and
22 October 2024, the AirGradient ONE sensors repeat-
edly recorded uncalibrated PM; 5 concentrations exceeding
500 ugm™3, and all units tracked those peaks almost identi-
cally, showing high intra-sensor coherence and a high sen-
sitivity to combustion-derived particles. The AtmoCube sen-
sors followed the same temporal pattern but with systemat-
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ically lower maximum concentrations compared to the Air-
Gradient ONE sensors, with peak readings between 400 and
500 ugm~3. Cooking activities generated far lower PM con-
centrations. Routine meal preparation produced brief excur-
sions of ~30ugm™> on both sensor types, while a single
spike of 80 ugm—3 on 30 October consistent with braise and
fry high-fat foods that known to generate abundant aerosols
(Xu et al., 2024). Therefore, although both AirGradient ONE
and AtmoCube sensors correctly identified the timing of each
emission episode, AirGradient ONE consistently reported
higher absolute concentrations, particularly for the most in-
tense combustion plumes than those of AtmoCube sensors.
The inter-type relationship is summarised in Fig. S2,
showing the averaged drift-reference PM, s measurements
from AirGradient ONE and AtmoCube. At concentra-
tions below 50ugm™3 (hereafter denotes as “below-50")
(Fig. S2a), AirGradient ONE readings lay predominately
above the 1: 1 reference line, showing a positive bias rel-
ative to AtmoCube sensors. Once concentrations exceeded
~50 g m~3 (denotes as “above-50") (Fig. S2b), this coher-
ence vanished and the paired data became more scattered, in-
dicating that the two sensor types diverge progressively with
increasing particle load. Calibration that reconciles these
type- (brand) specific sensitivities is therefore essential for
any application that requires accurate absolute PM 5 values.
Sensor-measured environmental parameters exhibited
similar systematic offsets (Fig. S3 for temperature and
Fig. S4 for RH). Throughout the calibration, AirGradi-
ent ONE temperatures were 1.2—1.8 °C higher than those
from AtmoCube (Fig. S3a and b), where paired data clus-
ter above the identity line (slope = 1.01, R? = 0.94). AirGra-
dient ONE measured 4 %-7 % lower than AtmoCube sen-
sors for RH maxima, whereas at minima AirGradient ONE
read 3 %5 % higher, as in Fig. S4a and b. Intra-type vari-
ability reached ~ 2 °C for AirGradient ONE sensors but was
<1.5°C for AtmoCube sensors, and both types recorded
the same diurnal trend (Fig. S3c and d). RH measurements
ranged from 47 % to 89 % (Fig. S4c for AirGradient ONE
and Fig. 4d for AtmoCube). AirGradient ONE sensors ex-
hibited tighter clustering (intra-type variability <5 %) than
AtmoCube (< 10 %), but they showed a systematic pattern.

3.2 Raw readings from drift-reference sensors vs.
Fidas 200 measurements

Figure 4a and c shows scatter plots of raw and calibrated av-
eraged PM, s concentrations from AirGradient ONE and At-
moCube drift-reference sensors against the Fidas 200 mea-
surements in the below-50 regime, representative of rela-
tively low air pollution. Before calibration, both AirGradi-
ent ONE and AtmoCube sensors exhibited moderate linear
correlations with the Fidas 200, with R? values of 0.65 for
the AirGradient ONE and 0.57 for the AtmoCube, respec-
tively (Table 1). Although both sensor types clustered close
to the 1 : 1 reference line, their slopes reveal systematic bi-
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Figure 2. Flowchart of the indoor air quality sensor calibration strategy. The flowchart used a fixed colour scheme to distinguish the two
stages of the workflow. Blue arrows and lines represent the main training and prediction path that spans Processes 1-3. The brown arrows
and lines represent the post-deployment recalibration path, which is executed after sensor retrieval to correct drift using the post-deployment
dataset. The resulting predictions are passed through Process 3 to obtain calibrated readings mapped to the reference instrument.

ases. AirGradient ONE readings lay predominately above
the line with a regression slope of 1.57, producing an av-
erage 20 % overestimation relative to the Fidas 200, while
AtmoCube readings fell below with a slope of 0.64, corre-
sponding to a 55.6 % underestimation. Extending the analy-
sis to the above-50 regime (Fig. 4b and d) highlights further
divergence. Here, AirGradient ONE sensors had a stronger
correlation with the reference (R2 =0.78), but its slope de-
creased to 0.82, reflecting a slight 3.1 % underestimation
during high pollution episodes. In contrast, AtmoCube sen-
sors had a lower slope of 0.50 and an R? of 0.64, showing
a substantial 38.8 % underestimation. Therefore, both types
of sensor experience signal compression at higher particle
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loads, yet the magnitude of this non-linearity is sensor spe-
cific.

RH can significantly influence the measurement accuracy
of particles from indoor air quality sensors (Fig. S5). For
AirGradient ONE (Fig. S5a and b), PM, 5 readings above
the 1:1 reference line at low concentrations consistently
associated with periods of high RH, implying that hygro-
scopic growth of particles at high humidity is a primary
driver of AirGradient ONE’s low end overestimation (Liang,
2021). Conversely, AtmoCube showed no systematic RH
pattern (Fig. S5c and d); its scatter remained broadly uni-
form across the humidity spectrum, indicating lower RH
sensitivity. This disparity may reflect differences in internal
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Figure 3. Timeseries of (a) Mean PM> 5 readings from AirGradient ONE sensors and the standard deviations (SD) between them, (b) Mean
PMj; 5 readings from AtmoCube sensors and the SD between them. The shaded areas represent the minimum to maximum values.

Table 1. Statistical performance of raw and calibrated AirGradient ONE and AtmoCube drift-reference sensors relative to the Fidas 200
measurements for PM 5, stratified by concentration regime (below-50, above-50) and for the combined dataset.

Sensor Subset Stage n (sample R? RMSE MAE MBE IOA
size) (NRMSE) (SMAPE)

AirGradient ONE  Below 50 pgr{f3 Raw 483  0.65 6.4 (98.5) 3.7 (46.1) 1.8 0.49
Calibrated 483  0.69 3.8 (32.6) 1.5 (22.8) —-0.1 0.80

Above 50 g m—3 Raw 64 0.78 91.3 (32.5) 69.6 (36.5) —40.9 0.80

Calibrated 64 092 59 (23.9) 44.6 (31.6) —44  0.87

All concentration range  Raw 547 0.95 31.8 (82.3) 11.4 (44.9) —-3.2 090

Calibrated 547  0.97 20.5 (59.6) 6.5 (23.8) —0.6 094

AtmoCube Below 50 pug m—3 Raw 499  0.57 12.4(140.3) 5.1(82.2) —4.89 0.63
Calibrated 499  0.80 7.4 (122) 2.8 (80.8) —-0.27 0.79

Above 50 pgm_3 Raw 48 0.64 182.7(52.5) 160.5(62.6) —150.8 0.48

Calibrated 48  0.76 91.1 (23.3) 72.3(25.5) =277 0.76

All concentration range ~ Raw 547  0.90 55.4 (143) 18.7 (80.4) —17.7 0.84

Calibrated 547  0.94 27.9 (67.7) 8.9 (75.9) —2.68 092
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Figure 4. Raw and calibrated PM, 5 of drift-reference sensors compared with the Fidas 200 measurements, (a) AirGradient ONE sensors
within below-50 regime; (b) AirGradient ONE sensors within above-50 regime; (¢) AtmoCube sensors within below-50 regime; (d) At-

moCube sensors within above-50 regime.

RH-compensation algorithms implemented by each manu-
facturer.

3.3 Calibrated readings from drift-reference sensor vs.
Fidas 200 measurements

In the below-50 regime, calibrated AirGradient ONE drift-
reference readings show slight stronger correlation with Fi-
das 200 measurements (R2 =0.69) compared to their raw
values (Fig. 4a), and errors are relatively small and have
been improved (NRMSE =32.6%, sMAPE =22.8%) as
shown in Table 1. The residuals present negligible system-
atic bias (MBE = —0.1 uygm™3), indicating great improve-
ments from systematic overestimation under low PM; 5 con-
centration before calibration. After calibration, the sensor
performance meets the recommended criteria of R2>0.70
and RMSE§7pgm’3 (Zamora et al., 2022). At above-
50 concentrations (Fig. 4b), the improvement in the per-
formance of calibrated AirGradient ONE sensors was even
more significant, with R> and IOA achieving about 0.92
and 0.87, respectively. The errors also have been improved
(NRMSE =23.9 %, sMAPE =31.6 %) as expected and re-
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main proportionally reasonable (e.g., ~ 10 % uncertainty at
600 ugm™3). A slight negative bias (MBE = —4.4ugm™3)
indicating a small underestimation tendency at extreme high
concentrations, but high IOA value (0.87) show accurate
tracking of both timing and magnitude.

Figure S6 show the impact of RH on calibrated readings
of AirGradient ONE sensors for the below-50 (Fig. S6a) and
the above-50 (Fig. S6b) concentration regimes, respectively.
Across both concentration ranges the residuals show no sys-
tematic humidity bias, indicating that the AutoML model
(using RH and temperature as covariates) mitigated hygro-
scopic growth influences that typically inflate optical counts
above 70 %—80 % RH (Ko et al., 2024). The small scatter evi-
dent at extreme high RH levels likely reflects limited training
data but does not compromise agreement with the reference,
corroborating reports that RH-aware calibration can suppress
sensor error by around 20 % (Liang, 2021).

Calibration likewise improved AtmoCube agreement with
the Fidas 200 across the full concentration range (Fig. 4c
and d). Overall AtmoCube sensors achieved RZ =0.94 and
I0A =0.92 (Table 1). In the below-50 clean air conditions,
the calibrated AtmoCube sensors have R =0.80, and such
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Figure 5. Raw and calibrated PM, 5 of field sensors compared with the Fidas 200 measurements, (a) AirGradient ONE sensors within
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sensors within above-50 regime.

slightly lower correlation relative to those of high pollution
levels is expected as sensor signals approach the noise floor
at very low pollution levels (Johnson et al., 2018). RMSE
(7.4 ugm~3) and MAE (2.8 uygm™) are relatively small, and
the mean bias is negligible, indicating that the calibration
mitigates the pronounced low-end under-reading observed
pre-calibration. At high PMj 5 levels, calibrated AtmoCube
sensors still show good agreement with Fidas 200 as data
points distribute along the 1:1 line but with slightly re-
duced R? (0.76). A possible explanation is that at very high
particle loading the sensor’s optical detector response starts
to become non-linear or approaches a saturation point (Kelly
et al., 2017), introducing larger random errors. The resid-
ual bias is minor (MBE =27.7 uygm™), indicating a small
over-read under very high pollution. Figure S6¢ and d shows
that, after calibration, AtmoCube residuals remain almost flat
across the full RH ranges in both low and high concentra-
tion regimes. Even during episodes exceeding 80 % RH, no
coherent over- or under-reading trend was found, indicating
that the calibration has effectively reduced humidity interfer-
ence.

Atmos. Meas. Tech., 19, 603-615, 2026

3.4 Calibrated readings from field sensors vs.
Fidas 200 measurements

The multi-stage calibration strategy effectively improved
the performance of field sensors against the reference-
grade instrument Fidas 200 (Fig. 5 and Table 2). Within
the below-50 regime, AirGradient ONE sensors showed
a RMSE of 4ugm™ and MAE of 1.70pugm™3, and
their correlation R? increased from 0.45 to 0.64. By
contrast, AtmoCube sensors achieved a stronger linear
match (R*>=0.80) despite relatively higher residual scat-
ter (RMSE=7.5 pgm’3) (Fig. 5c), consistent with their
finer baseline sensitivity to subtle particulate variations. Per-
formance at above-50 concentration regime indicated that
both types of indoor air quality sensor synchronised well
with the timing of pollution events while their error signa-
tures differed. AirGradient ONE sensors showed moderate
overestimation (MBE=3.9ugm™3, RMSE=67.1pugm™3,
NRMSE =23.9 %), while AtmoCube sensors displayed
higher systematic bias (MBE = 28.6 ug m~>) and higher vari-
ability (RMSE=91.5ugm™3, NRMSE =24.5%). These
differences may arise from different sensor components, for
example, AtmoCube units employed shorter optical path
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Table 2. Statistical performance of raw and calibrated AirGradient ONE and AtmoCube field sensors relative to the Fidas 200 measurements
for PM,, s, stratified by concentration regime (below-50, above-50) and for the combined dataset.

Sensor Subset Stage n R? RMSE MAE MBE IOA
(NRMSE) (SMAPE)

AirGradient ONE  Below 50 ug m3 Raw 483 0.45 7.3 (102) 4.3 (44.6) 2.02 041
Calibrated 483 0.64 4 (60.9) 1.7 (26.9) 0.1 0.77

Above 50 pgm*3 Raw 64 0.86 83.1 (33.8) 62.2(37.9) —42.5 0.82

Calibrated 64 0.89 67.1 (23.9) 48.7 (29.1) 39 0.86

All range Raw 547 0.94 29.2 (85.6) 11(43.8) -3.19 0.90

Calibrated 547 0.96 23.3 (60.2) 7.2(27.1) 0.5 094

AtmoCube Below 50 pug m~3 Raw 499 0.75 12.4(141.6) 49@74) —-17.8 0.64
Calibrated 499 0.80 7.5(82.1) 3.6(22.7) —-0.15 0.77

Above 50 ug m—3 Raw 48 0.69 180.3(53.5) 158.2(64.1) —152 048

Calibrated 48 0.76 91.5 (24.5) 72.6 (26.7) —28.6 0.74

All concentration range  Raw 547 0.88 54.7 (146) 18.3(76.2) —17.8 0.84

Calibrated 547 0.94 28.1 (67.9) 9.6 (23.1) —-2.65 092

length and proprietary firmware averaging while AirGradi-
ent ONE sensors used longer path and raw count reporting of
the Plantower PMS5003. Importantly, our calibration strat-
egy reconciled hardware-driven disparities between sensor
types. Both types of sensors agreed well with Fidas 200 mea-
surements after calibration, with IOA increasing from 0.90
to 0.94 for AirGradient ONE and from 0.84 to 0.92 for At-
moCube sensors.

To evaluate the multi-step calibration strategy itself rather
than the choice of models, we compared AutoML models
with multivariate regressions (Fig. S7). Figures S7 and S8
show that AutoML models produced better performance
statistics, showing enhanced predictive accuracy and relia-
bility, particularly when evaluating error distribution across
different PM; 5 concentration regimes. Such improvements
could be due to the ability of AutoML to incorporate interac-
tion terms (RH, temperature) that influence the sensor light-
scattering response (Liang, 2021). However, there is only one
exception for AtmoCube sensors in the over 100 uygm=3, in
which the linear model has a smaller SMAPE. This is might
due to the limited amount of data in the high concentration
range.

3.5 Limitations and implications

Our framework significantly improved the low-cost sen-
sors performance under different concentrations. But there
are still some limitations, and further research is needed
on the generalizability of the model and calibration strate-
gies. Firstly, the training data were collected in a single
experimental container under temperate-climate humidity
(with RH between 45 %—85 %) and may not capture sen-
sor behaviour in very moist interiors. Secondly, the present
study did not capture every indoor emission source, par-
ticularly those with moderate emission levels. We do not
know whether the sensors will be sensitive to particle types

https://doi.org/10.5194/amt-19-603-2026

(e.g., particles from different sources). Furthermore, evaluat-
ing sensor drift demands the months-to-years timescales of
real deployments and was not evaluated. Future work should
gather data from warmer, high-humidity homes to capture
sensor behaviour at elevated RH conditions, consider addi-
tional moderate emission sources such as off-gassing mate-
rials, and run multi-year field trials to quantify drift and test
automated recalibration. These steps will increase the robust-
ness and evaluate long-term accuracy of the calibration strat-
egy. However, the thresholds delineating “low” and “high”
categories are derived from empirical observations within the
analysed dataset. Accordingly, researchers are encouraged to
initially assess their own data and adapt this strategy as nec-
essary to ensure its applicability. In our case, there were lim-
ited data of high concentration, future studies should gener-
ate more emission to have more high concentration data to
capture the full range performance.

The implications of our findings are significant for atmo-
spheric science and indoor air quality management, espe-
cially in the context of the growing use of low-cost sensors
for exposure assessment and public health applications. By
showing that inexpensive sensors can be calibrated to yield
high-quality data indoors, this study helps bridge the impor-
tant gap between indoor and outdoor air pollution monitor-
ing. Furthermore, the application of AutoML in sensor cal-
ibration showcases the value of advanced data-driven tech-
niques in atmospheric measurements. AutoML could be used
to periodically re-calibrate hundreds of sensors automatically
as new reference data become available, maintaining network
accuracy with minimal human intervention. This is particu-
larly relevant for community science projects or indoor air
quality campaigns where resources for manual calibration
are limited. By improving the reliability of indoor air mea-
surements, the study contributes to a future where continu-
ous indoor air quality monitoring is feasible on a large scale,
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driving better-informed strategies to safeguard public health
in the spaces where people live and work.

The regime thresholds used in this study were derived em-
pirically from our indoor dataset and should not be assumed
for other indoor cases, outdoors, or for other pollutants. Users
should re-estimate cut points from their own co-located data
and retrain the staged models with environment appropriate
features.

4 Summary

In this work, we introduced an automated machine learning
(AutoML) calibration framework for enhancing the perfor-
mance of low-cost indoor air quality sensors. The AutoML-
calibrated sensors met or exceeded study objectives by sig-
nificantly improving measurement accuracy for fine particles
(PM35) across all concentration regimes. The multi-stage
calibration workflow achieved tight agreement with refer-
ence measurements (from Fidas 200), evidenced by substan-
tial increases in coefficient of determination (R?) and reduc-
tions in error metrics. In the low-concentration regime (be-
low 50 ugm™3), R? improved from moderate values (~ 0.6
pre-calibration) to approximately 0.85 post-calibration, with
root-mean-square error (RMSE) dropping by roughly half
(e.g., from ~5 to ~3ugm~3), as well as the NRMSE. At
higher concentrations (above 50 uygm™>), gains were even
more pronounced, with R? approaching or exceeding 0.90
(near reference-grade performance) and RMSE falling from
tens of ugm ™3 to single digits. Similarly, mean absolute er-
ror (MAE) and symmetric mean absolute percentage error
(SMAPE) declined markedly, and mean bias error (MBE)
was effectively eliminated, shifting from significant sys-
tematic biases (e.g., 5—10pgm™> over- or underestimation)
to nearly zero. These results show that the calibrated sen-
sors reliably resolve indoor particulate levels at background
concentrations and during elevated pollution events, closely
tracking the reference instrument across the full range. These
findings confirm that our multistage calibration effectively
eliminated sensor bias under varied indoor conditions and
emission sources. The initial stage corrected baseline drift.
Subsequent stages used AutoML to address scatter caused
by relative humidity and nonlinear responses at high particle
concentrations. These factors are often overlooked in sim-
pler methods. AutoML efficiently selected the best models
for each phase, removed the need for manual tuning, and re-
vealed subtle patterns in the data. By integrating AutoML
into a structured multistage process, we achieved robust bias
correction across scenarios, yielding accurate, precise mea-
surements well-suited for indoor air quality monitoring.

Code and data availability. The software codes used and dataset
generated during the current study are available on Zenodo
(https://doi.org/10.5281/zenodo.18305879, Qian and Dai, 2025).
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