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Abstract. We discuss the processing of GRAS radio oc-
cultation (RO) data done at the GRAS Satellite Application
Facility. The input data consists of operational near-real
time bending angles from December 2010 from the Metop-
A satellite operated by EUMETSAT. The data are processed
by an Abel inversion algorithm in combination with statis-
tical optimization based on a two-parameter fit to an MSIS
climatology. We compare retrieved refractivity to analyses
from ECMWF. It is found that for global averages, the mean
differences to ECMWF analyses are smaller than 0.2 % be-
low 30 km (except near the surface), with standard deviations
around 0.5 % for altitudes between 8 and 25 km. The current
processing is limited by several factors, which are discussed.
In particular, the penetration depth for rising occultations is
generally poor, which is related to the tracking of the L2 sig-
nal. Extrapolation of the difference between the L1 and L2
signals below the altitude where L2 is lost is possible and
would generally allow deeper penetration of retrieved refrac-
tivity profiles into the lower troposphere.

1 Introduction

Radio occultation (RO) uses the radio signals continuously
transmitted by the GPS satellites to measure the phase
change as the radio signal path skirts the Earth’s atmosphere
on its way from the transmitting GPS to a receiver on another
orbiting satellite. The phase measurements can be processed
into vertical profiles of atmospheric parameters, such as re-
fractivity, temperature, pressure and humidity (Kursinski et
al., 1997; Healy and Eyre, 2000). RO is an additional ap-
plication of GPS signals and RO instruments are currently
in orbit on both operational and research satellites. Using

Correspondence to:K. B. Lauritsen
(kbl@dmi.dk)

satellite observations more effectively will improve weather
forecasting as well as climate change monitoring. RO data
are becoming increasingly important for these applications
(Anthes, 2011).

The radio occultation method should be regarded as com-
plementary to passive atmospheric sounders; it has a high
vertical resolution in atmospheric regions and it operates on
completely different measurement principles (Collard and
Healy, 2003). The fact that RO measurements do not merely
reproduce other measurements is clearly shown within the
field of Numerical Weather Prediction (NWP), where assim-
ilation of RO data has a substantial positive impact (Healy et
al., 2005; Healy and Th́epaut, 2006; Cardinali, 2009). One of
the key advantages of RO measurements is that they can be
assimilated without bias correction. Therefore, they can po-
tentially improve the assimilation of satellite radiance mea-
surements by correcting model biases and providing “an-
chor points” to prevent adaptive, variational bias correction
schemes drifting towards the NWP model climatology (see
e.g.Dee, 2008). Within the field of climate monitoring (and
for detection of climate change) the possibilities to accurately
observe climate trends and to make bias corrections from in-
dependent measurements based on completely different mea-
surement principles are very important, see e.g.Leroy et al.
(2006).

The Global Navigation Satellite System Receiver for At-
mospheric Sounding (GRAS) is an RO instrument onboard
the Metop-A satellite, operated by the European Organisa-
tion for the Exploitation of Meteorological Satellites (EU-
METSAT) (Luntama et al., 2008). GRAS has occultation
antennas looking forward and backward relative to Metop’s
flight direction, and both are able to track two GPS satel-
lites simultaneously. With the current GPS constellation of
around 30 satellites, more than 650 occultations are tracked
every day. The profiles are irregularly distributed across the
globe, providing good overall spatial coverage. GRAS is ca-
pable of tracking in “phase-locked loop” (at 50 Hz) and in
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“raw sampling mode” (also called “open-loop”; at 1000 Hz)
(Bonnedal et al., 2010). The resulting data profiles extend
from the lowest part of the atmosphere up to about 80 km.

Metop-A was launched in October 2006 and is part of
the EUMETSAT Polar System (EPS). The EPS is designed
for operational data provision, which means that observa-
tions are rapidly made available to users. The near real time
(NRT) timeliness requirement for level 1 data is availabil-
ity to users within 2 h 15 min after sensing time. Each orbit
of data (about 100 min) is down-linked over Svalbard, pro-
cessed at EUMETSAT, and disseminated to users. Users in-
clude e.g. NWP centers worldwide. The data are also pro-
cessed further into so-called level 2 geophysical and level 3
climate products at the Satellite Application Facilities (SAF),
which are specialized development and processing centers in
member states of EUMETSAT. The NRT timeliness on op-
erational SAF products is 3 h. For more information and a
general introduction of EPS, seeKlaes et al.(2007).

Processing of operational GRAS/Metop bending an-
gle (BA) data from EUMETSAT is done within the
GRAS SAF at the Danish Meteorological Institute (DMI),
with partners: European Centre for Medium-range Weather
Forecasts (ECMWF), Institute d’Estudis Espacials de
Catalunya (IEEC, Spain), and Met Office (UK). The objec-
tives of the GRAS SAF are to deliver operational RO prod-
ucts from the GRAS instruments onboard the Metop satel-
lites, and to supply the Radio Occultation Processing Pack-
age (ROPP) containing modules for pre-processing and as-
similation of the RO data into NWP models (Offiler et al.,
2008). The near real-time GRAS SAF data products consist
of profiles of refractivity, temperature, pressure, and humid-
ity, whereas off-line and reprocessing products also include
bending angles and gridded climate data (Lauritsen et al.,
2008). The GRAS SAF receives NRT level 1 bending angle
data processed by EUMETSAT Central Applications Facility
(CAF). These data are further processed to vertical profiles
of refractivity (level 2) using state-of-the art inversion algo-
rithms. The products are formatted as BUFR files and dis-
seminated over the Global Telecommunication System net-
work to NWP users worldwide within 1:41 h (average value),
1:48 h (90 % of the profiles), and close to 100 % of the pro-
files within the NRT timeliness of 3 h from observation time
(see, e.g. the GRAS SAF website:http://www.grassaf.org).

In the present paper we focus on the validation of refractiv-
ity profiles derived from operational NRT bending angle data
from GRAS/Metop. The remaining parts of the paper are or-
ganized as follows: in Sect.2 we give a brief description of
the data used in this study. In Sect.3we give a short overview
of the processing and the GRAS RO data. Section4 presents
the analyses of GRAS refractivity data. Section5 contains
discussions and conclusions.
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Fig. 1. Geographical distribution of occultations observed by the
GRAS instrument onboard Metop-A during the first 10 days of De-
cember 2010.

Fig. 1. Geographical distribution of occultations observed by the
GRAS instrument onboard Metop-A during the first 10 days of De-
cember 2010.

2 Description of GRAS data

The present study is based on the occultations observed by
the GRAS instrument during the first 10 days of Decem-
ber 2010. The about 6000 occultations observed during this
time period have a global distribution typical for observa-
tions made from a satellite in a Sun-synchronous, low-Earth
orbit: approximately uniform in longitude but with a higher
density (per area unit) toward the poles, and with a charac-
teristic local-time structure. Figure1 shows the geographical
distribution of occultation events.

For a Sun-synchronous satellite like Metop-A, with a
nodal precession rate of the satellite orbit that precisely
matches the Earth’s orbit around the Sun, the distribution
of observations in space and local time is nearly station-
ary. The local times for equatorial crossings do not change
with time. Figure2 shows the distributions in longitude,
latitude and local times for the studied period. The overall
distribution is largely governed by the orbit of the Metop-
A satellite whereas the detailed structure also depends on
the GRAS instrument observational characteristics and on
the transmitting GPS satellite orbits. The gaps around local
times 09:30 and 21:30 – which is when the Sun-synchronous
Metop-A satellite passes the equator – are due to the fact
that the GRAS instrument observes the horizon at a distance
of around 3000 kilometers. The GPS satellites are predomi-
nantly setting and rising in certain azimuths as viewed from
Metop-A, and due to the instrument characteristics obser-
vations are done most efficiently in the forward and back-
ward directions. The equatorial region cannot be observed
from directly above the equator. The distribution of local
times broadens toward higher latitudes, but the diurnal cycle
is never fully sampled except near the poles which is relevant
for the generation of climate data sets (Pirscher et al., 2007).
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Fig. 2. Latitude, longitude, and local time (LT) distribution of oc-
cultations observed by the GRAS instrument onboard Metop-A dur-
ing December 2010.

Fig. 2. Latitude, longitude, and local time (LT) distribution of occultations observed by the GRAS instrument onboard Metop-A during
December 2010.

3 Processing of GRAS data

The processing to refractivity is based on operational
bending angles processed by EUMETSAT CAF using the
GRAS Processing Product Facility (PPF) version 2.16 from
1 July 2010. The bending angles consist of L1 and L2 re-
trieved from the observed L1 and L2 excess phases and a
linear combination (LC) of L1 and L2 in order to reduce the
influence of the ionosphere. The bending angles are based on
geometric optics and accordingly the BA data below 10 km
are not optimal for NWP and refractivity calculations (von
Engeln et al., 2009). The operational input data may also
contain gaps and missing values for bending angles and lat-
itudes and longitudes. We do not process over data gaps but
cut off the BA data at the first instance of a missing value for
either the bending angle or the latitude and longitude coor-
dinates. If there are more than one block of data we use the
longest block.

For the processing to the refractivity in the upper strato-
sphere and mesosphere, the GRAS SAF operational system
includes an approach referred to as optimal linear combina-
tion (OLC) of bending angles (Gorbunov, 2002). This ap-
proach gives the statistically optimized neutral atmosphere
bending angle calculated from the observed L1 and L2 bend-
ing angles as well as a background profile based on a spectral
representation of the MSIS90 climatological model (Hedin,
1991) transformed to bending angle space. Thus, it combines
ionospheric correction and statistical optimization (SO) in a
single least squares framework. The OLC method is an op-
timal filter based on the estimate of the variances and co-
variances of L1 and L2 signals and noises neglecting cross-
correlations between different impact parameters (Gorbunov,
2002). The background profile used in the SO for a given

occultation is found through a global search in a small li-
brary of MSIS bending angles. By using a global search it is
possible to find a background profile that fits the observations
better than the local MSIS profile, while still being realistic
in a climatological sense. In the searching process the MSIS
bending angles are scaled and shifted (in bending angle log-
space) in a least squares fit to the observed (non-optimized)
LC bending angle between 40 and 60 km. However, the fit is
not performed at altitudes where the MSIS bending angle de-
viates more than 30 % from the observed LC bending angle.
More than 30 % deviation can be explained by ionospheric
residual noise in the LC bending angle and stronger noise in
the L2 channel. Currently about 6 % of all profiles are dis-
carded because of such variations. The chosen background
profile is the one where the scaling and shifting is the small-
est in the sense described in more detail below. This way
of choosing the background profile differs from the approach
by Lohmann(2005) as well as that ofGobiet and Kirchen-
gast(2004) who suggested to choose the model profile with
the best least squares fit. In order to eliminate impact pa-
rameter ambiguities, a method consisting of finding the near-
est monotonic impact parameter sequence with respect to the
L2-norm is employed.

The main steps in the processing from GRAS bending an-
gle to refractivity are summarized below:

1. Elimination of impact parameter ambiguities.

2. Linear interpolation to a fixed impact parameter grid
with steps of about 100 m.

3. Smoothing of bending angles using a sliding cubic poly-
nomial fit with a window of about 1 km.

4. Identification of a climatological bending angle profile:
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– Searching through a bending angle model (for ev-
ery month, every 10◦ latitude, and every 20◦ longi-
tude) based on the MSIS90 climatological model.

– For each model bending angle,εmodel, in this
search, calculation of two parameters (an offset,
lnα, and a multiplication factor,β, in bending an-
gle log-space) by linear regression to the data in the
height interval 40–60 km (i.e. such that the quantity∑

(lnα+β lnεmodel− lnεLC)2 is minimized, where
the summation is performed over the regression
height interval.

– Identification of the model bending angle for which
(lnα, β −1) has the smallest L2-norm.

5. Optimal Linear Combination:

– Calculation of strongly smoothed ionospheric sig-
nal (L1–L2).

– Estimation of ionospheric signal and noise vari-
ance using the highest part (above 50 km) of the
occultation. There is an upper height limit that ex-
cludes strong variations from the signal-band noise
estimates. The limit is estimated dynamically and
never exceeds 80 km.

– Calculation of relative mean deviation of neutral
bending angle from the scaled and offset model
bending angle using the data at heights 12–35 km
(giving an estimate of the model variance).

– Solving a set of linear equations taking into account
the estimated variances.

6. Inversion to refractivity via the Abel transform using
piece-wise analytical integration and asymptotic correc-
tion (i.e. assuming exponential decrease of the bending
angle profile above∼100 km).

The refractivity profiles are quality-controlled and flagged
as “bad” (and does not appear in the validation results shown
in Sect.4) if one of the following is true: (i) refractivity pro-
file does not reach below 20 km (4–5 % of profiles); (ii) one
or more points in the refractivity profile below 35 km differ
by more than 10 % from the corresponding profile obtained
from ECMWF fields (1–1.5 % of profiles); (iii) refractivity
profile reaches below the ECMWF model surface (0.8–1.0 %
of profiles); (iv) refractivity is negative (0.05–0.1 % of pro-
files). These criteria flag about 7 % of all profiles (percent-
ages for each criteria are shown in parentheses).

4 Results

In this section, the retrieved refractivity profiles are com-
pared to the corresponding ECMWF profiles obtained by for-
ward modelling analysis fields (analyses are available every
six hour at 00:00, 06:00, 12:00, and 18:00 UTC; we use the

analysis closest to the observation time) of temperature, pres-
sure and humidity to refractivity as a function of altitude at
the location of the occultations. The location is provided with
the bending angle data, and is for each occultation given by
the latitude and longitude of the point on the straight line
between the occulting GPS satellite and the Metop satellite
that grazes the Earth’s surface. This corresponds to a tangent
point altitude between 10 and 15 km (Foelsche et al., 2011).
Statistics are separated into high latitudes (above 60◦ N and
below 60◦ S), mid latitudes (30–60◦ S and 30–60◦ N), and
low latitudes (between 30◦ S and 30◦ N).

Figure3 shows the results for the first 10 days of Decem-
ber 2010 (cf. Fig.1). Globally (Fig.3a), the mean difference
to the model profiles are within 0.2 % in most of the inter-
val below 30 km (except near the surface). Above 30 km,
there is an increasing positive bias relative to the model pro-
files, which mainly is believed to be due to a bias in the
ECMWF model around 40 km (S. Healy, personal commu-
nication, 2009). For reference the figure also contains the
statistical comparison to ECMWF short-range forecasts. It
is observed that this yields slightly larger standard deviations
above about 10 km and a slightly larger bias at about 30–
40 km. Although the approach implemented for statistical
optimization at the GRAS SAF seeks to avoid introducing
biases (by finding a climatological profile fitting the data be-
tween 40 and 60 km), a bias may nevertheless be introduced
at this level of processing, possibly because of limitations
in the approach and limitations in the MSIS90 climatology.
Below about 8 km, data are affected by atmospheric multi-
path, which results in a bias in retrieved refractivity because
the operational GRAS data are processed using geometri-
cal optics. The standard deviation is about 0.5 % between
8 and 25 km. The standard deviation increases significantly
above 30 km mainly because of the exponential decrease of
refractivity with altitude. The statistics at high (Fig.3b), mid
(Fig. 3c), and low (Fig.3d) latitudes are somewhat similar
to the global statistics, though with a significantly increasing
bias in the lower troposphere as one goes towards lower lati-
tudes. This again is due to increased multi-path in the moister
tropical and extra-tropical regions, in combination with the
geometrical optics processing. At low latitudes (Fig.3d), the
standard deviation is a minimum (about 0.25 %) in the upper
troposphere and increases to a local maximum (about 0.7 %)
near the tropopause.

The right panels in each of Fig.3a–d, show the number of
profiles as a function of altitude. These indicate the penetra-
tion depth, and show that less profiles reach into the lower
troposphere at lower latitudes. In general, the cut-off in indi-
vidual profiles is determined by the tracking of the L2 signal.
Without the L2 signal, the standard ionospheric correction
cannot be performed and therefore the bending angle is cur-
rently not processed for those altitudes where the L2 signal
is missing. In particular for rising occultations, the L2 sig-
nal is not tracked in the lower troposphere, and profiles do
not reach much below 10 km. However, a common approach
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Fig. 3. Statistical comparisons to ECMWF analyses (blue) and
short-range forecasts (red) of refractivity derived from GRAS oc-
cultations for the first 10 days of December 2010. (a): Global,
(b): high latitudes (above 60◦), (c): mid latitudes (between 30◦ and
60◦), (d): low latitudes (below 30◦). The mean difference (solid)
and standard deviation around the mean (dashed) are indicated in
the panels to the left, whereas the number of profiles included in the
statistics is indicated in the panels to the right.

Fig. 3. Statistical comparisons to ECMWF analyses (blue) and short-range forecasts (red) of refractivity derived from GRAS occultations
for the first 10 days of December 2010.(a) Global,(b) high latitudes (above 60◦), (c) mid latitudes (between 30◦ and 60◦), (d) low latitudes
(below 30◦). The mean difference (solid) and standard deviation around the mean (dashed) are indicated in the panels to the left, whereas
the number of profiles included in the statistics is indicated in the panels to the right.
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Fig. 4. Penetration depth of GRAS occultations for the first 10 days of December 2010, as a function of latitude.(a) Rising occultations with-
out “L2 extrapolation”,(b) setting occultations without “L2 extrapolation”,(c) rising occultations including “L2 extrapolation”,(d) setting
occultations including “L2 extrapolation”.
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is to extrapolate the difference between the L1 and the L2
bending angle to lower altitudes (Kuo et al., 2004), and it is
anticipated that the processing of bending angle at EUMET-
SAT CAF will include such extrapolation in the near future
(A. von Engeln, personal communication, 2010). This al-
lows the generation of an extrapolated L2 signal, and thus,
the ionospheric correction can be performed down to alti-
tudes where the L1 CA signal is tracked in phase-locked
loop mode. Figure4 shows the penetration depth (the alti-
tude of the lowest point in the profiles) for rising (left) and
setting (right) occultations separately, and without the “L2
extrapolation” (top) and including “L2 extrapolation” (bot-
tom). Thus, including the “L2 extrapolation”, most profiles
will reach the lower troposphere. The improvement in pene-
tration depth is most noticeable for rising occultations, but
also setting occultations will benefit from the “L2 extrap-
olation”. The evaluation of the quality of the extrapolated
profiles is currently ongoing in collaboration with EUMET-
SAT CAF.

5 Conclusions

In this paper we have discussed operational bending
angle data from December 2010 from the operational
GRAS/Metop satellite, and shown statistical comparisons
between retrieved refractivity generated at the GRAS SAF
and ECMWF analyses. For global averages, the mean dif-
ferences to ECMWF analyses are smaller than 0.2 % below
30 km, with standard deviations around 0.5 % for altitudes
between 8 and 25 km. The penetration depth for rising oc-
cultations is generally poor, which is related to the tracking
of the L2 signal. An extrapolation of the L2 bending angle to
lower altitudes, currently under evaluation by the EUMET-
SAT CAF and the GRAS SAF, is anticipated to improve the
penetration in the near future.

Current RO bending angle GRAS data are obtained from
closed loop sampling and derived from geometrics optics in-
version (von Engeln et al., 2009). Therefore the data only
have limited information about the atmosphere below about
8 km. Future GRAS data will be based on wave optics in-
version and include both closed loop and open loop (raw
sampling) data. This will significantly improve the profile
penetration statistics especially in tropical regions (see, e.g.
Gorbunov et al., 2011).
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