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Abstract. Satellite-borne high-spectral-resolution limb
sounders, such as the Michelson Interferometer for Passive
Atmospheric Sounding (MIPAS) onboard ENVISAT, pro-
vide information on clouds, especially optically thin clouds,
which have been difficult to observe in the past. The aim of
this work is to develop, implement and test a reliable cloud
detection method for infrared spectra measured by MIPAS.

Current MIPAS cloud detection methods used opera-
tionally have been developed to detect cloud effective fill-
ing more than 30% of the measurement field-of-view (FOV),
under geometric and optical considerations – and hence are
limited to detecting fairly thick cloud, or large physical ex-
tents of thin cloud. In order to resolve thin clouds, a new de-
tection method using Singular Vector Decomposition (SVD)
is formulated and tested. This new SVD detection method
has been applied to a year’s worth of MIPAS data, and qual-
itatively appears to be more sensitive to thin cloud than the
current operational method.

1 Introduction

Clouds are increasingly recognised for their influence on the
radiative balance of the Earth and the implications that they
have on possible climate change, as well as in air pollution
and acid-rain production. However, clouds remain a major
source of uncertainty in climate models. High thin clouds
such as cirrus are important to study.

High clouds are frequently observed at all latitudes and,
at any one time, 60% of the Earth’s surface is covered by
cirrus (Wylie et al., 2005). High clouds are important be-
cause they are high enough to act to warm the Earth; how-
ever this mechanism is not well understood in terms of the
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relation of micro- and macro-physical cloud properties. Be-
cause they are so wide-spread and permanent, it is impor-
tant to understand how these clouds affect the climate. How-
ever, current cloud detection algorithms often miss much thin
cloud in satellite measurements, and the instrumentation it-
self (eg. nadir versus limb, microwave versus infrared and
so on) specifies varying thresholds of senstivity to different
cloud types – and hence conventional cloud climatologies
and inventories are incomplete with respect to high thin cloud
such as cirrus (Wylie et al., 2005).

There have been many studies on clouds over the years
and many climatologies: by Barton (1983), Warren et
al. (1985), Woodbury and McCormick (1983), Prabhakara
et al. (1988), Wylie and Menzel (1989), Wylie et al. (1994)
– but these were all limited by a lack of global coverage.
Currently, the Stratospheric Aerosol and Gas Experiment
(SAGE) (e.g. SAGE, 2002), High Resolution Infrared Radi-
ation Sounder (HIRS) instrument (e.g. Wylie et al., 2005),
International Satellite Cloud Climatology Project (ISCCP)
(e.g. ISCCP, 2008) and GRAPE project (e.g. Sayer et al.,
2009) are actively compiling cloud climatologies.

2 Overview of MIPAS-ENVISAT

The Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) is an infrared limb-viewing instrument
and was launched in March 2002 on the European Space
Agency’s Environmental Satellite (ENVISAT). ENVISAT is
in an 800 km sun-synchronous polar orbit, with a nominal
orbit having a repeat period of 35 days, an orbital period of
100.6 min and an inclination of 98.54◦. The inclination of
the orbit in conjunction with azimuth scanning enables full
global coverage pole-to-pole (ESA, 2005).

MIPAS was designed to measure limb-emission spec-
tra (primarily for retrievals of temperature, pressure and
trace gases such as CO2, O3, H2O, HNO3, CH4, N2O

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


534 J. Hurley et al.: CCloud detection for MIPAS using singular vector decomposition

and NO2) at a high spectral resolution in the near- to
mid-infrared from 685 cm−1 to 2410 cm−1 in five discrete
bands (A 685–970 cm−1, AB 1020–1170 cm−1, B 1215–
1500 cm−1, C 1570–1750 cm−1, and D 1820–2410 cm−1).
In its initial operating specifications, MIPAS operated at a
spectral resolution of 0.025 cm−1, measuring spectra nomi-
nally every 3 km vertically in the troposphere – however fol-
lowing persistent slide malfunctions in early 2004, the res-
olution was decreased to 0.0625 cm−1 but the measurement
tangent height spacing decreased to nominally every 1.5 km
in the lower stratosphere and troposphere (Mantovani, 2005).

The FOV of MIPAS is approximately 3 km high and 30 km
horizontally, perpendicular to the instrument line-of-sight.
The FOV is modelled by a trapezoidal response function
φ(z), having a 4 km-high base and a 2.8 km-high top.

3 Current detection methods for MIPAS

The presence of cloud particles in the FOV of infrared remote
sounding instruments influences observations registered, due
to extraneous absorption, emission and scattering features in
a large range of wavelengths. Clouds in the line-of-sight
can act as grey-bodies with significant opacity which alter
the measured radiation, and introduce serious problems in
sensing atmospheric temperatures and gas profiles below the
cloud level. All clouds cause a broadband increase in the
radiance emitted and measured in the FOV – however thin
clouds also introduce a multiple-scattering effect which im-
plies that the instrument measures radiance from below the
tangent height. The presence of clouds introduces problems
with regular constituent retrievals by introducing a sharp
transition from optically thin to optically thick limb trans-
mittance at the cloud top. In order to avoid this, and to main-
tain retrieval quality/reliability, routine processing of MIPAS
spectra includes the detection and rejection of all spectra with
significant cloud contamination. However, studying these
cloud-contaminated spectra can reveal information about the
cloud itself.

The following sections outline the detection methods
which have been either proposed or operationally used to de-
tect cloud in MIPAS measurements.

3.1 Mean Radiance Thresholding and Colour Indices

A very basic method is the Mean Radiance Threshold test
which simply uses a statistically gathered radiance thresh-
old to detect cloud by assuming that clouds have a warmer
brightness temperature than a clear limb view. For MIPAS,
considering the region around 960.7 cm−1 a radiative transfer
model, the Reference Forward Model (the RFM, a GENLN2-
based line-by-line radiative transfer code originally devel-
oped to provide reference spectral calculations for MIPAS
by Dudhia, 2005), is used to simulate the transmittance spec-
trum – and the 960.7 cm−1 region is used as it has high trans-

Fig. 1. Samples of clear (black) and cloudy (red) MIPAS spectra
with the locations of the current CI MWs (blue) and optimised CI
MWs (aqua) overplotted.

mission and low gaseous emission. Thus, in order to de-
tect a cloud having an extinction coefficient of 10−4 km−1,
a threshold of 100 nW (cm2 sr cm−1)−1 must be chosen at a
tangent height of 9 km (higher threshold for lower tangent
heights and for higher extintion values).

A second generation detection method is Colour Index
(CI) Thresholding (Spang et al., 2004). CIs work on the prin-
ciple of radiance ratios between two different regions (called
microwindows MWs, and denoted MW1 and MW2) of the
spectrum which respond differently to cloud. The MWs are
chosen such that the first microwindow MW1 responds very
little to the presence of clouds whereas the second microwin-
dow MW2 shows a large reaction, as shown in Fig.1. Use
of a ratio of radiances from each measurement spectrum im-
plies that the variability in radiance resulting from temper-
ature and pressure fluctuations is effectively cancelled out,
since both sections of the spectrum will scale consistently to
such changes – and hence thresholds can be more reliably
picked.

The CI is defined to be the ratio of the mean radiances of
the two MWs:

CI =
L̄MW1

L̄MW2
. (1)

When CI is large (CI>4, for conventionally chosen MWs,
MW1=792–796 cm−1 and MW2=832–834 cm−1), cloud-
free conditions exist and when CI is approximately unity op-
tically thick clouds are present. The range of CIs represents
the range of optical thickness of clouds present, with thicker
clouds appearing blackbody-like with CI≈1 and thinner, ten-
uous clouds registering increasingly larger CIs.

The presence of cloud is then determined by setting a
threshold for the CI below which it is said that cloud occurs
and above which, cloud is said to not occur. In the interest of
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only conservatively discarding data which are truly contam-
inated by thick cloud, a low threshold is frequently chosen,
below which it is certain that cloud occurs and above which
cloud is said to not occur, even though it is well known that
above this threshold cloud can indeed occur, either as an op-
tically thin cloud or by only partially filling the instrument
FOV. In operational processing for MIPAS, this threshold is
set at CI=1.8 (Spang et al., 2004; Ewen, 2005).

It should be noted that the definition of CI breaks down
above about 30 km due to decreased signal-to-noise-ratio,
particularly in the more transparent and intrinsically noisier
(due to smaller signal) second MW. Cloud detection itself
gives a measure of the cloud top height, but this is limited to
the height resolution of the measurement scan pattern.

3.1.1 Analysis of current operational CI
detection method

A useful quantity to measure the amount of cloud present in
a measurement FOV is the cloud effective fraction (EF), as
defined by

EF =

∫ zct

−d

(
1 − e−kextx

)
φ(z)dz∫ d

−d
φ(z)dz

(2)

for a FOV of width 2d characterised by the FOV function
φ(z) corresponding to integrated pencil beam radiances each
penetrating a pathlengthx through an atmosphere of ex-
tinction coefficientkext and cloud top heightzct relative to
the tangent height. It is essentially the effective blocking
power of the cloud within the FOV – the proportion of the
FOV filled by cloud modified by the extinction of the cloud.
Therefore, an EF=0 indicates that a measurement is cloud-
free or “clear”, an EF=1 represents a FOV that is completely
filled with thick cloud and 0<EF<1 represents the spread of
varying cloud-filled states of a FOV.

It can be asserted that the CI Method used operationally
fails to detect many cloudy FOVs – as well as incorrectly di-
agnosing clear spectra as cloudy. Considering the average
radiance measured in the 960.0–961.0 cm−1 MW (a region
of the A band spectrum having comparatively high trans-
missivity – which implies that most variations in radiance
come from continuum features, such as induced by clouds) as
shown in Fig.2 (with different values of CI assigned different
colours), there exist two distinct regions, one corresponding
to cloudy measurements and the other to clear measurements.
The leftmost region is a thick band extending through all al-
titudes at relatively low radiances, which represents the clear
measurements. To the right of this thick band is a scattering
of radiance points, starting at an altitude that could be taken
as the maximum average tropopause height, at higher radi-
ances – these points represent the cloudy measurements. The
spread in these cloudy radiances is a result of many possi-
ble fractions of cloud experienced by the measurement FOV.
The present MWs and threshold used for cloud detection do

Fig. 2. Average radiance profiles measured in the 960.0–
961.0 cm−1 MW by MIPAS, whereby the measurements have been
assigned colours to indicate their CI value.

not detect the measurements which through this analysis are
obviously cloud-contaminated (i.e. spread to the right of the
thick band of clear measurements), although with a small EF.
It is interesting to note that increasing the value of the thresh-
old to a higher value of CI (than the currently used 1.8) does
have the effect of picking up this scattering of cloudy cases,
but that it also results in the clear cases (those measurements
occurring in the thick leftmost band) being flagged as cloud
as well. Fig.3 shows that for EF less than about 0.3, the CI
Method with the current threshold of 1.8 is not able to detect
cloud at all. Altitude-dependent thresholds would partially
solve the problem of misdetection, however given the inclu-
sion of clear spectra as cloudy as a consequence of emission
by water vapour, the CI method has key caveats which cannot
be rectified by simply setting different thresholds.

Furthermore, there is a known problem with the CI method
whereby clear spectra are misdiagnosed as cloudy, deriving
from the fact that water vapour emissions in the lower at-
mosphere can create broadband continua features, much like
those exploited in the CI method itself (Spang et al., 2004).

Given the relative insensitivity of the current operational
cloud detection method to optically thin cloud or of FOVs
only partially covered in cloud, as well as its sensitivity
to water vapour emissions in the lower atmosphere, there
appears to be room for development of a cloud detection
method which is capable of reliably resolving and identifying
even these small amounts of cloud in measurements.

3.2 Singular Vector Decomposition

Singular Vector Decomposition (SVD) is a standard statisti-
cal technique (Press et al., 2007) used for finding patterns in
high dimensional data and for summarising these data. To
this end, SVD transforms a number of potentially correlated
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Fig. 3. Relation between cloud effective fraction and CI for RFM-
simulated clouds with extinction coefficients of 0.001–0.1 km−1 in
the MIPAS A band. The red line shows the CI threshold (1.8) below
which cloud is detected.

variables into a smaller number of uncorrelated variables
called singular vectorsv. The first singular vectorv0 ac-
counts for as much of the variability in the data as possible,
and then each successivevi accounts for as much of the re-
maining variability as possible.

Consider anm×n matrixL (Press et al., 2007). In this ap-
plication,L is a set ofm spectra each of lengthn – and each
spectrum of lengthn is denotedl). Then,L can be expressed
as

L = WT SV (3)

wherebyV andW are them×n andm×m orthogonal matri-
ces containing left- and right-singular vectors, respectively,
andS is a m×m diagonal matrix whose diagonal elements
contain them singular valuesSi . The singular values (S) are
essentially eigenvalues corresponding to the singular vectors
(vs), which are analogous to eigenvectors. Hence, the orig-
inal matrixL is merely a linear combination of the singular
vectors as scaled by the singular values (Murtagh and Heck,
1987).

Application of the decomposition yields a set (V) of a
maximum ofm singular vectors (vs) each of lengthn which
best orthogonally span the variance of the initial ensemble of
measurements (in the sense that thevs can then be thought
of as a set of basis vectors inRn chosen so that the maxi-
mum object-to-object variation in the data belongs to a sub-
space formed by the least number of basis vectors). Thevs
are usually ordered (by choice) by decreasing magnitude of
their eigenvalue. Thus, each successivev captures increas-
ingly less and less information, such that the percentage of
the total variancePi captured by theith v is

Pi =
di∑m
i=1 di

× 100%. (4)

The original input measurementsL ij can be reconstructed
simply by calculating the appropriate linear combination of
thevs and their corresponding singulars values, as described
by

L ij = WT
ikSklVlj (5)

whereL ij is thej th spectral measurement of theith spec-
trum for i ε [1, m] andj ε [1, n]. In this notation, summa-
tion occurs over the indicesk and l, wherek ε [1, m] and l

ε [1, m]. Since the first fewvs capture so much of the total
variance of the dataset, it is often sufficient to only sum over
the first few singular vectors (for example, not from 1 tom,
but rather from 1 to 2 or 3) in order to obtain a reconstruction
which is good to within a few percent of the full reconstruc-
tion.

The objective of this work is to use SVD techniques to
create, implement and validate a reliable cloud detection
method. The idea is to create an ensemble of simulated
MIPAS spectra (Sect.4) which contain varying amounts of
cloud (because the EF characterising each spectrum will be
known for simulated spectra) and then to use this ensemble
to obtain singular vectors which correspond to the clear and
cloudy atmospheric states (Sects.5.1–5.2). Once the two or-
thogonal sets of basis vectors (clear and cloudy) are known,
any atmospheric signal should be able to be fit using both
sets of vectors, regardless of whether the atmosphere is clear
or cloudy (Sect.6). By using some appropriate parameter
related to the fitting process, it should be possible to create
a cloud detection method (Sect.8). Finally, this SVD-based
cloud detection method will be compared with the current
cloud detection method on a year’s worth of MIPAS data
(Sect.8) as well as using a set of simulated data for which
the clear/cloudy state is known (as introduced in Sect.4). It
is hypothesised that the increased information gained by us-
ing large regions of spectra (such as would be done for SVD-
based methods) should lead to more reliable cloud detection
than those based upon mean-continuum recognition (such as
the CI method). Theoretically, it should avoid the misdetec-
tion of regions of high water vapour concentration as cloud, a
caveat of the CI method, as the water-vapour continuum fea-
tures should be well represented in clear atmospheric spectra
used in the development of clear basis vectors – however this
hypothesis has not been extensively tested in this work.

4 Ensemble of simulated clear and cloudy
MIPAS spectra

The RFM was used to simulate an ensemble of spectra with
varying amounts of cloud (as defined by their extinction co-
efficients (kext) and cloud top heights (CTH)) occurring in
the MIPAS FOV for all the tangent heights at which cloud
is normally expected, for many different atmospheric condi-
tions, assuming horizontal homogeneity and aerosol continua
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Table 1. Parameters used to create ensemble of cloudy atmospheres. Reference atmospheres compiled by Remedios (2001).

Tangent Height
[km]

kext
[km−1

]

Reference Atmosphere CTH relative to
Tangent Height[km]

6, 9, 12, 15, 18, 21 0.001, 0.01, 0.1 standard mid-latitudinal, tropical, polar summer and polar win-
ter reference atmospheres, their one standard-deviational vari-
ants, and separate perturbations in temperature, pressure, water
vapour and ozone of each

−2.0,−1.5,−1.0,
−0.5, 0.0, 0.5, 1.0,
1.5, 2.0

spectral features. The advantage of having an artificially cre-
ated ensemble of spectra to examine as opposed to real data is
that all of the cloud parameters are known in advance and one
can without question identify with confidence different cases
and regimes. The parameters used to build this ensemble of
spectra are given in Table1. In total, the ensemble has 5184
different atmospheric conditions: 576 of which are totally
clear (i.e. cloud top height=−2.0 km) and 4608 of which
which contain some finite amount of cloud in the correspond-
ing MIPAS FOV (here, when cloud top height>−2.0 km).
These simulations have been carried out at the MIPAS full-
resolution of 0.025 cm−1 in the second half of the MIPAS A
band (827.5–970.0 cm−1, 5701 spectral points).

It should be noted that the RFM is a non-scattering model
– and hence produces simplified spectra, as real clouds will
have both single and multiple scattering features, as well as
the broader features reproduced by the RFM. Hurley (2008)
used single-scattering simulations to quantify the discrep-
ancy between non-scattering and more-realistic scattering
simulations – and found that for clouds having extinction co-
efficients larger than 10−4 km−1, the difference was negligi-
ble.

5 Calculation of singular vectors

In the following SVD studies, the ensemble discussed in
Sect.4 is separated by tangent height, and data from each
tangent height are treated independently. Since, in practise,
the nominal tangent height is a well-known discrete param-
eter of MIPAS data, this segregation has been carried out in
order to preserve vertical atmospheric variations which con-
sistently occur.

SVD has been carried out by first dividing the ensemble of
spectra into two regimes: clear (EF=0) and cloudy (EF6=0).
Then each of these two atmospheric regimes is sub-divided
into smaller ensembles grouped by tangent height. To nor-
malise the data, each spectrum in the ensemble has had its av-
erage radiance subtracted (which effectively allows clear and
cloudy singular vectors to share reconstructive responsibility
of the raised cloud radiance baseline – otherwise the clear
singular vectors are simply forced to accommodate more of
the radiance coming as a result of the cloud presence, see

Hurley (2008) for details), and then SVD is carried out upon
each of the normalised tangent height ensembles.

5.1 Clear singular vectors

Using the clear ensemble of spectra, divided by tangent
height and normalised, SVD is carried out to calculate the
clear singular vectorsvcleari . For a tangent height of 9.0 km,
Fig. 4 shows the average clear spectrum for the 9.0 km clear
ensemble along with the first eight singular vectors. It should
be noted that the zeroth ordervclear carries so much of the
variance associated with the ensemble that it visually resem-
bles the average spectrum, while the higher ordervclears pick
up more non-trivial variances, which is expected due to the
large range of variations in clear atmospheric spectra due to
local changes in pressure and temperature. If the total vari-
ance captured by the addition of each successivevclear in the
decomposition is considered, the first threevclears contain
over 80% of the total variance. Thus, the SVD method effec-
tively minimises the number of pieces of information needed
to represent a set of data, since any of the initial pieces of
information (here, the spectra) can be reconstructed by using
as few as three singular vectors.

5.2 Cloudy singular vectors

Considering now the second ensemble of spectra which con-
sist of simulations of infrared measurements containing some
finite amount of cloud, the component of the signal which is
due to the cloud alone is sought. The measurement regis-
tered by the instrument FOV will be some combination of
emission and absorption from the clear atmospheric com-
ponents (ie. the gases) and those resulting from the cloud
presence. The singular vectors obtained for the clear ensem-
ble of spectra should represent the clear component in these
mixed clear/cloud measurements and by using these already
obtainedvclears, the component due to the cloud alone can
be retrieved. The basis of this work is the hypothesis that a
cloud-contaminated spectrum can be decomposed into com-
ponents coming from the clear atmosphere and those due to
the cloud itself.

For each tangent height,m clear singular vectors of
lengthn (m=96 andn=5701, as before) have been calcu-
lated, as described in Sect.5. If then each cloudy spec-
trum lcloudy+clear (which includes, at this point, a clear
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Fig. 4. Average clear spectrum for the 9.0 km clear ensemble along with the first eight singular vectors and the percentage variance captured
by each.

atmospheric contribution along with that coming from the
cloud itself) in the cloudy tangent height ensemble is first
normalised by subtracting off its average radiance to give

lcloudy+clearnorm = lcloudy+clear− l̄cloudy+clear (6)

the component due to the clear background atmosphere can
be obtained by carrying out a linear least squares fit using
the clear singular vectorsvcleari such that the clear radiance
componentlclear of the measurement is

lclear =

m∑
i=1

λivcleari (7)

whereλi are fit coefficients. Since the fit of the normalised
signal by the clear singular vectors will have captured any
of the variance due to the clear sky, it is necessary merely
to subtract to obtain the cloudy component of the signal
(lcloudy):

lcloudy = lcloudy+clearnorm
− lclear. (8)

Carrying out this procedure for each cloudy spectrum in each
tangent height ensemble yields an ensemble of spectra regis-
tering only the cloudy component for an abundance of cloudy
atmospheric conditions. SVD can then be performed on this
cloud-signal-only ensemble to yield a set of cloud singular
vectorsvcloudyi which are orthogonal to the clear singular
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Fig. 5. Fitting of cloudy signal by clear singular vectors to obtain cloud-only signal component for cloud in a 9.0 km TH FOV. From top to
bottom of the plot, EF increases in equal increments of 25% from 0% to 100%. Left panels: the original signal containing varying amounts
of cloud is shown in black, the normalised original signal in blue, and the clear singular vector least squares fit in red. Right panels: the
component of the original signal caused by the cloud as calculated in Sect.5.2.

vectorsvcleari . Figure5 shows how cloudy measurements of
varying EF between 0 and 1can be individually fitted by first
normalising the input radiance and then applying the linear
least squares fitting invcleari . It bears noting that the non-
zero difference between the linear least squares fit and the
original signal is due to the removal of the mean radiance, as
expected, and carries no spectral information.

The residual cloudy signal reported is a complicated spec-
trum with many emission and absorption features which de-
viate from that of a blackbody at the appropriate cloud top
temperature. However, Fig.6 shows these cloudy signatures

compared with blackbody-only signatures (calculated using
the Planck function at various wavenumbers), which for most
cases, agree well with the baseline of each cloudy signal, so
one can be confident that the signals thus obtained are truly
due to the presence of cloud alone. The only case in which
the blackbody signature deviates from the residual cloudy
signal determined here is for the clear case, where the cloudy
signal is a non-zero constant (as opposed to the constant zero
radiance expected). This is a result of the normalisation pro-
cedure used – but will not affect the fitting of arbitrary spectra
as it is a constant offset.
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Fig. 6. The cloud-only signal component of original partially cloudy measurement. From top to bottom of the plot, EF increases in equal
increments of 25% from 0% to 100%. From left to right, the TH of the FOV containing the cloud is increased from 6.0 km to 12.0 km to
18.0 km. Blackbody-only signature is overplotted in red and shows good agreement with retrieved cloud-only component of signature given
in black.

6 Fit an arbitrary cloud signal with singular vectors

Using the previously calculated clear and cloudy singular
vectors,vcleari and vcloudyi (of which there aremclear and
mcloudy, respectively), for each MIPAS tangent height where
cloud is normally expected, any measured MIPAS spectrum
in the spectral range of 827.5 cm−1 to 970.0 cm−1 can be ac-
curately fitted by a linear least squares fit in the singular vec-
tors. Taking an arbitrary MIPAS spectrumlorig, the first step
is to normalise the spectra by subtracting its average radiance

(as explained previously) such that

lnorm = lorig − l̄orig. (9)

The linear least squares fitlfit of lnorm is then trivially found,
such that

lfit =

mclear∑
i=1

λcleari vcleari +

mcloudy∑
i=1

λcloudyi vcloudyi , (10)

whereλcleari andλcloudyi are constant coefficients of the least
squares fit. In order to regain a fit which can be immediately
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compared with the original input measurement, it remains
simply to add back on the constant average radiance of the
original signal to the fitted spectra:

lfit orig = lfit + l̄orig. (11)

This method was implemented and tested on RFM-
simulated spectra for infrared spectra with a tangent height
of 9.0 m and extinction coefficients between 0.001 km−1 and
0.1 km−1 and cloud top heights located every 0.5 km in the
4.0 km-wide MIPAS FOV. Figure7 shows the efficiency and
consistency with which the linear least squares fit using both
the clear and cloudy singular vectors is able to fit a signal
with an arbitrary amount of cloud in it for a tangent height
of 9.0 km and extinction coefficient of 0.01 km−1. It is also
interesting to note that as increasing amounts of cloud are
added to the measurement, the fit coefficients corresponding
to the cloudy singular vectors increase in magnitude (partic-
ularly that corresponding to the first cloudy singular vector,
those of the next first few singular vectors which are non-
negligble, but an order or magnitude smaller than that of the
first), while those corresponding to the clear singular vec-
tors decrease in magnitude. This is an encouraging trend,
since it is expected that if there is increased cloud presence
in the measurement, the signal should be increasingly well fit
by the cloudy singular vectors with a minimised dependence
upon the clear singular vectors.

This method was then applied to a scan of apodised MI-
PAS spectra, which has been flagged as cloudy by the CI
Method in the final sweep at 6.0 km but clear everywhere
above. Figure8 shows the fits of the input raw spectra over-
laid with the fit obtained from the clear and cloudy singular
vectors, which clearly do a good job of fitting the signal since
the root mean square error is less than 1.0% of the measure-
ment’s spectral baseline. As well, it is obviously the clear
singular vectors which dominate fit until the final sweep, at
which the cloudy singular vectors are fitted with non-zero fit
coefficients, corresponding well to the present cloud detec-
tion mechanism’s judgement of the cloudy state of the atmo-
sphere in that sweep only.

Given the success in reproducing spectral features through
fitting with the clear and cloudy singular vectors as well as
the fact that the clear and cloudy singular vectors are used in
relation to each other in a manner which is expected, for both
simulated and real MIPAS data in the spectral region consid-
ered, it appears as if this method should be able to be used
to detect and quantitatively determine the amount of cloud
occurring in the MIPAS FOV.

7 Effect of noise on singular vector fits

It is interesting to consider how the SVD fit of a noisy signal
(such as obtained from real measurements) will differ from
that of a noise-free signal. In other words, the way in which
the singular value assigned to each noise-free singular vector

in the fitting process is affected by noise on the input spectra
is sought.

Consider a noise-free radiance spectruml of lengthn such
that

l =
(
l1, l2, · · · , ln

)
(12)

which is to be fit by a singular vectorv of lengthn where

v =
(
v1, v2, · · · , vn

)
. (13)

Then the least squares linear fit of the spectrum using the
singular vector can be expressed as

λ =

(
vT v

)−1
vT l. (14)

It immediately follows that

λ = (v · v)−1 vT l = (|v|)−1 vT l = vT l (15)

since|v| =1 becausev is a unit vector by nature. Discretising
this yields

λ =

n∑
i=1

vi li . (16)

If random noise of amplitudeσ is added to each spectral
point on this arbitrary spectrum, there will be some change
σλ in the singular value assigned by the least squares fit. The
least squares fit to the noisy spectrum can be expressed as

λnoisy = λ + σλ =

n∑
i=1

vi (li + σi) . (17)

It follows that

σ 2
λ =

n∑
i=1

(vi)
2 σ 2

= σ 2
n∑

i=1

(vi)
2

= σ 2 (18)

since
∑n

i=1 (vi)
2
=1 asv is a unit vector. Hence the fit coef-

ficient to the noisy spectrum is simply

λnoisy = λ + σ. (19)

For MIPAS, σ=50 nW (cm2 sr cm−1)−1 1. Typical fit co-
efficients for the first few singular vectors in both the
clear and cloudy sets (i.e. those important to the fit, as
they represent the largest variances) are of the order of
10000 nW (cm2 sr cm−1)−1 – so the change in the fit coeffi-
cient (λnoisy−λ=σ ) is minor for mostλ sinceλ�σ for most
vs. Thus, the difference caused by the presence of this max-
imum value of noise is negligible.

Therefore, random error on the input measurements
should not greatly affect the fitting of the spectra by noise-
free singular vectors as the vectors important in the fitting
mechanism are negligibly changed by the noise.

1This is an overestimation of the effect of noise, since Eq. (18)
assumes no spectral correlation, which is not the case for apodised
spectra, as used here. It does represent nevertheless a good upper
limit for the effect that noise will have on the fitting process.
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Fig. 7. Left panels: Linear least squares fit using both clear and cloudy singular vectors (red) overplotted on original input signal (black).
Right panels: magnitudes of fit coefficients of singular vectors used in the fit (blue=clear, red=cloudy), normalised such that the largest fit
coefficient has a magnitude of unity. From top to bottom, the EF increases from 0% to nearly 100%.
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Fig. 8. Fitting of MIPAS spectra by clear and cloudy singular vectors. From top to bottom, downwards through the scan pattern: 15.0 km,
12.0 km, 9.0 km and 6.0 km tangent heights. Left panels: linear least squares fit using both clear and cloudy singular vectors (red) overplotted
on original input signal (black). Right panels: magnitudes of fit coefficients corresponding to the singular vectors used in the fit (clear in
blue, cloudy in red), normalised such that the largest fit coefficient has a magnitude of unity.

8 SVD cloud detection method

As described in the previous sections, using the set of clear
and cloudy singular vectors should yield a cloud detection
mechanism. This section will introduce and test a possible
candidate for detection mechanism which reconstructs the
portion of radiance that the fit attributes to a cloudy presence.

Any arbitrary spectrum can be successfully fit to a high
degree by a set of altitude-dependent singular vectors which
span the clear and cloudy atmospheric states such that

ltotal =

mclear∑
i=1

λcleari vcleari +

mcloudy∑
i=1

λcloudyi vcloudyi , (20)

in keeping with standard reconstruction of SVD, as discussed
in Eq. (5), whereλcleari andλcloudyi are constant coefficients
of the least squares fit. Once this linear least squares fit has
been obtained, it is trivial to reconstruct the radiance compo-
nents of the original signal: that due to the clear background

state and that due to possible cloud presence. Reconstruct-
ing, the clear radiance is

lclear =

mclear∑
i=1

λcleari vcleari , (21)

and the radiance due to the cloud presence is

lcloudy =

mcloudy∑
i=1

λcloudyi vcloudyi . (22)

It follows, then, that when the radiance due to cloud pres-
ence becomes non-zero, cloud is present. To normalise this
quantity, the ratio of the cloudy radiance to the total radi-
anceLtotal, called the Integrated Radiance Ratio, is consid-
ered such that

L̄cloudy

L̄total
> 0 (23)

for cloudy spectra and

L̄cloudy

L̄total
≈ 0 (24)
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Fig. 9. Integrated Radiance Ratio for all RFM-simulated spectra in
ensemble plotted as a function of CI (left panel) and EF. Colour-
coded by EF.

for clear spectra, wherēL represents the average of the re-
constructed radiancel in the 960–961 cm−1 MW. It is hy-
pothesised that this ratio could be used as a cloud detection
method.

The ensemble of RFM-simulated MIPAS spectra has again
been used to test this hypothesis. Following the least squares
fitting of each spectrum with the altitude-corresponding set
of clear and cloudy singular vectors, the cloudy radiance
is reconstructed as previously described, the average in the
960–961 cm−1 region calculated and the Integrated Radiance
Ratio determined. When the ratio is plotted against CI or EF,
as shown in Fig.9, it becomes obvious that this hypothesis is
valid, as the ratios form a bimodal distribution corresponding
to clear and cloudy cases.

Thus, the Integrated Radiance Ratio is calculated for all
MIPAS spectra measured for the full year of 2003 between
60◦ S and 60◦ N. To confidently choose thresholds, it is a
matter of fitting the clear peak in the bimodal distribution to
a Gaussian distribution – however this is not a trivial proce-
dure since above the clear distribution maximum, there will
be non-negligible cloud cases from the tailing edge of the
cloudy portion of the overall distribution. Therefore, in fit-
ting the clear distribution, only points in the distribution oc-
curring to the left of the peak are considered. Furthermore,
the thresholds are altitude-dependent and will be assigned for
each unit altitude between 6.0 km and 21.0 km. In this man-
ner, probability distributions functions corresponding to each
unit altitude between 6.0 km and 21.0 km are considered and
the “clear” peak (that centred the furthest to the left) fitted by
a Gaussian distribution and the altitude-dependent threshold
set at

Thr(z)=µ(z) + 3σ(z), (25)

for the peak maximumµ and standard deviationσ . Fig-
ure 10 shows the PDFs, overplotted with the clear peak fit
with µ andσ noted. It is reassuring to note that at the higher
considered altitudes, the cloudy peak in the bimodal distri-
bution becomes negligible with infrequent cloud expected. It
should be noted that the thresholds thus chosen for the low-
est altitudes should be treated with some care, as there is sig-
nificant overlap between the clear-and-cloudy distributions
which may not be fully isolated in the estimation of thresh-
olds.

9 Application to MIPAS data

This SVD detection method, with the previously derived
thresholds, is applied to all available MIPAS data from 2003,
as shown in Fig.11. It appears that this Integrated Radiance
Ratio cloud detection method does a good job in identify-
ing even the thin cloud that the present CI Method appears
to miss, choosing all points to the right of the thick clear
band in Fig.11as cloud – and thus to a first order, it appears
to do better than the existing CI Method in terms of identi-
fying cloud. The SVD method suggests that there are 28%
of scans having cloud occurrence somewhere in the altitude
range ubiquitous with high cloud (6–24 km), comparing well
with Wylie et al.’s (2005) result which records high cloud in
33% of measurements taken (the CI method sees only 17%
of scans as cloud-filled, with its current thresholds).

It is important to note that detection methods are highly
sensitive to choice of threshold, although the choice of
threshold is an imminently important component of the de-
tection method itself. It could be argued that the operational
CI method has been developped to identify thick cloud in or-
der to avoid spurious trace species retrievals, and hence the
operational thresholds are not tailored to isolate thin cloud,
whilst the SVD method has been so developed. Exten-
sive comparisons of the two methods are available in Hur-
ley (2008) but have not been presented here for the sake of
brevity (employing simulated clear and cloudy MIPAS spec-
tra, as well as real MIPAS spectra, using a wide-range of
tests with-and-without the application of thresholds in order
to examine the intrinsic skill of detection of the methods).

10 Application to polar stratospheric clouds

It should be noted that the SVD detection method has been
developed specific to tropospheric clouds only – and that it
has not been made to represent (in more than basic wide-
scale continuum cloud features) stratospheric clouds such as
polar stratospheric clouds (PSCs), as it was felt that the RFM
could not provide spectra representative of PSCs – and at the
time that this work was carried out, there existed no database
of PSC-specific spectra for MIPAS. However, there now ex-
ists such a database, available from the MIPclouds project
and detailed in Spang et al. (2008). A natural progression of
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Fig. 10. Altitude-dependent PDFs of log
(

Lcloudy
Ltotal

)
for all MIPAS spectra taken in 2003 beween 60◦ S and 60◦ N. Each is plotted separately,

with the Gaussian fit of the clear distribution overplotted with maxima and standard deviations noted.
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Fig. 11. Profiles of average radiance in 960.0–961.0 cm−1 MW
from all MIPAS spectra taken in 2003, between 60 S and 60 N. Left
panel indicates in red those cases flagged as cloud by the CI Method.
Right panel indicates in red those cases flagged as cloud by SVD
Integrated Radiance Ratio Method.

this work is indeed to use this database to define basis vec-
tors specific to PSCs, and to perhaps extend this detection
method to differentiate between PSC types – a preliminary
study of which was carried out in Hurley (2008) using real
MIPAS PSC spectra.

11 Conclusions

SVD has been applied to an ensemble of simulated spec-
tra which represent a large number of atmospheric states,
both clear and cloudy. Singular vectors have been calculated
which span both clear and cloudy atmospheres – and a cloud
detection method (Integrated Radiance Ratio) has been for-
mulated and tested, exploiting statistics of linear combina-
tions of the two sets of singular vectors to represent any spec-
tra encountered. Appropriate thresholds have been chosen by
application to MIPAS data from 2003, and the methods qual-
itatively tested on MIPAS data from 2003.

It appears that broadband spectral information can be ex-
tracted by SVD and used reliably to detect cloud. The true
success of this analysis lies in the apparent improvement
that the SVD detection method seem to have over the op-
erationally used CI method in the detection of thin cloud.

Simulated spectra have been used in the development of
this analysis, which, arguably may not represent all of the
possible clear atmospheric states – nor all the cloudy iter-
ations. An interesting exercise would be to form singular
vectors from real MIPAS spectra, however this poses the dif-
ficulty of not knowing whether or not a singular vector cor-
responds to the clear atmosphere, or to a cloudy one. Whilst
there may be bifurcations in the appropriate distributions of

singular values, this is likely not a trivial task. In any case,
the simulated singular vectors appear to do a good job at rep-
resenting the real atmosphere – and the suggested detection
methods seem to pick up both simulated cloud and what is
hypothesised to be cloud in the real measurements.
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