Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 3, issue 4
Atmos. Meas. Tech., 3, 893–907, 2010
https://doi.org/10.5194/amt-3-893-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 3, 893–907, 2010
https://doi.org/10.5194/amt-3-893-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  09 Jul 2010

09 Jul 2010

Synergy between CALIOP and MODIS instruments for aerosol monitoring: application to the Po Valley

P. Royer1,2, J.-C. Raut3,*, G. Ajello1, S. Berthier1,**, and P. Chazette1,3 P. Royer et al.
  • 1Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Laboratoire mixte CEA-CNRS-UVSQ, UMR 1572, CEA Saclay, 91191 Gif-sur-Yvette, France
  • 2LEOSPHERE, 76 rue de Monceau, 75008 Paris, France
  • 3Laboratoire de Météorologie Dynamique (LMD), UMR 8539, Ecole Polytechnique, 91128 Palaiseau, France
  • *now at: Laboratoire Atmosphères Milieux Observations Spatiales (LATMOS), Laboratoire mixte CNRS-UVSQ-UPMC, UMR 8190, Université Paris 6, 4 Place Jussieu 75252 Paris, France
  • **now at: Koninklijk Nederlands Meteorologisch Instituut (KNMI), De Bilt, The Netherlands

Abstract. In this study aerosol optical properties are studied over the Po Valley from June 2006 to February 2009 using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations/Cloud-Aerosol LIdar with Orthogonal Polarization (CALIPSO/CALIOP) and Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra. The choice of the Po valley has been driven by the numerous occurrences of pollutant events leading to a mean MODIS-derived aerosol optical depth (AOD) of 0.27 (±0.17) at 550 nm over a large area of ~120 000 km2. AOD derived from MODIS, AERONET and CALIOP have been compared. The comparison with AERONET sun-photometers has highlighted an overestimation of AOD from MODIS radiometers of 0.047 for Aqua and 0.088 for Terra. A systematic underestimation of AOD derived from CALIOP Level-2 products has been observed in comparison to Aqua (0.060) and Terra (0.075) MODIS values. Considering those discrepancies a synergistic approach combining CALIOP level-1 data and MODIS AOD has been developed for the first time over land to retrieve the equivalent extinction-to-backscatter ratio at 532 nm (LR). MODIS-derived AOD were indeed used to constrain CALIOP profiles inversion. A significant number of CALIOP level-1 vertical profiles have been averaged (~200 individual laser shots) in the Po Valley, leading to a signal-to-noise ratio (SNR) higher than 10 in the planetary boundary layer (PBL), which is sufficient to invert the mean lidar profiles. The mean LR (together with the associated variabilities) over the Po Valley retrieved from the coupling between CALIOP/MODIS-Aqua and CALIOP/MODIS-Terra are ~78±22 sr and ~86±27 sr, respectively. The total uncertainty on LR retrieval has been assessed to be ~12 sr using a Monte Carlo approach. The mean LR determined from a look-up table through a selection algorithm in CALIOP level 2 operational products (~63±8 sr) show a good agreement for daytime inversion (70±11 sr for Aqua and 74±14 sr for Terra). These values appear close to what is expected for pollution aerosols in an urban area. Contrarily large differences are observed when considering nighttime CALIOP profiles inverted with daytime AOD from MODIS (63±7 sr for CALIOP level-2 compared with 89±28 sr for CALIOP/Aqua and 103±32 sr for CALIOP/Terra synergies). They can be explained by a significant evolution of AOD between lidar and radiometer passing times. In most of cases, the mean aerosol extinction coefficient in the PBL significantly differs between the level-2 operational products and the result CALIPSO/MODIS synergy results. Mean differences of 0.10 km−1 (~50%) and 0.13 km−1 (~60%) have indeed been calculated using MODIS-Aqua/CALIOP and MODIS-Terra/CALIOP coupling studies, respectively. Such differences may be due to the identification of the aerosol model by the operational algorithm and thus to the choice of the LR.

Publications Copernicus
Download
Citation