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Abstract. Fast and reliable methods for the detection of at-
mospheric trace species are needed for near-real-time appli-
cations including volcanic hazard avoidance. One common
approach using hyperspectral instruments is to measure the
difference in brightness temperature between a small number
of target sensitive and background channels to determine the
presence of the target species. Although fast and robust, cur-
rent brightness temperature difference methods do not fully
exploit the spectral range and resolution of hyperspectral in-
struments, and the noise associated with the measurements
remains high. In this paper, we describe a way to make full
use of the spectral information from hyperspectral sounders
allowing the presence of the target species to be determined
with much better sensitivity in near-real-time if required. The
technique is demonstrated using the MetOp Infrared Atmo-
spheric Sounding Interferometer considering two case stud-
ies: (a) the detection of sulphur dioxide from the eruption of
the Kasatochi volcano in Alaska in August 2008, and (b) the
detection of ammonia emissions related to agriculture over
Southern Asia in May 2008. The performance of this method
is compared against that of existing brightness temperature
difference methods. It is found that the sensitivity of the de-
tection of these trace species is improved by up to an order
of magnitude.

1 Introduction

The Infrared Atmospheric Sounding Interferometer (IASI)
on board the EUMETSAT MetOp platform is a Michelson-
type Fourier transform spectrometer with continuous
coverage in the thermal infrared from 645–2760 cm−1 sam-
pled at a spectral resolution of 0.25 cm−1. The instrument
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sits in a polar orbit with a footprint consisting of 4 circular
instantaneous field-of-views each with a radius of 12.3 km
at nadir which are scanned in the direction perpendicular to
the line of flight with a swath width of about 2200 km giv-
ing global coverage on a daily basis. The spectral range
and resolution coupled with excellent geographical coverage
mean that the instrument is suitable for monitoring atmo-
spheric composition. However, fully quantitative retrievals
are slow and inefficient when searching for a sporadic event
within a large dataset due to the computationally intensive
radiative transfer calculations required. Faster methods are
therefore needed to find such events quickly and easily, espe-
cially for near-real-time applications such as volcanic hazard
avoidance.

A commonly used method for the fast detection of trace
atmospheric species is to calculate the difference in bright-
ness temperature (BT) between a small number of channels,
some of which are sensitive to the target species and others
of which are insensitive, carefully chosen so that the spec-
tral background is well matched between channels so that
it can be eliminated isolating the contribution of the target
species. The difference in brightness temperature between
channels is then compared against a threshold which indi-
cates a positive detection. Such techniques have useful prac-
tical applications in hazard avoidance. Simple brightness
temperature difference (BTD) filters for the detection of sul-
phur dioxide (SO2), which is used as a proxy for volcanic
ash which is dangerous to aviation and is generally more dif-
ficult to discriminate, are applied operationally to provide an
early warning of volcanic activity and to help track the vol-
canic plume in near-real-time (Rix et al., 2009; van Geffen
et al., 2009; Prata, 2009). Sulphur dioxide can be tracked
from IASI using the difference in signal between two chan-
nels located at 1371.50 and 1371.75 cm−1 in the SO2 ν3 vi-
brational band and two background channels at 1407.25 and
1408.75 cm−1 outside the SO2 band (Clarisse et al., 2008).
Similarly, SO2 can be tracked from the Atmospheric Infrared
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Sounder (AIRS) on board Aqua using a three channel method
(OMI Volcanic Emissions Group TOMS, 2010). The four
channel BTD filter for IASI is currently used to alert au-
thorities within Europe who monitor the threat posed to avi-
ation by volcanic ash clouds (Rix et al., 2009; van Geffen
et al., 2009), with similar schemes in place using the AIRS-
Aqua filters to alert authorities in the United States (OMI
Volcanic Emissions Group TOMS, 2010). The main draw-
back of these techniques, however, is that they do not make
full use of the wide spectral range and fine spectral resolu-
tion available from hyperspectral instruments, using only a
small fraction of the channels which could provide useful in-
formation. Although sensitivity is adequate for many events,
significant eruptions can contain levels of SO2 which are too
low to be detected using current methods, and more sensitive
techniques which utilise the available spectral information
more effectively could make a useful contribution to current
efforts.

As well as practical applications in hazard avoidance, BTD
filters can provide useful information about the global dis-
tribution of important trace species using calibration meth-
ods to link the measured BTD to species abundance. For
example, a BTD filter using IASI provided the first global
measurements of tropospheric ammonia (NH3), which has
a large contribution from agriculture with negative impacts
on the environment. Concentrations were determined tak-
ing the BTD between a target channel at 867.75 cm−1 in the
NH3 ν2 band and two background channels at 861.25 and
873.50 cm−1 using a limited number of full-retrievals to de-
rive a scaling factor to convert the observed BTD’s to esti-
mated total column amounts (Clarisse et al., 2009).

The main difficulty in designing this type of BTD filter is
the avoidance of false detections caused by variations in the
non-target parameters such as interfering species, the temper-
ature profile of the atmosphere, variations in surface tempera-
ture, and the presence of cloud and aerosol. This requires the
careful selection of target and background channels which
allow the unwanted contributions to the measured brightness
temperature in the target channels to be eliminated. How-
ever, without some mathematical framework for balancing
the various contributions it is only feasible to include a few
channels, and the hyperspectral nature of the spectrometer
is not exploited effectively resulting in much higher random
error associated with instrument noise than could potentially
be achieved. In addition, the threshold for a significant detec-
tion is not linked to the statistical significance of the observed
BTD. Furthermore, there is no intrinsic way to estimate the
abundance of the target species. This is instead done a poste-
riori by performing full-retrievals and extracting an empirical
relationship between the retrieved values and the observed
BTD which can then be applied over a wider area. Here
we present a method which provides a framework for gen-
erating many channel filters with improved noise character-
istics,which are not sensitively dependent on the particular
channels used, and which intrinsically allow for an estimate

of the abundance of the target gas to be derived in certain
circumstances.

2 Detection method

In a given channel, the target signal is usually overwhelmed
by changes in the spectral background due to variations in
the unwanted parameters such as interfering species, atmo-
spheric temperature, surface temperature, and cloudiness. In
a standard retrieval, these parameters are retrieved together
with the target so that their contribution can be accounted for.
The aim of the method outlined in this paper is to separate the
contribution of the target from the spectral background with-
out having to retrieve any of these other parameters directly.

The scheme is essentially an optimally weighted one-step
retrieval of the target column amount and a spectral offset.
Adopting the notation inRodgers(2000), we assume that the
spectral measurementsy ∈ Rm can be represented by the for-
ward modelF plus the total measurement error

y = F(x, u) + εrnd + εsys (1)

wherex = [xc, off]T is the true state vector composed of the
target species column amountxc and a wavenumber indepen-
dent brightness temperature offset off,u represents the best
estimate of other parameters related to the instrument, at-
mosphere and surface,εrnd is the random measurement error
determined by instrument noise, andεsys represents system-
atic measurement errors due to uncertainties in parameters
u. The spectral offset can be thought of as describing uncer-
tainties in the parametersu which correspond approximately
to broadband spectral contributions such as might arise from
differences in the actual and modelled surface temperature,
the presence of ash, and the cloudiness of the atmosphere.
The forward model is linearised about a reference state with
climatological levels of the target gas and our best knowledge
of the parametersu where the detection is applied. When the
forward model is nearly linear around the climatological at-
mospheric conditions, we can write

y − F(x0, u) = K (x − x0) + εrnd + εsys (2)

where the linearisation point is taken to bex0 = [xc0, 0]
T

wherexc0 is a climatological column amount, and thei-th
row of the jacobianK ∈ Rm×2 can be written as[ ∂yi

∂xc
, 1]

whereyi are in terms of brightness temperature. The bright-
ness temperature offset acts as a sink for some error terms
which may be difficult to define in advance and correspond
to broadband spectral offsets and should not be restricted to
channels where the target species has a spectral contribu-
tion so that the baseline can be determined as effectively as
possible. The optimal unconstrained least-squares estimate
x̂ = [x̂c, ôff]T may then be computed as

x̂ = x0 +

(
KT Stot

ε
−1 K

)−1
KT Stot

ε
−1

(y − F (x0, u)) (3)
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where the matrixStot
ε ∈ Rm×m is the covariance of the total

error (εrnd + εsys). The first row of the measurement contri-
bution function

G =

(
KT Stot

ε
−1 K

)−1
KT Stot

ε
−1

(4)

is denotedgT
c and comprises the weights applied to a given

spectrum to determine the presence of the target species. The
total column amount given bŷxc is not intended to be an ac-
curate retrieval of the target column amount but rather sim-
ply a metric for determining whether levels of the gas are
enhanced with respect to the climatological background over
the vertical levels where the instrument is sensitive. Other
factors such as the conditions of thermal contrast with the
surface where this is visible and how effectively the spectral
background has been suppressed may also affect the mea-
sured column amount.

The use of the total measurement error covariance as a
weights matrix for the least squares minimisation in Eq. (3)
differs from the commonly adopted inversion process, which
for reasons of computational efficiency uses only the ran-
dom error covariance arising from instrument noise to weight
measurements. Here, the inversion is weighted not only by
instrument noise but also by systematic errors due to un-
certainties in the forward model which arise from differ-
ences between the assumed forward model parameters and
the physical radiative transfer process. These errors tend to
be broadly spectrally correlated whereas the random error
due to instrument noise is only locally correlated. For a sin-
gle target parameter, if the inversion is weighted only by the
random error due to measurement noise, then the solution is
not optimal because the systematic errors due to uncertainties
in the forward model are not accounted for. Sometimes these
errors are small enough to be ignored, which is not the case
here. Otherwise the uncertain parameters can be retrieved
jointly with the target parameter increasing the size of the
state vector to obtain an optimal solution. However, as ex-
plained invon Clarmann et al.(2001) an equivalent optimal
solution can be obtained without increasing the size of the
state vector, but instead by weighting measurements accord-
ing to the total error, including the systematic errors. The
diagonal elements ofStot

ε which contain the total random and
systematic variance weight the spectral points against each
other appropriately, assigning less weight to points with a
large total error. The long-range correlations in theStot

ε ma-
trix, which arise from the systematic errors, then provide ad-
ditional information about the expected behaviour of errors
in one spectral point relative to the others. Physically, corre-
lations inStot

ε mean that a spectral point with very little target
signal (and in this method even zero target signal) can still
add significant information about the target species because
it helps to fix the baseline in the target channels. By invert-
ing the measurements in this way, enhancements in the target
species can be identified and separated from the contribution
of other unwanted parameters without having to retrieve the

other parameters affecting the measurement. The results ob-
tained by inverting the measurements in this way are similar
to those which would be obtained by performing a joint re-
trieval of all parameters affecting the measurement.

Hence, for the detection method to work effectively, the
total measurement error covariance used needs to be realistic.
In this paper, this matrix is computed either by modelling
errors using appropriate perturbations to the various physical
parameters involved within the forward model, or by using
an ensemble of spectra to compute the covariance of a large
number of measured spectra with climatological levels of the
target gas representative of the atmospheric conditions where
the detection is applied.

2.1 Modelling method

The first approach, which does not rely on samples of mea-
sured spectra, involves the construction ofStot

ε considering
simple perturbations to appropriate parameters within the
forward model such as interfering species, atmospheric tem-
perature, surface temperature, and cloudiness, which can
then be combined with the random error determined from
instrument noise to calculate an approximation of the total
measurement error covariance

Stot
ε = Srnd

ε + Ssys
ε ≈ Srnd

ε +

N∑
i=1

K (i) B(i) K (i)T
= Smod

ε (5)

whereSrnd
ε is the random measurement error covariance de-

termined by instrument noise andSsys
ε is the systematic error

covariance due to forward model errors. The approximation
of the total measurement error covariance calculated using
the modelling method is denotedSmod

ε to distinguish it from
another method introduced in Sect.2.2which uses an ensem-
ble of measured spectra to estimate the total measurement
error covariance.

The systematic component of measurement error is com-
puted in general by considering the combination ofN error
sources which are assumed to be independent. For each error
sourcei, Ssys

ε may be computed considering thep × p profile
error covariance matrixB(i) and the corresponding jacobian
K (i)

∈ Rm×p. The profile error covariance matrixB(i) could
for example represent the climatological variability in ap-
level profile of water vapour in which caseK (i)

∈ Rm×p is
calculated around an appropriate value for thep profile lev-
els such that the jacobian contains the elementsK (i)

jk =
∂yj

∂H2Ok

where 1≤ j ≤ m and 1≤ k ≤ p. This approach assumes lin-
earity. If only the variance is available then the errors can be
computed by perturbing the forward model directly to pro-
duce a series of error spectra for each error sourcei

1y(i)
= F

(
x0, u + 1u(i)

)
− F (x0, u) (6)

where1u(i) is the estimated 1σ variation in parameteri,
and the corresponding error spectrum1y(i)

∈ Rm can then
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be used to calculate an estimate of the systematic measure-
ment error covariance and hence total measurement error co-
variance according to

Stot
ε = Srnd

ε + Ssys
ε ≈ Srnd

ε +

N∑
i=1

1y(i) 1y(i)T
= Smod

ε . (7)

Ideally the modelled spectrumF(x0, u) in Eq. (3) should
be equivalent to the observed spectrum for the climatological
atmospheric conditions, including the target species concen-
tration, interfering species concentration, atmospheric and
surface temperature, conditions of cloudiness, presence of
aerosols and so on. However, in practice this is difficult
to achieve due to difficulties in defining and modelling the
climatological atmospheric conditions. The modelled spec-
trum is therefore chosen for convenience to represent clear-
sky conditions, assuming that cloudiness, surface tempera-
ture, and other broadband features can be accounted for by
retrieving the target jointly with a spectral offset.

All spectral modelling in this study was performed us-
ing the Reference Forward Model (RFM) using the HI-
TRAN 2008 spectral database (Rothman et al., 2009). De-
tails about the RFM can be found in the online manual (Dud-
hia, 2008).

2.2 Ensemble method

Using the ensemble approach,Stot
ε is estimated considering

an appropriate ensemble ofN measured spectra to construct
an estimate of the total measurement error covariance de-
notedSobs

y

Stot
ε ≈

1

N − 1

N∑
j=1

(
yj − ȳ

) (
yj − ȳ

)T
= Sobs

y (8)

whereȳ is the calculated mean spectrum for the ensemble

ȳ =
1

N

N∑
j=1

yj . (9)

However, this approach depends on the availability of an ap-
propriate ensemble of spectra where there is some confidence
that the signal from the target species is below the noise un-
der normal circumstances. Volcanic SO2 in the free tropo-
sphere is a suitable candidate since the signal is well below
the noise in the absence of a volcanic event, and the selec-
tion of an appropriate ensemble with background levels of
the target species can be performed relatively easily. In the
case where spectra which do contain enhancements are mis-
takenly included in the ensemble, this acts to reduce the sen-
sitivity of the filter to the target species. Ammonia, however,
is not suitable since strong sources are too widespread, mak-
ing the selection of an appropriate ensemble difficult.

The mean spectrum̄y calculated in Eq. (8) should be used
in place ofF(x0, u) in Eq. (3) when using the ensemble

method as̄y is a likely to be a better estimate of the climato-
logical mean spectrum, and so ensures that the climatological
value of the target species is retrieved when levels of the tar-
get species are not enhanced over those represented by the
mean background spectrum̄y.

2.3 Channel selection

In most cases, the problem of which channels to use can be
solved by a qualitative selection of a suitable block of chan-
nels. The method is then largely insensitive to the particular
channels used within that block since the correlations inStot

ε

mean that all channels add information. The main factors
to be considered are that the chosen region should not only
include parts of the spectrum which have a relatively strong
signal from the target species but also regions with little or no
contribution from the target to maximise the available con-
trast with the spectral background. Spectral regions which
cannot be modelled adequately should be avoided where pos-
sible.

In order to confirm that none of the channels in the chosen
region have a detrimental impact on the detection, the infor-
mation content about the target species may be checked as
more channels are added. The first step involves finding the
top two channels in the chosen region with the lowest total re-
trieval error varianceσ 2

c for the target component by search-
ing through all permutations of channel pairs propagating the
total measurement error through the retrieval according to

Stot
x =

(
KT Stot

ε
−1 K

)−1
(10)

whereStot
x is the total retrieval error covariance. The pair

of channels with the lowest target total retrieval error vari-
anceσ 2

c is then assessed in combination with each remaining
channel. The best combination of those channels may then
be assessed by computing the information contentH in bits
obtained about the target parameter by including the addi-
tional channel

H =
1

2
log2

((
σ 2

c

)
i+1(

σ 2
c

)
i

)
(11)

where(σ 2
c )i is the total retrieval error variance for the target

species computed fori channels and(σ 2
c )i+1 is the total re-

trieval error variance for the target species computed fori + 1
channels. Channels which contribute negligible information
about the target parameter can then be excluded as a matter
of efficiency if required.

2.4 Detection threshold

Once a suitable set of channels have been defined, the appar-
ent target column amount given in Eq. (3) may be compared
against a threshold which indicates a positive detection with
a certain confidence. An approximate estimate of the level of
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significance of a particular detection can be gauged by com-
parison of the enhancement,x̂c−xc0, against the square root
of the sum of the total retrieval error variance for the tar-
get gas column and the climatological variance of the target
species. In the cases examined in this paper, however, the tar-
get species variability is negligible compared to the sensitiv-
ity of the instrument under climatological conditions, and so
it is only necessary to compare the enhancement against the
total retrieval error variance for the target columnσc

2. From
Eqs. (3) and (4), it can be seen that the difference between the
detected column and the climatological column corresponds
to gT

c y −xc0. Hence, we can calculate the significance of a
particular detection in terms of how far away a particular ob-
servation is from the climatology in terms of number of total
retrieval error standard deviations

Zobs =
gT

c y − xc0

σc
. (12)

Depending on the application, a suitableZ-number can be
chosen so that there is a positive detection when the follow-
ing condition is satisfied

x̂c > xc0 + Zthreshσc. (13)

3 Application of the filters

Trace species detection filters generated using the methods
described above were applied to IASI spectra for two case
studies: (a) the emission of SO2 from the eruption of the
Kasatochi volcano in Alaska in August 2008, and (b) the
emission of NH3 from agriculture over Southern Asia in
May 2008. Before application of the filters, an appropriate
viewing angle correction was applied to spectra obtained in
the sideways views which have a greater path length through
the atmosphere. The measured spectra were scaled by an air-
mass factor cos(φ) whereφ is the ground angle defined as
the angle between the satellite and the local vertical at the
ground at the location of the observation. The ground angle
may be calculated from trigonometric considerations assum-
ing a spherical Earth as

φ = sin−1
(

sin(θ) (RE + h)

RE

)
. (14)

3.1 Case study 1: the detection of volcanic emissions

The detection method was tested for SO2 from the eruption
of the Kasatochi Volcano in the Aleucian Islands, Alaska,
in early August 2008. Ordinarily, SO2 is concentrated in
the boundary layer with total column amounts of less than
0.1 DU. Sources of SO2 contributing to background levels in
the lower troposphere include the slow degassing from vol-
canoes, burning of fossil fuels and biomass, and tin smelt-
ing. There are two emission features in the thermal infra-red:
the symmetric stretchν1 band centred on 1152 cm−1 and the
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Fig. 1. Simulated spectra in the region of the SO2 ν1 andν3 bands.
Top panel shows a simulated spectrum for a standard atmosphere.
Middle panel shows contribution of climatological background lev-
els of SO2. Bottom panel shows contribution of main interfering
species (water vapour, CO2 and ozone).

antisymmetric stretchν3 band centred on 1362 cm−1. As
shown in Fig.1, the spectral contribution of climatological
concentrations of SO2 is up to 0.005 K in theν1 band and
0.025 K in theν3 band. The nominal NE1T at 280 K be-
tween 1000–1200 cm−1 ranges between 0.950 and 0.165 K
and the NE1T at 280 K between 1300–1410 cm−1 ranges
between 0.980 and 0.105 K (Cayla et al., 1995). Therefore,
the signal from typical background levels of SO2 are well
below the noise level of the instrument. Absorption in the
ν1 band is not as strong as absorption in theν3 band. How-
ever, the atmosphere is more transparent in the region of the
ν1 band. Theν3 feature, on the other hand, is obscured by
strong water vapour absorption, and so there is negligible
sensitivity to SO2 in the lower troposphere in this spectral
region.

The eruption of Kasatochi beginning on 7 August 2008
caused significant disruption to air-traffic due to the volcanic
ash emitted (Guffanti et al., 2008). On 8 August, a plume
of ash and SO2 was observed at an estimated altitude of
12.5± 4 km, with total column amounts of SO2 estimated
at 311 DU (Karagulian et al., 2010). Two days later the
plume had spread southward into the Pacific and OMI/Aura
measured maximum column amounts of 105 DU (OMI/Aura
[Internet], 2010). Figure2 shows examples of spectra ac-
quired inside and outside of the volcanic plume on this date.
The IASI instrument is easily sensitive enough to detect the
very large signal due to SO2 within the plume. However,
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Fig. 2. Blue line shows an IASI spectrum obtained from outside of
the Kasatochi volcanic plume on 10 August over ocean and the red
line shows an IASI spectrum obtained inside the plume.

the challenge in designing detection filters is to make them
as insensitive as possible to unwanted parameters such as
clouds and water vapour, which have a large spectral contri-
bution and are highly variable. Therefore, for each filter we
also examine the distribution of values in a region of atmo-
sphere outside the plume to test how well these other param-
eters have been suppressed. Ideally, the climatological to-
tal column amount of SO2 should be recovered (= 0.076 DU)
outside the plume.

The results using the existing four channel filter are shown
in Fig. 3 for the evening of 10 August 2008. The variation
in the background values in a selected region outside of the
plume normalised with respect to the maximum BTD ob-
served inside the plume (48 K) are also shown. The exist-
ing filter performs very well and the variation in the spectral
background is generally less than 1 % of the maximum value
in the plume. In the following sections we examine whether
it is possible to improve the sensitivity of the detection still
further.

3.1.1 ν1 band filter

A filter was constructed using all channels between 1000–
1200 cm−1 in the vicinity of the SO2 ν1 band. Checking
the information content of the filter using the approach de-
scribed in Sect.2.3 indicates that all channels in this re-
gion contribute information. The entire measurement block
was therefore used to generate the filter. The region around
the SO2 ν1 band is optically thin provided that the atmo-
sphere is clear of ash and cloud, with some sensitivity to the
lower troposphere. The region avoids an ice signature present
mainly between 800–1000 cm−1. However, the region over-
laps strong reflections from the quartz Reststrahlung band
between 1100–1250 cm−1 (E. Pavelin, Met. Office, personal
communication, 2010) which have much sharper spectral de-
pendencies, which cannot at present be modelled using the
RFM, and mean the filter should not be used over some land
surfaces in arid regions. Two approaches are considered for
the construction of the SO2 filter using theν1 band:

– Method 1: TheStot
ε matrix in Eq. (3) is constructed us-

ing the modelling approach (Stot
ε ≈ Smod

ε ) as in Eqs. (6)
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Fig. 3. Detection of SO2 plume for the Kasatochi eruption for
the morning overpass on 10 August 2008 using the four channel
BTD by Clarisse et al.(2008) in terms of background channels
minus SO2 sensitive channels. The variation in the spectral back-
ground within the box is shown in the bottom panel in terms of the
fractional variation normalised with respect to the maximum BT
value observed inside the plume (48 K). Observed RMS of back-
ground = 0.0022.

and (7) considering simple perturbations to forward
model parameters. Climatological 1σ column perturba-
tions are applied to temperature and interfering species
with variability above the level of instrument noise
(mainly ozone and H2O) using the profile uncertainties
defined for the mid-latitude atmosphere in the IG2 cli-
matological database (Remedios et al., 2007), which is
also used as the linearisation point[x0, u]. A 20 K per-
turbation is applied to surface temperature, and variabil-
ity due to cloudiness is modelled using 15 independent
homogenous optically thick cloud layers at 1 km inter-
vals from 1–15 km. Each error source is assumed to be
independent of the others.

– Method 2: TheStot
ε matrix is constructed using the en-

semble approach (Stot
ε ≈ Sobs

y ) as in Eqs. (8) and (9) us-
ing an ensemble of 2253 measured spectra in a region
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without SO2 enhancements in the box bounded by
the [lat, lon] coordinates [32, 45] and [−150, −135]
on the 10 August 2008 to construct an estimate of
the total measurement error covariance matrix for the
background atmosphere in the vicinity of the volcanic
plume.

Figure4 shows the SO2 detected using theν1 band filter
whereStot

ε is constructed using Method (1) using the mod-
elling approach. The plume of SO2 is clearly visible in the
Pacific Ocean. The shape of the plume appears broadly sim-
ilar to that observed using the four-channel filter in Fig.3
(which uses theν3 band rather than theν1 band), although
the extent of plume appears to be somewhat more restricted
in this case. Absorption in theν1 band is not as strong as for
theν3 band feature. However, the atmosphere is more trans-
parent in the region of theν1 band, except in the presence
of ash, whereas in the region of theν3 band feature there
is very strong overlapping absorption due to water vapour.
It is likely that the apparent reduced geographical extent of
the plume as observed using theν1 band filter is due to re-
duced sensitivity of theν1 band compared to theν3 band at
higher altitudes for SO2 observed above the dense volcanic
ash layer that was present in this plume. The maximum value
observed inside the plume against which the background val-
ues were normalised was 326 DU. The normalised variation
in the background within the box shown in Fig.4 does not
show any obvious structure and the values appear to be nor-
mally distributed which indicates that the variations in the
spectral background due to parameters such as ozone and
cloudiness have been effectively suppressed. There is a very
slight negative offset in the distribution of the values which in
the normalised fractional units is reported as−0.0019 rather
than the expected 0.0023 (= 0.076 DU) if the expected clima-
tological amount of SO2 were to be retrieved. The reported
1σ variation for this filter is 0.0022 (= 0.734 DU) which is
slightly less than the observed RMS of the background field
of 0.0055.

The detection of SO2 using the ν1 band whereStot
ε

is constructed using the ensemble approach explained in
Method (2) is shown in Fig.5. It is assumed that the weights
calculated using this ensemble are representative of a wider
area including the plume and surrounding background obser-
vations. The maximum value observed inside the plume in
this case was 328 DU. Since the background values shown
in the figure were used as the ensemble to generate the fil-
ter, this represents the ideal case of what can be achieved
in terms of suppression of the spectral background. The
reported 1σ sensitivity of 0.0024 (0.812 DU) of the filter
matches the observed RMS of the background which was
computed as 0.0024, and the mean value of the background
observations yields the climatological value of SO2, as ex-
pected.
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Fig. 4. The plume of SO2 for the morning overpass on 10 Au-
gust 2008 using theν1 band filter for Method (1) as described in the
text using the modelling approach to computeStot

ε . Fractional varia-
tion in the background normalised according to the maximum value
within the plume (326 DU) shown in the bottom panel for IFOV’s
inside box. Reported 1σ sensitivity (σc) for this filter of 0.0022
(= 0.734 DU). Observed RMS of background = 0.0055. Expected
climatological value shown as red line. Mean value of background
value shown as black line

3.1.2 ν3 band

The ν3 band filter uses all channels between 1300–1410
cm−1. Theν3 band is generally more sensitive to SO2 than
theν1 band, except in the lower troposphere, which is mostly
obscured by interference from optically thick water vapour
lines. Since there are no sharp emission features not mod-
elled by the RFM and the surface cannot be seen, there are
no restrictions on surface type. However, as can be seen in
Fig. 2, theν3 band filter sits on the edge of the water vapour
band, and is therefore sensitive to variability throughout the
troposphere. For this reason,Stot

ε is more difficult to param-
eterise using the modelling approach. The main problem
is variability due to water vapour itself since this accounts
for over two orders of magnitude more variance than the
other parameters. Three approaches are therefore considered
which mainly differ in their treatment of water vapour:
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Fig. 5. The plume of SO2 for the morning overpass on 10 Au-
gust 2008 using theν1 band filter for Method (2) as described in the
text using the ensemble approach to computeStot

ε . Fractional varia-
tion in the background normalised according to the maximum value
within the plume (328 DU) shown in the bottom panel for IFOV’s
inside box. Reported 1σ sensitivity (σc) for this filter of 0.0024
(= 0.812 DU). Observed RMS of background = 0.0024. Expected
climatological value shown as red line. Mean value of background
value shown as black line

– Method 1: Stot
ε is constructed according to Eqs. (6)

and (7) considering climatological 1σ column
perturbations to the temperature and water vapour
profiles within the forward model as defined in the
mid-latitude atmosphere in the IG2 climatological
database (Remedios et al., 2007), which is also used as
the linearisation point. A 20 K perturbation is applied to
surface temperature, and perturbations representing 15
independent homogenous optically thick cloud layers
at 1 km intervals from 1–15 km are included.

– Method 2: As in Method 1 but nowStot
ε is constructed

as in Eq. (5) considering aB matrix for water vapour
on 27 levels corresponding to the standard covariance
used in the Met Office NWP SAF 1D-Var scheme.
Temperature is modelled similarly to water vapour but
considering aB matrix on 44 levels.
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Fig. 6. The plume of SO2 for the morning overpass on 10 Au-
gust 2008 using theν3 band filter for Method (1) as described in the
text using the modelling approach to computeStot

ε . Fractional varia-
tion in the background normalised according to the maximum value
within the plume (109 DU) shown in the bottom panel for IFOV’s
inside box. Reported 1σ sensitivity (σc) for this filter of 0.0013
(= 0.122 DU). Observed RMS of background = 0.0030. Expected
climatological value shown as red line. Mean value of background
value shown as black line.

– Method 3: The Stot
ε matrix is constructed using an en-

semble of 2253 measured spectra according to Eqs. (8)
and (9) in a region without SO2 enhancements in the
box bounded by the [lat, lon] coordinates [32, 45] and
[−150, −135] on 10 August 2008 to construct an es-
timate of the total measurement error covariance ma-
trix for the background atmosphere in the vicinity of the
eruption.

Figure6 shows the results obtained for Method (1) described
above whereby water vapour variability is modelled consid-
ering a 1σ column perturbation. The maximum value ob-
served inside the plume used to normalise the background
values was 109 DU. Although the variation in the back-
ground without SO2 enhancements is mostly less than 1 %,
there are some clear systematic drifts in the retrieved back-
ground. Firstly, the mean value of the background is higher
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Fig. 7. The plume of SO2 for the morning overpass on 10 Au-
gust 2008 using theν3 band filter for Method (2) as described in the
text using the modelling approach to computeStot

ε . Fractional varia-
tion in the background normalised according to the maximum value
within the plume (108 DU) shown in the bottom panel for IFOV’s
inside box. Reported 1σ sensitivity (σc) for this filter of 0.0012
(= 0.126 DU). Observed RMS of background = 0.0019. Expected
climatological value shown as red line. Mean value of background
value shown as black line.

than the expected climatological background with a positive
offset of 0.0064 rather than the expected 0.0022 in fractional
units. In addition the values vary periodically. These vari-
ations are associated with the sideways viewing function of
the instrument. In the case of sensitivity to different levels in
the troposphere, a simple viewing angle correction applied
to the measured spectra cannot fully correct for changes in
observed radiance with satellite zenith angle. There are also
other drifts in the background values not associated with the
sideways viewing function of the instrument. Upon inspec-
tion it was found that these drifts in the background corre-
spond to gaps between clouds, where the measurements are
sensitive to water vapour throughout the troposphere. It is
likely that in this case a column perturbation of water vapour
is not a good enough representation of the variability. In-
stead, therefore, in Method (2) a perturbation is applied to
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Fig. 8. The plume of SO2 for the morning overpass on 10 Au-
gust 2008 using theν3 band filter for Method (3) as described in the
text using the ensemble approach to computeStot

ε . Fractional varia-
tion in the background normalised according to the maximum value
within the plume (107 DU) shown in the bottom panel for IFOV’s
inside box. Reported 1σ sensitivity (σc) for this filter of 0.0006
(= 0.067 DU). Observed RMS of background = 0.0006. Expected
climatological value shown as red line. Mean value of background
value shown as black line

water vapour considering aB matrix with more realistic cor-
relations between vertical levels. In this case, the systematic
drifts in the background appear to be slightly improved over
Method (1) as can be seen from Fig.7.

However, the best results are obtained using the ensem-
ble method described in Method (3) as shown in Fig.8.
The maximum value observed inside the plume in this case
was 107 DU. Since both nadir viewing and sideways view-
ing measurements are used in the ensemble, the periodic-
ity in the background values associated with the sideways
scanning of the instrument is now also suppressed, and other
drifts associated with the inadequate representation of the
vertical variability in the troposphere in the modelling ap-
proach have now also disappeared. Here, the distribution
of the background values is normally distributed around a
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typical climatological value of the SO2 column. Using this
filter, the variations in the background values are mostly be-
low 0.1 % of the maximum apparent column amount in the
plume. This is around an order of magnitude more sensitive
than both theν1 band and four channel filters.

For the detection of volcanic SO2 using theν3 band, the
ensemble method produces more sensitive detections than
the modelling method since the total measurement error co-
variance matrix is more realistic and the spectral background
is suppressed more effectively. In the cases examined above,
the filters were generated from spectra in a region with no
enhancements in SO2, and these filters were then applied to
the entire scene to highlight a region of volcanic SO2 at a dis-
tant location. However, the filter is not limited to use in a sin-
gle scene. As long as the ensemble contains enough members
to capture the statistical properties of the variability of water
vapour, cloudiness, and temperature effects, the filter can be
reused and applied in another scene. It may even be possi-
ble to construct a filter which is applicable globally through
consideration of a very large ensemble encompassing the full
range of atmospheric conditions, although the sensitivity of
the filter would be reduced due to the greater variability en-
compassed by the ensemble. The best approach may be to
construct several filters for use during different times of year
in appropriate geographical regions. This should be possi-
ble since the statistical properties of the background field
change over large distances for example polar, mid-latitude
and equatorial regimes, and on the seasonal time scale, and
although some care would be needed to ensure an appropri-
ate ensemble is selected for each situation, there is no reason
why oneSobs

y cannot be used over a fairly large geographical
region for an extended period of time as long as the statistical
properties of the variability of the background atmosphere
are nearly the same. For a global SO2 detection, several dif-
ferent ensembles would probably be necessary e.g., deserts
would require a separate filter from equatorial scenes, and
seasonal changes would need to be accounted for, essentially
constructing a climatology of water vapour, cloudiness and
temperature conditions stored asSobs

y matrices.

3.2 Case study 2: emissions from agriculture

The first global distributions of tropospheric ammonia were
derived using theν2 vibrational band taking the BTD at
867.75 cm−1 and two background channels at 861.25 and
873.50 cm−1 (Clarisse et al., 2009). The gas is present
mainly in the boundary layer with very low concentrations
higher in the troposphere. On the time-scale of days, it
is converted to ammonium sulphate and ammonium nitrate
which then play a role in the long-range transport of acidic
pollutants (Sutton et al., 2009). We focus on a region of
Southern Asia identified byClarisse et al.(2009) as an area
containing strong sources of ammonia from agriculture and
compare the results obtained using the three channel filter
against results obtained using the new filter.
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Fig. 9. Simulated spectra in the region of the ammoniaν2 band.
Top panel shows a simulated spectrum for a standard atmosphere.
Middle panel shows contribution of background levels of ammonia.
Bottom panel shows contribution of main interfering species (water
vapour, CO2 and ozone).

The new detection filter for ammonia was created using
theν2 band centred on 967 cm−1 including all channels be-
tween 800 and 1000 cm−1 using the modelling method to es-
timateStot

ε . Here we use the modelling method as the ensem-
ble method is more difficult to apply in this case due to the
more diffuse distribution of detectable ammonia in the atmo-
sphere. As can be seen from Fig.9, this spectral region is
optically thin in the absence of cloud. The nominal NE1T

at 280 K between 800–900 cm−1 is between 0.145–0.150 K
(Cayla et al., 1995), and so background concentrations of
ammonia such as are observed in non-polluted regions or
over ocean are expected to be well below the noise level of
the instrument.

To constructSmod
ε , variability due to interfering species

was modelled considering 1σ total column perturbations to
water vapour, ozone, and carbon dioxide as defined in the
mid-latitude IG2 climatology which was also used as the
linearisation point. Variability due to atmospheric temper-
ature was modelled considering a 1σ column perturbation.
Surface temperature and emissivity variability (assuming no
spectral dependence) was modelled considering a 20 K per-
turbation and zero thermal contrast was assumed with the
first atmospheric layer. Cloudiness was modelled consider-
ing 15 independent optically thick cloud layers in the tropo-
sphere between 1 and 15 km.

The ammonia filters were applied across a region of
Asia in an area with persistent, high concentrations of
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Fig. 10. Ammonia detected across Asia for the morning overpass
on 13 May 2008 using the existing three channel filter with esti-
mated total column amounts given in mg m−2. A map of positive
detections in the 99 % confidence interval is shown in the top-right
panel of each figure. The distribution of detected ammonia for each
measurement is shown in the bottom-right panel of each figure.

Fig. 11. As in Fig.10but using using the new filter for ammonia.

ammonia due to intensive agricultural practices, as identi-
fied by Clarisse et al.(2009). Cloudy pixels were removed
using the method byHadji-Lazaro et al.(2001) to ensure
that any areas of high ammonia which may have appeared
low due to being hidden by cloud were not included. Fig-
ures10and11show ammonia as seen by the 3 channel filter
and new filter respectively for the morning overpass on the
13 May 2008. An estimated total column amount has also
been derived in this case for the 3 channel ammonia filter.
This estimate was derived by calculating a set of weights for
the 3 channels using the same methodology as for the many
channel filter, rather than using the simple 50–50 weight-
ing between target and background channels. Error analyses

Fig. 12. Ammonia as seen by IASI across Asia for the morning
overpass on 13 May 2008 using the new filter. The top panel shows
a map of landuse, where pink and purple colours correspond to agri-
culture, green colours correspond to sparsely vegetated or forested
areas, and yellow colours correspond to bare areas. Bottom panel
shows ammonia overlaid onto the landuse map. Individual IASI
pixels are larger than true scale.

performed for the new filter and three channel filter indi-
cate that the detection error for the new filter is improved
by over a factor 8 in comparison to the three channel filter,
mainly due to the reduction in random noise. This implies
that the sensitivity achieved by the many channel filter cor-
responds to averaging more than 64 orbits using the existing
filter. The number of positive detections in the 99 % confi-
dence interval (Zthresh= 2.725) was much higher for the new
filter. Figure12 shows a map of landuse derived from the
FAOSTAT database for the year 2008 (Food and Agriculture
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Organization of the United Nations, 2008) overlaid with the
ammonia field generated by the new filter to highlight the
correspondence between areas of high ammonia and inten-
sively farmed regions. Particularly high amounts of ammo-
nia are found over an intensively cultivated region of India
and Pakistan known as the Indo-Gangetic Plain. In Fig.10,
the three channel filter picks out the strongest areas of emis-
sion across the Indo-Gangetic Plain, as well as some areas
of high ammonia further north. However, much more detail
is visible using the new filter along the Indo-Gangetic Plain
in Fig. 11, with areas of high ammonia further south across
India and transport out into the Indian Ocean also visible.
There also appears to be a sharp boundary corresponding to
the beginning of the Himalaya mountains where ammonia
concentrations are expected to be lower. Using the new filter,
individual areas of agricultural production can be discerned
further north with an area of high ammonia in the Fergana
Valley near Tashkent, in Uzbekistan (in the area around 41◦ N
74◦ E), which was identified as a strong source byClarisse
et al.(2009) in their yearly averaged ammonia emissions for
2008, attributed to the pooling of agricultural emissions in
stangnant air. Also visible are areas of high ammonia further
to the north and east, north of Tian Shan Mountain Range,
Dzungaria, which were also identified as ammonia hotspots.
In Fig. 12, these areas can be seen to correspond to inten-
sively farmed regions. Tests performed on the ammonia filter
using RTTOV simulated IASI spectra for a range of desert
surfaces with realistic emissivities (E. Pavelin, Met Office,
personal communication, 2010), did not indicate any false
detections over arid regions, and so more diffuse areas of
ammonia to the south-east of these agricultural valleys over
arid areas could be due to the transport of polluted air over
the Taklamakan desert by the prevailing winds in this region.
Very little ammonia is detected in the high altitude areas of
the Himalayas and Tian Shan Mountain Range, which are
mostly uncultivated. Levels of ammonia over ocean are ex-
pected to be extremely low except in the case of transport
from polluted areas over land. Accordingly, there are signs
of transport eastward out of India over the Bay of Bengal but
no ammonia detected over the Arabian Sea to the west.

The detected total column ammonia in Figs.10 and11 is
given in mg m−2. Whether or not these values reflect the
true column amount depends on the linearity of the radia-
tive transfer, the levels of the atmosphere to which the mea-
surement is sensitive, and the conditions of thermal contrast
with the surface. In the case of ammonia, the typical profile
has a maximum in the boundary layer which quickly decays
with altitude. The atmosphere is optically thin in this region
and ammonia is weakly absorbing so radiative transfer can
be assumed to be linear. These characteristics mean that it is
reasonable to produce a conversion factor from the observed
BTD to the estimated true column amount as inClarisse
et al. (2009). This species is therefore also a suitable can-
didate for producing an estimate of the true abundance using
the method described in this paper. However, the apparent

Fig. 13. Ammonia as seen by IASI for the nighttime overpass on
13 May 2008 using the exising three channel filter with estimated
total column amounts given in mg m−2. A map of positive detec-
tions in the 99 % confidence interval is shown in the top-right panel
of each figure. The distribution of detected ammonia for each mea-
surement is shown in the bottom-right panel.

signal strength is strongly dependent on the thermal con-
trast between the first atmospheric layers and the surface, and
the column amounts for daytime ammonia are several times
higher than the total column values retrieved byClarisse et al.
(2009) using a full optimal estimation retrieval taking into ac-
count the thermal contrast conditions for this scene. Their re-
trieved values for this region reached 7.5 mg m−2 across the
Indo-Gangetic Plain for this orbit, whereas the maximum es-
timated column values for the new filter are above 20 mg m−2

in this region. Favorable thermal contrast during the day
makes the detection of ammonia easier but does mean that
estimating the true amount would be more difficult because
it depends on a knowledge of the thermal contrast conditions
between the surface and the first atmospheric layers. It is
possible, however, that this effect could be accounted for by
using ECMWF information about the thermal contrast con-
ditions to derive a scaling factor for the measured column so
that an estimate of the abundance could be derived.

The new filter is sufficiently sensitive to detect ammo-
nia at night when the surface temperature is often similar to
the lower atmospheric layers. The results for the nighttime
overpass on the 13 May 2008 are shown in Figs.13 and14.
The 99 % confidence threshold for a positive detection iden-
tifies a swath of high values in this region, as well as in sev-
eral regions further north using the new filter, whereas no
ammonia is positively identified using this threshold with the
three channel filter. The new filter estimates column amounts
for NH3 of up to 6.8 mg m−2, which is much lower than the
estimated column value during the day, and more closely
agrees with the values derived byClarisse et al.(2009) in
a full-retrieval. The nighttime spectra correspond better to

Atmos. Meas. Tech., 4, 1567–1580, 2011 www.atmos-meas-tech.net/4/1567/2011/



J. C. Walker et al.: Method for the detection of trace species in IASI data 1579

Fig. 14. As in Fig.13but using the new ammonia filter.

the assumption of zero thermal contrast used to generate the
ammonia filter and so more realistic values can be expected.
However, due to the lack of thermal contrast and therefore
sensitivity to the boundary layer, it is likely that very low
altitude ammonia is missed at night.

4 Conclusions

An extension of the brightness temperature difference
method for the detection of trace species was presented and
demonstrated for the detection of sulphur dioxide and am-
monia from MetOp IASI. The method allows the construc-
tion of many channel filters with a set of optimal weights for
the detection of the target species and suppression of other
unwanted parameters. The method is based on a one-step
joint retrieval of the target species and a brightness temper-
ature offset using the total measurement error covariance to
weight the least-squares inversion. The total measurement
error covariance is key to the suppression of unwanted pa-
rameters in the detection. This matrix can be constructed
either through consideration of appropriate perturbations to
the forward model, or by using an appropriate ensemble of
measured spectra to construct an estimate of the total mea-
surement error covariance for the background atmosphere.
Filters with very good signal to noise characteristics can be
produced using these methods which effectively suppress
the contribution of unwanted parameters, and the sensitiv-
ity of the detection of sulphur dioxide and ammonia was up
to an order of magnitude more sensitive than for existing
BTD filters. The method may be useful in scanning large
datasets quickly for an event of interest for further quanti-
tative analysis, or for applications such as hazard avoidance
where near-real-time measurements are needed. In limited
circumstances where radiative transfer is linear, there sensi-
tivity to the entire column, and where the thermal contrast

conditions with the surface can be estimated, it may be pos-
sible to perform a quantitative estimate of the total column
amount. To judge whether this is possible for ammonia fur-
ther work would be needed and the detected column would
need to be compared against results from a full retrieval. The
method should be equally applicable to other spectrometers
such as AIRS-Aqua, TES-Aura, MIPAS-ENVISAT or the
planned GMES Sentinel missions. The method is easy to use
and could help in the provision of near-real-time monitoring
of atmospheric chemistry.

Acknowledgements.This work was funded by the NERC National
Centre for Earth Observation. The authors would like to thank the
two anonymous reviewers for their valuable comments.

Edited by: H. Worden

References

Cayla, F., Tournier, B., and Hebert, P.: Performance budgets of IASI
options, Tech. rep., Centre National d’Études Spatiales, 1995.
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