

Supplement of

Comparing spatial and temporal variabilities between the Vaisala AQT530 monitor and reference measurements

Roubina Papaconstantinou et al.

Correspondence to: George Biskos (g.biskos@cyi.ac.cy, g.biskos@tudelft.nl)

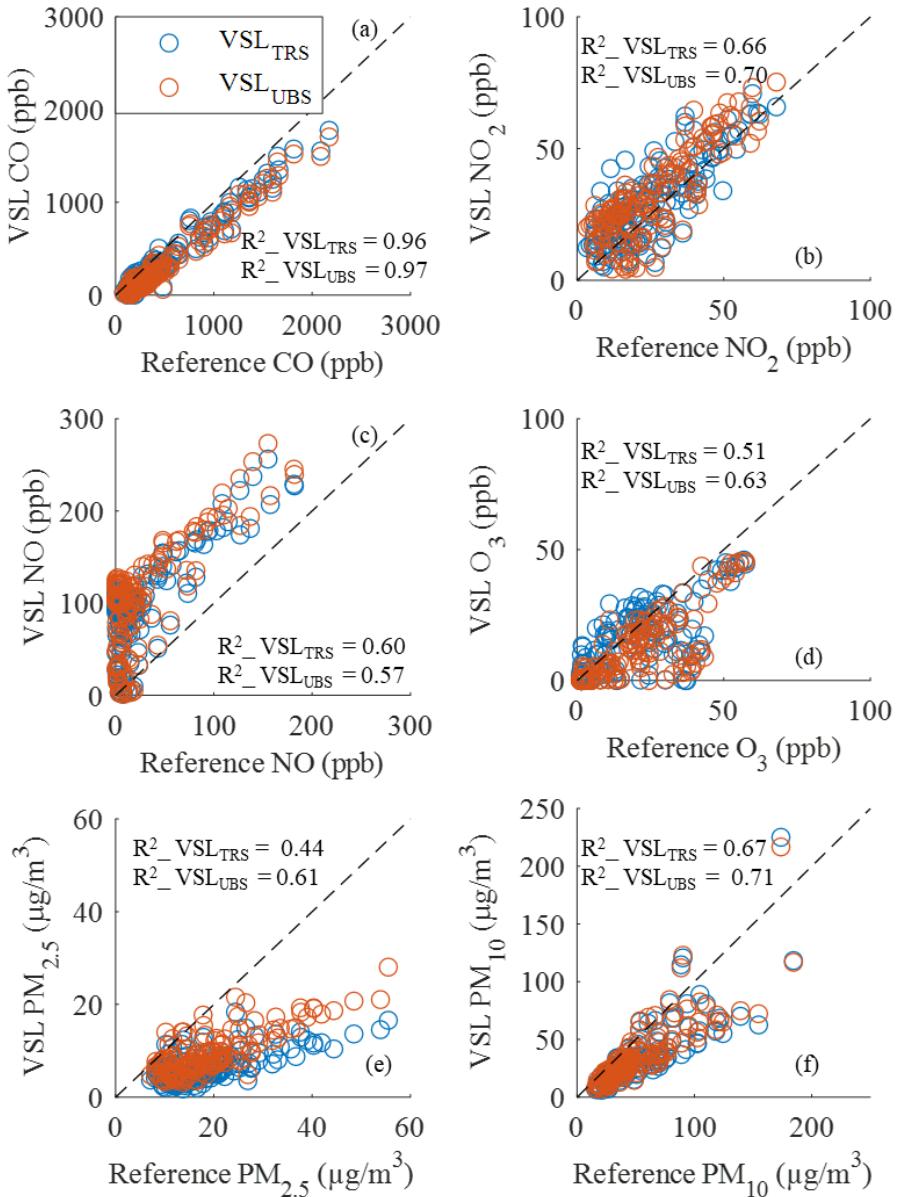
The copyright of individual parts of the supplement might differ from the article licence.

S.1 Technical information of sensors utilised

Table S1: Type and specifications of the reference instruments employed at the Nicosia traffic air quality monitoring station.

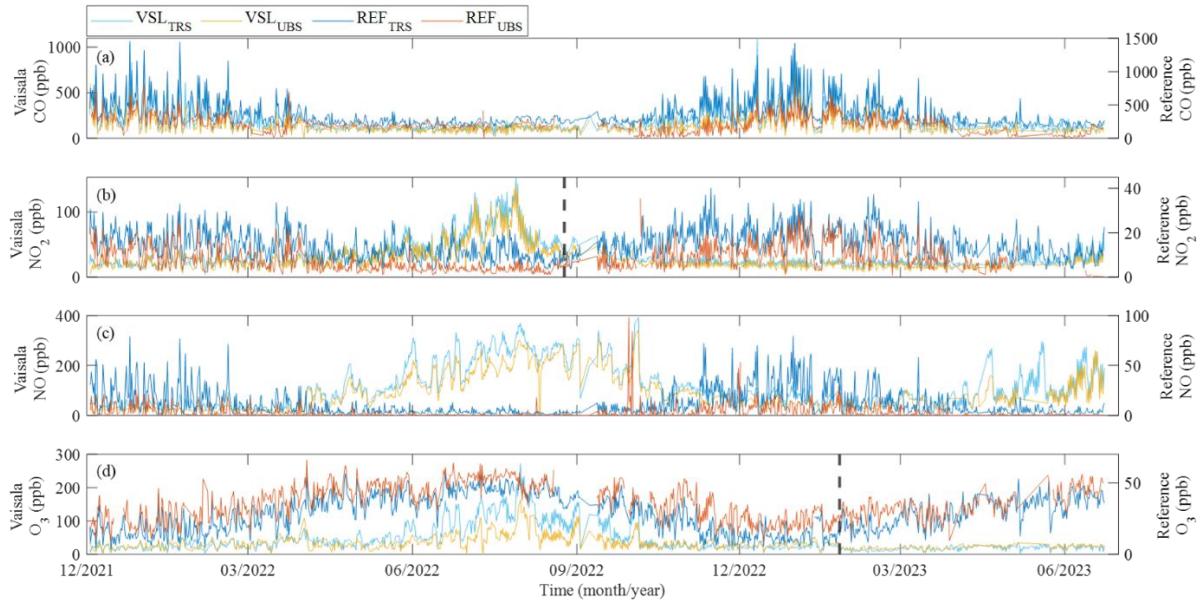
	<i>CO</i>	<i>NO_x</i>	<i>O₃</i>	<i>PM</i>
<i>Model</i>	Ecotech Serinus 30	Ecotech Serinus 40	Thermo Scientific 49i	TEOM Model: 1405-DF
<i>Method</i>	Absorption Spectroscopy	Chemiluminescence	Ultraviolet Photometry	Oscillating Microbalance
<i>Sample flow rate</i>	1.0 slpm	0.3 slpm (0.6 slpm total flow for the NO and NO _x flow path)	1–3 LPM	PM _{2.5} : 3 LPM, PM _{coarse} : 1.67 LPM, Bypass flow rate: 12 LPM
<i>Precision</i>	20 ppb or 0.1% of reading, whichever is greater	0.4 ppb otherwise 0.5% of reading, whichever is greater	–	± 2.0 µg/m ³ (1-hour average)
<i>Linearity</i>	Better than ±1% of full scale (0-50 ppm); ±2% of full scale (0-200 ppm), from best straight-line fit	±1% of full scale	± 1% of full-scale	
<i>Response time</i>	60 seconds to 95%	15 seconds to 90%	20 seconds (10 seconds lag time)	
<i>Lower detectable limit</i>	40 ppb	0.4 ppb	1.0 ppb	< 5 µg/m ³

Table S2: Type and specifications of the reference instruments employed at CyI CAO air quality monitoring station.


	<i>CO</i>	<i>NO₂</i>	<i>O₃</i>	<i>PM</i>
<i>Model</i>	Teledyne Model T300	Teledyne Model T500U	Teledyne Model T400	TEOM Model: 1405-DF
<i>Method</i>	Absorption Spectroscopy	UV Fluorescence	UV Absorption	Oscillating Microbalance
<i>Sample flow rate</i>	800 cc/min ±10%	900 cc/min ±10%	800 cc/min ±10%	PM _{2.5} : 3 LPM, PM _{coarse} : 1.67 LPM, Bypass flow rate: 12 LPM
<i>Precision</i>	0.5% of reading above 5 ppm	0.5% of reading above 5 ppb	0.5% of reading above 100 ppb	± 2.0 µg/m ³ (1-hour average)
<i>Linearity</i>	1% of full scale	1% of full scale	1% of full scale	
<i>Response time</i>	< 70 seconds to 95%	< 40 seconds to 95%	< 30 seconds to 95%	
<i>Lower detectable limit</i>	< 0.04 ppm	< 40 ppt	< 0.4 ppb with 80 Sample Digital Filter	< 5 µg/m ³

S.2 Data processing:

The reference measurements of the concentrations of the gaseous pollutants at TRS that are originally provided in $\mu\text{g}/\text{m}^3$ units are converted to ppb as follows:


$$C_{\text{gas}} = \rho_{\text{gas}} \times (273.2 + T) / (12.187 \times M),$$

where C_{gas} and ρ_{gas} are the concentrations in ppb and in $\mu\text{g}/\text{m}^3$, respectively, T is the temperature in $^{\circ}\text{C}$ and M is the molecular weight (in g/mol) of each gas. No further processing is applied on the data.

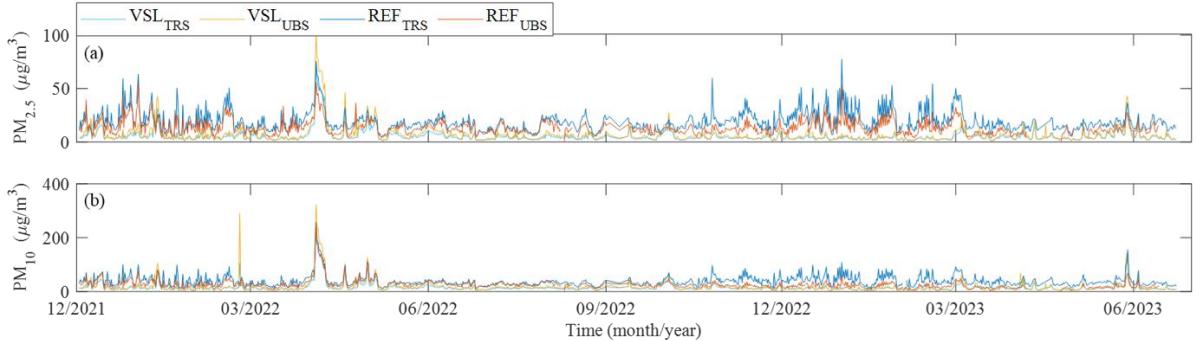
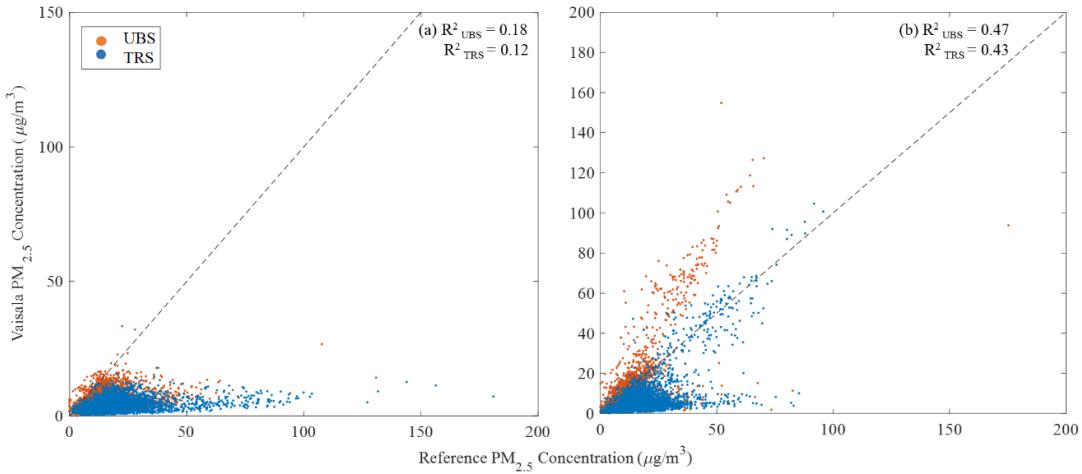
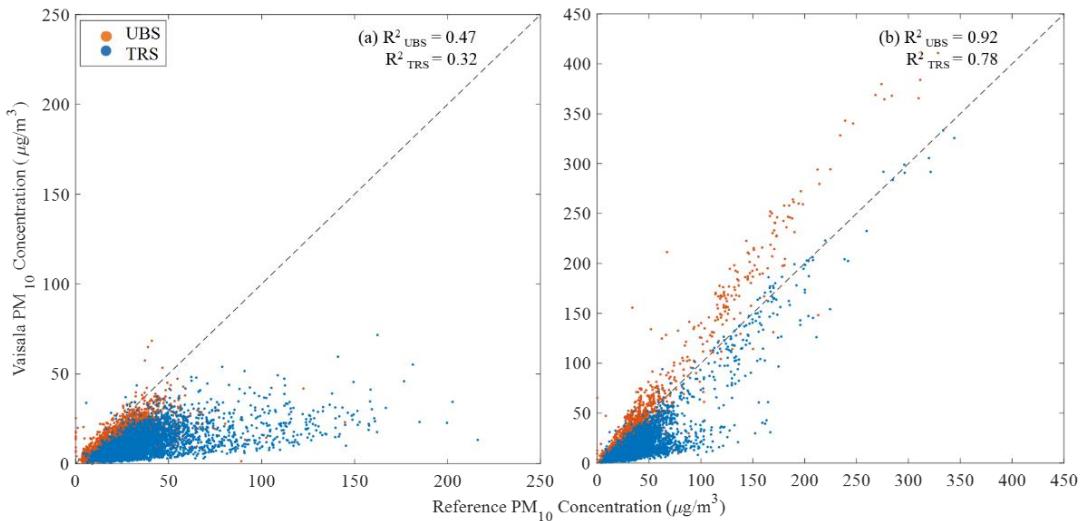
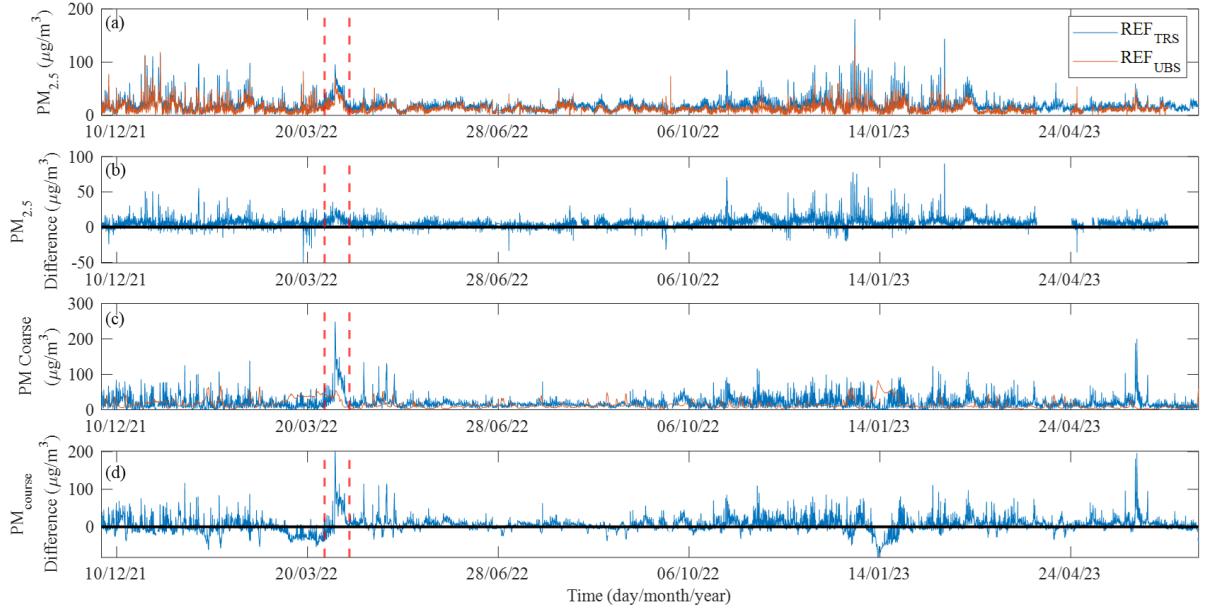
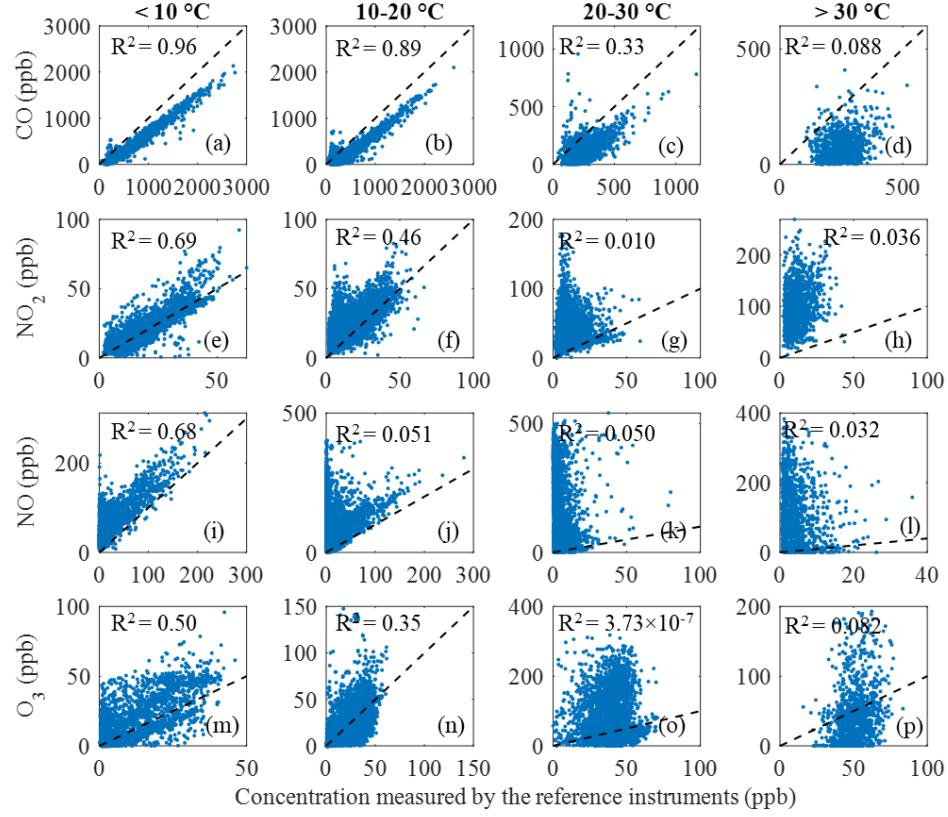


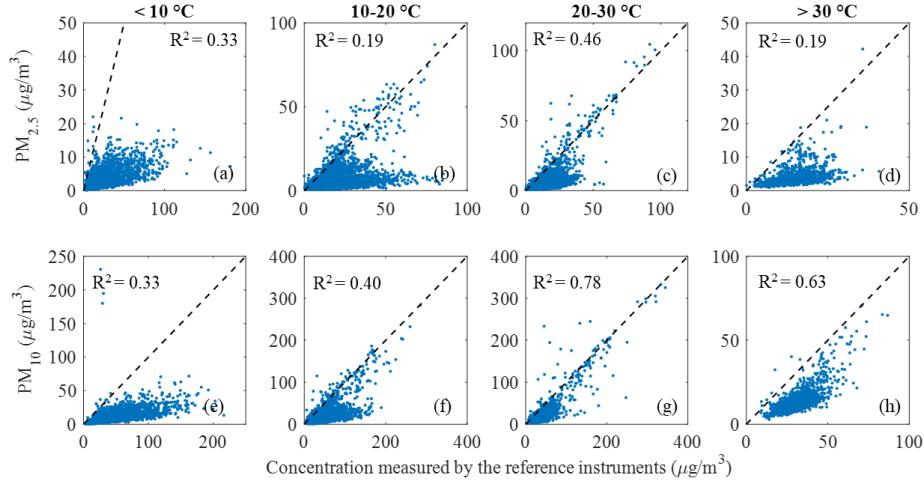
Figure S1: Correlation between hourly averaged measurements recorded by the VSL_{TRS} (blue circles) and VSL_{UBS} (red circles) sensors, with those provided by the respective reference instruments during the collocation week. The black dashed lines indicate the 1:1 relation.

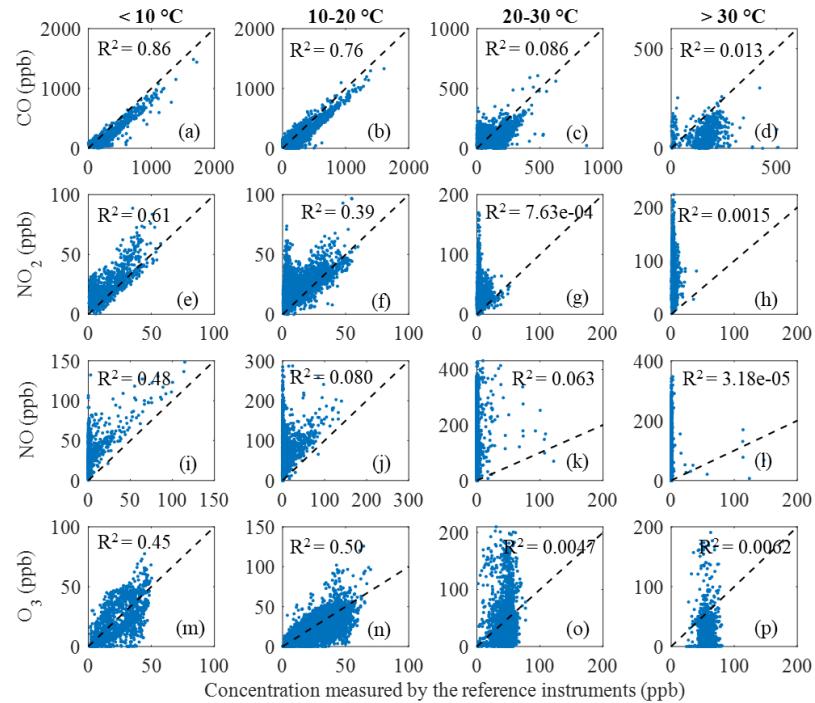

S.3 Overall performance

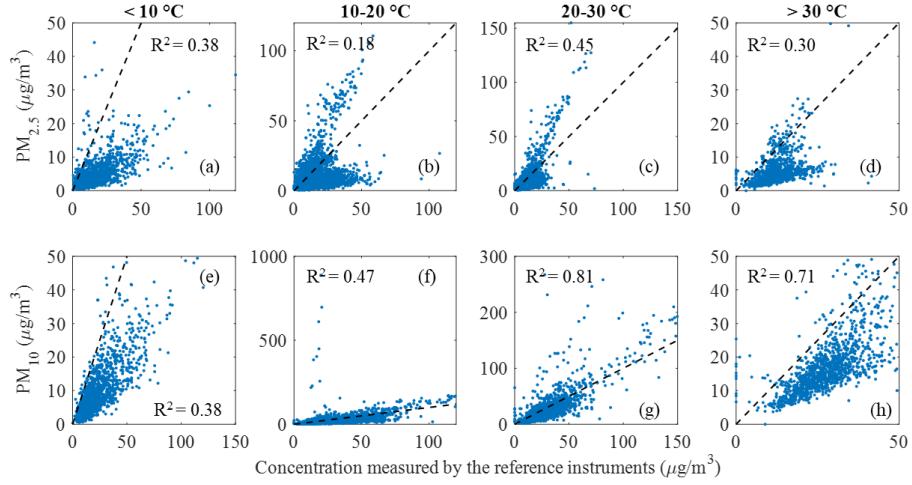

Figure S2: Time series of 12-hour averaged concentrations measured by the VSL_{TRS} and VSL_{UBS} gas sensors for CO (a), NO₂ (b), NO (c), and O₃ (d) over the entire measurement period. The VSL_{TRS} and VSL_{UBS} measurements are plotted on the left y-axis while the ones from the reference instruments (i.e., REF_{TRS}, REF_{UBS}) are plotted on the right y-axis. Black dashed lines indicate the time that the firmware was updated for the NO₂ (on 25/08/2022) and for the O₃ (on 26/01/2023) sensors.

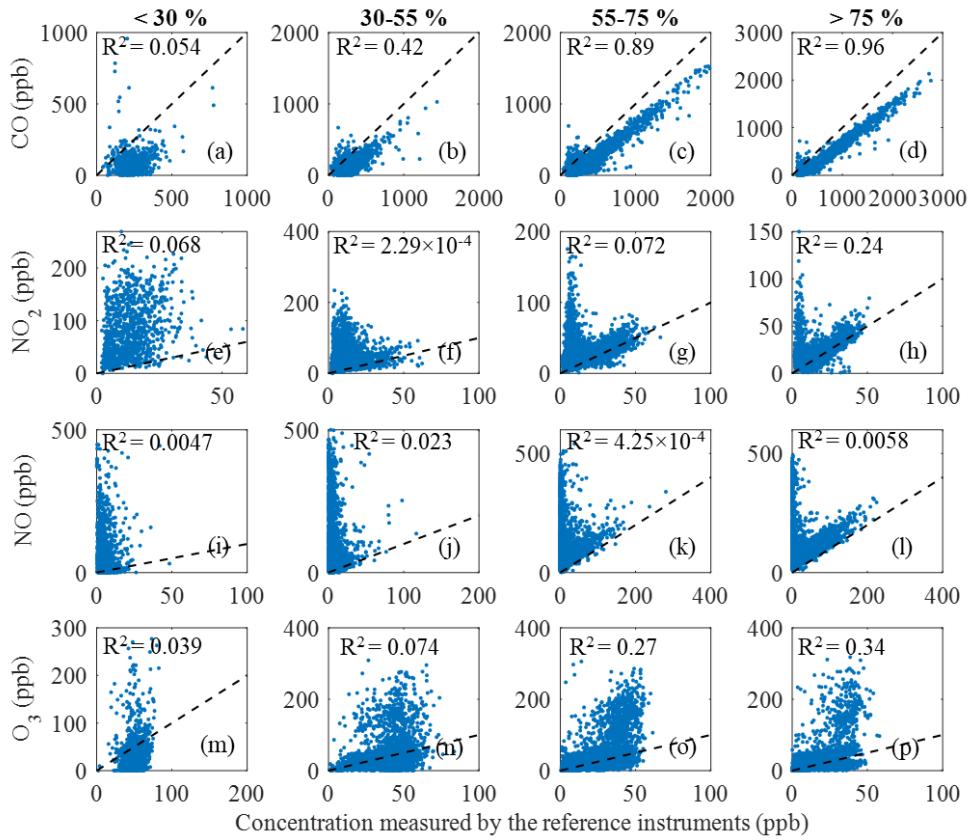

Figure S3: Time series of 12-hour averaged concentrations measured by the VSL_{TRS} and VSL_{UBS} PM sensors for the PM_{2.5} (a) and the PM₁₀ (b) mass fractions over the entire measurement period.

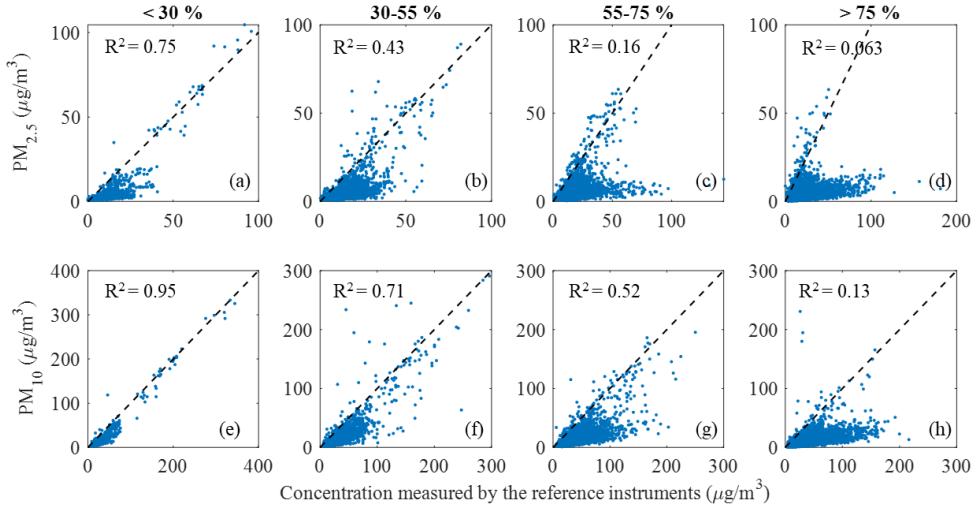

Figure S4: Correlation between hourly-averaged PM_{2.5} measurements recorded by the AQTs at the two stations and those provided by the respective reference instruments during the non-dust periods (i.e., summer and winter; a) and dust periods (i.e. spring and autumn; b). The black dashed lines indicate the 1:1 relation.

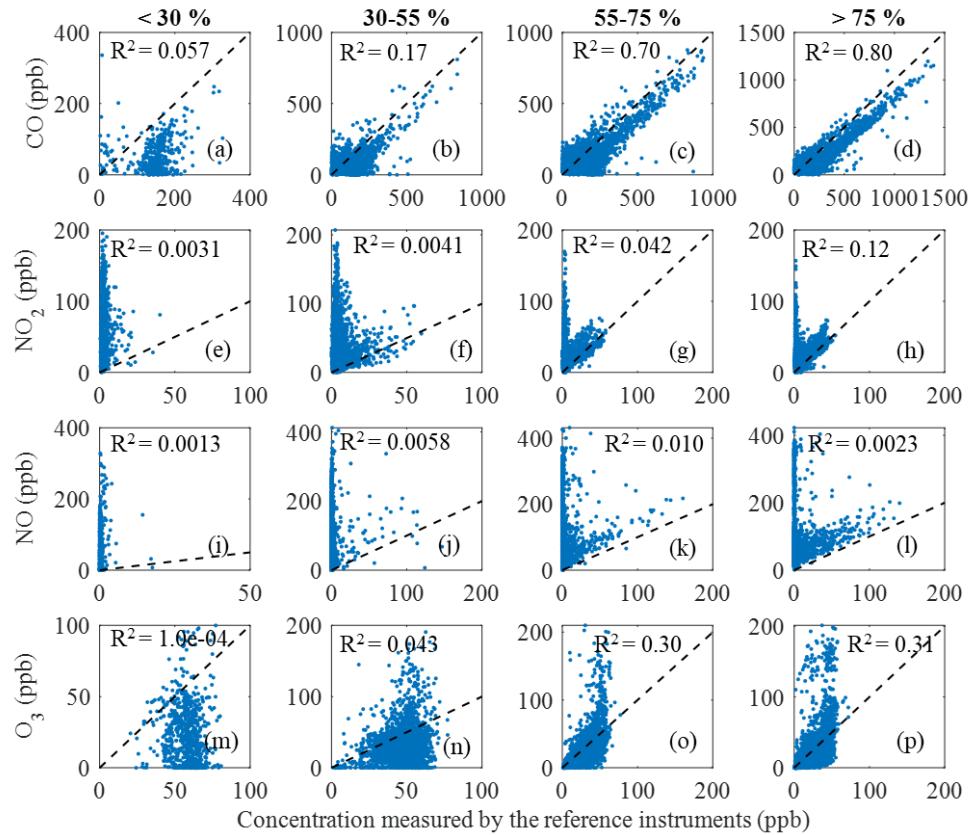

Figure S5: Correlation between hourly-averaged PM₁₀ measurements recorded by the AQTs at the two stations and those provided by the respective reference instruments during the non-dust periods (i.e. summer and winter; a) and dust periods (i.e. spring and autumn; b). The black dashed lines indicate the 1:1 relation.


Figure S6: Time series of hourly-averaged PM_{2.5} and coarse PM concentrations measured by the reference instruments at TRS and UBS. The differences in PM_{2.5} and PM coarse between the two reference measurements are also plotted. The solid black line represents zero. Data between the red dashed lines indicate a major dust event in April 2022.


Figure S7: Correlation between the measurements recorded by the VSLTRS gas sensors, and those provided by the respective reference instruments at four different temperature ranges. The 1:1 relations in each subplot are depicted as dashed lines.


Figure S8: Correlation between the mass concentration measurements recorded by the VSL_{TRS} particle sensor, and those provided by the respective reference instruments at four different temperature ranges. The 1:1 lines in each subplot are depicted as dashed lines.


Figure S9: Correlation between the measurements recorded by the VSL_{UBS} gas sensors, and those provided by the respective reference instruments at four different temperature ranges. The 1:1 lines in each subplot are depicted as dashed lines.


Figure S10: Correlation between the mass concentration measurements recorded by the VSL_{UBS} particle sensor, and those provided by the respective reference instruments at four different temperature ranges. The 1:1 lines in each subplot are depicted as dashed lines.

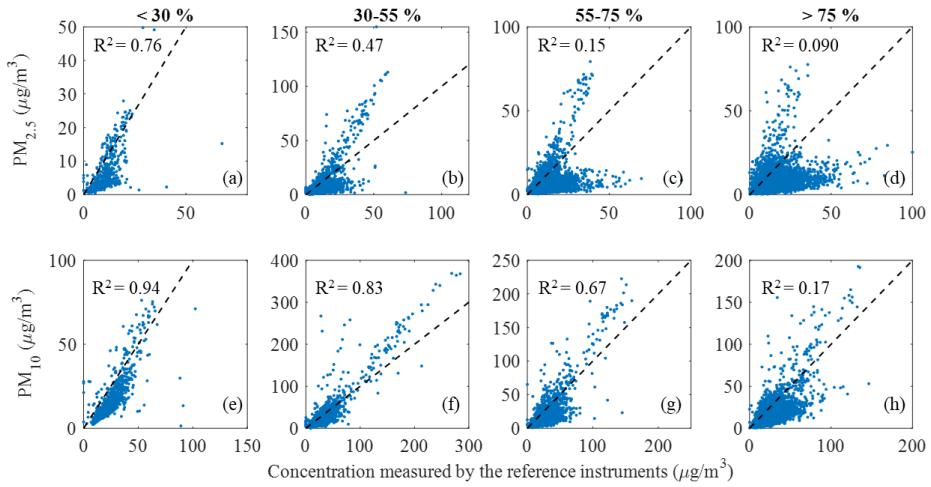

Figure S11: Correlation between the measurements recorded by the VSL_{TRS} gas sensors and those provided by the respective reference instruments at four different RH ranges. The 1:1 relations in each subplot are depicted as dashed lines.

Figure S12: Correlation between the mass concentration measurements recorded by the VSLTRS particle sensor, and those provided by the respective reference instruments at four different RH ranges. The 1:1 relations in each subplot are depicted as dashed lines.

Figure S13: Correlation between the measurements recorded by the VSLUBS gas sensors and those provided by the respective reference instruments at four different RH ranges. The 1:1 relations in each subplot are depicted as dashed lines.

Figure S14: Correlation between the mass concentration measurements recorded by the VSLUBS particle sensor and those provided by the respective reference instruments at four different RH ranges. The 1:1 relations in each subplot are depicted as dashed lines.

S.4 Significance of the difference between observations of the two stations

The Wilcoxon rank sum test method is a non-parametric test for two paired populations (x, y) assuming they are randomly and independently distributed. It returns the p-value for the null hypothesis that data in x and y are samples from continuous distributions with equal medians, against the alternative that they are not. The Wilcoxon rank sum test relies on the z-statistic defined as:

$$z = \frac{W - \frac{n(n + 1)}{4}}{\sqrt{\frac{n(n + 1)(2n + 1)}{24}}},$$

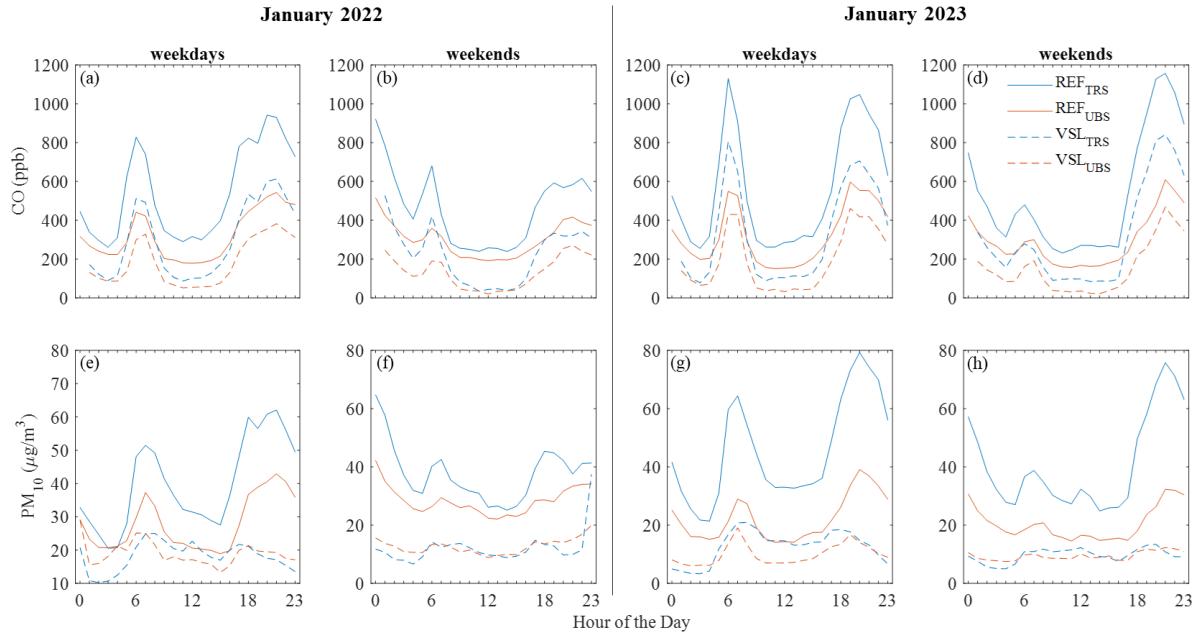
where n is the sample size of the difference ($x - y$), and W is a parameter calculated by the following procedure: (1) determine the absolute difference between the two measurements ($|D_i|$), (2) assign ranks from 1 to n to each $|D_i|$ such that the smallest absolute difference is ranked as 1 and the largest as n , (3) reassign the symbol "+" or "-" to each of the n ranks, depending on whether D_i is originally positive or negative, (4) calculate the sum of the positive ranks (W_+) and the sum of the negative ranks (W_-), where W is the smallest value between W_+ and W_- . The calculated z value is then compared against a critical z value obtained from the so-called z -table. If the calculated z is less or equal to the critical z value, then the null hypothesis is rejected, implying a significant difference between the two populations (p value < 0.05).

Entire period

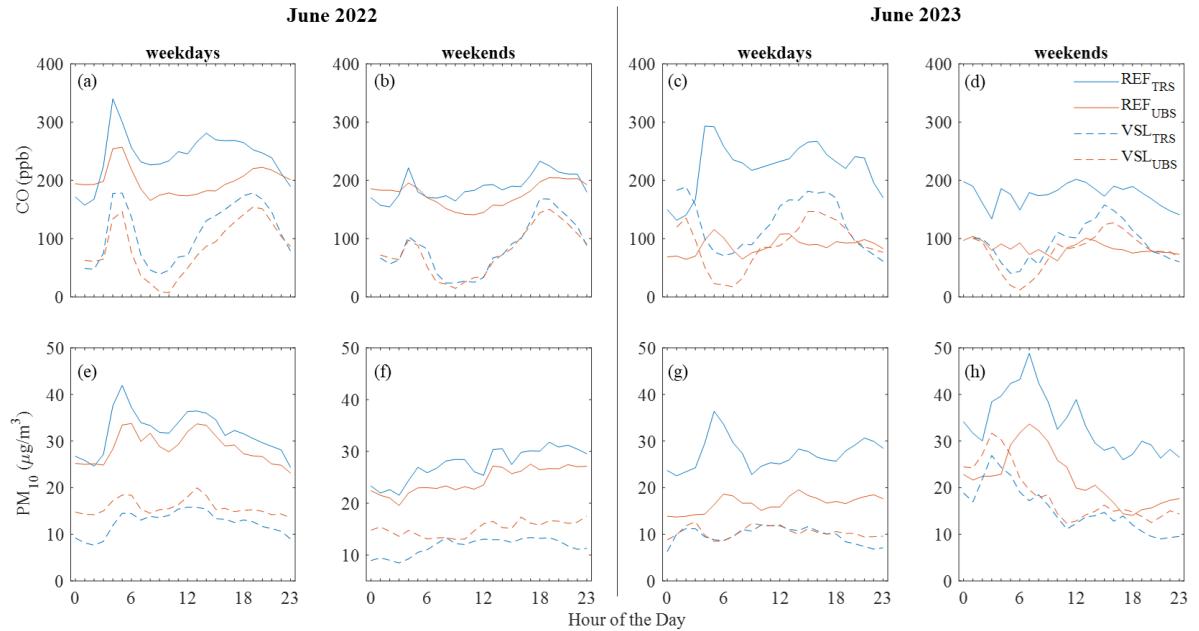
Table S3: Wilcoxon rank sum test results. In all cases, p values were < 0.05 , indicating that the null hypothesis of the test is true.

	Reference measurements		AQT measurements	
	p value	Significant difference ($p < 0.05$)	p value	Significant difference ($p < 0.05$)
CO	0	true	9.9×10^{-142}	true
NO ₂	0	true	3.8×10^{-99}	true
NO	0	true	3.3×10^{-68}	true
O ₃	8.3×10^{-316}	true	7.0×10^{-12}	true
PM _{2.5}	0	true	7.9×10^{-117}	true
PM ₁₀	0	true	2.0×10^{-14}	true

Monthly variabilities


Table S4: Wilcoxon rank sum test results for the CO measurements on a monthly basis. Bold underlined numbers indicate p values > 0.05, corresponding to cases where the null hypothesis of the test is rejected.

	Reference measurements		AQT measurements	
	p value	Significant difference (p < 0.05)	p value	Significant difference (p < 0.05)
Dec. 2021	1.1×10^{-17}	true	3.2×10^{-07}	true
Jan. 2022	1.9×10^{-36}	true	1.9×10^{-11}	true
Feb. 2022	4.1×10^{-68}	true	1.8×10^{-10}	true
Mar. 2022	2.2×10^{-96}	true	1.6×10^{-12}	true
Apr. 2022	3.2×10^{-52}	true	1.0×10^{-06}	true
May 2022	1.3×10^{-57}	true	4.4×10^{-05}	true
Jun. 2022	1.3×10^{-26}	true	3.2×10^{-04}	true
Jul. 2022	1.6×10^{-30}	true	5.2×10^{-01}	false
Aug. 2022	5.5×10^{-89}	true	6.8×10^{-01}	false
Sept. 2022	1.3×10^{-84}	true	6.7×10^{-05}	true
Oct. 2022	2.6×10^{-142}	true	3.5×10^{-11}	true
Nov. 2022	4.4×10^{-126}	true	1.0×10^{-19}	true
Dec. 2022	1.1×10^{-44}	true	1.8×10^{-16}	true
Jan. 2023	3.0×10^{-48}	true	3.1×10^{-15}	true
Feb. 2023	3.3×10^{-73}	true	8.3×10^{-25}	true
Mar. 2023	1.3×10^{-17}	true	9.3×10^{-14}	true
Apr. 2023	1.1×10^{-163}	true	5.2×10^{-14}	true
May 2023	1.9×10^{-121}	true	1.0×10^{-17}	true
Jun. 2023	1.4×10^{-92}	true	2.5×10^{-12}	true


Table S5: Wilcoxon rank sum test results for all PM₁₀ measurements on a monthly basis. Bold underlined numbers indicate p values > 0.05, corresponding to cases where the null hypothesis of the test is rejected.

	Reference measurements		AQT measurements	
	p value	Significant difference (p < 0.05)	p value	Significant difference (p < 0.05)
Dec. 2021	5.6×10^{-14}	true	4.2×10^{-01}	<u>false</u>
Jan. 2022	3.5×10^{-18}	true	7.2×10^{-02}	true
Feb. 2022	3.8×10^{-29}	true	7.0×10^{-01}	<u>false</u>
Mar. 2022	1.2×10^{-35}	true	3.1×10^{-01}	<u>false</u>
Apr. 2022	2.8×10^{-06}	true	1.0×10^{-07}	true
May 2022	1.4×10^{-06}	true	3.3×10^{-15}	true
Jun. 2022	5.2×10^{-09}	true	1.0×10^{-14}	true
Jul. 2022	8.8×10^{-05}	true	4.0×10^{-29}	true
Aug. 2022	1.2×10^{-31}	true	4.4×10^{-34}	true
Sept. 2022	1.5×10^{-36}	true	3.2×10^{-07}	true
Oct. 2022	2.8×10^{-77}	true	1.5×10^{-06}	true
Nov. 2022	2.8×10^{-133}	true	7.2×10^{-02}	<u>false</u>
Dec. 2022	2.3×10^{-121}	true	1.4×10^{-03}	true
Jan. 2023	1.2×10^{-69}	true	4.6×10^{-03}	true
Feb. 2023	6.3×10^{-98}	true	3.4×10^{-09}	true
Mar. 2023	2.4×10^{-132}	true	4.3×10^{-01}	<u>false</u>
Apr. 2023	1.6×10^{-87}	true	3.7×10^{-01}	<u>false</u>
May 2023	4.2×10^{-129}	true	6.2×10^{-01}	<u>false</u>
Jun. 2023	9.1×10^{-64}	true	1.5×10^{-04}	true

Hour-of-the-day (diurnal) variabilities

Figure S15: Diurnal variability of the hourly-averaged CO (a-d) and PM₁₀ (e-h) concentration measurements in January 2022 (left column) and January 2023 (right column) determined by the reference instruments (solid lines) and the Vaisala AQT sensors (dashed lines) at the two stations. The blue and orange lines correspond to measurements at TRS and UBS stations, respectively.

Figure S16: Diurnal variability of the hourly-averaged CO (a-d) and PM₁₀ (e-h) measurements in June 2022 (left column) and June 2023 (right column) determined by the reference instruments (solid lines) and the Vaisala AQT sensors (dashed lines) at the two stations. The blue and orange lines correspond to measurements at TRS and UBS stations, respectively.

Table S6: Wilcoxon rank sum test results for all CO measurements. Bold underlined numbers indicate p values > 0.05, corresponding to cases where the null hypothesis of the test is rejected.

Hour	Reference measurements				AQT measurements			
	June 2022 - 2023		January 2022 - 2023		June 2022 - 2023		January 2022 - 2023	
	p value		p value		p value		p value	
workdays	weekends	workdays	weekends	workdays	weekends	workdays	weekends	workdays
0	<u>5.6 × 10⁻⁰¹</u>	<u>7.3 × 10⁻⁰¹</u>	2.1×10^{-02}	<u>9.6 × 10⁻⁰²</u>	<u>2.3 × 10⁻⁰¹</u>	<u>3.5 × 10⁻⁰¹</u>	<u>3.0 × 10⁻⁰¹</u>	<u>1.9 × 10⁻⁰¹</u>
1	<u>9.7 × 10⁻⁰²</u>	<u>8.7 × 10⁻⁰¹</u>	<u>1.6 × 10⁻⁰¹</u>	<u>1.2 × 10⁻⁰¹</u>	<u>6.9 × 10⁻⁰¹</u>	<u>8.4 × 10⁻⁰¹</u>	<u>4.9 × 10⁻⁰¹</u>	<u>1.9 × 10⁻⁰¹</u>
2	<u>4.6 × 10⁻⁰¹</u>	<u>9.5 × 10⁻⁰¹</u>	<u>5.2 × 10⁻⁰²</u>	<u>1.4 × 10⁻⁰¹</u>	<u>4.9 × 10⁻⁰¹</u>	<u>6.6 × 10⁻⁰¹</u>	<u>8.5 × 10⁻⁰¹</u>	<u>3.2 × 10⁻⁰¹</u>
3	2.1×10^{-02}	<u>7.7 × 10⁻⁰¹</u>	1.3×10^{-02}	<u>3.7 × 10⁻⁰¹</u>	1.2×10^{-02}	<u>6.6 × 10⁻⁰¹</u>	<u>8.5 × 10⁻⁰¹</u>	<u>1.9 × 10⁻⁰¹</u>
4	4.8×10^{-07}	<u>3.5 × 10⁻⁰¹</u>	2.0×10^{-06}	<u>9.0 × 10⁻⁰²</u>	1.7×10^{-03}	<u>8.9 × 10⁻⁰¹</u>	2.5×10^{-03}	<u>1.5 × 10⁻⁰¹</u>
5	2.5×10^{-06}	<u>4.8 × 10⁻⁰¹</u>	1.9×10^{-09}	7.1×10^{-04}	2.5×10^{-02}	<u>5.1 × 10⁻⁰¹</u>	9.9×10^{-07}	1.3×10^{-03}
6	3.9×10^{-06}	<u>8.3 × 10⁻⁰¹</u>	5.9×10^{-07}	2.2×10^{-03}	8.8×10^{-06}	8.9×10^{-03}	1.4×10^{-04}	2.9×10^{-03}
7	1.5×10^{-08}	<u>1.0 × 10⁻⁰¹</u>	7.9×10^{-05}	3.3×10^{-02}	9.9×10^{-08}	1.0×10^{-02}	1.1×10^{-02}	4.1×10^{-02}
8	1.6×10^{-10}	<u>6.9 × 10⁻⁰²</u>	2.1×10^{-06}	<u>5.8 × 10⁻⁰²</u>	6.4×10^{-04}	<u>8.5 × 10⁻⁰¹</u>	5.3×10^{-04}	3.3×10^{-02}
9	5.0×10^{-08}	<u>1.3 × 10⁻⁰¹</u>	1.8×10^{-10}	1.7×10^{-02}	1.9×10^{-02}	<u>5.7 × 10⁻⁰¹</u>	7.5×10^{-07}	9.4×10^{-03}
10	3.4×10^{-08}	3.3×10^{-02}	1.6×10^{-10}	1.5×10^{-02}	<u>1.0 × 10⁻⁰¹</u>	<u>7.5 × 10⁻⁰¹</u>	1.4×10^{-03}	7.9×10^{-03}
11	7.7×10^{-08}	2.4×10^{-03}	8.3×10^{-12}	4.2×10^{-03}	4.5×10^{-03}	<u>8.9 × 10⁻⁰¹</u>	1.1×10^{-03}	<u>2.5 × 10⁻⁰¹</u>
12	3.7×10^{-07}	2.4×10^{-03}	7.7×10^{-12}	1.5×10^{-04}	7.1×10^{-03}	<u>8.2 × 10⁻⁰¹</u>	1.2×10^{-04}	2.9×10^{-02}
13	8.5×10^{-07}	6.1×10^{-03}	4.5×10^{-11}	2.1×10^{-04}	3.5×10^{-03}	<u>1.3 × 10⁻⁰¹</u>	1.0×10^{-04}	<u>6.5 × 10⁻⁰²</u>
14	2.0×10^{-07}	1.9×10^{-02}	2.2×10^{-10}	4.6×10^{-04}	7.1×10^{-04}	<u>4.0 × 10⁻⁰¹</u>	8.6×10^{-05}	3.9×10^{-02}
15	5.0×10^{-09}	<u>1.4 × 10⁻⁰¹</u>	8.6×10^{-08}	2.4×10^{-03}	4.1×10^{-04}	<u>3.2 × 10⁻⁰¹</u>	8.2×10^{-06}	<u>6.2 × 10⁻⁰²</u>
16	1.6×10^{-09}	1.6×10^{-02}	5.8×10^{-07}	3.7×10^{-04}	5.8×10^{-04}	<u>5.1 × 10⁻⁰¹</u>	8.2×10^{-05}	1.6×10^{-02}
17	6.2×10^{-09}	5.3×10^{-03}	2.7×10^{-05}	9.1×10^{-05}	2.2×10^{-04}	<u>2.4 × 10⁻⁰¹</u>	5.2×10^{-04}	1.3×10^{-03}
18	1.5×10^{-08}	1.2×10^{-02}	9.9×10^{-05}	5.1×10^{-03}	6.0×10^{-04}	<u>2.6 × 10⁻⁰¹</u>	2.5×10^{-03}	2.1×10^{-02}
19	6.8×10^{-05}	<u>2.1 × 10⁻⁰¹</u>	4.5×10^{-03}	1.0×10^{-02}	<u>7.4 × 10⁻⁰²</u>	<u>3.7 × 10⁻⁰¹</u>	<u>8.6 × 10⁻⁰²</u>	<u>6.4 × 10⁻⁰²</u>
20	9.6×10^{-05}	<u>3.0 × 10⁻⁰¹</u>	2.5×10^{-04}	2.0×10^{-02}	<u>4.7 × 10⁻⁰¹</u>	<u>8.0 × 10⁻⁰¹</u>	1.1×10^{-02}	<u>7.5 × 10⁻⁰²</u>
21	3.9×10^{-03}	<u>4.8 × 10⁻⁰¹</u>	2.2×10^{-03}	3.8×10^{-02}	<u>8.9 × 10⁻⁰¹</u>	<u>5.8 × 10⁻⁰¹</u>	3.3×10^{-02}	<u>1.7 × 10⁻⁰¹</u>
22	<u>5.3 × 10⁻⁰²</u>	<u>6.6 × 10⁻⁰¹</u>	7.3×10^{-04}	<u>8.5 × 10⁻⁰²</u>	<u>6.8 × 10⁻⁰¹</u>	<u>7.0 × 10⁻⁰¹</u>	1.5×10^{-02}	<u>2.4 × 10⁻⁰¹</u>
23	<u>6.7 × 10⁻⁰¹</u>	<u>8.0 × 10⁻⁰¹</u>	9.5×10^{-03}	<u>1.1 × 10⁻⁰¹</u>	<u>5.8 × 10⁻⁰²</u>	<u>7.5 × 10⁻⁰¹</u>	<u>1.5 × 10⁻⁰¹</u>	<u>2.8 × 10⁻⁰¹</u>

Table S7: Wilcoxon rank sum test results for all PM₁₀ measurements. Bold underlined cells indicate p values > 0.05, corresponding to cases where the null hypothesis of the test is rejected.

Hour	Reference measurements				AQT measurements			
	June 2022 - 2023		January 2022 - 2023		June 2022 - 2023		January 2022 - 2023	
	p value		p value		p value		p value	
Hour	workdays	weekends	workdays	weekends	workdays	weekends	workdays	weekends
0	3.7×10^{-02}	2.1×10^{-01}	3.0×10^{-02}	2.3×10^{-02}	3.9×10^{-03}	9.4×10^{-02}	5.7×10^{-02}	4.1×10^{-01}
1	1.0×10^{-01}	2.7×10^{-01}	1.3×10^{-02}	2.9×10^{-02}	2.6×10^{-02}	1.5×10^{-01}	5.1×10^{-03}	6.4×10^{-01}
2	1.6×10^{-01}	1.6×10^{-01}	7.6×10^{-03}	8.5×10^{-02}	4.1×10^{-03}	1.2×10^{-01}	5.6×10^{-04}	5.0×10^{-02}
3	1.5×10^{-02}	1.4×10^{-01}	8.1×10^{-02}	1.7×10^{-01}	2.2×10^{-03}	9.4×10^{-02}	1.4×10^{-03}	4.7×10^{-02}
4	1.7×10^{-04}	1.2×10^{-01}	3.4×10^{-02}	1.6×10^{-01}	7.0×10^{-02}	1.2×10^{-01}	3.5×10^{-02}	7.0×10^{-02}
5	1.1×10^{-04}	1.1×10^{-01}	2.9×10^{-04}	9.6×10^{-02}	3.8×10^{-01}	3.2×10^{-01}	1.3×10^{-01}	3.4×10^{-01}
6	5.5×10^{-03}	2.3×10^{-01}	4.3×10^{-06}	3.8×10^{-03}	1.4×10^{-01}	8.4×10^{-01}	4.7×10^{-01}	6.2×10^{-01}
7	4.1×10^{-02}	1.3×10^{-01}	5.5×10^{-05}	1.7×10^{-02}	3.8×10^{-01}	$1.0 \times 10^{+00}$	5.7×10^{-01}	$1.0 \times 10^{+00}$
8	1.8×10^{-02}	2.5×10^{-01}	4.7×10^{-05}	7.5×10^{-02}	9.7×10^{-01}	$1.0 \times 10^{+00}$	6.0×10^{-03}	3.7×10^{-01}
9	7.7×10^{-02}	3.2×10^{-01}	2.4×10^{-08}	5.4×10^{-02}	2.1×10^{-01}	8.4×10^{-01}	3.6×10^{-06}	1.9×10^{-01}
10	3.4×10^{-02}	2.5×10^{-01}	2.1×10^{-08}	1.1×10^{-01}	6.6×10^{-01}	5.7×10^{-01}	7.2×10^{-06}	3.1×10^{-01}
11	3.2×10^{-02}	8.5×10^{-02}	9.5×10^{-09}	5.0×10^{-02}	9.4×10^{-01}	6.3×10^{-01}	3.7×10^{-06}	2.8×10^{-01}
12	1.4×10^{-01}	9.5×10^{-02}	1.2×10^{-09}	6.2×10^{-02}	6.8×10^{-01}	4.0×10^{-01}	1.1×10^{-05}	3.6×10^{-01}
13	2.8×10^{-01}	1.3×10^{-01}	6.8×10^{-08}	2.9×10^{-02}	4.9×10^{-01}	6.1×10^{-01}	3.4×10^{-05}	4.5×10^{-01}
14	1.1×10^{-01}	1.3×10^{-01}	7.8×10^{-07}	2.3×10^{-01}	8.3×10^{-01}	4.8×10^{-01}	1.2×10^{-04}	8.5×10^{-01}
15	1.1×10^{-01}	2.1×10^{-01}	5.2×10^{-06}	1.4×10^{-01}	9.6×10^{-01}	4.0×10^{-01}	1.9×10^{-03}	9.1×10^{-01}
16	1.3×10^{-01}	1.1×10^{-01}	8.6×10^{-08}	4.0×10^{-02}	8.5×10^{-01}	2.6×10^{-01}	8.1×10^{-03}	9.5×10^{-01}
17	3.6×10^{-02}	2.1×10^{-01}	6.3×10^{-06}	1.7×10^{-02}	3.3×10^{-01}	4.0×10^{-01}	2.4×10^{-01}	5.2×10^{-01}
18	2.5×10^{-02}	1.7×10^{-01}	7.4×10^{-05}	7.8×10^{-03}	5.7×10^{-01}	1.6×10^{-01}	2.6×10^{-01}	7.3×10^{-01}
19	2.5×10^{-03}	6.0×10^{-02}	1.2×10^{-03}	3.1×10^{-02}	2.0×10^{-01}	1.5×10^{-01}	8.4×10^{-01}	7.5×10^{-01}
20	5.5×10^{-03}	5.4×10^{-02}	1.9×10^{-03}	1.0×10^{-01}	2.9×10^{-02}	1.0×10^{-01}	9.7×10^{-01}	8.5×10^{-01}
21	2.9×10^{-03}	1.6×10^{-01}	2.5×10^{-03}	1.4×10^{-01}	2.8×10^{-02}	2.6×10^{-02}	9.9×10^{-01}	4.3×10^{-01}
22	8.1×10^{-03}	1.4×10^{-01}	3.1×10^{-04}	1.5×10^{-01}	1.8×10^{-02}	1.6×10^{-02}	5.5×10^{-01}	4.8×10^{-01}
23	2.0×10^{-02}	3.4×10^{-01}	4.6×10^{-04}	2.2×10^{-01}	6.2×10^{-03}	2.0×10^{-02}	1.8×10^{-01}	7.0×10^{-01}