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Abstract. Radiative transfer models (RTMs) are of utmost
importance for quantitative remote sensing, especially for
compensating atmospheric perturbation. A persistent trade-
off exists between approaches that prefer accuracy at the cost
of computational complexity, versus those favouring simplic-
ity at the cost of reduced accuracy. We propose an approach
in the latter category, using analytical equations, parameter-
izations and a correction factor to efficiently estimate the
effect of molecular multiple scattering. We discuss the ap-
proximations together with an analysis of the resulting per-
formance and accuracy. The proposed Simple Model for At-
mospheric Radiative Transfer (SMART) decreases the calcu-
lation time by a factor of more than 25 in comparison to the
benchmark RTM 6S on the same infrastructure. The relative
difference between SMART and 6S is about 5% for space-
borne and about 10% for airborne computations of the atmo-
spheric reflectance function. The combination of a large solar
zenith angle (SZA) with high aerosol optical depth (AOD) at
low wavelengths lead to relative differences of up to 15%.
SMART can be used to simulate the hemispherical conical
reflectance factor (HCRF) for spaceborne and airborne sen-
sors, as well as for the retrieval of columnar AOD.

1 Introduction

The terrestrial atmosphere attenuates the propagation of the
solar radiation down to the Earth’s surface and back up
to a sensor. The scattering and absorption processes in-
volved disturb the retrieval of quantitative information on
surface properties. Radiative transfer models (RTMs) and
their inversions are commonly used to correct for such ef-
fects on the propagation of light. Well-known RTMs are
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6S (Second Simulation of a Satellite Signal in the Solar
Spectrum) (Vermote et al., 1997), SCIATRAN (Rozanov
et al., 2005), SHARM (Muldashev et al., 1999; Lyapustin,
2005), RT3 (Evans and Stephens, 1991), RTMOM (Gov-
aerts, 2006), RAY (Zege and Chaikovskaya, 1996), STAR
(Ruggaber et al., 1994) and Pstar2 (Nakajima and Tanaka,
1986; Ota et al., 2010), as well as DISORT (Stamnes et al.,
1988), which is used in MODTRAN (Berk et al., 1989),
STREAMER (Key and Schweiger, 1998) and SBDART
(Ricchiazzi et al., 1998). These accurate but complex RTMs
are frequently run in a forward mode, generating look-up
tables (LUTs), which are later used during the inversion
process for atmospheric compensation (Gao et al., 2009)
or aerosol retrieval (Kokhanovsky, 2008; Kokhanovsky and
Leeuw, 2009; Kokhanovsky et al., 2010), for instance. There
are also a series of highly accurate, but computationally in-
tensive Monte Carlo photon transport codes available. How-
ever, the best accuracy may not be always desirable for a
RTM. Approximative equations have been developed be-
fore computers were widely available (Hammad and Chap-
man, 1939; Sobolev, 1972). With regard to the growing
size and frequency of remote sensing datasets, approxima-
tive and computationally fast RTMs are becoming relevant
again (Kokhanovsky, 2006; Katsev et al., 2010; Carrer et al.,
2010). In particular, RTMs of the vegetation canopy and fur-
ther algorithms that exploit data from imaging spectroscopy
instruments (Itten et al., 2008) often rely on fast atmospheric
RTM calculations.

In this context, we propose the fast Simple Model for
Atmospheric Radiative Transfer (SMART). It is based on
approximative analytical equations and parameterizations,
which represent an favourable balance between speed and
accuracy. We consider minimised complexity and computa-
tional speed as important assets for downstream applications
and define an acceptable uncertainty range of up to 5–10%
for the modelled reflectance factor at the sensor level, under
typical mid-latitude remote sensing conditions. SMART can
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therefore be used as a physical model, maintaining a cause-
and-effect relationship in atmospheric radiative transfer. In-
stead of depending on the classic LUT approach, it permits
parameter retrieval in near-real-time. This enables the rapid
assessment of regional data requiring exhaustive correction,
such as imaging spectrometer data. Furthermore, it supports
the straightforward inversion of aerosol optical depth (AOD;
τaer
λ ) by implementing radiative transfer equations as a func-

tion of τaer
λ . The theoretical feasibility for the retrieval of

aerosols in terms of the sensor performance was shown in
Seidel et al.(2008) for the APEX instrument (Itten et al.,
2008).

In this paper, we describe the two-layer atmospheric model
with the implementation of approximative radiative transfer
equations in both layers and at the Earth’s surface. We then
assess the accuracy and performance of SMART in compar-
ison with 6S.

2 SMART – a simple model for atmospheric
radiative transfer

A remote sensing instrument measures the spectral
radiance as a function of the spectral atmospheric
properties and the illumination/observation geometry
Lλ(τλ,Pλ(2),ωλ;µ0,µ,φ−φ0), where τλ is the optical
depth,Pλ(2) is the phase function at the scattering angle2,
ωλ is the single scattering albedo,µ0 = cosθ0, µ = cosθ , θ0
and θ represent the solar and viewing zenith angles (SZA,
VZA), φ−φ0 is the relative azimuth between viewingφ and
solar directionφ0. However, from a modelling perspective,
it is more convenient to use a dimensionless reflectance
function. The relationship between radiance and reflectance
is given by:

Rλ =
πLλ

µ0F0,λ

, (1)

whereF0,λ is the spectral solar flux or irradiance on a unit
area perpendicular to the beam. For readability, we omit the
arguments. The subscripted wavelength denotes spectral de-
pendence.

SMART assumes a plane-parallel, two-layer atmosphere.
We will use the superscript I to denote the upper layer, super-
script II for the lower layer. While the lower layer contains
aerosol particles and molecules, the upper layer contains only
molecules. The surface elevation, the transition altitude of
the two layers, as well as the top-of-atmosphere (TOA) al-
titude can be chosen freely. The planetary boundary layer
(PBL) height is a good estimate for the vertical extent of the
lower layer. The sensor altitude can be set to any altitude
within the atmosphere or to the TOA. Altitudes are related
to air pressurep according to the hydrostatic equation. This
1-D coordinate system is used in Eqs. (3) and (25) to deter-
mine τλ and to scale the atmospheric reflectance and trans-
mittance function corresponding to a specific altitude within
atmosphere.

SMART accepts any combination ofτλ, θ0, θ and
λ. The current implementation executes on the 2-D ar-
ray

[
λ,τaer

550nm

]
, where λ ∈ [400nm,800nm] and τaer

550nm∈

[0.0,0.5]. The spectral dependence of the AOD is approx-
imated by:

τaer
λ = τaer

550nm

(
λ

550nm

)−α

, (2)

according toÅngstr̈om’s law (Ångstr̈om, 1929). Aerosol
optical properties, such as the asymmetry factorgaer

λ , ωaer
λ

and theÅngstr̈om parameterα are taken fromd’Almeida
et al. (1991) for the following aerosol models: clean-
continental, average-continental, urban, clean-maritime,
maritime-polluted and maritime-mineral.

2.1 Radiative transfer in layer I

By definition, the layer I contains no aerosols and the to-
tal optical depth is therefore given by the molecular optical
depthτ I

λ = τmlc
λ

(
1−hPBL

)
, where

hPBL
=

pSFC
−pPBL

pSFC−pTOA
(3)

is the relative height of the PBL within the atmosphere. It
ranges from 0 at the surface (SFC) to 1 at TOA. Values for
τmlc
λ are computed using semi-empirical equations fromBod-

haine et al.(1999).
The downward total transmittanceT I↓

λ is the sum of the

downward direct transmittanceT I↓dir
λ and the downward dif-

fuse transmittanceT I↓dfs
λ :

T
I↓
λ = T

I↓dir
λ +T

I↓dfs
λ = e

−
τ I
λ

µ0 +τ I
λe

(
−u0−v0τ

I
λ−w0

(
τ I
λ

)2)
. (4)

T
I↓dfs
λ is approximated by using a fast and accurate pa-

rameterization suggested byKokhanovsky et al.(2005) for
ωλ = 1, where

u0 =

3∑
m=0

hmµm
0 , (5)

v0 = p0+p1e
−p2µ0, (6)

w0 = q0+q1e
−q2µ0. (7)

The constantsp0, q0, p1, q1, p2, q2 andhm are parameterized
using polynomial expansions with respect togλ, e.g.

p0 =

3∑
s=0

p0,sgλ. (8)

p0,s and all other expansion coefficients are given in
Kokhanovsky et al.(2005). The upward transmittanceT I↑

λ

is defined according to Eqs. (4) to (8) by substitutingµ0, u0,
v0, w0 for µ, u, v, w, respectively.
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Fig. 1: Phase functions at 550 nm for molecules and dry
water soluble aerosols derived from the Henyey-Greenstein
(HG) approximation with gaer

550 nm = 0.63 and the exact
Lorenz-Mie theory.

The transmitted light is scattered in all directions. The ra-
tio of scattering to total light extinction ωλ and the angular
distribution of the scattered light Pλ(Θ) are used to describe
the scattering process. To simplify the approach, the total
intrinsic atmospheric scattering function can be decomposed
into the single scattering approximation (SSA) and multiple
scattering (MS). The first order atmospheric reflectance func-
tionRI,SSA

λ can be expressed using the analytical equation as
given in van de Hulst (1948); Sobolev (1972); Hansen and
Travis (1974); Kokhanovsky (2006):

RI,SSA
λ =

ωmlc
λ Pmlc

λ (Θ)

4(µ0 +µ)

(
1−e−mτ

I
λ

)
, (9)

where the molecular single scattering albedo ωmlc
λ := 1 and

the molecular (Rayleigh) scattering phase function for re-
flected, unpolarised solar radiation is given by:

Pmlc
λ (Θ) =

3

4

(
1+cos2Θ

)
, (10)

with the scattering angle

Θ = arccos
[
−µ0µ+cos(φ−φ0)

√
(1−µ0)(1−µ)

]
(11)

and the geometrical air mass factor m =
(
µ−1

0 +µ−1
)
.

Pmlc
λ (Θ) is plotted in Fig. 1.
Standard RTMs spend most of their computational time

calculating multiple scattering with iterative integration pro-
cedures. In the case of layer I, we therefore suggest a
generic correction factor f corr to approximate Rayleigh mul-
tiple scattering. We derive one f corr per SZA as a function
of λ and τ from accurate MODTRAN/DISORT calculations,
however without polarisation. The correction factor is de-
fined as the ratio between the total reflectance and the SSA
at sensor level:

f corr
µ0

(λ,τ) =
Rsensor,MODTRAN
λ

Rsensor,SSA,MODTRAN
λ

. (12)

The total reflectance function of layer I is then given by
Eqs. (9) and (12):

RI
λ =RI,mlc

λ =
ωmlc
λ Pmlc

λ (Θ)

4(µ0 +µ)

(
1−e−mτ

I
λ

)
f corr
µ0

. (13)

2.2 Radiative transfer in layer II

The down- and upward total transmittances T II↓
λ , T II↑

λ in
layer II are calculated according to Eq. (4) by using gaer

λ and
substituting τ I

λ to the total spectral optical depth of layer II
τ II
λ = τaer

λ +τmlc
λ hPBL.

The atmospheric reflectance function of layer II is sim-
plified by the decomposition into molecular and aerosol
parts. As a consequence, the aerosol-molecule scattering
interactions are neglected. The related error is examined
in Sect. 3.3. The molecular reflectance function RII,mlc

λ

is derived directly from Eq. (13), where τ I
λ is changed to

τmlc
λ hPBL. Thus, the total reflectance function of layer II

is given by:

RII
λ =RII,mlc

λ +

first order scattering (SSA)︷ ︸︸ ︷
ωaer
λ P aer

λ (Θr)

4(µ0 +µ)

(
1−e−mτ

aer
λ

)
+

second order︷ ︸︸ ︷
Raer,MS
λ︸ ︷︷ ︸

Raer
λ

.(14)

The aerosol scattering phase function P aer
λ (Θ) is defined

by the approximate Henyey-Greenstein (HG) phase func-
tion (Henyey and Greenstein, 1941), which depends on the
aerosol asymmetry factor gaer

λ and the scattering angle Θ:

P aer
λ (Θ) =

1−(gaer
λ )

2[
1+(gaer

λ )
2−2gaer

λ cosΘ
]2/3 . (15)

This HG phase function is plotted in Fig. 1 with gaer
550 nm =

0.63 for a dry water soluble aerosol according to d’Almeida
et al. (1991). The exact phase function derived from the
Lorenz-Mie theory is superimposed to illustrate the imper-
fection of the HG approximation in the forward scattering
domain for Θ> 150◦. This influence on the accuracy of
SMART is discussed in the second half of Sect. 3.2.

The second order (or secondary) scattering is calculated
according to the Successive Orders of Scattering (SOS)
method described by Hansen and Travis (1974):

Raer,MS(µ,µ0,φ−φ0) =
τaerωaer

4π
(16)

·
2π∫
0

1∫
0

[
1

µ
P aer

t (µ,µ′,φ−φ′)RSSA(µ′,µ0,φ
′−φ0)

+
1

µ0
RSSA(µ,µ′,φ−φ′)P aer

t (µ′,µ0,φ
′−φ0)

−e
− τaer

µ0

µ0
T SSA(µ,µ′,φ−φ′)P aer

r (µ′,µ0,φ
′−φ0)

−e
− τaer

µ

µ
P aer

r (µ,µ′,φ−φ′)T SSA(µ′,µ0,φ
′−φ0)

]
dµ′dφ′ .

Fig. 1. Phase functions at 550 nm for molecules and dry water solu-
ble aerosols derived from the Henyey-Greenstein (HG) approxima-
tion with gaer

550nm= 0.63 and the exact Lorenz-Mie theory.

The transmitted light is scattered in all directions. The ra-
tio of scattering to total light extinctionωλ and the angular
distribution of the scattered lightPλ(2) are used to describe
the scattering process. To simplify the approach, the total
intrinsic atmospheric scattering function can be decomposed
into the single scattering approximation (SSA) and multiple
scattering (MS). The first order atmospheric reflectance func-
tion R

I,SSA
λ can be expressed using the analytical equation as

given in van de Hulst(1948); Sobolev(1972); Hansen and
Travis(1974); Kokhanovsky(2006):

R
I,SSA
λ =

ωmlc
λ P mlc

λ (2)

4(µ0+µ)

(
1−e−mτ I

λ

)
, (9)

where the molecular single scattering albedoωmlc
λ := 1 and

the molecular (Rayleigh) scattering phase function for re-
flected, unpolarised solar radiation is given by:

P mlc
λ (2) =

3

4

(
1+cos22

)
, (10)

with the scattering angle

2 = arccos
[
−µ0µ+cos(φ−φ0)

√
(1−µ0)(1−µ)

]
(11)

and the geometrical air mass factorm =

(
µ−1

0 +µ−1
)
.

P mlc
λ (2) is plotted in Fig.1.
Standard RTMs spend most of their computational time

calculating multiple scattering with iterative integration pro-
cedures. In the case of layer I, we therefore suggest a
generic correction factorf corr to approximate Rayleigh mul-
tiple scattering. We derive onef corr per SZA as a function
of λ andτ from accurate MODTRAN/DISORT calculations,
however without polarisation. The correction factor is de-

fined as the ratio between the total reflectance and the SSA
at sensor level:

f corr
µ0

(λ,τ ) =
R

sensor,MODTRAN
λ

R
sensor,SSA,MODTRAN
λ

. (12)

The total reflectance function of layer I is then given by
Eqs. (9) and (12):

RI
λ = R

I,mlc
λ =

ωmlc
λ P mlc

λ (2)

4(µ0+µ)

(
1−e−mτ I

λ

)
f corr

µ0
. (13)

2.2 Radiative transfer in layer II

The down- and upward total transmittancesT
II ↓
λ , T

II ↑
λ in

layer II are calculated according to Eq. (4) by usinggaer
λ and

substitutingτ I
λ to the total spectral optical depth of layer II

τ II
λ = τaer

λ +τmlc
λ hPBL.

The atmospheric reflectance function of layer II is sim-
plified by the decomposition into molecular and aerosol
parts. As a consequence, the aerosol-molecule scattering
interactions are neglected. The related error is examined
in Sect. 3.3. The molecular reflectance functionRII ,mlc

λ

is derived directly from Eq. (13), whereτ I
λ is changed to

τmlc
λ hPBL. Thus, the total reflectance function of layer II is

given by:

RII
λ = R

II ,mlc
λ +

first order scattering(SSA)︷ ︸︸ ︷
ωaer

λ P aer
λ (2r)

4(µ0+µ)

(
1−e−mτaer

λ

)
+

second order︷ ︸︸ ︷
R

aer,MS
λ︸ ︷︷ ︸

Raer
λ

. (14)

The aerosol scattering phase functionP aer
λ (2) is defined

by the approximate Henyey-Greenstein (HG) phase func-
tion (Henyey and Greenstein, 1941), which depends on the
aerosol asymmetry factorgaer

λ and the scattering angle2:

P aer
λ (2) =

1−
(
gaer

λ

)2[
1+

(
gaer

λ

)2
−2gaer

λ cos2
]2/3

. (15)

This HG phase function is plotted in Fig.1 with gaer
550nm=

0.63 for a dry water soluble aerosol according tod’Almeida
et al. (1991). The exact phase function derived from the
Lorenz-Mie theory is superimposed to illustrate the imper-
fection of the HG approximation in the forward scattering
domain for2 > 150◦. This influence on the accuracy of
SMART is discussed in the second half of Sect.3.2.

The second order (or secondary) scattering is calculated
according to the Successive Orders of Scattering (SOS)
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method described byHansen and Travis(1974):

Raer,MS(µ,µ0,φ−φ0) =
τaerωaer

4π
(16)

·

2π∫
0

1∫
0

[
1

µ
P aer

t

(
µ,µ′,φ−φ′

)
RSSA(µ′,µ0,φ

′
−φ0

)
+

1

µ0
RSSA(µ,µ′,φ−φ′

)
P aer

t

(
µ′,µ0,φ

′
−φ0

)
−

e
−

τaer
µ0

µ0
T SSA(µ,µ′,φ−φ′

)
P aer

r

(
µ′,µ0,φ

′
−φ0

)
−

e
−

τaer
µ

µ
P aer

r

(
µ,µ′,φ−φ′

)
T SSA(µ′,µ0,φ

′
−φ0

)dµ′dφ′.

λ and other non-angular arguments are omitted for the sake
of readability. P aer

r andP aer
t denote the aerosol HG phase

function (Eq.15) using the scattering angle2r in case of
reflectance (Eq.11) and the scattering angle

2t = arccos
[
µ0µ+cos(φ−φ0)

√
(1−µ0)(1−µ)

]
(17)

in case of transmittance. The single scattering transmit-
tanceT SSA is given invan de Hulst(1948); Sobolev(1972);
Hansen and Travis(1974); Kokhanovsky(2006):

T SSA
λ =

ωaer
λ P aer

λ (2t)

4(µ0−µ)

(
e
−

τaer
λ
µ0 −e

−
τaer
λ
µ

)
. (18)

In case ofµ0=µ, we modify Eq. (18) to avoid indeterminacy
with l’H ôpital’s (Bernoulli’s) rule:

T SSA
λ =

ωaer
λ P aer

λ (2t)

4µ2
τaer
λ e

(
−

τaer
λ
µ

)
. (19)

We use a numerical approximation to calculate the inte-
grals of Eq. (16). This is by far the most computation-
ally intensive step in SMART. Therefore, we currently ne-
glect scattering orders higher than two. A third order term
could be added to Eq. (16) as given byHansen and Travis
(1974). However, for our accuracy requirements and under
favourable remote sensing conditions, second order scatter-
ing is sufficient. More details are given in the first half of
Sect.3.2.

If fast computation is more important than accuracy,
R

aer,MS
λ can be substituted by·f corr

µ0

(
λ,τaer

550nm

)
in analogy to

Eq. (12). The expense is roughly 20% in decreased accuracy.

2.3 Radiative transfer at the surface

The modelling of optical processes at the surface can be
elaborate due to adjacency and directional effects. Here
we assume the simple case with isotropically reflected light
on a homogeneous surface according to Lambert’s law
(Ångstr̈om, 1925; Chandrasekhar, 1960; Sobolev, 1972):

RSFC
λ =

aλ

1−sλaλ

, (20)

where aλ is the surface albedo andsλ is the spherical
albedo to account for multiple interaction between surface
and atmosphere. We use the parameterization suggested by
Kokhanovsky et al.(2005) for sλ, where:

sλ = τ II
λ

(
ae−

τ II
λ
α +be

−
τ II
λ
β +c

)
. (21)

The constantsa, α, b, β and c are parameterized accord-
ing to Eq. (8). The corresponding expansion coefficients are
given in Kokhanovsky et al.(2005). The resultingRSFC

λ is
also known as the hemispherical conical reflectance factor
(HCRF) according toSchaepman-Strub et al.(2006).

2.4 At-sensor reflectance function

Finally, we put the above equations together along the optical
path to resolve the reflectance functionRS

λ . Multiple retro-
reflections between layers I and II are neglected. A sensor at
TOA or within levels I or II is simulated as follows:

R
S,TOA
λ = RI

λ +T
I↓
λ

[
RII

λ +RSFC
λ T

II l
λ

]
T

I↑
λ , (22)

R
S,I
λ = RI

λsh
I
+T

I↓
λ

[
RII

λ +RSFC
λ T

II l
λ

](
1−shI

+shIT
I↑
λ

)
, (23)

R
S,II
λ = T

I↓
λ

[
RII

λ shII
+T

II ↓
λ RSFC

λ

(
1−shII

+shIIT
II ↑
λ

)]
. (24)

whereT
II l
λ := T

II ↓
λ T

II ↑
λ ,

shI
=

pPBL
−pSensor

pPBL−pTOA
and shII

=
pSFC

−pSensor

pSFC−pPBL
. (25)

These scaling factors are used to account for the relative
height of the sensor within the corresponding layer.shI

ranges from 1 at TOA to 0 at the PBL, whileshII varies from
1 at the PBL to 0 at the Earth’s surface (SFC).

3 Accuracy assessment

For typical airborne remote sensing conditions in the mid-
latitudes we choose the representative uncertainty of imaging
spectroscopy data of approximately 5% (Itten et al., 2008)
as the accuracy requirement for SMART. Less typical con-
ditions are analysed as well; in these cases we will accept
larger errors. The definition of the conditions is given in
Table1. The AOD range was chosen according to the find-
ings ofRuckstuhl et al.(2008), the wavelength range selected
with regard to the optimal sensor performance (Seidel et al.,
2008), while also avoiding strong water vapour absorption.
We assume a black surface at the sea level (aλ=0) to focus on
the atmospheric part of SMART. Furthermore, we solely use
the nadir viewing direction (µ=1), which is approximated by
small field-of-view sensors (FOV<30◦).

This section evaluates if the prior accuracy require-
ments can be met by SMART. We compare SMART with

Atmos. Meas. Tech., 3, 1129–1141, 2010 www.atmos-meas-tech.net/3/1129/2010/
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Table 1. Definition of the conditions and the related accuracy re-
quirements for SMART. The limited conditions refer to typical air-
borne remote sensing needs in the mid-latitudes, which SMART
was developed for. The analysed conditions refer to the accuracy
assessment.

remote sensing conditions limited analysed

τaer
550nm 0–0.5 0–0.5

solar zenith angle, degrees 20–60 nadir–70
viewing zenith angle nadir nadir
wavelength, nm 500–700 400–800
surface albedo 0 0
accuracy requirement, % 5 15

an assumed virtual truth computed by the well known
RTM 6SV1.1. It accounts for polarisation and uses the SOS
method as well as aerosol phase matrices based on Lorenz-
Mie scattering theory (Vermote et al., 1997). It was validated
and found to be consistent to within 1% when compared to
other RTMs byKotchenova et al.(2006). We use the de-
fault accuracy mode of 6S with 48 Gaussian scattering angles
and 26 atmospheric layers. The use of more calculation an-
gles and layers would be possible, but the accuracy increase
would be 0.4% at best (Kotchenova et al., 2006) and there-
fore is negligible for our study. The two layers of SMART
were chosen to interface at 2 km above the surface. The lower
layer includes dry water soluble aerosols and molecules dis-
tributed along the exponential vertical air pressure gradient.
The corresponding aerosol optical parametersgaer

λ , ωaer
λ and

αλ are taken fromd’Almeida et al.(1991) for SMART and
6S. All results in this study are calculated with identical in-
put parameters in SMART and in 6S, which are provided in
Table2.

In the following, the accuracy of SMART is investigated
for specific approximation uncertainties, as well as for the
overall accuracy. As an indicator of the accuracy, we calcu-
late the relative difference or percent error of the reflectance
function to the benchmark 6S:

δR ·100=
RS

SMART−RS
6S

RS
6S

·100. (26)

3.1 Rayleigh scattering approximation and polarisation

The total Rayleigh scattering isRmlc
λ = RmlcI

λ + RmlcII
λ as

given by Eqs. (13) and (14). The associated approxima-
tions include the Rayleigh scattering phase function (Eq.10),
the multiple scattering correction factor from MODTRAN
(Eq.12) and the neglected polarisation due to the scalar equa-
tions. The percent error is a distinct function of the wave-
length and SZA, induced mainly by polarisation. Figure2a
shows that it grows towards shorter wavelengths and larger
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Table 2: Summary of the input parameters used in SMART and 6S for the accuracy assessment, with the aerosol and molecular
optical depth τaer

550 nm and τmlc
550 nm, the solar and viewing zenith angle SZA and VZA, the aerosol asymmetry factor and single

scattering albedo gaer
550 nm and ωaer

550 nm, the Ångström parameter α550 nm, the surface albedo aλ, as well as the air pressure at
the surface and the planetary boundary layer pSFC and pPBL and the corresponding scaling factor hPBL.

parameter τaer
550 nm τmlc

550nm SZA VZA gaer
550 nm ωaer

550 nm α550 nm aλ pSFC pPBL hPBL

value 0–0.5 0.097 nadir–70◦ nadir 0.638 0.963 1.23 0 1013 mb 800 mb 0.211

the nadir viewing direction (µ=1), which is approximated by
small field-of-view sensors (FOV<30◦).

This section evaluates if the prior accuracy require-
ments can be met by SMART. We compare SMART with
an assumed virtual truth computed by the well known
RTM 6SV1.1. It accounts for polarisation and uses the SOS
method as well as aerosol phase matrices based on Lorenz-
Mie scattering theory (Vermote et al., 1997). It was validated
and found to be consistent to within 1% when compared to
other RTMs by Kotchenova et al. (2006). We use the de-
fault accuracy mode of 6S with 48 Gaussian scattering angles
and 26 atmospheric layers. The use of more calculation an-
gles and layers would be possible, but the accuracy increase
would be 0.4% at best (Kotchenova et al., 2006) and there-
fore is negligible for our study. The two layers of SMART
were chosen to interface at 2 km above the surface. The lower
layer includes dry water soluble aerosols and molecules dis-
tributed along the exponential vertical air pressure gradient.
The corresponding aerosol optical parameters gaer

λ , ωaer
λ and

αλ are taken from d’Almeida et al. (1991) for SMART and
6S. All results in this study are calculated with identical in-
put parameters in SMART and in 6S, which are provided in
Table 2.

In the following, the accuracy of SMART is investigated
for specific approximation uncertainties, as well as for the
overall accuracy. As an indicator of the accuracy, we calcu-
late the relative difference or percent error of the reflectance
function to the benchmark 6S:

δR ·100 =
RS

SMART−RS
6S

RS
6S

·100. (26)

3.1 Rayleigh scattering approximation and polarisation

The total Rayleigh scattering is Rmlc
λ =RmlcI

λ +RmlcII
λ as

given by Eqs. (13) and (14). The associated approxima-
tions include the Rayleigh scattering phase function (Eq. 10),
the multiple scattering correction factor from MODTRAN
(Eq. 12) and the neglected polarisation due to the scalar equa-
tions. The percent error is a distinct function of the wave-
length and SZA, induced mainly by polarisation. Figure 2a
shows that it grows towards shorter wavelengths and larger
SZA. It is known that the scalar approximation can introduce
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Fig. 2: Percent error due to Rayleigh scattering and polarisa-
tion with respect to wavelength and solar zenith angle (SZA)
at top-of-atmosphere.

uncertainties of up to 10% in the blue spectral region (van
de Hulst, 1980; Mishchenko et al., 1994). The SZA depen-
dency of this uncertainty is shown in Fig. 2b. At 550 nm,
the Rayleigh scattering uncertainty in the typical SZA range
from 20–50◦ is below 3%.

Fig. 2. Percent error due to Rayleigh scattering and polarisation
with respect to wavelength and solar zenith angle (SZA) at top-of-
atmosphere.

SZA. It is known that the scalar approximation can introduce
uncertainties of up to 10% in the blue spectral region (van
de Hulst, 1980; Mishchenko et al., 1994). The SZA depen-
dency of this uncertainty is shown in Fig.2b. At 550 nm,
the Rayleigh scattering uncertainty in the typical SZA range
from 20–50◦ is below 3%.

3.2 Aerosol scattering approximation

The main approximations for the aerosol scattering are
the double scattering (Eq.16) and the HG phase function
(Eq. 15). Initially, we use the exactly same phase function
as in 6S in order to study the error induced only by the ne-
glected higher orders of scattering. This phase function for
dry water soluble aerosols was derived from the Lorenz-Mie
scattering theory. Subsequently, we compare the combined
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Table 2. Summary of the input parameters used in SMART and 6S for the accuracy assessment, with the aerosol and molecular optical depth
τaer
550nmandτmlc

550nm, the solar and viewing zenith angle SZA and VZA, the aerosol asymmetry factor and single scattering albedogaer
550nm

andωaer
550nm, theÅngstr̈om parameterα550nm, the surface albedoaλ, as well as the air pressure at the surface and the planetary boundary

layerpSFCandpPBL and the corresponding scaling factorhPBL.

parameter τaer
550nm τmlc

550nm SZA VZA gaer
550nm ωaer

550nm α550nm aλ pSFC pPBL hPBL

value 0–0.5 0.097 nadir–70◦ nadir 0.638 0.963 1.23 0 1013 mb 800 mb 0.211

effect of the double scattering and the HG phase function ap-
proximation with 6S.

The percent error introduced by the double scattering ap-
proximation is plotted in Fig.3. It is almost constant over the
spectra due to the higher reflectance at shorter wavelengths
(see Fig.3a). It is obvious that the reflectance functionRS

λ is
increasingly underestimated by SMART for larger AOD due
to the neglected third and higher orders of aerosol scattering
(see Fig.3b). Figure3c shows that larger SZA leads to an
underestimation of the atmospheric reflectance for the same
reason.

In order to study the accuracy of the total aerosol scatter-
ing Raer

λ as part of Eq. (14), we include the approximative
HG phase function in SMART. 6S still uses the same Mie
phase function as before. The input parameter for the HG
phase functiongaer

λ corresponds to the same dry water sol-
uble aerosol, which is used in 6S. The exact Mie and the
approximative HG phase function are shown in Fig.1 for the
same aerosol. The latter provides a reasonable approxima-
tion for scattering angles around 130◦, which corresponds to
a 50◦ SZA for nadir observations. The resulting combination
of the aerosol double scattering error with the HG approxi-
mation error is examined in Fig.4. It suggests that the use
of the HG approximation does not introduce large percent er-
rors within the range of typical SZA, as defined in Table1.
Given a range of 20–45◦ SZA, SMART is quite accurate at
all investigated wavelengths and AOD values.

By comparing Figs.3a with4a and Figs.3b with 4b, it can
be seen that the HG approximation reverses some of the er-
rors due to the aerosol double scattering approximation. The
HG phase function for dry water soluble aerosols tends to
overestimate of the aerosol scattering, which finally leads to
a less distinct underestimation due to the neglected third and
higher orders of aerosol scattering.

3.3 Coupling of Rayleigh and aerosol scattering

The current version of SMART does not yet account for the
scattering interaction between molecules and aerosols. We
analyse this effect by comparing 6S computations with the
coupling switched on and off. The relative error related to
this specific approximation is shown in Fig.5. It remains
within about 3%, reaching a maximum at large SZA (see
Fig. 5c) and short wavelengths (see Fig.5a). With errors

of less than 2%, small SZAs are almost not influenced by the
coupling and there is no distinct dependency on AOD notice-
able (see Fig.5b).

3.4 Overall accuracy

Previous Sects.3.1–3.3 demonstrated that the approxima-
tions in SMART are adequate. Most of them are within the
desired accuracy range of±5% for the limited remote sens-
ing conditions as defined in Table1. Errors of up to±15%
are found for large SZA, however, they are mainly related to
SMART’s simple two-layer atmospheric structure.

In the following, we examine the overall accuracy of
SMART by comparing it according to Eq. (26) with inde-
pendent computations of 6S. The computations of SMART
are performed by Eq. (22) for a TOA sensor altitude at 80 km
and by Eq. (23) for an airborne sensor altitude at 5500 m a.s.l.
The percent error due to the excluded coupling between
molecules and aerosols is inherent in the results of this sub-
section.

Figure6 shows the result of two independent calculations
using SMART (solid line) and 6S (dashed line) with respect
to λ andτaer

550nm. The qualitative agreement between the two
models is evident. A quantitative perspective by statistical
means of the overall accuracy is provided in Table3, where

R2
= 1−

∑(
RS

SMART−RS
6S

)2
∑(

RS
6S− R̄S

6S

)2
, (27)

is the squared correlation coefficient between the two
models,

RMSE=

√
1

N

∑(
RS

SMART−RS
6S

)2
, (28)

is the root mean square error and

NRMSE=
RMSE·100

max
(
RS

SMART

)
−min

(
RS

SMART

) , (29)

is the normalised RMSE. The statistics are derived from all
combinations of input parameters defined in Tables1 and2
within the limited conditions. The resulting correlation be-
tween SMART and 6S is almost perfect. The RMSE is ap-
proximately 0.16 reflectance values and the NRMSE is be-
tween 1.8% and 3.5%. The differences are smaller at TOA in
comparison to those at 5500 m.
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3.2 Aerosol scattering approximation

The main approximations for the aerosol scattering are
the double scattering (Eq. 16) and the HG phase function
(Eq. 15). Initially, we use the exactly same phase function
as in 6S in order to study the error induced only by the ne-
glected higher orders of scattering. This phase function for
dry water soluble aerosols was derived from the Lorenz-Mie
scattering theory. Subsequently, we compare the combined
effect of the double scattering and the HG phase function ap-
proximation with 6S.

The percent error introduced by the double scattering ap-
proximation is plotted in Fig. 3. It is almost constant over the
spectra due to the higher reflectance at shorter wavelengths
(see Fig. 3a). It is obvious that the reflectance function RS

λ is
increasingly underestimated by SMART for larger AOD due
to the neglected third and higher orders of aerosol scattering
(see Fig. 3b). Figure 3c shows that larger SZA leads to an
underestimation of the atmospheric reflectance for the same
reason.

In order to study the accuracy of the total aerosol scatter-
ing Raer

λ as part of Eq. (14), we include the approximative
HG phase function in SMART. 6S still uses the same Mie
phase function as before. The input parameter for the HG
phase function gaer

λ corresponds to the same dry water sol-
uble aerosol, which is used in 6S. The exact Mie and the
approximative HG phase function are shown in Fig. 1 for the
same aerosol. The latter provides a reasonable approxima-
tion for scattering angles around 130◦, which corresponds to
a 50◦ SZA for nadir observations. The resulting combination
of the aerosol double scattering error with the HG approxi-
mation error is examined in Fig. 4. It suggests that the use
of the HG approximation does not introduce large percent er-
rors within the range of typical SZA, as defined in Table 1.
Given a range of 20–45◦ SZA, SMART is quite accurate at
all investigated wavelengths and AOD values.

By comparing Fig. 3a with 4a and Fig. 3b with 4b, it can
be seen that the HG approximation reverses some of the er-
rors due to the aerosol double scattering approximation. The
HG phase function for dry water soluble aerosols tends to
overestimate of the aerosol scattering, which finally leads to
a less distinct underestimation due to the neglected third and
higher orders of aerosol scattering.

3.3 Coupling of Rayleigh and aerosol scattering

The current version of SMART does not yet account for the
scattering interaction between molecules and aerosols. We
analyse this effect by comparing 6S computations with the
coupling switched on and off. The relative error related to
this specific approximation is shown in Fig. 5. It remains
within about 3%, reaching a maximum at large SZA (see
Fig. 5c) and short wavelengths (see Fig. 5a). With errors
of less than 2%, small SZAs are almost not influenced by the
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Fig. 3: Percent error of the SMART reflectance function due
to aerosol scattering with respect to wavelength, aerosol op-
tical depth (AOD) and solar zenith angle (SZA) at top-of-
atmosphere. SMART and 6S use the same phase function
from Lorenz-Mie theory.

Fig. 3. Percent error of the SMART reflectance function due to
aerosol scattering with respect to wavelength, aerosol optical depth
(AOD) and solar zenith angle (SZA) at top-of-atmosphere. SMART
and 6S use the same phase function from Lorenz-Mie theory.
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Fig. 4. Percent error of the SMART reflectance function due to
aerosol scattering with respect to wavelength, aerosol optical depth
(AOD) and solar zenith angle (SZA) at top-of-atmosphere. SMART
uses the HG phase function, 6S the phase function from Lorenz-Mie
theory.
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Fig. 4: Percent error of the SMART reflectance function due
to aerosol scattering with respect to wavelength, aerosol op-
tical depth (AOD) and solar zenith angle (SZA) at top-of-
atmosphere. SMART uses the HG phase function, 6S the
phase function from Lorenz-Mie theory.
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Fig. 5. Percent error due to the non-coupling approximation with
respect to wavelength, aerosol optical depth (AOD) and solar zenith
angle (SZA) at top-of-atmosphere.
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coupling and there is no distinct dependency on AOD notice-
able (see Fig. 5b).

3.4 Overall accuracy

Previous Sects. 3.1–3.3 demonstrated that the approxima-
tions in SMART are adequate. Most of them are within the
desired accuracy range of ±5% for the limited remote sens-
ing conditions as defined in Table 1. Errors of up to ±15%
are found for large SZA, however, they are mainly related to
SMART’s simple two-layer atmospheric structure.

In the following, we examine the overall accuracy of
SMART by comparing it according to Eq. (26) with inde-
pendent computations of 6S. The computations of SMART
are performed by Eq. (22) for a TOA sensor altitude at 80 km
and by Eq. (23) for an airborne sensor altitude at 5500 m a.s.l.
The percent error due to the excluded coupling between
molecules and aerosols is inherent in the results of this sub-
section.

Figure 6 shows the result of two independent calculations
using SMART (solid line) and 6S (dashed line) with respect
to λ and τaer

550 nm. The qualitative agreement between the two
models is evident. A quantitative perspective by statistical
means of the overall accuracy is provided in Table 3, where

R2 = 1−
∑(

RS
SMART−RS

6S

)2∑(
RS

6S−R̄S
6S

)2 , (27)

is the squared correlation coefficient between the two mod-
els,

RMSE =

√
1

N

∑(
RS

SMART−RS
6S

)2
, (28)

is the root mean square error and

NRMSE =
RMSE ·100

max
(
RS

SMART

)
−min

(
RS

SMART

) , (29)

is the normalised RMSE. The statistics are derived from all
combinations of input parameters defined in Tables 1 and 2
within the limited conditions. The resulting correlation be-
tween SMART and 6S is almost perfect. The RMSE is ap-
proximately 0.16 reflectance values and the NRMSE is be-
tween 1.8% and 3.5%. The differences are smaller at TOA in
comparison to those at 5500 m.

In the following, we analyse the overall accuracy of
Eq. (22) by Eq. (26) in more details with respect to wave-
length, SZA and AOD. SMART computes very similar re-
sults compared to 6S at TOA with an SZA between 30◦ and
40◦. This conclusion can be drawn from the combination of
Figs. 2b, 4c and 5c, as well as from the total percent error
in Fig. 7a. The overall percent error does not exceed ±5%
at any investigated wavelength or AOD. At the large SZA
of 60◦, SMART overestimates RS,TOA

λ by more than 10%
at short wavelengths. Nevertheless, the overall accuracy is

Table 3: Quantitative comparison between SMART and 6S
by statistical means for the limited conditions as defined in
Table 1. SMART uses the HG phase function; 6S used
the phase function from Mie calculations. R2 denotes the
squared correlation coefficient, RMSE the root mean square
error and NRMSE the normalised RMSE.

sensor altitude R2 RMSE NRMSE

TOA 0.998 0.157 1.77%

5500 m 0.998 0.167 3.52%

a
t−

s
e
n
s
o
r 

re
fl
e
c
ta

n
c
e

0.5

0.4

0.3

0.2

0.1

0

wavelength, nm
800750700650600550500450400

6S(AOD=0.5)
SMART(AOD=0.5)
6S(AOD=0.3)
SMART(AOD=0.3)
6S(AOD=0.1)
SMART(AOD=0.1)
6S(AOD=0.0)
SMART(AOD=0.0)

Fig. 6: Results of the at-sensor reflectance function RS,TOA
λ

(Eq. 22) computed by SMART (solid line) and 6S (dashed
line) at TOA, SZA=30◦ and varying τaer

550 nm. SMART uses
the HG phase function, while 6S uses the phase function
from Mie theory. Remaining input parameters are given in
Table 2.

still well within the acceptable range of 10% at any wave-
length larger than 450 nm (see Fig. 7b). At 550 nm, only the
combination of very small SZA with a strong AOD or a high
SZA with low AOD leads to a percent error just outside of
the desired 5% margin (see Fig. 7c). In the blue part of the
spectrum, high or low SZA lead to significant percent errors
in a pure Rayleigh scattering atmosphere (see Fig. 7e). The
same is true in an atmosphere containing aerosols, where the
aerosols introduce additional percent errors in the red part of
the spectrum for small SZAs (see Figs. 7d and 7f).

Since SMART is also intended for the use with airborne
remote sensing data, we additionally analyse the overall ac-
curacy of Eq. (23) by Eq. (26). We place the sensor at 5500 m
above the assumed black surface at sea level. The airborne
scenario is more sensitive to the approximative two-layer
setup in SMART. The 26 atmospheric layers in 6S can bet-
ter account for the vertically inhomogeneous atmosphere. In

Fig. 6. Results of the at-sensor reflectance functionR
S,TOA
λ

(Eq. 22) computed by SMART (solid line) and 6S (dashed line) at
TOA, SZA=30◦ and varyingτaer

550nm. SMART uses the HG phase
function, while 6S uses the phase function from Mie theory. Re-
maining input parameters are given in Table 2.

In the following, we analyse the overall accuracy of
Eq. (22) by Eq. (26) in more details with respect to wave-
length, SZA and AOD. SMART computes very similar re-
sults compared to 6S at TOA with an SZA between 30◦ and
40◦. This conclusion can be drawn from the combination of
Figs. 2b, 4c and5c, as well as from the total percent error
in Fig. 7a. The overall percent error does not exceed±5%
at any investigated wavelength or AOD. At the large SZA
of 60◦, SMART overestimatesRS,TOA

λ by more than 10% at
short wavelengths. Nevertheless, the overall accuracy is still
well within the acceptable range of 10% at any wavelength
larger than 450 nm (see Fig.7b). At 550 nm, only the com-
bination of very small SZA with a strong AOD or a high
SZA with low AOD leads to a percent error just outside of
the desired 5% margin (see Fig.7c). In the blue part of the
spectrum, high or low SZA lead to significant percent errors
in a pure Rayleigh scattering atmosphere (see Fig.7e). The
same is true in an atmosphere containing aerosols, where the
aerosols introduce additional percent errors in the red part of
the spectrum for small SZAs (see Fig.7d and f).

Since SMART is also intended for the use with airborne
remote sensing data, we additionally analyse the overall ac-
curacy of Eq. (23) by Eq. (26). We place the sensor at 5500 m
above the assumed black surface at sea level. The airborne
scenario is more sensitive to the approximative two-layer
setup in SMART. The 26 atmospheric layers in 6S can bet-
ter account for the vertically inhomogeneous atmosphere. In
fact, the percent error is slightly larger in the airborne case
in comparison with the TOA case. The error distribution in
the contour plots of Fig.8a–f show that SMART underes-
timates the reflectance factors at 5500 m. Nevertheless, the
hypothetical pure Rayleigh atmosphere still performs well,
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Table 3. Quantitative comparison between SMART and 6S by
statistical means for the limited conditions as defined in Table1.
SMART uses the HG phase function; 6S used the phase function
from Mie calculations.R2 denotes the squared correlation coef-
ficient, RMSE the root mean square error and NRMSE the nor-
malised RMSE.

sensor altitude R2 RMSE NRMSE

TOA 0.998 0.157 1.77%

5500 m 0.998 0.167 3.52%

with a maximum percent error of 6% (see Fig.8a, b and c).
The aerosols worsen the underestimation in the lower half of
the visible spectrum, especially at very small and very large
SZAs. At 550 nm and a 30◦ SZA, the percent error is 6%
or less for an AOD up to 0.5. With the same constellation
but an extreme SZA, the percent errors reach about 10% (see
Fig. 8c, e and f). The largest offset between SMART and 6S
is found at 60◦ SZA, 400 nm and an AOD of 0.5 with 18%
relative difference. However, it should be noted that absolute
differenceRS

SMART −RS
6S is in fact smaller in the airborne

case compared to the TOA case (not shown). Nonetheless,
the relative error given by Eq. (26) is larger due to the smaller
RS

6S in the denominator.

4 Performance assessment

SMART is designed to optimally balance the opposing needs
for accuracy and computational speed; the speed decreases
with increasing model complexity and accuracy. We use the
6S vector version 1.1 (Vermote et al., 1997) as a benchmark
RTM (same as in Sect.3) to assesses the performance of
SMART. 6S is compiled with GNU Fortran and SMART is
implemented in IDL. Both run on the same CPU infrastruc-
ture.

SMART needs only approximately 0.05 s for the calcu-
lation of one reflectance factor value. The more com-
plex 6S needs about 1.4 s under identical conditions. Con-
sequently, SMART computes more than 25 times faster. If
R

aer,MS
λ (Eq. 16) is substituted by a simple correction factor

f corr
µ0

(λ,τ ) for aerosol multiple scattering (similar to Eq.12),
SMART runs 220 times faster than by numerically solving
Eq. (16) in the presented configuration.

5 Summary and conclusions

We introduced SMART, as well as its approximative radia-
tive transfer equations and parameterizations. Results of
the atmospheric at-sensor reflectance function computed by
SMART were compared with benchmark results from 6S for

accuracy and performance. The overall percent error was ex-
amined and discussed, as were the individual errors resulting
from Rayleigh scattering, aerosol scattering and molecule-
aerosol interactions. The aerosol scattering was compared
to 6S with and without the effect of the HG phase function
approximation.

We found that SMART fulfils its design principle: it is fast
and simple, yet accurate enough for a range of applications.
One example may include the assessment of atmospheric ef-
fects when inspecting the quality of airborne or spaceborne
data against ground truth measurements in near-real-time.
The generation of atmospheric input parameters for vegeta-
tion canopy RTM inversion schemes, could be another appli-
cation. SMART computes more than 20 reflectance results
per second on a current customary desktop computer. This
is more than 25 times faster than the benchmark RTM. The
overall percent error under typical mid-latitude remote sens-
ing conditions was found to be about 5% for the spaceborne
and 5% to 10% for the airborne case. Large AOD or SZA
values lead to larger percent errors of up to 15%. In gen-
eral, the included approximations are sensitive to the strong
scattering in the blue spectral region, which leads to larger
percent errors. Together with the effect of polarisation, the
total percent error of SMART exceeds the desired accuracy
goal of 5% only in the blue region. It is therefore suggested
that SMART be used preferably in the spectral range between
roughly 500 nm and 680 nm, avoiding the blue and strong ab-
sorption bands. However, the neglected ozone absorption in
this spectral interval leads to a small overestimation of up
to 0.007 reflectance units at large SZA and 600 nm. It is also
recommended to use SMART for computations with a sensor
above the PBL to avoid uncertainties in the vertical distribu-
tion of the aerosols.

SMART can be improved by implementing other phase
functions instead of the HG approximation, including those
derived from Lorenz-Mie theory, geometrical optics (ray-
tracing), and T-matrix approaches (Liou and Hansen, 1971;
Mishchenko et al., 2002). Further refinements may include
the coupling between molecules and aerosols, as well as
the implementation of freely mixable aerosol components
and hygroscopic growth (Hess et al., 1998). To account
for polarisation, the scalar equations can be extended to the
vector notation. Furthermore, a similar approach as used
for the Rayleigh multiple scattering in this study (Eq.12)
may perhaps be used to perform a rough polarisation cor-
rection. Other issues for further developments may include
additional atmospheric layers, gaseous absorption (foremost
ozone), adjacency effects and the treatment of a directional,
non-Lambertian surface.

A recent inter-comparison study for classic RTMs such as
6S, RT3, MODTRAN and SHARM, found discrepancies of
δR≤5% at TOA (Kotchenova et al., 2008). Even larger errors
were found when polarisation was neglected or the HG phase
function was used. SMART does not yet account for polari-
sation and uses the HG approximation by default, however
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with the option to include pre-calculated Mie phase func-
tions. Therefore, the overall accuracy achieved by SMART
under given conditions can be regarded as satisfactory, espe-
cially when a computationally fast RTM is required.
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