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Abstract. We present ground-based FTIR (Fourier Trans-
form Infrared) water vapour analyses performed in four dif-
ferent spectral regions: 790–880, 1090–1330, 2650–3180,
and 4560–4710 cm−1. All four regions allow the retrieval of
lower, middle, and upper tropospheric water vapour amounts
with a vertical resolution of about 3, 6, and 10 km, respec-
tively. In addition the analyses at 1090–1330 and 2650–
3180 cm−1 allow the retrieval of lower and middle/upper tro-
posphericδD values with vertical resolutions of 3 and 10 km,
respectively. A theoretical and empirical error assessment –
taking coincident Vaisala RS92 radiosonde measurements as
a reference – suggests that the H2O data retrieved at high
wavenumbers are slightly more precise than those retrieved
at low wavenumbers. We deduce an H2O profile precision
and accuracy of generally better than 20% except for the low
wavenumber retrieval at 790–880 cm−1, where the assessed
upper precision limit of middle/upper tropospheric H2O is
35%. The scatter between the H2O profiles produced by the
four different retrievals is generally below 20% and the bias
below 10%, except for the boundary layer, where it can reach
24%. These values well confirm the theoretical and empirical
error assessment and are rather small compared to the huge
tropospheric H2O variability of about one order of magnitude
thereby demonstrating the large consistency between the dif-
ferent H2O profile retrievals. By comparing the twoδD pro-
file versions we deduce a precision of about 8 and 17‰ for
the lower and middle/upper troposphere, respectively. How-
ever, at the same time we observe a systematic difference
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between the two retrievals of up to 40‰ in the middle/upper
troposphere which is a large value compared to the typical
troposphericδD variability of only 80‰.

1 Introduction

The Fourth Assessment Report of the Intergovernmental
Panel on Climate Change describes the insufficient under-
standing of the atmospheric water cycle as a major source
of uncertainties of climate projections (Randall et al., 2007).
Understanding the atmospheric water sources (evaporation
from ocean or land), sinks (precipitation), and transport (ad-
vection, diffusion, turbulence, inner-cloud processes, etc.) is
essential for understanding and predicting climate change. It
requires continuous, high quality, and consistent long-term
observations on a global scale.

In the framework of the NDACC (Network for the De-
tection of Atmospheric Composition Change,Kurylo and
Zander, 2000) about 20 ground-based FTIR spectrometers
have measured high quality solar absorption spectra in the
mid-infrared over many years and at many different glob-
ally distributed sites. Currently the TCCON (Total Carbon
Column Observing Network,Wunch et al., 2010) is estab-
lishing and measures high quality solar absorption spectra
in the near infrared at about 15 globally distributed sites
with almost the same type of FTIR instrument. High quality
ground-based FTIR networks can provide consistent long-
term water vapour data with some global representativeness.
In order to achieve an optimal signal to noise ratio most
ground-based FTIR instruments use optical filters and mea-
sure the different spectral infrared regions by a sequence
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of measurements. There are several publication that re-
port ground-based FTIR water vapour retrievals in different
spectral regions: 1110–1122 cm−1 (Schneider et al., 2006a);
1110–1122 and 1220–1330 cm−1 (Schneider et al., 2006b);
790–880 and 1090–1330 cm−1 (Schneider and Hase, 2009b;
Schneider et al., 2010a); 840–860 cm−1 (Sussmann et al.,
2009); 3260–3310 cm−1 (Palm et al., 2010).

Simultaneous observation of the different tropospheric
water vapour isotopologues are particularly useful for wa-
ter cycle research. The isotopologue ratios are sensitive to
the original moisture source (e.g.,Craig, 1961) and can be
used for investigating different hydrological processes in the
troposphere (e.g.,Worden et al., 2007; Yoshimura et al.,
2008; Risi et al., 2008; Frankenberg et al., 2009). How-
ever, it is extremely difficult to measure tropospheric wa-
ter vapour isotopologue ratios to a worthwhile accuracy.
Nevertheless, it has been demonstrated bySchneider et al.
(2010b) that the NDACC FTIR’s can provide consistent
long-term observations of simultaneous tropospheric H2O
andδD profiles with a sufficiently high precision. Here and
in the following the ratio between HD16O and H16

2 O is ex-

pressed in theδ-notation:δD = 1000× (
[HD16O]/[H16

2 O]

SMOW −1),
whereby SMOW= 3.1152× 10−4 (with SMOW: Standard
Mean Ocean Water).

Area-wide coverage can only be achieved by space-based
measurements. Currently there are several sensors in space
with the capability to observe tropospheric H2O andδD si-
multaneously: ACE (Atmospheric Chemistry Experiment,
Nassar et al., 2007), TES (Tropospheric Emission Spectrom-
eter,Worden et al., 2006), SCIAMACHY (Scanning Imag-
ing Absorption Spectrometer for Atmospheric Chartogra-
phy, Frankenberg et al., 2009), GOSAT (Greenhouse Gases
Observing Satellite,Kuze et al., 2009), and IASI (Infrared
Atmospheric Sounding Interferometer,Herbin et al., 2009).
The different space-based sensors have different sensitivities:
ACE, TES, and IASI measure mainly upper and middle tro-
pospheric H2O andδD whereas SCIAMACHY and GOSAT
can detect column integrated H2O andδD. A comprehensive
satellite sensor validation requires tropospheric H2O andδD
profiles as reference, and the ground-based FTIR technique
is unique in providing such data on a continuous basis.

In this paper we assess the quality and consistency of tro-
pospheric H2O andδD profiles remotely-sensed by ground-
based FTIR in four different spectral regions: 790–880,
1090–1330, 2650–3180, and 4560–4710 cm−1. Such assess-
ment is important when applying the FTIR H2O andδD data
for research purposes and for satellite validation. We perform
theoretical and empirical error assessments. Furthermore,
we document the level of consistency between the different
H2O andδD retrievals. We analyse 325 spectra measured
by the Jet Propulsion Laboratory’s (JPL) MkIV FTIR spec-
trometer during the MOHAVE-2009 campaign (MOHAVE:
Measurements of Humidity in the Atmosphere and Valida-
tion Experiments), which took place in October 2009 at JPL

Table Mountain Facility, California, USA. The MkIV cov-
ers a very broad infrared range (650–5650 cm−1) in a single
measurement, which assures us that the absorption signatures
recorded in the different spectral regions are produced by the
same airmass and that our consistency study is not influenced
by atmospheric variability. Such consistency study gives ad-
ditional information about the precision and accuracy of the
ground-based FTIR H2O andδD products and documents the
feasibility of interchangeably using H2O andδD profiles re-
trieved from different spectral regions.

In Sect.2 we give a brief description of the MOHAVE-
2009 campaign and the MkIV spectrometer. Section3
presents the analysed spectral regions. Section4 documents
the theoretical performance of the retrievals and extensively
estimates the errors of the remotely-sensed products for each
of the different retrievals. Section5 and6 compare the re-
trievals to coincident radiosonde measurements and docu-
ment their consistency. Our study is summarised in Sect.7.

2 FTIR measurements during MOHAVE-2009

The MOHAVE-2009 campaign took place at the JPL Table
Mountain Facility (TMF) in October 2009:http://tmf-lidar.
jpl.nasa.gov/campaigns/mohave2009.htm. For the campaign
a large variety of different experiments performed side-by-
side water vapour measurements from the ground to the
mesopause:

– 3 water vapour Raman lidars: nighttime measurements,
vertical range: ground-20 km.

– 15 cyrogenic frostpoint hygrometers and 3 frost-point
hygrometer radiosondes: during night (in coincidence
with lidar observations), vertical range: ground-30 km.

– 50 Vaisala RS92 radiosondes: Mostly during night, ver-
tical range: ground-15 km.

– 2 microwave radiometers: night and day, vertical range:
20–80 km.

– 2 GPS (Global Positioning System) receivers: night and
day, only total column amounts.

– FTUVS (Fourier Transform Ultraviolet Spectrometer):
daytime measurements, only total column amounts.

– The MkIV FTIR: daytime measurements, vertical
range: from the ground to the upper tropopause.

In addition, measurements were performed in coordination
with satellite overpasses (Aura MLS, Aura TES, Aqua AIRS,
ACE, and MIPAS). The main focus of the campaign was a
further development and a quality assessment of the water
vapour lidar technique. Therefore, most measurements were
performed during night.
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Fig. 1. Spectral microwindows of the 790-880 cm−1 retrieval taken
from a spectra measured on the 18th of October 2009, at a solar
elevation of 17.8 ◦, and for a total water vapour column amount of
5 mm. Black line: measured spectrum; Red line: simulated spec-
trum; Blue line: residuals (difference between measurement and
simulation).

from degrading the signals at the lower frequencies. Simulta-
neous high-resolution measurement over such a wide spectral
region imposes severe constraints on the dynamic range and
linearity required of the detectors, pre-amplifiers, and signal
chains. In the MkIV, this problem is addressed by using of
a 18-bit ADC module. More details about the MkIV spec-
trometer can be found in Toon (1991) and on the web page:
http://mark4sun.jpl.nasa.gov/.

3 The analysis in different spectral regions

We analyse the spectra with the algorithm PROFFIT (Hase et
al., 2004), which consists of a precise line-by-line radiative
transfer model and an inversion algorithm based on the op-
timal estimation approach (Rodgers, 2000). We deduce the
required H2O a priori information — the climatologic mean
profile and the climatologic covariance — from Vaisala RS92
radiosonde measurements performed on the subtropical is-
land of Tenerife between 2005 and 2009 (the radiosondes are
launched twice daily). As δD a priori profile information we
use the mean and covariance calculated from a variety of air-
borne δD in-situ measurements (for more details please refer
to Schneider et al., 2006b).

The retrievals are performed in four different spectral re-
gions: the 790-880, the 1090-1330, the 2650-3180, and the
4560-4710 cm−1 regions. The fitted spectral microwindows
containing the water vapour lines are shown in Figs. 1-4. The
Figures show a typical ground-based MkIV MOHAVE-2009
measurement of a solar absorption spectrum with a spectral
resolution of about 0.008 cm−1 (OPDmax = 116.5 cm). In
the 790-880 cm−1 region the H16

2 O lines are well isolated
from other absorbers but relatively strong and consequently
often saturated in ground-based solar absorption spectra. In
the 1090-1330 cm−1 region we can fit both H16

2 O and HD16O
lines, whereby the former are often saturated and in addition
interfere with O3 absorption signatures and the latter inter-

fere mainly with CH4 signatures. In order to avoid signifi-
cant interference errors (Sussmann and Borsdorff, 2007) it is
important to simultaneously retrieve O3, CH4 as well as N2O
profiles. The 2650-3180 cm−1 region contains well isolated
lines of H16

2 O, H18
2 O, and HD16O, which are generally not

saturated and the 4560-4710 cm−1 region well isolated and
not saturated H16

2 O lines.
In addition to the water vapour lines shown in in Figs. 1-4,

we fit for all retrievals several CO2 lines of different strength,
which allows us to optimally estimate the temperature from
the measured spectra (Schneider and Hase, 2008). As a pri-
ori temperature profile we use the 12 UT reanalysis data from
the National Centers for Environmental Prediction (NCEP).
As temperature uncertainty covariance we assume an uncer-
tainty correlation length of 10 km (excluding the boundary
layer) and uncertainty values of 2 K in the boundary layer,
1 K throughout the rest of the troposphere, and 5 K above the
tropopause.

Due to the large vertical gradient and the large dynamic
range of tropospheric water vapour amounts, ground-based
water vapour retrievals are very demanding. In order to pro-
duce data of good quality we apply the sophisticated recipes
presented in Schneider and Hase (2009b). These are: (a) a fit
to a variety of water vapour lines with different strength, (b) a
logarithmic scale inversion, (c) a speed-dependent Voigt line-
shape model, (d) a simultaneous temperature profile retrieval,
and (e) the consideration of atmospheric emission for the re-
trievals at low wavenumbers. For the retrievals in the 1090-
1330 and 2650-3180 cm−1 regions we introduce an H16

2 O-
HD16O and H16

2 O-H18
2 O inter-species constraint. This inter-

species constraint is mandatory for an optimal estimation of
δD profiles (Schneider et al., 2006b) and of δ18O column in-
tegrated values.

As spectral parameters for the line-by-line modelling we
use the HITRAN 2008 parameters (Rothman et al., 2009,
with 2009 updates), whereby we slightly modified the H16

2 O
and HD16O parameters in the 790-1330 cm−1 range in order
to minimize the systematic differences between simulated
and measured signatures: a modification of 1-2 % of the pres-
sure broadening coefficients γair and of line strength coeffi-
cients S of less than 5 % (Schneider and Hase, 2009a). These
modifications are all within the uncertainty ranges given in
the HITRAN parameter file. Furthermore, we adjust the line
parameters for a speed-dependent Voigt line-shape model,
since different laboratory studies clearly reveal the superi-
ority of the speed-dependent Voigt line shape model over
the commonly applied Voigt line shape model when simu-
lating high resolution spectra in the infrared (e.g., D’Eu et
al., 2002; Tran et al., 2007; Wagner and Birk, 2009). In addi-
tion Schneider and Hase (2009a) and Schneider et al. (2010c)
demonstrate that applying a speed-dependent Voigt instead
of a Voigt line shape model is strongly recommended for
ground-based water vapour profile remote sensing in the in-
frared. For further details about adjusting the HITRAN line
parameters for speed-dependence please refer to Schneider

Fig. 1. Spectral microwindows of the 790–880 cm−1 retrieval taken
from a spectra measured on the 18th of October 2009, at a solar el-
evation of 17.8◦, and for a total water vapour column amount of
5 mm. Black line: measured spectrum; Red line: simulated spec-
trum; Blue line: residuals (difference between measurement and
simulation).

The MkIV FTIR spectrometer was designed and built
at the Jet Propulsion Laboratory in 1984. Since then it
has been operated on different platforms (ground-, balloon-,
and aircraft-based) in the framework of a large variety of
different campaigns mainly dedicated to the investigation
of stratospheric ozone chemistry. The MkIV can mea-
sure high resolution spectra (maximal optical path difference
of 200 cm) and covers a very broad spectral range (650–
5650 cm−1), whereby two liquid nitrogen-cooled detectors
are applied: an HgCdTe photoconductor (for wavenum-
bers below 1850 cm−1) and an InSb photodiode for higher
wavenumbers. The two detector design prevents photon
noise from the high frequencies, where the sun is brighter,
from degrading the signals at the lower frequencies. Simulta-
neous high-resolution measurement over such a wide spectral
region imposes severe constraints on the dynamic range and
linearity required of the detectors, pre-amplifiers, and signal
chains. In the MkIV, this problem is addressed by using of
an 18-bit ADC module. More details about the MkIV spec-
trometer can be found inToon(1991) and on the web page:
http://mark4sun.jpl.nasa.gov/.

3 The analysis in different spectral regions

We analyse the spectra with the algorithm PROFFIT (Hase et
al., 2004), which consists of a precise line-by-line radiative
transfer model and an inversion algorithm based on the op-
timal estimation approach (Rodgers, 2000). We deduce the
required H2O a priori information – the climatologic mean
profile and its covariance – from Vaisala RS92 radiosonde
measurements performed on the subtropical island of Tener-
ife between 2005 and 2009 (the radiosondes are launched
twice daily). AsδD a priori profile information we use the
mean and covariance calculated from a variety of airborneδD
in-situ measurements (for more details please refer toSchnei-
der et al., 2006b).

The retrievals are performed in four different spectral
regions: 790–880, 1090–1330, 2650–3180, and 4560–
4710 cm−1. The fitted spectral microwindows containing the
water vapour lines are shown in Figs.1–4, which show a
typical ground-based MkIV MOHAVE-2009 measurement
of a solar absorption spectrum with a spectral resolution
of about 0.008 cm−1 (OPDmax= 116.5 cm). In the 790–
880 cm−1 region the H16

2 O lines are well isolated from other
absorbers but relatively strong and consequently often satu-
rated in ground-based solar absorption spectra. In the 1090–
1330 cm−1 region we can fit both H16

2 O and HD16O lines.
The former are often saturated and in addition interfere with
O3 absorption signatures whereas the latter interfere mainly
with CH4 signatures. In order to avoid significant interfer-
ence errors (Sussmann and Borsdorff, 2007) it is important
to simultaneously retrieve O3, CH4 as well as N2O profiles.
The 2650–3180 cm−1 region contains well isolated lines of
H16

2 O, H18
2 O, and HD16O, which are generally not saturated.

The 4560–4710 cm−1 region contains well isolated and not
saturated H16

2 O lines.

In addition to the water vapour lines shown in Figs.1–4,
we fit for all retrievals several CO2 lines of different strength,
which allows us to optimally estimate the temperature from
the measured spectra (Schneider and Hase, 2008). As a priori
temperature profile we use reanalysis data from the National
Centers for Environmental Prediction (NCEP). As temper-
ature uncertainty covariance we assume an uncertainty cor-
relation length of 10 km (excluding the boundary layer) and
uncertainty values of 2 K in the boundary layer, 1 K through-
out the rest of the troposphere, and 5 K above the tropopause.

Due to the large vertical gradient and the large dynamic
range of tropospheric water vapour amounts, ground-based
water vapour retrievals are very demanding. In order to pro-
duce data of good quality we apply the sophisticated recipes
presented inSchneider and Hase(2009b). These are: (a) a
fit to a variety of water vapour lines with different strength,
(b) a logarithmic scale inversion, (c) a speed-dependent Voigt
line-shape model, (d) a simultaneous temperature profile re-
trieval, and (e) the consideration of atmospheric emission
for the retrievals at low wavenumbers. For the retrievals in
the 1090–1330 and 2650–3180 cm−1 regions we introduce
an H16

2 O–HD16O and H16
2 O–H18

2 O inter-species constraint.
This inter-species constraint is mandatory for an optimal es-
timation ofδD profiles (Schneider et al., 2006b) and ofδ18O
column integrated values.

As spectral parameters for the line-by-line modelling we
use the HITRAN 2008 parameters (Rothman et al., 2009,
with 2009 updates). We slightly modified the H16

2 O and
HD16O parameters in the 790–1330 cm−1 range in order to
minimize the systematic differences between simulated and
measured signatures: a modification of 1–2 % of the pressure
broadening coefficientsγair and of line strength coefficients
S of less than 5% (Schneider and Hase, 2009a). These mod-
ifications are all within the uncertainty ranges given in the
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Fig. 2. Same as Fig. 1 but for the 1090-1330 cm−1 retrieval.
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Fig. 3. Same as Fig. 1 but for the 2650-3180 cm−1 retrieval.
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Fig. 4. Same as Fig. 1 but for the 4560-4710 cm−1 retrieval.

et al. (2010c).

4 Theoretical performance

4.1 Vertical resolution and sensitivity

Figure 5 shows the averaging kernels for H2O for the four re-
trievals and for the typical measurement as shown in Figs. 1-
4. All four spectral regions offer a similar vertical resolution
with respect to tropospheric H2O. Structures with a width
of 2-3, 4, and 6 km can be detected for the lower, middle,
and upper troposphere, respectively. There are only small
differences concerning the sensitivity (sum along the row of
the averaging kernel matrix): for the 790-880 and the 1090-

1330 cm−1 region the sensitivity is better than 75 % for alti-
tudes below 11 km. For the 2650-3180 and 4560-4710 cm−1

this sensitivity range is extended by about 1 km to higher al-
titudes. The reason for this differences is the application of
rather strong lines in the two low wavenumber regions. The
saturated or almost saturated lines provide less information
about absorptions at high altitudes.

Figure 6 depicts the averaging kernels of δD for the mid-
infrared retrievals at 1090-1330 and 2650-3180 cm−1. Both
spectral regions offer a similar vertical resolution and sensi-
tivity. The natural δD variability is rather small (about 8 %).
Such a small variability causes only weak spectral signatures
and as a consequence the profiles of δD are much more diffi-
cult to measure than profiles of H2O. The vertical resolution
is limited to about 3 km for the lower troposphere and 7 km
for the middle/upper troposphere. The sensitivity is larger
than 75 % only for altitudes below about 8 km.

The trace of the averaging kernel matrix quantifies the
amount of information introduced by the measurement. It
can be interpreted in terms of degrees of freedom of the mea-
surement (dof). The larger this value the more independent
the solution is from the a priori assumptions. Table 1 col-
lects the typical dof values for the retrievals in the different
spectral regions. In the 1090-1330 and 2650-3180 cm−1 re-
gions we retrieve several water vapour isotopologues. There
the typical overall water vapour dof value is about 4.1-5.2
compared to 2.6 in case of the 790-880 and 4560-4710 cm−1

regions, where we only retrieve the main isotopologue H16
2 O.

Fig. 2. Same as Fig.1 but for the 1090–1330 cm−1 retrieval.

4 M. Schneider et al.: H2O and δD profiles from different spectral regions

1090 1092

wavenumber [cm-1]

HD16OH2
16O

 

ra
di

an
ce

s 
[a

u]
 

 

 

1106

 

  

 

1110 1112

  

 

 

1117.5

  

 

 

1121

  

 

 

1134 1136 1138

  

 

 

1196 1198 1200

  

 

 

1221

  

 

 

1252

  

 

 

1325

  

 

 

Fig. 2. Same as Fig. 1 but for the 1090-1330 cm−1 retrieval.

31722660

 

ra
di

an
ce

s 
[a

u]

 

 

2664

  

 

 

2666

  
 

 

2678

 

  

 

2723
  

 

 
  

 

 2820 2880

wavenumber [cm-1]

  

 

 

2894

  

 

 

2930

  

 

 

2974

  

 

 

3020

H2
16O + H2

18OH2
16O

  

 

 

HD16O

 

 

Fig. 3. Same as Fig. 1 but for the 2650-3180 cm−1 retrieval.

4566 4572 4577 4610 4612 4622 4698 4700

 

 

ra
di

an
ce

s 
[a

u]

 

 

  

 

 

wavenumber [cm-1]

 

 

  

 

 

H2
16O

 

 

 

Fig. 4. Same as Fig. 1 but for the 4560-4710 cm−1 retrieval.

et al. (2010c).

4 Theoretical performance

4.1 Vertical resolution and sensitivity

Figure 5 shows the averaging kernels for H2O for the four re-
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this sensitivity range is extended by about 1 km to higher al-
titudes. The reason for this differences is the application of
rather strong lines in the two low wavenumber regions. The
saturated or almost saturated lines provide less information
about absorptions at high altitudes.

Figure 6 depicts the averaging kernels of δD for the mid-
infrared retrievals at 1090-1330 and 2650-3180 cm−1. Both
spectral regions offer a similar vertical resolution and sensi-
tivity. The natural δD variability is rather small (about 8 %).
Such a small variability causes only weak spectral signatures
and as a consequence the profiles of δD are much more diffi-
cult to measure than profiles of H2O. The vertical resolution
is limited to about 3 km for the lower troposphere and 7 km
for the middle/upper troposphere. The sensitivity is larger
than 75 % only for altitudes below about 8 km.

The trace of the averaging kernel matrix quantifies the
amount of information introduced by the measurement. It
can be interpreted in terms of degrees of freedom of the mea-
surement (dof). The larger this value the more independent
the solution is from the a priori assumptions. Table 1 col-
lects the typical dof values for the retrievals in the different
spectral regions. In the 1090-1330 and 2650-3180 cm−1 re-
gions we retrieve several water vapour isotopologues. There
the typical overall water vapour dof value is about 4.1-5.2
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et al. (2010c).

4 Theoretical performance

4.1 Vertical resolution and sensitivity

Figure 5 shows the averaging kernels for H2O for the four re-
trievals and for the typical measurement as shown in Figs. 1-
4. All four spectral regions offer a similar vertical resolution
with respect to tropospheric H2O. Structures with a width
of 2-3, 4, and 6 km can be detected for the lower, middle,
and upper troposphere, respectively. There are only small
differences concerning the sensitivity (sum along the row of
the averaging kernel matrix): for the 790-880 and the 1090-

1330 cm−1 region the sensitivity is better than 75 % for alti-
tudes below 11 km. For the 2650-3180 and 4560-4710 cm−1

this sensitivity range is extended by about 1 km to higher al-
titudes. The reason for this differences is the application of
rather strong lines in the two low wavenumber regions. The
saturated or almost saturated lines provide less information
about absorptions at high altitudes.

Figure 6 depicts the averaging kernels of δD for the mid-
infrared retrievals at 1090-1330 and 2650-3180 cm−1. Both
spectral regions offer a similar vertical resolution and sensi-
tivity. The natural δD variability is rather small (about 8 %).
Such a small variability causes only weak spectral signatures
and as a consequence the profiles of δD are much more diffi-
cult to measure than profiles of H2O. The vertical resolution
is limited to about 3 km for the lower troposphere and 7 km
for the middle/upper troposphere. The sensitivity is larger
than 75 % only for altitudes below about 8 km.

The trace of the averaging kernel matrix quantifies the
amount of information introduced by the measurement. It
can be interpreted in terms of degrees of freedom of the mea-
surement (dof). The larger this value the more independent
the solution is from the a priori assumptions. Table 1 col-
lects the typical dof values for the retrievals in the different
spectral regions. In the 1090-1330 and 2650-3180 cm−1 re-
gions we retrieve several water vapour isotopologues. There
the typical overall water vapour dof value is about 4.1-5.2
compared to 2.6 in case of the 790-880 and 4560-4710 cm−1

regions, where we only retrieve the main isotopologue H16
2 O.

Fig. 4. Same as Fig.1 but for the 4560–4710 cm−1 retrieval.

HITRAN parameter file. Furthermore, we adjusted the line
parameters for a speed-dependent Voigt line-shape model,
since different laboratory studies clearly reveal the superi-
ority of the speed-dependent Voigt line shape model over
the commonly applied Voigt line shape model when simu-
lating high resolution spectra in the infrared (e.g.,D’Eu et
al., 2002; Tran et al., 2007; Wagner and Birk, 2009). In addi-
tion Schneider and Hase(2009a) andSchneider et al.(2010c)
demonstrate that applying a speed-dependent Voigt instead
of a Voigt line shape model is strongly recommended for
ground-based water vapour profile remote sensing in the in-
frared. For further details about adjusting the HITRAN line
parameters for speed-dependence please refer toSchneider
et al.(2010c).

4 Theoretical performance

4.1 Vertical resolution and sensitivity

Figure5 shows the averaging kernels for H2O for the four
regions and for the typical measurement as shown in Figs.1–
4. All four spectral regions offer a similar vertical resolution
with respect to tropospheric H2O. Structures with a width
of 3, 6, and 10 km (full width at half maximum of the ker-
nels) can be detected for the lower, middle, and upper tropo-
sphere, respectively. The sensitivity (sum along the row of
the averaging kernel matrix, black line in Fig.5) quantifies
the influence of the measured spectra on the retrieved mix-
ing ratio profiles, as opposed to the a priori constraint. There
are small differences concerning the sensitivity: for the 790–
880 and the 1090–1330 cm−1 region the sensitivity is better
than 75% for altitudes below 11 km. For the 2650–3180 and
4560–4710 cm−1 this sensitivity range is extended by about
1 km to higher altitudes. The reason for this differences is the
application of rather strong lines in the two low wavenumber
regions. The saturated or almost saturated lines provide less
information about absorptions at high altitudes.

Figure6 depicts the averaging kernels ofδD for the mid-
infrared retrievals at 1090–1330 and 2650–3180 cm−1. Both
spectral regions offer a similar vertical resolution and sensi-
tivity. The naturalδD variability is rather small (about 8%).
It is difficult to correctly interpret the spectral signatures
caused by such small variability and as a consequence the
profiles ofδD are much more difficult to measure than pro-
files of H2O. The vertical resolution is limited to about 3 km
for the lower troposphere and 10 km for the middle/upper
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Table 1. Typical degree of freedoms (dof) with respect to water
vapour for the measurements in the different spectral regions.

spectral range dof isotopologues

790-880 cm−1 2.6 H16
2 O

1090-1330 cm−1 4.1 H16
2 O, HD16O

2650-3180 cm−1 5.2 H16
2 O, H18

2 O, HD16O
4560-4710 cm−1 2.6 H16

2 O

The limitations in vertical resolution and sensitivity are
also reflected in the retrieved column integrated values. We
estimate this so-called smoothing error as follows: we sim-
ulate spectra for a variety of different vertically highly-
resolved H2O profiles (as δD we assume a constant −200 ‰
value for all altitudes). Subsequently, we invert the simulated

Table 2. Smoothing error of the column integrated values for the
retrievals in the different spectral regions.

spectral range H2O δD

790-880 cm−1 0.6 % –
1090-1330 cm−1 0.3 % 1.5 ‰
2650-3180 cm−1 0.4 % 2.8 ‰
4560-4710 cm−1 0.6 % –

spectra and calculate the differences between the retrieved
column integrated values and the original column integrated
values. The standard deviation of these differences are col-
lected in Table 2 for the different retrievals. It is about 0.5 %
for column integrated H2O and about 2 ‰ for column inte-
grated δD.

4.2 Propagation of uncertainty sources

In this section we estimate the errors of the H2O and δD pro-
files for each of the four different retrievals. The estimation
is based on the assumed uncertainty sources as listed in the
Tables 3 and 4.

Concerning experimental uncertainties we assume a mea-
surement noise of 0.5 % (defined as noise to signal ratio).
Furthermore, we consider an instrumental line shape (ILS:
modulation efficiency and phase error) and a baseline offset
uncertainty. During the MOHAVE-2009 campaign we made
regular low pressure gas cell measurements in order to mon-
itor the actual ILS applying the LINEFIT software Hase et
al. (1999). LINEFIT estimates the modulation efficiency and
the pase error at 20 equidistant optical path intercepts. These
estimations were taken into account for all our calculations.
All LINEFIT estimations during MOHAVE-2009 were con-
sistent within less than 5% (for the modulation efficiency)
and 0.01 rad (for the phase error) and we use these values as

Fig. 5. Averaging kernels for ln[H2O] for the four analysed spectral regions. Grey lines: kernels for all atmospheric model grid levels; Red,
green, and blue lines: kernels for the 3, 5.5, and 8 km grid level (representative for the lower, middle, and upper troposphere), respectively;
Thick black line: Sensitivity (sum along the row of the averaging kernel matrix).
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6.5 km grid level (representative for the lower and middle/upper tro-
posphere); Thick black line: Sensitivity (sum along the row of the
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Table 1. Typical degree of freedoms (dof) with respect to water
vapour for the measurements in the different spectral regions.

spectral range dof isotopologues

790-880 cm−1 2.6 H16
2 O

1090-1330 cm−1 4.1 H16
2 O, HD16O

2650-3180 cm−1 5.2 H16
2 O, H18

2 O, HD16O
4560-4710 cm−1 2.6 H16

2 O

The limitations in vertical resolution and sensitivity are
also reflected in the retrieved column integrated values. We
estimate this so-called smoothing error as follows: we sim-
ulate spectra for a variety of different vertically highly-
resolved H2O profiles (as δD we assume a constant −200 ‰
value for all altitudes). Subsequently, we invert the simulated

Table 2. Smoothing error of the column integrated values for the
retrievals in the different spectral regions.

spectral range H2O δD

790-880 cm−1 0.6 % –
1090-1330 cm−1 0.3 % 1.5 ‰
2650-3180 cm−1 0.4 % 2.8 ‰
4560-4710 cm−1 0.6 % –

spectra and calculate the differences between the retrieved
column integrated values and the original column integrated
values. The standard deviation of these differences are col-
lected in Table 2 for the different retrievals. It is about 0.5 %
for column integrated H2O and about 2 ‰ for column inte-
grated δD.

4.2 Propagation of uncertainty sources

In this section we estimate the errors of the H2O and δD pro-
files for each of the four different retrievals. The estimation
is based on the assumed uncertainty sources as listed in the
Tables 3 and 4.

Concerning experimental uncertainties we assume a mea-
surement noise of 0.5 % (defined as noise to signal ratio).
Furthermore, we consider an instrumental line shape (ILS:
modulation efficiency and phase error) and a baseline offset
uncertainty. During the MOHAVE-2009 campaign we made
regular low pressure gas cell measurements in order to mon-
itor the actual ILS applying the LINEFIT software Hase et
al. (1999). LINEFIT estimates the modulation efficiency and
the pase error at 20 equidistant optical path intercepts. These
estimations were taken into account for all our calculations.
All LINEFIT estimations during MOHAVE-2009 were con-
sistent within less than 5% (for the modulation efficiency)
and 0.01 rad (for the phase error) and we use these values as

Fig. 6. Averaging kernels forδD (expressed as ln[HDO]

[H2O]
) for the

mid-infrared spectral regions. Grey lines: kernels for all atmo-
spheric model grid levels; Red and green lines: kernels for the 3 and
6.5 km grid level (representative for the lower and middle/upper tro-
posphere); Thick black line: Sensitivity (sum along the row of the
averaging kernel matrix).

troposphere. The sensitivity is larger than 75% only for alti-
tudes below about 8 km.

The trace of the averaging kernel matrix quantifies the
amount of information introduced by the measurement. It
can be interpreted in terms of degrees of freedom of the mea-
surement (dof). The larger this value the more independent
the solution is from the a priori assumptions. Table1 col-
lects the typical dof values for the retrievals in the different
spectral regions. In the 1090–1330 and 2650–3180 cm−1 re-
gions we retrieve several water vapour isotopologues. There
the typical overall water vapour dof value is about 4.1–5.2
compared to 2.6 in case of the 790–880 and 4560–4710 cm−1

regions, where we only retrieve the main isotopologue H16
2 O.

The limitations in vertical resolution and sensitivity are
also reflected in the retrieved column integrated values. We
estimate this so-called smoothing error as follows: we sim-
ulate spectra for a variety of different vertically highly-
resolved H2O profiles (asδD we assume a constant−200‰

Table 1. Typical degree of freedoms (dof) with respect to water
vapour for the measurements in the different spectral regions.

spectral range dof isotopologues

790–880 cm−1 2.6 H16
2 O

1090–1330 cm−1 4.1 H16
2 O, HD16O

2650–3180 cm−1 5.2 H16
2 O, H18

2 O, HD16O
4560–4710 cm−1 2.6 H16

2 O

value for all altitudes). Subsequently, we invert the simulated
spectra and calculate the differences between the retrieved
column integrated values and the original column integrated
values. The standard deviations of these differences are the
random smoothing errors. They are collected in Table2 for
the different retrievals. They are about 0.5% for column in-
tegrated H2O and about 2‰ for column integratedδD.

4.2 Propagation of uncertainty sources

In this section we estimate the errors of the H2O andδD pro-
files for each of the four different retrievals. The estimation
is based on the assumed uncertainty sources as listed in the
Tables3 and4.

Concerning experimental uncertainties we assume a mea-
surement noise of 0.5% (defined as noise to signal ratio).
Furthermore, we consider an instrumental line shape (ILS:
modulation efficiency and phase error) and a baseline off-
set uncertainty. During the MOHAVE-2009 campaign we
made regular low pressure gas cell measurements in order
to monitor the actual ILS applying the LINEFIT software
Hase et al.(1999). LINEFIT estimates the modulation effi-
ciency and the phase error at 20 equidistant optical path inter-
cepts. These estimations were taken into account for all our
calculations. All LINEFIT estimations during MOHAVE-
2009 were consistent within less than 5% (for the modulation
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Table 2. Smoothing error of the column integrated values for the
retrievals in the different spectral regions.

spectral range H2O δD

790–880 cm−1 0.6% –
1090–1330 cm−1 0.3% 1.5‰
2650–3180 cm−1 0.4% 2.8‰
4560–4710 cm−1 0.6% –

efficiency) and 0.01 rad (for the phase error) and we use these
values as the ILS uncertainty. Baseline offsets might be pro-
duced by detector non-linearities. In analogy to other stud-
ies (Schneider and Hase, 2008) we assume a baseline offset
uncertainty of 0.5% (defined as ratio between the offset in-
tensity and the signal, i.e. the intensity outside of absorption
signatures). In addition to instrumental deficits high cirrus
clouds might disturb the ILS and/or be responsible for base-
line offsets (due to intensity fluctuation during the interfer-
ometer scans).

For the radiative transfer calculation we need to know the
actual temperature profile. We use the National Centers for
Environmental Prediction (NCEP) automailer system which
provides daily reanalysis temperatures. The reanalysis data
might be subject to uncertainties and furthermore they might
not well represent small scale features like the local diurnal
cycle above TMF, i.e., they might differ from the actual tem-
perature during the FTIR measurement. We assume an un-
certainty of 2 K for the lower troposphere (LT: below 5 km)
and 2 K for the upper troposphere (UT: above 5 km).

The line-by-line modelling relies on the parameters col-
lected in spectroscopic databases like HITRAN (Rothman
et al., 2009). Here we consider an uncertainty in the line
strength (S), the air pressure broadening coefficient (γair),
and the line shape model (strength of speed-dependence:
02/00, D’Eu et al., 2002), which are the parameters whose
uncertainty has the strongest effect on the retrieved H2O and
δD profiles. The HITRAN file gives parameter uncertainty
values forS andγair of about 1–5%. InSchneider and Hase
(2009a) andSchneider et al.(2010c) we optimised this pa-
rameters and assume for our estimation an uncertainty of
+1 and+2% (for H16

2 O and HD16O, respectively). For the
strength of the speed-dependence we assume an uncertainty
of +5 and+10% (for H16

2 O and HD16O, respectively). We
assume different uncertainties for H16

2 O and HD16O since in-
consistencies between the H16

2 O and HD16O line parameters
are a major error source forδD profiles remotely-sensed from
ground (Schneider et al., 2006b).

The measurement noise error matrix is estimated byS=

GSyGT (Rodgers, 2000), wherebyG andSy are the gain ma-
trix and the measurement noise matrix, respectively. All the
other errors are determined by a full treatment. Therefore,

Table 3. Assumed experimental and temperature random uncer-
tainty.

source uncertainty

measurement noise 0.5%
phase error 0.01 rad
modulation eff. 5%
baseline offset 0.5%
LT temperature 2 K
UT temperature 2 K

Table 4. Assumed spectroscopic parameter uncertainty for H16
2 O

and HD16O.

source H16
2 O HD16O

line strength,S +1% +2%
pres. broad. coef.,γair +1% +2%
SDV strength,02/00 +5% +10%

we use an ensemble of spectra measured for different atmo-
spheric H16

2 O andδD states that are representative for the
typical mean and variability (actually we use the spectra cor-
responding to the the seven H16

2 O profiles shown later in
Fig. 11). We perform two retrievals: a first with a correct
parameter and a second with an erroneous parameter (e.g.,
introduction of a baseline offset of 0.5%, by 2 K increased
lower tropospheric temperature, application of a 1% higher
H16

2 O line strength parameter). The systematic and the ran-
dom error are then given by the mean and the standard de-
viation of the difference between the two retrievals. This
method also allows estimating random errors of systematic
uncertainty sources: the spectroscopic parameters are sys-
tematic uncertainties but the effect of this uncertainty de-
pends on the actual sensitivity of the remote sensing system,
which is different for dry and wet atmospheric conditions.
Consequently, a systematic uncertainty source can cause ran-
dom errors.

Figures7 and8 show the random and systematic errors for
the H2O profiles for each of the four retrievals and Figs.9
and10 the same but forδD and for the two retrievals in the
1090–1330 and 2650–3180 cm−1 region. We combine the er-
ror due to a misalignment of the instrument (modulation ef-
ficiency error and phase error) as the instrumental line shape
(ILS) error. Errors due to lower and upper tropospheric tem-
perature uncertainty are combined as the temperature error
and the random error caused by the systematic uncertainty
of the different spectroscopic parameters (S, γair, 02/00) is
merged to a single spectroscopic random error.
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Fig. 7. Estimated H2O random profile errors for the retrievals in the four different spectral regions. Black: measurement noise; Red: ILS;
Green: baseline offset; Cyan: temperature profile; Blue: spectroscopic parameters.
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below 1850 cm−1) but not for the InSb photodiode (applied
for recording high wavenumbers).

For the 2650-3180 cm−1 retrieval the systematic uncer-
tainty in the spectroscopic parameters are the leading ran-
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dom error source. The spectroscopic uncertainty is equally
important for the 4560-4710 cm−1 retrieval. Note that the
2650-3180 cm−1 error only appears larger due to our large
HD16O uncertainty assumption and the HD16O-H16

2 O inter-
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4.2.1 H2O errors

Our estimation reveals that the H2O profiles inverted from
signatures in the low wavenumber regions (790–880 and
1090–1330 cm−1) are theoretically less precise than the pro-
files of the high wavenumber regions (see Fig.7). At the low
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Fig. 10. Same as Fig.8 but for δD and the two retrievals at 1090–
1330 and 2650–3180 cm−1.

wavenumbers we apply several rather strong and often satu-
rated lines. Then the measurement noise as well as the ILS
and baseline offset uncertainties have a significant impact on
the retrieved profiles. This difference to high wavenumber
retrievals is actually even more pronounced than indicated
by Fig. 7: for the depicted estimation we assumed the same
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Table 5. Estimated random errors of column integrated H16
2 O for retrievals in different spectral regions.

source 790–880 cm−1 1090–1330 cm−1 2650–3180 cm−1 4560–4710 cm−1

measurement noise 1.3% 0.6% 0.7% 0.4%
ILS 0.4% 0.8% 0.1% 0.1%
baseline offset 1.0% 1.5% 0.8% 0.6%
temperature 0.4% 0.1% 0.2% < 0.1%
spectroscopy 0.1% 0.2% 0.1% < 0.1%

Table 6. Estimated random errors of column integratedδD for re-
trievals in different spectral regions.

source 1090–1330 cm−1 2650–3180 cm−1

measurement noise 6.3‰ 1.1‰
ILS 3.2‰ 0.7‰
baseline offset 6.6‰ 1.3‰
temperature 0.6‰ 1.8‰
spectroscopy 1.8‰ 1.6‰

noise to signal and baseline offset to signal ratio over the
whole spectral range. However, at low wavenumbers the in-
tensity of the solar radiation is actually smaller than at high
wavenumbers resulting in increased noise to signal and off-
set to signal ratios at low wavenumbers. Furthermore, the
assumption of a 0.5% baseline offset at high wavenumbers
is very likely exaggerated: an important cause of these off-
sets are detector non-linearities, which are typical for the
HgCdTe photoconductor (applied for wavenumbers below
1850 cm−1) but not for the InSb photodiode (applied for
recording high wavenumbers).

For the 2650–3180 cm−1 retrieval the systematic uncer-
tainty in the spectroscopic parameters are the leading random
error source. The spectroscopic uncertainty is equally impor-
tant for the 4560–4710 cm−1 retrieval. Note that the 2650–
3180 cm−1 error only appears larger due to our large HD16O
uncertainty assumption and the HD16O–H16

2 O interspecies
constraint: the assumed HD16O uncertainties double the as-
sumed H16

2 O uncertainties (see Table4) and by constrain-
ing H16

2 O against HD16O we link the 2650–3180 cm−1 H16
2 O

profile errors to the relatively large HD16O uncertainty as-
sumptions.

The HD16O–H16
2 O interspecies constraint has also to be

considered when interpreting the systematic H16
2 O error es-

timations (Fig.8). For the 1090–1330 and 2650–3180 cm−1

retrieval the H16
2 O errors are in particular large due to the

link to the large HD16O uncertainty assumptions. Uncertain-
ties in the parameters that describe the line shape (γair and
02/00) can produce systematic H16

2 O profiles errors of up to
15%.

Table 5 collects the estimated random errors of the re-
trieved H16

2 O column abundances. The column abundance

error can reach 1.5–2% for the low wavenumber retrievals
(due to measurement noise and baseline offset uncertain-
ties) and is generally below 1% for the high wavenumber
retrievals. The systematic column abundance errors are dom-
inated by the error due to the line strength uncertainty. It is
about−1% for the assumed+1% line strength uncertainty.

4.2.2 δD errors

Similar to the H16
2 O we find that the high wavenumber re-

trievals produce theoretically more preciseδD profiles than
the low wavernumber retrievals. Figure9 documents that
for the 1090–1330 cm−1 retrieval the measurement noise
and the baseline offset uncertainties have significant im-
pacts on theδD profiles. For the 2650–3180 cm−1 retrieval
these error sources can almost be neglected, in particular
if we consider that for high wavenumbers the measurement
noise and baseline offset error assumptions of Table3 are
very likely exaggerated (see discussion of H2O errors). In
the 2650–3180 cm−1 region the spectroscopic parameter and
temperature profile uncertainties are most important. For
δD, i.e. HD16O/H16

2 O, inconsistencies between the H16
2 O and

HD16O parameters are responsible for the spectroscopic er-
rors (an uncertainty consistent for H16

2 O and HD16O would
cause almost no error in the retrieved HD16O/H16

2 O). The
increased importance of the temperature uncertainty of the
2650–3180 cm−1 retrieval if compared to 1090–1330 cm−1

retrieval is caused by the rather weak CO2 signatures around
2620 cm−1 that are used for retrieving the temperature. In
the low wavenumber region we can apply rather strong and
isolated CO2 signatures around 960 cm−1 to reduce the tem-
perature error.

The systematic errors are very similar for both spectral re-
gions and can reach 30‰, in the middle/upper troposphere.

The estimated random errors of the column integratedδD
values are collected in Table6. For the 1090–1330 cm−1 re-
trieval measurement noise and baseline offset uncertainty are
significant error sources. The 2650–3180 cm−1 retrieval pro-
vides theoretically more precise column integratedδD data
than the 1090–1330 cm−1 retrieval, whereby the tempera-
ture uncertainty is the most important error source. The sys-
tematic errors for column integratedδD are dominated by a
potential inconsistency between the H16

2 O and HD16O line

Atmos. Meas. Tech., 3, 1599–1613, 2010 www.atmos-meas-tech.net/3/1599/2010/
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Fig. 11. Comparison of the seven coincident FTIR and Vaisala RS92 H2O measurements made during MOHAVE-2009 (18th, 20th, 22nd,
23rd, 24th, 25th, and 28th of October 2009). Profiles are presented as percentage difference to a subtropical climatological profile, FTIR
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stars: RS92 smoothed with FTIR averaging kernels; Red circles: FTIR.
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Fig. 12. Difference between coincident FTIR and smoothed RS92 H2O profiles for the retrievals in the four spectral regions. Coloured lines:
individual coincidences; Thick grey line and error bars: mean and standard deviation.

vich et al., 2004, 2009). These in-situ profiles offer a very
high vertical resolution. To the contrary, the remote sensing
technique only allows resolving rather rough vertical struc-
tures (see averaging kernels of Fig. 5). For an adequate com-
parison we have to degrade the RS92 profiles to the verti-
cal resolution of the MkIV profiles. Therefore, we convolve
the vertically highly-resolved RS92 profiles (xRS92) with the
FTIR averaging kernels Â:

x̂RS92 = Â(xRS92 − xa) + xa (1)

The result is a smoothed RS92 profile (x̂RS92) with the same
vertical resolution as the FTIR profile (xa in Eq. (1) stands
for the a priori climatological mean profile). The black stars
in Fig. 11 depict these x̂RS92 profiles. Their comparison to
the vertically highly-resolved profiles (black squares) gives
a good impression about the vertical H2O structures that can
be resolved by the ground-based FTIR remote sensing tech-
nique: a ground-based FTIR system is able to detect the rel-
atively large water vapour amount between 7 and 12 km on

day 091023 but its vertical resolution is too rough for repro-
ducing the sharp maximum at 11.5 km on day 091025. The
red circles represent the profiles as retrieved from the MkIV
spectra in the 2650-3180 cm−1 region. Figure 11 shows the
difference to the climatologic mean, which is used as the a
priori profile. Therefore, any deviation with respect to the
depicted 0% line is produced by the measurement. The good
agreement between the FTIR and the smoothed RS92 profiles
reveals the capability of the FTIR system to capture the large
dynamic of tropospheric water vapour and to distinguish be-
tween lower and upper tropospheric humidity.

Figure 12 summarizes the RS92-MkIV H2O profile com-
parisons. It depicts the differences between the FTIR and
smoothed RS92 profiles (difference between red circles and
black stars of Fig. 11) for all four spectral region. Gener-
ally the 1σ scatter between RS92 and MkIV is smaller than
20 % (defined as 2 × FTIR−RS92

FTIR+RS92 ). An exception is the 790-
880 cm−1 retrieval where it reaches 35 %. The apparently
poorer precision of the low wavenumber retrieval is in qual-

Fig. 11. Comparison of the seven coincident FTIR and Vaisala RS92 H2O measurements made during MOHAVE-2009 (18th, 20th, 22nd,
23rd, 24th, 25th, and 28th of October 2009). Profiles are presented as percentage difference to a subtropical climatological profile, FTIR
profiles are for a retrieval in the 2650–3180 cm−1 region. Black squares: RS92 data corrected by theMiloshevich et al.(2009) method;
Black stars: RS92 smoothed with FTIR averaging kernels; Red circles: FTIR.

strength parameters. For the assumed inconsistency of 1% it
is about 7.5‰ for both retrievals.

5 H2O profiles

During MOHAVE-2009 many radiosondes were launched.
Although most launches were during night (in order to coin-
cide with the lidar measurements) there were seven Vaisala
RS92 measurements performed at the same time as MkIV
measurements. The sondes were launched about 350 m from
the location of the spectrometer. Therefore, the coincident
RS92 in-situ and the MkIV remote sensing experiments de-
tect a very similar airmass, at least at low altitudes.

Figure11compares the 7 coincident RS92 and MkIV H2O
profiles (for the 2650–3180 cm−1 retrieval): the small black
squares show the RS92 profiles after the so-called time-lag,
radiation, and empirical corrections were applied (Miloshe-
vich et al., 2004, 2009). These in-situ profiles offer a very
high vertical resolution. In contrast, the remote sensing tech-
nique only allows resolving rather rough vertical structures
(see averaging kernels of Fig.5). For an adequate compari-
son we have to degrade the RS92 profiles to the vertical reso-
lution of the MkIV profiles. Therefore, we convolve the ver-
tically highly-resolved RS92 profiles (xRS92) with the FTIR
averaging kernelŝA:

x̂RS92= Â(xRS92−xa)+xa (1)

The result is a smoothed RS92 profile (x̂RS92) with the same
vertical resolution as the FTIR profile (xa in Eq. (1) stands
for the a priori climatological mean profile). The black stars
in Fig. 11 depict thesêxRS92 profiles. Their comparison to
the vertically highly-resolved profiles (black squares) gives
a good impression about the vertical H2O structures that can
be resolved by the ground-based FTIR remote sensing tech-
nique: a ground-based FTIR system is able to detect the rel-
atively large water vapour amount between 7 and 12 km on

day 091023 but its vertical resolution is too rough for repro-
ducing the sharp maximum at 11.5 km on day 091025. The
red circles represent the profiles as retrieved from the MkIV
spectra in the 2650–3180 cm−1 region. Figure11 shows the
difference to the climatologic mean, which is used as the a
priori profile. Therefore, any deviation with respect to the
depicted 0% line is produced by the measurement. The good
agreement between the FTIR and the smoothed RS92 profiles
reveals the capability of the FTIR system to capture the large
dynamic of tropospheric water vapour and to distinguish be-
tween lower and upper tropospheric humidity.

Figure12 summarizes the RS92-MkIV H2O profile com-
parisons. It depicts the differences between the FTIR and
smoothed RS92 profiles (difference between red circles and
black stars of Fig.11) for all four spectral region. Gener-
ally the 1σ scatter between RS92 and MkIV is smaller than
20% (defined as 2× FTIR−RS92

FTIR+RS92). An exception is the 790–

880 cm−1 retrieval where it reaches 35%. The apparently
poorer precision of the low wavenumber retrieval is in qual-
itative agreement with the theoretical error estimation (see
Fig.7). The large relative difference between FTIR and RS92
on 091028 is similar for all retrievals and dominates the scat-
ter RS92-MkIV scatter values. On this day the troposphere is
very dry (compare Fig.11) and the observation of a slightly
more humid airmass by the RS92 if compared to the FTIR
can be responsible for this outlier.

For all four retrievals the mean difference to the sonde
(thick grey line) is smaller than 10% throughout the tropo-
sphere, an exception is the boundary layer value for the 790–
880 cm−1 retrieval, which deviates systematically by 14%
from the RS92 value. Please note that such good agreement
is only achieved by applying the line parameters adjusted for
speed-dependence as described inSchneider et al.(2010c).
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vich et al., 2004, 2009). These in-situ profiles offer a very
high vertical resolution. To the contrary, the remote sensing
technique only allows resolving rather rough vertical struc-
tures (see averaging kernels of Fig. 5). For an adequate com-
parison we have to degrade the RS92 profiles to the verti-
cal resolution of the MkIV profiles. Therefore, we convolve
the vertically highly-resolved RS92 profiles (xRS92) with the
FTIR averaging kernels Â:

x̂RS92 = Â(xRS92 − xa) + xa (1)

The result is a smoothed RS92 profile (x̂RS92) with the same
vertical resolution as the FTIR profile (xa in Eq. (1) stands
for the a priori climatological mean profile). The black stars
in Fig. 11 depict these x̂RS92 profiles. Their comparison to
the vertically highly-resolved profiles (black squares) gives
a good impression about the vertical H2O structures that can
be resolved by the ground-based FTIR remote sensing tech-
nique: a ground-based FTIR system is able to detect the rel-
atively large water vapour amount between 7 and 12 km on

day 091023 but its vertical resolution is too rough for repro-
ducing the sharp maximum at 11.5 km on day 091025. The
red circles represent the profiles as retrieved from the MkIV
spectra in the 2650-3180 cm−1 region. Figure 11 shows the
difference to the climatologic mean, which is used as the a
priori profile. Therefore, any deviation with respect to the
depicted 0% line is produced by the measurement. The good
agreement between the FTIR and the smoothed RS92 profiles
reveals the capability of the FTIR system to capture the large
dynamic of tropospheric water vapour and to distinguish be-
tween lower and upper tropospheric humidity.

Figure 12 summarizes the RS92-MkIV H2O profile com-
parisons. It depicts the differences between the FTIR and
smoothed RS92 profiles (difference between red circles and
black stars of Fig. 11) for all four spectral region. Gener-
ally the 1σ scatter between RS92 and MkIV is smaller than
20 % (defined as 2 × FTIR−RS92

FTIR+RS92 ). An exception is the 790-
880 cm−1 retrieval where it reaches 35 %. The apparently
poorer precision of the low wavenumber retrieval is in qual-
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the blue line and error bars show the same but for the 2650-
3180 cm−1 retrievals. In both spectral regions we observe a

monotonic decrease of δD values between the lower and up-
per troposphere, which is in good agreement with the profiles

Fig. 13. Correlation between the 325 H2O profile retrieved for the different spectral regions. Top panels: 790–880 cm−1 region (y-axes)
versus 2650–3180 cm−1 region (x-axis); Central panel: 1090–1330 cm−1 region (y-axes) versus 2650–3180 cm−1 region (x-axis); Bottom
panels: 4560–4710 cm−1 region (y-axes) versus 2650–3180 cm−1 region (x-axis). From left to right: total column amounts (in mm), volume
mixing ratios (in ppm) for the lower, middle, and upper troposphere (3, 5.5, 10 km, respectively). The blue solid line indicates the diagonal
and the red dotted line the linear regression line. The correlation coefficientρ and the slope of the linear regression linem are written in each
panel.

Concerning H2O column abundances we find for all re-
trievals a very similar good agreement to the RS92. The
scatter is about 7.5% and the systematic difference is situ-
ated between−2.4 and−0.1% (see Table7).

During MOHAVE-2009 325 spectra were measured on
11 different days. We made 325 retrievals in each of the
four spectral regions and analysed their consistency. Fig-
ure13shows the correlations between the column integrated
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Fig. 14. Difference between the H2O profiles retrieved in different spectral regions. Left panel: difference between 790-880 and 2650-
3180 cm−1 region; Central panel: difference between 1090-1330 and 2650-3180 cm−1 region; Right panel: difference between 4560-4710
and 2650-3180 cm−1 region. Black line and error bars mean: 1σ standard deviation of the differences between the 325 retrievals; Grey area:
Theoretical differences due to different averaging kernels (see Eq. (2)).

the blue line and error bars show the same but for the 2650-
3180 cm−1 retrievals. In both spectral regions we observe a

monotonic decrease of δD values between the lower and up-
per troposphere, which is in good agreement with the profiles

Fig. 14. Difference between the H2O profiles retrieved in different spectral regions. Left panel: difference between 790–880 and 2650–
3180 cm−1 region; Central panel: difference between 1090–1330 and 2650–3180 cm−1 region; Right panel: difference between 4560–4710
and 2650–3180 cm−1 region. Black line and error bars mean: 1σ standard deviation of the differences between the 325 retrievals; Grey area:
Theoretical differences due to different averaging kernels; see Eq. (2).

Table 7. Difference (mean and standard deviation) between coin-
cident FTIR and RS92 H2O column abundances for the retrievals in
the four spectral regions.

spectral range 2× FTIR−RS92
FTIR+RS92

790–880 cm−1
−2.4±7.5%

1090–1330 cm−1
−0.5±7.5%

2650–3180 cm−1
−0.1±7.2%

4560–4710 cm−1
−2.2±7.2%

amounts as well as the lower, middle, and upper tropo-
spheric concentrations obtained by the 325 retrievals in the
three spectral regions. For this study we take the 2650–
3180 cm−1 retrieval as the reference retrieval. The top pan-
els show the correlations between the 790–880 and 2650–
3180 cm−1 retrievals, the central panel between the 1090–
1330 and 2650–3180 cm−1 retrievals, and the lower panel
between the 4560–4710 and 2650–3180 cm−1 retrievals. The
correlations are very strong (coefficientsρ are close to 1
throughout the troposphere). Figure13 proves that the water
vapour profiles and total column abundances obtained in the
four different spectral regions are very consistent. In all three
spectral regions the FTIR system observes almost identical
lower, middle, and upper tropospheric water vapour varia-
tions.

In Fig. 14 we depict statistics of the differences between
the different water vapour retrievals. The left panel shows the
mean and 1σ standard deviation (black line and error bars)
of difference between the 790–880 and 2650–3180 cm−1 re-
trievals. The mean difference is smaller than 7% through-
out the troposphere (except for the boundary layer where it
reaches 13%) and the scatter is smaller than 22%. When
comparing two remotely-sensed profiles we have to account
for differences in the averaging kernels. The H2O averaging

kernels of the 790–880 and 2650–3180 cm−1 retrievals are
similar but not identical (see Fig.5). With statistics of the
differences between the real statex and the climatological
mean statexa represented by the ensemble{x −xa} we can
estimate how the differences in the averaging kernels affects
our comparison:

{ε1−ε2} = (Â1− Â2){x −xa} (2)

Here Â1 and Â2 are typical averaging kernels for the 790–
880 and the 2650–3180 cm−1 retrieval, respectively. The en-
semble{ε1−ε2} represents the expected differences between
the two retrievals caused by the different averaging kernels
(see alsoRodgers and Connor, 2003). The grey areas in
the graphs of Fig.14 represent the 1σ area of the ensemble
{ε1−ε2}. We observe that a large part of the scatter between
the two different H2O retrievals can be explained by the av-
eraging kernels.

However there are systematic differences that cannot be
explained by the averaging kernels: increased difference be-
tween the lower tropospheric amounts obtained from the
4560–4710 and 2650–3180 cm−1 retrievals or between the
middle/upper tropospheric amounts retrieved from the 1090–
1330 and the 2650–3180 cm−1 retrievals. They are very
likely due to inconsistencies between the spectroscopic line
parameters of the different spectral regions.

Table8 informs about the very good consistency between
the H2O column abundances obtained from retrievals in the
different spectral regions. Taking the 2650–3180 cm−1 re-
trieval as the reference we observe biases between−1.0 and
−2.7% and scatter values of about 1%. The relative sys-
tematic differences obtained from the big ensemble of 325
retrievals well confirms the values obtained from the com-
parison for the 7 RS92 coincidences (see Table7).
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Table 8. Difference (mean and standard deviation) between the
H2O column abundances obtained in the different spectral regions
taking the 2650–3180 cm−1 retrieval as the reference (REF).

spectral range (X) 2× X−REF
X+REF

790–880 cm−1
−2.3±1.1%

1090–1330 cm−1
−1.0±1.2%

4560–4710 cm−1
−2.7±1.0%

6 δD profiles

Besides the ground-based FTIR there is no other MOHAVE-
2009 experiment with the capability to measure tropospheric
δD profiles. So we cannot perform a comparison as shown
in Figs.11 and12 for the H2O profiles. Instead we compare
statistics. The grey area in Fig.15 represents the 1σ range
of subtropicalδD in-situ measurements performed byEhhalt
(1974) andZahn(2001). Superimposed are statistics ofδD
as retrieved from the MOHAVE-2009 MkIV spectra. The
red line shows the mean and the 1σ standard deviation for all
the 325δD profiles retrieved in the 790–1330 cm−1 region,
the blue line and error bars show the same but for the 2650–
3180 cm−1 retrievals. In both spectral regions we observe a
monotonic decrease ofδD values between the lower and up-
per troposphere, which is in good agreement with the profiles
obtained by different in-situ measurements.

In Fig. 16 we depict correlations between theδD values
obtained by the retrievals in the two mid-infrared spectral re-
gions. The agreement is very satisfactory. Please keep in
mind that the axis are in the ‰, scale, i.e. Fig.16shows vari-
ations of a few percent only. Such small variations are very
challenging for a remote sensing system. Nevertheless, we
observe that for both spectral regions the same small varia-
tions inδD are detected. Keeping in mind that uncertainties
in the spectroscopic parameters and measurement noise are
leading error sources for ground-basedδD remote sensing,
the strong correlation between theδD profiles retrieved in
two different spectral regions is a nice demonstration of the
quality of these profiles.

Figure17 shows the mean and standard deviation for the
325 δD profiles retrieved in the two mid-infrared regions.
The 1σ standard deviation is about 10‰ in the lower tropo-
sphere and reaches 22‰ in the upper troposphere (at 9 km).
A part of these scatter is due to differences in the verti-
cal resolution and sensitivity of the two retrievals. The
grey area shows the estimation according to Eq. (2). Re-
moving the scatter caused by the different averaging ker-
nels leaves a scatter of about 8 and 17‰ for the lower and
middle/upper troposphere, respectively. The leading error
sources of ground-based FTIRδD profiles are measurement
noise and deficits in the spectroscopic line parameters. These
errors are uncorrelated for the two retrievals, therefore the
observed 8 and 17‰ scatter can be interpreted as an upper
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Fig. 15. Statistics of subtropical δD profiles: Grey area: 1σ range
of δD measured typically in the subtropics (Ehhalt, 1974; Zahn,
2001); Lines and error bars: mean and 1σ standard deviation of the
325 MOHAVE-2009 FTIR retrievals; Red: in the 1090-1330 cm−1

region; Blue: in the 2650-3180 cm−1 region.

obtained by different in-situ measurements.
In Fig. 16 we depict correlations between the δD values

obtained by the retrievals in the two mid-infrared spectral re-
gions. The agreement is very satisfactory. Please keep in
mind that the axis are in the ‰ scale, i.e. Fig. 16 shows vari-
ations of a few percent only. Such small variations are very
challenging for a remote sensing system. Nevertheless, we
observe that for both spectral regions the same small varia-
tions in δD are detected. Keeping in mind that uncertainties
in the spectroscopic parameters and measurement noise are
leading error sources for ground-based δD remote sensing,
the strong correlation between the δD profiles retrieved in
two different spectral regions is a nice demonstration of the
quality of these profiles.

Figure 17 shows the mean and standard deviation for the
325 δD profiles retrieved in the two mid-infrared regions.
The 1σ standard deviation is about 10 ‰ in the lower tropo-
sphere and reaches 22 ‰ in the upper troposphere (at 9 km).
A part of these scatter is due to differences in the vertical
resolution and sensitivity of the two retrievals. The grey
area shows the estimation according to Eq. (2). Removing
the scatter caused by the different averaging kernels leaves a
scatter of about 8 and 17 ‰ for the lower and middle/upper
troposphere, respectively. Leading error sources of ground-
based FTIR δD profiles are measurement noise and deficits
in the spectroscopic line parameters. These errors are uncor-
related for the two retrievals therefore, the observed 8 and
17 ‰ scatter can be interpreted as an upper estimate of the
FTIR’s lower and middle/upper tropospheric δD precision (it
can be interpreted as the sum of the random errors from both
retrievals).

However, the mean difference between the two δD re-
trievals is significant, in particular in the middle/upper tropo-
sphere where it reaches 40 ‰. This cannot be explained by
the different averaging kernels. Instead it is very likely due
to remaining inconsistency between the spectroscopic H16

2 O

and HD16O line parameters, for which the retrieved δD pro-
files are very sensitive (Schneider et al., 2006b).

Concerning column integrated δD we observe a difference
(mean and standard deviation) of 2.6 ± 9.3 ‰ between the
two retrievals.

7 Conclusions

We show that tropospheric H2O and δD profiles can be ob-
tained from infrared solar absorption spectra recorded in dif-
ferent spectral regions. The mid-infrared regions (790-880,
1090-1330, and 2650-3180 cm−1) are measured regularly by
the NDACC ground-based FTIR spectrometers, whereas the
near infrared region (4560-4710 cm−1) is covered by the TC-
CON spectrometers (although with a spectral resolution lim-
ited to 0.02 cm−1). Concerning H2O all four spectral regions
allow a distinction between lower, middle, and upper tro-
pospheric water vapour according to the averaging kernels
of Fig. 5. When adjusting the line parameters for speed-
dependance the 1σ scatter between the FTIR and RS92 pro-
files measured in coincidence during the MOHAVE-2009
campaign is generally smaller 20 %, except for the 790-
880 cm−1 retrieval where it is poorer. The different water
vapour profiles are very consistent. Taking into account the
different averaging kernels the scatter between the retrievals
is very likely smaller than 10 % throughout the troposphere.
We observe some systematic differences with respect to the
radiosonde and between the different retrievals. They are
most pronounced in the boundary layer, where they can reach
24 %. However, these values are very small if compared to
the huge variability of atmospheric water vapour and we can
use the H2O profiles retrieved from the different spectral re-
gions interchangeably.

In the 1090-1330 and 2650-3180 cm−1 regions we can de-
tect δD profiles and distinguish between the lower and mid-
dle/upper tropospheric δD variability. The FTIR data are
in good agreement with climatological data obtained from
a variety of in-situ measurements. Furthermore, for both re-
trievals we observe very similar atmospheric δD variations
and we can conclude that the retrievals produce lower and
middle/upper tropospheric δD with a precision of better than
8 and 17 ‰, respectively. This is very satisfactory and af-
firms the large potential of the NDACC FTIR measurements
in the field of water cycle research and satellite validation.
Nevertheless, it is unsatisfactory that the systematic differ-
ence between the two δD retrievals reaches 40 ‰ in the mid-
dle/upper troposphere. Further studies are required in order
to better constrain the bias of the ground-based FTIR’s δD
profiles.
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Fig. 15. Statistics of subtropicalδD profiles: Grey area: 1σ range
of δD measured typically in the subtropics (Ehhalt, 1974; Zahn,
2001); Lines and error bars: mean and 1σ standard deviation of the
325 MOHAVE-2009 FTIR retrievals; Red: in the 1090–1330 cm−1

region; Blue: in the 2650–3180 cm−1 region.

estimate of the FTIR’s lower and middle/upper tropospheric
δD precision (it can be interpreted as the sum of the random
errors from both retrievals).

However, the mean difference between the twoδD re-
trievals is significant, in particular in the middle/upper tro-
posphere where it reaches 40‰. This cannot be explained
by the different averaging kernels. Instead it is very likely
due to remaining inconsistency between the spectroscopic
H16

2 O and HD16O line parameters, for which the retrieved
δD profiles are very sensitive (see Fig. 10 andSchneider et
al., 2006b).

Concerning column integratedδD we observe a difference
(mean and standard deviation) of 2.6± 9.3‰ between the
two retrievals.

7 Conclusions

We show that tropospheric H2O andδD profiles can be ob-
tained from infrared solar absorption spectra recorded in dif-
ferent spectral regions. The mid-infrared regions (790–880,
1090–1330, and 2650–3180 cm−1) are measured regularly
by the NDACC ground-based FTIR spectrometers, whereas
the near infrared region (4560–4710 cm−1) is covered by the
TCCON spectrometers (although with a spectral resolution
limited to 0.02 cm−1). Concerning H2O all four spectral re-
gions allow a distinction between lower, middle, and upper
tropospheric water vapour according to the averaging ker-
nels of Fig.5. When adjusting the line parameters for speed-
dependance the 1σ scatter between the FTIR and RS92 pro-
files measured in coincidence during the MOHAVE-2009
campaign is generally smaller 20%, except for the 790–
880 cm−1 retrieval where it is poorer. The different water
vapour profiles are very consistent. Taking into account the
different averaging kernels the scatter between the retrievals
is very likely smaller than 10% throughout the troposphere.
We observe some systematic differences with respect to the
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Fig. 17. Same as Fig. 14, but for δD profiles retrieved in the 1090-
1330 and 2650-3180 cm−1 regions.
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Palm, M., C. Melsheimer, S. Noël, S. Heise, J. Notholt, J. Bur-
rows, and O. Schrems: Integrated water vapour above Ny
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Fig. 17. Same as Fig. 14, but for δD profiles retrieved in the 1090-
1330 and 2650-3180 cm−1 regions.
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Fig. 17. Same as Fig.14, but forδD profiles retrieved in the 1090–
1330 and 2650–3180 cm−1 regions.

radiosonde and between the different retrievals. They are
most pronounced in the boundary layer, where they can reach
24%. However, these values are very small if compared to
the huge variability of tropospheric water vapour and we can
use the H2O profiles retrieved from the different spectral re-
gions interchangeably.

In the 1090–1330 and 2650–3180 cm−1 regions we can
detectδD profiles and distinguish between the lower and
middle/upper troposphericδD. The FTIR data are in good
agreement with climatological data obtained from a variety
of in-situ measurements. Furthermore, for both retrievals we
observe very similar atmosphericδD variations and we can
conclude that the retrievals produce lower and middle/upper
troposphericδD with a precision of better than 8 and 17‰,
respectively. This is very satisfactory and affirms the large
potential of the NDACC FTIR measurements in the field of
water cycle research and satellite validation. Nevertheless, it
is unsatisfactory that the systematic difference between the
two δD retrievals reaches 40‰ in the middle/upper tropo-
sphere. Further studies are required in order to better under-
stand and correct this.
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(Gescḧaftszeichen SCHN 1126/1-1 and 1-2) and since May 2010
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