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Abstract. This study presents an independent and blinded
controlled release evaluation of methane detection and quan-
tification technologies in Europe. Conducted at the TotalEn-
ergies Anomalies Detection Initiatives (TADI) site in France,
the campaign tested eight commercial systems — including
satellite, drone, and continuous monitoring platforms — un-
der controlled single-blind conditions. Participants submitted
methane emission rate estimates without prior knowledge of
true release values. Performance was assessed through de-
tection limit curves, parity plots, and statistical metrics in-
cluding slope and R?. False positive detection rates ranged
from 0% to 11 %. Quantification slopes ranged from 0.09
to 1.13, with a trend toward underestimation, and R? val-
ues ranged from 0.08 to 0.97. Wind conditions — particu-
larly low speeds and high variability — were a key factor
affecting quantification accuracy, emphasizing the need for
high-quality wind data integration. This study underscores
the importance of rigorous, standardized testing to bench-
mark technology performance and inform regulatory efforts.
Results highlight platform-specific strengths and challenges,
providing actionable insights for participants, policymakers,
and regulators. These findings support the development of ro-
bust, validated methane measurement tools critical to achiev-
ing effective emissions monitoring and reduction strategies
under evolving regulatory frameworks, such as those in the
European Union.

1 Introduction

Methane, a potent greenhouse gas with a global warming po-
tential significantly higher than carbon dioxide over a 20 year
period, is a critical target for emission-measuring technolo-
gies Anthropogenic methane emissions have contributed to
30 % of the global temperature increase since pre-industrial
time, and given methane’s short atmospheric lifespan and
strong near-term warming impact, it is an ideal candidate
for mitigation efforts (Ocko et al., 2021; Smith et al., 2020).
Monitoring emissions is increasingly central to global strate-
gies to limit temperature rise, with both established and
emerging technologies being deployed across sectors (IEA,
2022; Ravikumar et al., 2020).

Targeting methane emissions from the oil and gas (O&G)
sector — particularly upstream production — is one of the most
cost-effective mitigation strategies when paired with appro-
priate policies (Kemp and Ravikumar, 2021). Recent initia-
tives, such as new European Union (EU) regulations, have
reinforced the need for accurate detection and quantification
(Official Journal of the European Union, 2024). Historically,
participants relied on extrapolated “bottom-up” estimates,
but research shows these often underestimate true emissions
compared to direct measurement approaches (Allen, 2014;
Sherwin et al., 2024b; Zhang et al., 2020). Policymakers
and industry are shifting toward measurement-based data,
reflected in efforts like the Oil & Gas Methane Partner-
ship (OGMP) 2.0, a collaboration between industry and the
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United Nations to improving methane reporting through di-
rect measurement.

Methane detection technologies are deployed globally us-
ing satellites, aircraft, drones, vehicles, and fixed ground-
based systems. Measurements fall into three categories:
(1) in situ concentration, (2) active imaging, and (3) passive
imaging. In situ sensors measure local methane concentra-
tions on various platforms. Active imaging systems use lasers
at methane-absorbing wavelengths. Passive imaging relies on
sunlight at methane-absorbing wavelengths, using aircraft,
satellites, or fixed cameras. After measuring concentrations,
algorithms — ranging from physical transport models to arti-
ficial intelligence — estimate emission rates from gas plumes.

Controlled release experiments, where methane is emit-
ted under known conditions, benchmark technology perfor-
mance. Blinded testing, in which participants estimate emis-
sions without prior knowledge of true values, is essential
for generating trusted, independent results. Previous studies
have shown the efficacy of many technologies in detecting
and quantifying point source emissions, though some require
further refinement before widespread deployment (Bell et
al., 2022, 2023; Chen et al., 2024; El Abbadi et al., 2024;
Ilonze et al., 2024; Liu et al., 2024; Rutherford et al., 2023;
Sherwin et al., 2024a).

Over a total of four weeks in June and September 2024,
participants participated in controlled release testing at the
TotalEnergies Anomalies Detection Initiatives (TADI) site
in Pau, France. Independent, low- and high-volume single-
blind tests were conducted to evaluate 15 commercial and
academic measurement systems. The eight commercial tech-
nologies evaluated in this study included drone-mounted
technologies (Aeromon BH12, GSMA AUSEA, SeekOps
SeekIR, Flylogix), fixed-ground level technologies (SEN-
SIA’s Mileva 33 camera, SLB’s Methane Lidar camera, and
the Sensirion Nubo Sphere solution), and satellite observa-
tions (GHGSat). The technologies belonging to academic in-
stitutions and research laboratories will be evaluated in a sep-
arate publication.

This study advances methane detection through blinded
controlled-release testing. Participants were evaluated on
their ability to detect methane and quantify emission rates.
Performance was assessed through detection limit curves and
parity plots comparing true and submitted rates, constitut-
ing a large-scale, independent, and blinded controlled-release
experiment on methane measurement technologies in Eu-
rope. Accurate methane emissions inventories are essential
for developing effective climate change mitigation strategies,
ensuring impactful reduction efforts. By characterizing the
state of methane measurement technologies and establishing
transparent evaluation methods, this study supports the de-
velopment of robust, reliable tools to meet the demand for
precise emissions monitoring in Europe and beyond.
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2 Methods

We tested eight commercially available technologies in a
single-blind controlled release study conducted over four
weeks in June and September 2024: 17-21 June (Week 1),
24-28 June (Week 2), 9-13 September (Week 3), and 16-20
September (Week 4). The study occurred at the TADI site in
southwestern France, a research and development platform
owned and operated by TotalEnergies. Figure 1 contains an
aerial view of the site, and a full description of the test site
can be found in Sect. S1.1 in the Supplement. A team from
Stanford University was onsite during the experiment to help
coordinate along with TotalEnergies scientists and engineers.
This section details the experimental setup, release proce-
dures, participant technologies, data collection, and results
submission methods.

2.1 Experimental setup

The tests followed a single-blind format, in which partici-
pants were not told the true release rates, nor the location of
the release points. Participants were aware of the release start
and stop time as a structured time format with announcement
was used. For ease of coordination and planning among the
teams on site, a pre-determined schedule was followed (e.g.,
pre-planning was required to maximize safety and results for
drone and plane operations). Each release occurred for ap-
proximately 45 min, followed with a 15 min break for plume
dispersion, which ensures a return to background levels of
methane concentration between tests. After the plume disper-
sion period, the next 45 min period begins. The original ex-
periment plan dictated 8 scheduled releases every day, with
each day following the same schedule (see Sect. S1.2.1 for
detailed schedule).

There were 40 releases scheduled each week, comprised
of (1) non-zero, normal scale (i.e. 0-100kg h~! release rate)
releases, (2) zero-releases to test for false positives, and
(3) satellite-scale (i.e. > 100kgh™!) releases. The imple-
mented daily schedule of releases varied somewhat depend-
ing on the weather and specific demands during the week.
There were occasionally weather conditions (e.g., heavy rain,
dense fog) that prevented measurements from some technol-
ogy types or imposed safety issues. The start and end of the
release was announced to participants onsite over a radio,
communicated to teams in the air overhead, and recorded in
the campaign headquarters room. The release schedule was
compiled in a spreadsheet and sent to all teams participat-
ing during that week. The release schedule and flowrates are
discussed further in Sects. S1.3-S4.

Participants were directed to measure concurrently except
for drones and aircraft, which were staggered in an alternat-
ing fashion (i.e. one technology of each type in the air during
a release) for safety. See Sect. S1.3 for more information on
participant scheduling.
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Figure 1. Map of the TADI test site. The gas release platform is indicated in red, the gas release control room in green, and the campaign
headquarters in blue. Approximate location of the fixed sensors from Sensirion, SLB, and Sensia are indicated as well as common paths for

drone flights.

2.2 Description of measurement technology

Eight commercial participants participated in the testing, de-
ploying solutions via satellite, drone, and fixed ground sen-
sors and cameras. The Aeromon BH-12, SeekOps SeekIR,
and Flylogix sensors measure methane using an in situ con-
centration measurement device attached to a drone and uti-
lizing mass balance methods to quantify emission rates. The
AUSEA sensor utilizes a similar technology, as described in
Bonne et al. (2024) and Joly et al. (2016, 2020). GHGSat’s
constellation of satellites (GHGSat-C) utilizes passive spec-
trometry technology (Diriker et al., 2022). Sensirion’s Nubo
Sphere solution was comprised of twelve in situ fixed-point
methane emission continuous monitoring sensors. The SLB
Methane Lidar Camera is an active imaging sensor utiliz-
ing tunable diode laser absorption spectrometry (TDLAS)
technology. SENSIA’s Mileva 33 camera is an optical gas
imaging infrared sensor. Each team deploys proprietary algo-
rithms along with the sensors to provide emission rate quan-
tification estimates. Full descriptions of each participant’s
technology and team can be found in Sect. S2. Table 1 con-
tains the specific technology deployed by each participant,
along with the week(s) they participated in testing.
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2.3 Data collection procedures

Information about release flowrate, location, start and end
time was recorded onsite by the site engineer. Deviations
from the schedule were recorded by hand on the printed
schedule and by the Stanford team. For each release, the
input flowrate and associated uncertainty was recorded.
Weather conditions, temperature, and prevailing windspeed
and direction was recorded on site every morning and after-
noon, and high-resolution wind data was collected using a
ZX 300 Wind Lidar (i.e. wind speed and direction at various
user-selected heights; see Sect. S3.2 for more information).
Throughout their week(s) participating in the campaign, the
participants measured methane concentrations with their in-
struments to provide an estimate of the release flowrate. Par-
ticipants were required to bring and use their own wind mea-
surement devices, if applicable to their technology. Each par-
ticipant’s measurement technique is described in more detail
in Sect. S2.

2.4 Data submission and filtering process
Participants were allowed four weeks from the completion

of each testing week to submit results for that week. All
the commercial participants submitted their estimates within
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Table 1. Participant and deployed solution, technology type, and week(s) of controlled release testing.

Participant ~ Solution Name Technology Type Sensor Type Testing Weeks
Aeromon BH-12 Sensor Drone In situ 1
GSMA AUSEA Sensor Drone In situ 1
Flylogix N/A Drone In situ 4
SeekOps SeekIR Sensor Drone In situ 2
GHGSat GHGSat-C2, C3, C4, C5, C7, and C8 (GHGSat-C)  Satellite Passive imaging 1,2,3,4
Sensirion Nubo Sphere Continuous Monitor  In situ 1,2,3,4
SLB Methane Lidar Camera Continuous Monitor  Active imaging 3,4
SENSIA Mileva 33 Continuous Monitor  Passive imaging 3,4

N/A: Participant did not specify a name of their measurement system.

the required timeframe. After all participants submitted their
results, true release rates were unblinded in a single-stage
process. The true release rates were given to the teams on a
weekly basis. True release rates were only released after ev-
ery participant participating in that week had submitted their
results. TADI wind lidar data was also given to participants
with the unblinded true release rates.

During the data cleaning process, submitted estimates
were categorized into one of three types: releases that teams
measured and submitted a non-zero methane emission rate
(“non-zero estimates”), releases for which teams submitted
a methane emission rate of 0kgh~! (“zero estimates”), and
releases for which teams did not submit any estimate (“N/A
estimates”). The Stanford team developed three different cri-
teria to filter and categorize each participants results: a strict
data filtering criterion (Strict QC), the Stanford team’s crite-
ria (Stanford QC), and a participant-submitted criteria (Par-
ticipant QC). The methods used to categorize participant es-
timates are discussed in detail in Sect. S4. Participants sub-
mitted zero-estimates differently (e.g., some reported in an
estimate methane emission rate of 0 kgh™!, while others re-
ported them as failed quantifications), resulting in the cre-
ation of the three different categorization methods. The Stan-
ford QC process used additional data submitted with the es-
timates to determine whether the failed quantification was
classified as a zero estimate (e.g., “no plume visible” or “be-
low level of detection”) or N/A (e.g., clouds or heavy rain).
The Stanford QC process was the default method used for
data included in analysis.

3 Results

The study results for each solution are presented in this sec-
tion. Complicating the results analysis is the fact that sev-
eral teams identified key issues with their data collection or
treatment after true release rates were unblinded, discussed
in more detail in Sect. 4.2.
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3.1 Detection analysis

The ability of methane detection technologies to correctly
identify the presence of emissions is a fundamental require-
ment for effective emissions monitoring and mitigation. In
this section, we evaluate the detection performance of each
participant by categorizing reported measurements as true
positives (TP), false positives (FP), true negatives (TN), or
false negatives (FN). True positives indicate successful de-
tection of a known release, while false negatives represent
missed detections. Conversely, false positives occur when a
participant reports a detection where no release was present,
and true negatives confirm correct identification of zero-
release events.

The results presented here highlight the variability in de-
tection capabilities across different technologies. As the start
and stop time of each release was known by all the perform-
ers, the detection capability could be overestimated. Due to
operational issues, the release schedule was not followed ex-
actly by all the teams, meaning the minimum release detected
presented might not be representative of the detection limit of
the technology.

The percentages are calculated by dividing by the to-
tal number of non-zero releases included in the analysis.
The table also includes the minimum and maximum release
flowrates detected by each team (i.e. the participant reported
in a quantification estimate for that release). A dash (-) indi-
cates that no releases were able to be categorized as FP/TN
due to that solution not measuring any zero releases or no
zero releases passed the Stanford QC process.

Table 2 contains information on the TP, FP, TN, and FN
performance for each participant, both in raw number of re-
leases and percentage of releases included in solution anal-
ysis. Overall, the technologies saw a very low level of false
positives and exhibited impressive detection capabilities. At
most, a solution identified one false positive release, and
half of the solutions did not report any false positives. The
GSMA AUSEA sensor correctly categorized all their re-
leases; as did GHGSat-C, although they only submitted one
release for analysis. Notably, most solutions only incorrectly

https://doi.org/10.5194/amt-19-923-2026
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categorized one or two releases, such as Sensirion Nubo
Sphere, Flylogix, SENSIA Mileva 33, Aeromon BH-12, and
SeekOps SeekIR Sensor.

The technologies varied widely in their implementation
(e.g., space-based compared to a fixed sensor placed meters
from the release point). Therefore, the minimum release de-
tected in this experiment ranged widely between technolo-
gies, from 0.01 to 210kgh™!. GHGSat-C was only given
large releases to characterize their minimum detection limits,
as their technologies can only observe comparatively large
sources (see Sect. S1.2.3). Other than the satellite, all com-
mercial solutions succeeded in detecting emission rates of
less than 1kgh™!. All the drone and fixed-sensor teams were
able to detect releases under 0.5kgh™!. Due to alternating
flights, two of the drone technologies (Aeromon BH-12 and
GSMA AUSEA) could not cover the full range of releases,
meaning the minimum detection limits could then be lower
than the one noted here.

Figure 2 shows a normalized histogram of detected re-
leases under 30kgh™! for each participant. For those solu-
tions with false negatives emission categorization (Flylogix,
Sensirion Nubo Sphere, SLB Methane Lidar Camera, and
SENSIA Mileva 33), detection capabilities under 30 kgh™!
are visualized using logistic regression to plot a best fit line
over a bin size of 6kgh~!. This visualizes the probability of
detection (POD) for the participants under this threshold and
for this bin size.

Flylogix and SENSIA Mileva 33 detected releases above
S5kgh™! with 100% probability. Sensirion Nubo Sphere
failed to detect one release above 5kgh™!, in the 15 to
20kgh™! range, but otherwise detected all releases above
5kgh™!. The SLB Methane Lidar Camera failed to detect
one release above 5kgh~!, in the 20 to 25kgh~! range, but
otherwise detected all releases above 5kgh~!. No false neg-
ative emissions were reported for the other technologies, so it
was not possible to determine their detection limit, except to
say that it is below the minimum release detected. For most
participants, especially the aerial technologies, more samples
are needed for a statistically robust characterization of POD.
Detection capabilities below 5kgh™! of methane are shown
in Sect. S5.

3.2 Quantification analysis

Accurate quantification of methane emissions is essential for
compliance, reporting, and mitigation. This section evaluates
each participant’s quantification performance by comparing
estimated release rates to metered values, using parity plots,
best-fit line slopes, R? values, and accuracy thresholds. We
also examine how environmental factors, especially wind, af-
fected results across platforms.

After the true release rates and wind data were unblinded,
participants identified issues with their quantification meth-
ods that contributed to discrepancies between the true and
the estimated emission rates. Some participants investigated
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the causes for this performance and have published white pa-
pers detailing their analyses into why such performance oc-
curred and how they will mitigate these issues in the future.
A summary of these issues and citations to in-depth analy-
ses, if published by a participant, are included in Sect. 4.2.
All participants had the opportunity to publish a white paper
with their post-unblinding analyses to be included in this re-
port. The analysis in this study uses the estimates submitted
before unblinding of true release rates.

Table 3 summarizes key quantification metrics for each
participant, including the slope and R? of estimates relative
to metered values — indicating systematic bias and consis-
tency, respectively. We also report the percentage of esti-
mates where the true release fell within the participant’s un-
certainty bounds, and within 50 %—-150 % and 90 %-110 %
of the true value. These metrics assess both the calibration
of reported uncertainty and the practical accuracy of quan-
tification. We also include the percentage of total emissions
measured that were quantified by each participant.

Figure 3 presents a parity plot visualizing the agreement
between participant-reported and true methane release rates.
True metered release rate is given on the x axis while par-
ticipant estimated release rate is given on the y axis. The
1:1 parity line (y = x) represents perfect agreement. Dat-
apoints above the 1 : 1 parity line indicate that the participant
over-estimated the release, while datapoints below the line
indicate that the participant under-estimated the release. Ad-
ditional plots calculating parity lines for releases with true
methane emission rate under 100kgh~! and over 10kgh™!
as well as individual plots for each participant, are included
in Sects. S6.1-2.

3.3 Wind analysis

Wind conditions significantly influence methane plume be-
havior, affecting detection and quantification accuracy. Vari-
ability in wind speed, direction, and turbulence can distort
plume shape and movement, making accurate measurement
more challenging — especially under rapidly changing condi-
tions. We analyzed measurement performance across bins of
average wind speed, wind speed variability, and wind direc-
tion variability to identify where different technologies per-
form best or face limitations. Wind data were collected us-
ing TADI’s ZX 300 Wind Lidar at 20 m height and were not
available to participants until after unblinding. Wind statis-
tics were calculated for each release window. The coefficient
of variation (CoV), defined as the standard deviation normal-
ized by the mean, was used to assess variability. Results are
shown in aggregate (i.e. analysis performed on the combined
quantification estimates of all the teams); participant specific
results are in Sect. S7.1.

The impact of wind conditions on quantification ability
is more clearly visualized when looking at the combined
results of all solutions, shown in Fig. 4. As indicated by
the slope of the parity line, quantification performance im-

Atmos. Meas. Tech., 19, 923-934, 2026
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Table 2. Summary of true positive (TP), false positive (FP), true negative (TN), and false negative (FN) releases by participant.

Solution #Estimates TP FP TN FN Max Release Min Release
(%) (B) (%) (%) Detected [kgh™!]
[kgh™!]
Aeromon BH-12 9 89 11 0 0 115.0 0.01
GSMA AUSEA 13 92 0 8 0 47.66 0.66
Flylogix 18 83 0 6 11 290.0 0.19
SeekOps SeekIR 29 97 3 0 0 136.6 0.01
GHGSat-C 1 100 - - 0 136.6 136.6
Sensirion Nubo Sphere 131 91 1 5 4 308.2 0.19
SLB Methane Lidar Camera 75 85 1 3 11 308.2 0.29
SENSIA Mileva 33 71 95 0 4 1 308.2 0.02
Aeromon BH-12 GSMA AUSEA Flylogix SeekOps SeekIR
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Figure 2. Detection capabilities below 30kg (CHy) h~L. This figure shows the probability of detection for participant-quantified releases.
Each release is marked by a vertical line at y = 0 if not detected and y = 1 if detected, ordered along the x axis by release volume. Blue
bars indicate the proportion of detected releases within each bin, with error bars representing 95 % confidence intervals based on a binomial
distribution. The darker blue line is the best fit of a logistic regression model on the probability data. GHGSat-C is excluded due to not
measuring any releases below 30 kg (CHy) h~—!. The x axis is based on the true release rate.

proves as wind speeds increase and the variability of wind
speed and direction decrease. The figure suggests there is
limited benefit once wind speeds are already > 2ms~!. The
trend indicated by the combined data offers insights into how
wind conditions can influence the quantification abilities of
a broad swath of methane detection technologies; however,
more measurements are needed per bin to fully understand
whether minimum detection threshold or quantification abil-
ity varies with wind, which was not possible in this experi-
ment.

Atmos. Meas. Tech., 19, 923-934, 2026

4 Discussion

The results of this study provide valuable insights into the
current capabilities and limitations of methane detection and
quantification technologies. While most participants demon-
strated strong detection performance, quantification accu-
racy varied significantly across different platforms and en-
vironmental conditions. This section explores the key find-
ings, discusses potential sources of error, and highlights the
broader implications for methane emissions monitoring and
regulatory frameworks. Although improvement on detection
and quantification ability is encouraging, the performance of

https://doi.org/10.5194/amt-19-923-2026
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Table 3. Key metrics for quantification performance across all participants.

Solution Qualified  Slope (R%) Slope (R?) for Participant Participant ~ Participant ~ Total emissions
nonzero for all measurements  estimate estimates estimates  quantified by
measure-  measure- with true bounds within £50 % within  each
ments  ments? release rate encompassing of the true +10% of  participant (%)4
< 100kgh™! the metered value (%) the true
value (%)b value (%)
Aeromon BH-12 8 0.47(0.93) 0.40(0.61) 25 38 0 46 [33-58]
GSMA AUSEA 12 0.82(0.82) 0.82(0.82) 50 83 17 83 [54-112]
Flylogix 15 0.59(0.97) 0.40 (0.64) 60 33 6 49[29-75]
SeekOps 28 0.09 (0.13)  0.09 (0.07) 0 11 0 33[23-43]
GHGSat-C 1 N/A® N/A® 100 100 0 78[41-114]
Sensirion Nubo Sphere 119  0.14 (0.08) 0.38 (0.10) 29 37 7 41[7-49]
SLB Methane Lidar Camera 64 0.23(0.59) 0.49 (0.71) N/Ab 25 3 36
SENSIA Mileva 33 67 1.13(0.87) 1.08 (0.71) 45 38 9 127[87-167]

4 Slope and R are associated with the linear equation of best using ordinal least squares.

b The percent of measurements that included the true release rate within the upper and lower bounds of each estimate provided by each participant.

¢ The percent of estimates that fell within £50 % of the true release rate.

4 The percent of true CH4 emissions quantified by each participant (the total emissions quantified by this solution compared to the total amount of methane emitted during these releases)

with upper and lower uncertainty ranges reported by participants.

€ The SLB Methane Lidar Camera did not report in the upper and lower bounds of the release rate estimates they submitted.
N/A: Participants submitted < 2 non-zero qualified estimates (cannot perform linear regression) or did not report uncertainty intervals.

individual solutions of all technology types should be scru-
tinized before deploying for field operations, as results can
vary between technologies.

4.1 Detection and quantification performance

The ground-based solutions exhibited strong capabilities
in detecting even the smallest leaks, with some solu-
tions correctly identifying releases with flowrates as low
as 0.01 kgh™!. Continuous monitors’ detection ability im-
proved upon performance seen in prior studies, with all so-
lutions exhibiting a true positive rate of above 80 % and
a false positive rate of 1% or less. The probability of de-
tection (POD) varied between the continuous monitor so-
lutions, with a 90 % POD for all the solutions from under
1 to 25kgh~! of methane. The quantification performance
of the continuous monitoring solutions varied, with two of
the three continuous monitoring solutions (Sensirion Nubo
Sphere and SLB Methane Lidar Camera) significantly un-
derestimating the true value of emissions rates. All three so-
lutions’ quantification performance improved when focusing
on methane releases under 100kgh™!. This could mean that
high-volume emissions quantification is an area of improve-
ment for continuous monitoring methane detection and quan-
tification solutions; the fixed location of the sensors and the
distance between the release source and the continuous mon-
itors could also contribute to the underestimation trend. The
results presented here improve upon the results found in pre-
vious blinded controlled release testing of continuous moni-
toring solutions, especially in terms of false positive rates and
true positive detection. As in the previous studies, the contin-
uous monitoring solutions tended toward an underestimation
of true release rates, with the exception of SENSIA Mileva
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33 (Bell et al., 2023; Chen et al., 2024; Day et al., 2024;
Tlonze et al., 2024). These studies also tested both point sen-
sor networks and imaging technologies, and in general quan-
tification performance was poor, consistent with the results
of the Sensirion Nubo Sphere and SLB Methane Lidar Cam-
era in this study.

Like continuous monitors, the drone technologies exhib-
ited strong performance in detection of methane releases,
while quantification performance varied. Overall, false pos-
itive rates remained low, and all true positive rates were
above 80 %. The drone teams all succeeded in detecting re-
leases below 0.7kgh~! and exhibited 90 % POD of below
6kgh~!. The quantification performance varied significantly
between participants, with impressive results for some so-
Iutions. There was an overall trend toward underestimation
of the true release rate. Interestingly, mobile ground solu-
tions’ quantification performance was generally better when
including high-volume (> 100kgh~!) releases, with all par-
ticipants except one exhibiting a best-fit slope farther from
1 when excluding large releases. When comparing these re-
sults to a previous controlled release study of mobile ground
technologies, the mixed results found in this experiment offer
some improvement (Ravikumar et al., 2019).

The performance in this experiment of the remote sensing
(satellite) solution is more difficult to assess because of the
limited number of releases measured. With the data available
to this study, the detection limit is consistent with prior con-
trolled release testing of aircraft and satellite solutions, with
GHGSat-C detecting a release between 100 and 200 kgh~!
(El Abbadi et al., 2024; Rutherford et al., 2023; Sherwin
et al., 2024a). However, GHGSat-C had to filter a signifi-
cant amount (11/12) of release measurements due to weather
conditions (clouds and/or rain). The difficulties of deploying
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Figure 3. Quantification accuracy of the participants. Metered release rate is on the x axis. There is a small uncertainty associated with the
true release flowrates, not shown in this figure. Participant reported quantification estimates are on the y axis. The dashed line represents the
x =y parity line. See Sect. 4.1 for discussion of quantification performance.

remote sensing solutions in regions that experience signif-
icant cloud cover is one of the takeaways of this study, as
there are limited data points to make definitive conclusions
on detection and quantification ability. Prior work showed
detection of numerous events in desert environments (Sher-
win et al., 2024b). Given global distribution of oil and gas re-
sources, some regions will clearly be easily observed with re-
mote sensing (e.g., Middle East, Texas, North Africa), while
other regions may suffer from significant challenges due to
clouds and/or sun angle (e.g., Venezuela, Nigeria with tropi-
cal clouds, or Russia, Alaska, North Sea with clouds and poor
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sun angle). Additional controlled release testing of methane
detecting satellites, including GHGSat-C, is currently under-
way to better characterize their performance.

Overall, all technologies struggled to quantify individual
estimates, with only two teams (GSMA AUSEA, GHGSat)
quantifying releases within 50 % of the true value over 50 %
of the time, and all teams quantifying releases within 10 %
of the true value in 20 % or less of the releases they sub-
mitted estimates for. However, three teams (GSMA AUSEA,
GHGSat, and Sensia) contained 100 % quantification of the
total amount of methane released over all their submitted re-

https://doi.org/10.5194/amt-19-923-2026



A. McManemin et al.: Controlled release testing of commercial methane measurement systems

931

Releases by Wind Speed or Variability Bin

300 T T — 600 T T 300 T T -
- _B-es'.Ft..'i*‘--;]H o _B-es'.Ft..'i*‘--;]d-:l -~ Best Fit, A% = 0,19 -~
] TR X ym0495 82 s I
r.% 200 - /,’, -4 400 F 200+ J," Wind Condition Key
2 e v + Windspeed [0.0-2.0)
E /z, +  Windspeed [2.0-4.0)
g 1o0p -~ 200F, 1 100 Windspead [4.0-6.0)
: 4
o o
-
q 0 R . . o % .1 p M

0 100 200 300 "o 600
2 300 T % 100 . —
i Bt Fit, A9 = 0,35 # Bost Fit, A< = 0.38 td td
B = yeoamszen o | BO0F= yooamessra 80 P
K] P & Py
; 200 ;| y rd I Wind Condition Key
rd * '
o 400 S 60 S + Windspeed CoV [0-25%)
E o ‘ 40 o b Windspeed CoV [25-50%)
& 100 200 [ o Windspeed CoV [50-75%)
o - 20 P
£ : P
£ p
; 0 ':'?. PP | FE—— 0 i bli :::l‘... — G.f'.. — -
0 100 200 300 0 250 500 o] S50 100

] NN ||, NN ' |, P —
= Bt Fit, A7 = 0,27 ' l’ Best Fit, A7 = 0. 4] # Best FiE, A7 = 0,04 f’
ﬁ 400 T y=0.4%% & 504 ’JJ Ty 045K & 284 ’z’ = p=0lx&1379 _,",
'E
; Jr’ 400 - /’ { 200k ,’/ ] Wind Condition Key

3DU & ra ra
£ . o 4 Wind Dir CoV [0-10%)
£ 200 i L 4+ Wind Dir CoV [10-20%)
@ 200} 100 o Wind Dir CoV [20-30%)
8 100 d
o ! L —
- [+ I g 1 Bl 1 B L I
s 9% 200 400 0% "200 @00 600 Jo 100 200 300

Release Rate (kg/h)

Figure 4. Parity plot for combined data of all solutions, binned into different wind conditions during the release. The first row bins the
releases by average wind speed, the second row bins the releases by wind speed CoV, and the third row bins the releases by wind direction

CoV.

lease estimates within the uncertainty ranges they reported.
This suggests that while overall, the tendency to underesti-
mate emission rates is prevalent, participants of all technol-
ogy types were able to quantify the total emissions within
error.

4.2 Sources of error in quantification performance

Complicating the assessment of quantification performance
was the post-unblinding discovery of data issues that go be-
yond uncalibrated algorithms. Aeromon contacted the Stan-
ford and TADI team soon after unblinding to identify a
malfunctioning wind sensor they had deployed while test-
ing. Aeromon has published a white paper arguing that the
wind measurements taken from a sensor on-board the drone
consistently recorded lower-than-expected wind speeds due
to sensor malfunctions, which contributed to the consis-
tent underestimation of emission rates seen in this cam-
paign (Hamedani Raja et al., 2025). The SLB team con-
cluded in their post-unblinding analysis that the Methane
Lidar Camera’s anemometer also systematically underesti-
mated the wind speed due to a wind shadow that was possi-
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bly related to the non-standard installation of the camera. The
lower wind speeds again directly contributed to an underesti-
mation of the true release rates (Doshi et al., 2025). Flylogix
also credited underestimation of wind speeds with overall un-
derestimation of their estimates in a white paper provided to
the Stanford team but not released publicly. They stated that
their weather station was unable to accurately measure wind
speed and direction in the low wind conditions and was lo-
cated too close to ground level. In all the analyses mentioned
above, reprocessing the results with the unblinded wind data
provided by the Stanford team improves quantification per-
formance significantly. Wind field reconstruction in turbulent
and sub-optimal conditions is fundamentally difficult, espe-
cially when dealing with low wind speeds and variable wind
conditions present during the weeks of testing, leading to ad-
ditional error in emission rate quantification. More testing is
necessary to identify the level of wind observations that pro-
vide satisfactory information for release rate estimation.
Additional teams acknowledged other sources of error.
SeekOps identified three sources of error in their estimates:
data transcription errors, sensor saturation, and a system-
atic underestimation bias possibly caused by wind process-

Atmos. Meas. Tech., 19, 923-934, 2026



932 A. McManemin et al.: Controlled release testing of commercial methane measurement systems

ing (Gully-Santiago et al., 2025). The data transcription er-
rors resulted in estimates being assigned to the wrong release
time, while the sensor saturation means the estimates they
reported should have been lower limits rather than direct es-
timations. Sensirion determined that their plume dispersion
model is not fully applicable for wind speeds < 1.5ms~! and
pointed to proximity between the sensor nodes and release
points as a source of error in their algorithmic assumptions
(Sensirion Connected Solutions, 2025). In their analysis, Fly-
logix also mentioned plume blowover (i.e., methane escaping
above and possibly below the flight path), flight restrictions
on the site, and deviation from their standard operations as
sources of error. Flylogix usually deploys a fixed-wing air-
craft for offshore operations and modified their testing pro-
tocol to participate in the TADI tests.

5 Conclusions

This study is a major independent and blinded controlled
release test of methane detection and quantification tech-
nologies in Europe. By evaluating eight commercial sys-
tems across platforms — including satellites, drones, and con-
tinuous monitors — we provide a transparent assessment of
detection and quantification performance. While most tech-
nologies reliably detected emissions, quantification accuracy
varied widely, highlighting both capabilities and limitations
of current methods. A central finding is the strong influ-
ence of environmental conditions — especially wind speed
and variability — on quantification accuracy. Low or un-
stable wind conditions posed challenges for many mobile
and remote sensing solutions, underscoring the need for im-
proved methodologies and interpretation under real-world at-
mospheric variability.

One of the central themes of this study was the empha-
sis on collecting high-quality wind measurements, and a key
conclusion is the significant role of wind conditions in quan-
tification accuracy. Low wind speeds and high wind vari-
ability are non-optimal wind conditions in which to mea-
sure methane emissions. Further studies are needed to better
characterize the impact of wind conditions on detection and
quantification capabilities. However, wind speed, direction,
and variability alone cannot fully explain the systematic un-
derestimation observed across multiple participants. As dis-
cussed in Sect. 4.2, several teams identified key issues with
their wind data after the unblinding of results. Such inconsis-
tencies underscore the need for rigorous validation and cross-
comparison of wind measurements to improve quantification
reliability.

This finding highlights a broader theme that methane de-
tection and quantification solutions must place greater em-
phasis on collecting accurate and reliable wind data. With-
out high-quality wind information, even the most advanced
methane measurement technologies face inherent limitations
in their ability to provide accurate emission estimates. In
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many quantification methods, wind uncertainty translates
nearly directly into quantification uncertainty. This observa-
tion aligns with prior controlled release studies, which have
consistently demonstrated the importance of robust and ac-
curate wind data in improving the precision and reliability of
methane quantification methodologies.

Conducting the experiment at an active industrial site in-
troduced deployment constraints, including limiting where
some technologies could operate. While realistic, these non-
ideal conditions affected data collection for certain systems,
which should be acknowledged while comparing the re-
sults to other controlled release experiments conducted un-
der more ideal conditions. Some participants reported back-
ground concentrations of methane, possibly coming from
surrounding industrial operations. While some of these con-
straints reflect the reality of operating on a site and are rep-
resentative of the use case of these sensors, limitations of
the test site and protocol required some deviation from real-
world conditions. Another key difference between the exper-
iment and real-world use cases is that participants were re-
quired to measure during their assigned week and release
times, even if they would not usually deploy in those con-
ditions (e.g. low wind speeds). The study design, focused
on mobile ground-based solutions (i.e. drones), also posed
challenges for evaluating satellite and continuous monitor-
ing systems, which would have benefited from more obser-
vation time — particularly given Europe’s cloudier weather.
However, the fact that the experiment was conducted under
realistic (non-ideal) conditions means that the performance
demonstrated here is more likely to reflect real-world appli-
cations of these technologies. Additionally, the realistic con-
ditions of the experiment helped to identify issues with some
technologies that may have gone unnoticed in more ideal sce-
narios.

Future studies should consider technology-specific con-
trolled release experiments to better evaluate each platform’s
strengths and limitations. Tailored tests for drones, aircraft,
satellites, or ground-based sensors would enable more pre-
cise assessment under relevant operational conditions. Al-
lowing participants to measure only when external condi-
tions, such as wind speed, are suitable for measurement is
another consideration. Expanding testing to varied environ-
ments — such as offshore settings, low sun angles, extreme
weather, and differing surface reflectivity — would improve
understanding of how these factors affect detection and quan-
tification. These conditions are common in key production
regions, including offshore areas and high latitudes. Addi-
tionally, targeted experiments examining wind effects could
help technologies refine quantification methods and uncer-
tainty estimates by integrating or adjusting for wind data.
Further controlled release studies should also require partic-
ipants to submit information about wind data used in their
analysis before unblinding.

This research lays the groundwork for expanding stan-
dardized testing frameworks beyond North America and of-
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fers critical insights for policymakers, regulators, and in-
dustry stakeholders. As methane regulations evolve, espe-
cially in the EU, independent testing will be key to vali-
dating technologies and ensuring reported emissions reflect
reality. Ultimately, this study demonstrates the importance
of blinded controlled release testing in strengthening confi-
dence in methane emission measurement data. Future work
should help to refine quantification methods, broaden envi-
ronmental testing, and integrate findings into emissions mon-
itoring programs. Ongoing independent validation will be vi-
tal to building trust and driving effective methane emission
reduction worldwide.
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