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Abstract. A new model to describe the ascent of sound-
ing balloons in the troposphere and lower stratosphere (up
to ∼30–35 km altitude) is presented. Contrary to previous
models, detailed account is taken of both the variation of the
drag coefficient with altitude and the heat imbalance between
the balloon and the atmosphere. To compensate for the lack
of data on the drag coefficient of sounding balloons, a ref-
erence curve for the relationship between drag coefficient
and Reynolds number is derived from a dataset of flights
launched during the Lindenberg Upper Air Methods Inter-
comparisons (LUAMI) campaign. The transfer of heat from
the surrounding air into the balloon is accounted for by solv-
ing the radial heat diffusion equation inside the balloon. In
its present state, the model does not account for solar radi-
ation, i.e. it is only able to describe the ascent of balloons
during the night. It could however be adapted to also rep-
resent daytime soundings, with solar radiation modeled as a
diffusive process. The potential applications of the model
include the forecast of the trajectory of sounding balloons,
which can be used to increase the accuracy of the match tech-
nique, and the derivation of the air vertical velocity. The lat-
ter is obtained by subtracting the ascent rate of the balloon in
still air calculated by the model from the actual ascent rate.
This technique is shown to provide an approximation for the
vertical air motion with an uncertainty error of 0.5 m s−1 in
the troposphere and 0.2 m s−1 in the stratosphere. An ex-
ample of extraction of the air vertical velocity is provided
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in this paper. We show that the air vertical velocities de-
rived from the balloon soundings in this paper are in general
agreement with small-scale atmospheric velocity fluctuations
related to gravity waves, mechanical turbulence, or other
small-scale air motions measured during the SUCCESS cam-
paign (Subsonic Aircraft: Contrail and Cloud Effects Spe-
cial Study) in the orographically unperturbed mid-latitude
middle troposphere.

1 Introduction

Sounding balloons are extensively used in meteorological
forecasting and research, to the extent that several hundreds
of them are sent daily into the atmosphere worldwide. They
are mostly used to carry radiosondes aloft, enabling for the
in situ recording of atmospheric variables with high temporal
frequency and precision. This measurement technique stands
among the most popular, for it is not subject to the same
limitations as the majority of remote sensing instruments,
such as decreasing accuracy with altitude or susceptibility
to cloud cover.

Despite the wide usage of sounding balloons, rather lim-
ited effort has been put into the detailed modeling of their
ascent. This results originally from the practice of storing
radiosonde temperature, wind and humidity data only on
a small number of so-called mandatory and significant lev-
els (Alexander et al., 2010) with very coarse vertical reso-
lution. Yet, for special cases radiosonde vertical ascent ve-
locities have been analyzed in detail; e.g.Shutts et al.(1988)
calculated the momentum flux of a single strong gravity wave
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from fluctuations in balloon ascent velocities. However,Zink
and Vincent(2001) state that smaller fluctuations can be due
to measurement errors of radiosonde altitude or changing
drag coefficient of the balloon, and recommend to calculate
the vertical perturbation velocity from observed temperature
fluctuations, assuming the intrinsic frequency of the con-
tributing waves to derive the vertical momentum flux. Their
statement nevertheless lacks support by evidences, and we
expect their method to provide a low-accuracy estimation of
the vertical air motion.

In an effort to obtain information also about atmospheric
smaller scale wave activity the World Climate Research Pro-
gram’s (WCRP’s) Stratospheric Processes and their Role in
Climate (SPARC) project started to save the high-resolution
radiosonde data (Hamilton and Vincent, 1995), archiving
them at the SPARC Data Center.1 Still, a general modeling
approach for radiosonde ascents in dependence on the state
of the atmosphere is lacking.

A coarse modeling approach for sounding balloon ascents
assuming constant ascent velocities has been used recently
to improve the precision of the “match” technique (Engel,
2009). The latter consists in probing the same air par-
cel twice using two sounding balloons launched at different
times (typically a few hours apart) and locations (typically
tens to hundreds of kilometers apart) in order to obtain in-
formation on the time evolution of the air parcel’s proper-
ties, e.g. with respect to gases, aerosols or cloud particles.
The match technique has been used in the past to compute
ozone loss rate in the lower stratosphere at the poles (Rex
et al., 1999), but the ozone match flights did not rely on
the use of a balloon ascent model; the procedure consisted
in launching the first balloon, then precisely forecasting the
trajectories of the air parcels measured by the ozone sonde,
and finally launching a second balloon from a location down-
stream in order to measure the air parcel a second time. In
order to improve the quality for the match by the second
sounding, a new procedure involving balloon ascent mod-
eling has been proposed recently (Engel, 2009). Assuming
a constant ascent rate of 5 m s−1 for the balloon superim-
posed on weather forecast or analysis data, this technique
is currently used to study the evolution of supersaturations of
water vapor with respect to ice in cirrus clouds, which should
eventually lead to a better understanding of the role of cirrus
clouds in climate change.

As the interest in sounding balloon modeling has reju-
venated only recently, there are surprisingly few more pre-
cise model attempts. One is the model recently proposed by
Wang et al.(2009) enabling the extraction of the air verti-
cal velocity from radiosonde data. Their method is based on
a decomposition of the balloon ascent rate into a contribution
representing the balloon ascent in still air and a contribution
representing vertical air motion. The balloon ascent rate in
the absence of vertical winds is computed using a model and

1http://www.sparc.sunysb.edu/html/hres.html

the radiosonde data. Air vertical velocity is then obtained by
subtracting the ascent rate in still air from the actual ascent
rate.Wang et al.discuss the advantages of this method over
other techniques aimed at deriving the air vertical velocity.
Their model for the ascent of a sounding balloon in still air
is based on the balloon’s momentum conservation equation.
From this equation, they obtain an expression of the balloon
ascent rate in still air as a function of the balloon volume
and of the drag coefficient. The balloon volume change with
altitude is computed from the balloon volume at ground by
assuming thermal equilibrium with ambient air at all times
during the ascent. The values of the drag coefficient – taken
as constant above 5 km altitude – and of the balloon volume
at ground are optimized for each flight so as to minimize the
median departure of the modeled ascent rate in still air from
the actual ascent rate.

Other ascent models have been developed for different
types of balloons, especially zero-pressure balloons (Musso
et al., 2004; Palumbo, 2007). These models often involve
a thorough treatment of the radiative and convective trans-
port of heat inside the balloon. The most advanced ones take
geometric factors and the variation of the balloon drag co-
efficient with altitude into account (Palumbo, 2007). These
models can, however, not be applied to the case of sound-
ing balloons, since they rely on empirical relations – relat-
ing for example the drag coefficient to the Reynolds and
Froude numbers – which are valid for zero-pressure bal-
loons only. As a matter of fact, the latter differ from the
sounding balloons with respect to at least two important
points: (a) their size and their payload weight are of the or-
der of 30 to 70 times higher, hereby providing them a much
stronger inertia and diminishing consequently their sensibil-
ity to atmospheric disturbances; and (b) their envelope is
not close to spherical but rather of a much more complex
shape, thereby significantly influencing the dynamics of their
drag coefficient.

In the present work, a model for the ascent of a sound-
ing balloon in still air is developed, going beyond the work
by Wang et al.(2009) by taking into account both the varia-
tion of the balloon drag coefficient with altitude and the heat
imbalance between the balloon and the ambient air. In or-
der to keep the model manageable, three major assumptions
are made. Firstly, the balloon is approximated by an almost
spherical bubble of gas, the latter being assumed to follow
the ideal gas law. This approximation subtends that the bal-
loon envelope is not resolved in the model, which implies
that the pressure inside and outside of the balloon are con-
sidered to be equal. It should be noted that the balloon shape
is not restricted to a perfect sphere so as to account for the
effect of the air flow around the balloon and the presence
of the payload. Secondly, it is assumed that the process re-
sponsible for the propagation of heat inside the balloon can
be described as diffusion. This comprises not only molec-
ular diffusion, but also convection and radiative heat trans-
fer, which are both assumed to be representable by diffusive
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laws. One consequence of this approximation is that only
night flights can be modeled accurately. Thirdly, the temper-
ature distribution inside the balloon is assumed to be spher-
ically symmetric. The permissibility of this approximation
is granted by the fact that deviations of the balloon shape
from spherical remain limited. Despite these assumptions,
the present model is expected to enable more precise balloon
trajectory forecasts and characterizations of the air vertical
velocity than other currently available models.

The theoretical background underpinning the balloon as-
cent model is developed in Sect.2. In Sect.3, the ascent
model is described in detail. Its evaluation and a discussion
of its application to the derivation of the air vertical velocity
are presented in Sect.4. Section5 provides a conclusion and
a discussion of potential improvements to the present model.

2 Theoretical background

2.1 Balloon ascent rate

The expression of the ascent rate of the balloon in still air is
derived from the balance between the “free lift”,FFL, and the
drag force,FD (Wang et al., 2009). The free lift corresponds
to the net upward force acting on the balloon and is expressed
as the difference between the buoyancy force and the total
weight of the balloon (Yajima et al., 2009),

FFL = (ρaV −mtot)g, (1)

whereρa denotes the ambient air mass density,V the balloon
volume,mtot the balloon total mass – namely the sum of the
respective masses of the balloon envelope, of the lifting gas
and of the payload – andg the acceleration due to gravity at
the surface of the Earth. The expression for the drag force in
still air reads

FD =
1

2
cDρaSvz

2, (2)

wherecD refers to the drag coefficient,S to the reference area
andvz to the balloon ascent rate in still air. The reference area
can be chosen arbitrarily, so thatcD is a priori not uniquely
defined for a given drag force. In this study,S is chosen as the
cross-sectional area of the sphere with same volume as the
balloon. This choice follows the standard definition of the
reference area for non-spherical objects (Loth, 2008). The
advantage of this choice is that the departure of the balloon
shape from spherical is entirely captured and described by
the drag coefficient only. Denoting byR the radius of the
volume-equivalent sphere,S andV can be written as:πR2

and(4/3)πR3, respectively.
The expression ofvz is obtained by equating Eqs. (1) and

(2),

vz =

√
8Rg

3cD

(
1−

3mtot

4πρaR3

)
, (3)

whereV andS have been replaced by their respective ex-
pressions as a function of the volume-equivalent sphere ra-
dius,R, hereafter called “balloon effective radius.” Provided
that mtot is known and thatρa can be determined using ei-
ther a numerical weather forecast (in the case of Eq. (3) be-
ing used to forecast the balloon trajectory) or using the ra-
diosonde data recorded during the balloon ascent (in the case
of Eq. (3) being used a posteriori for the derivation of the
vertical air motion), the computation ofvz from Eq. (3) still
requires the knowledge ofR andcD. The balloon effective
radius, as a result of the decreasing ambient air pressure, in-
creases during the balloon ascent. If the expansion of the
balloon volume was treated as a purely adiabatic process, the
temperature difference between the ambient air and the bal-
loon would continue to increase with altitude, for the envi-
ronmental lapse rate is smaller than the adiabatic lapse rate.
As a consequence, heat transfer from the ambient air into the
balloon must also be taken into account if the variation of the
balloon volume with altitude is to be determined physically.
Heat transfer is resolved in the present case by solving the
radial heat diffusion equation inside the balloon with a pre-
scribed Dirichlet boundary condition at the balloon surface,
as discussed in more detail in Sect.2.2. The dynamics of the
drag coefficient are discussed in Sect.2.3.

2.2 Heat diffusion inside the balloon

The variation of the balloon effective radius (R) with altitude
results from both adiabatic expansion and heat transfer from
the surrounding air into the balloon. The heat flux at the
balloon surface is assumed to propagate inside the balloon
volume by means of diffusion (see Sect.1). In our model ap-
plications we restrict heat diffusion to be only molecular; the
case where also eddy diffusion or convection are assumed to
take place is discussed in Sect.5. The temperature distri-
bution inside the balloon,Tb(r,t), is assumed to be spheri-
cally symmetric and therefore to obey the radial heat diffu-
sion equation (Carslaw and Jaeger, 1959),

∂Tb

∂t
=

〈D〉

R2

1

r2

∂

∂r

(
r2∂Tb

∂r

)
, (4)

where〈D〉 = 〈κ/(ρbcp)〉 is the mean molecular heat diffu-
sion coefficient averaged over the balloon volume,r ∈ [0,1]

denotes the radial coordinate non-dimensionalized by the
balloon effective radius (R) and t refers to time. The nor-
malization of the radial coordinate byR simplifies the dis-
cussion of the model in Sect.3. In the expression for the
mean molecular heat diffusion coefficient,κ refers to the lift-
ing gas thermal conductivity, which is a known function of
Tb (see e.g.Vargaftik et al., 1994, for the thermal conductiv-
ity of hydrogen and helium),ρb denotes the lifting gas mass
density, deduced fromTb and the pressure using the perfect
gas law,cp is the lifting gas specific heat capacity at con-
stant pressure, taken here as constant, and〈·〉 refers to the
average over the balloon volume. Regarding the boundary
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conditions, the lifting gas temperature at the balloon surface
is assumed to be the same as the ambient air temperature,
viz. Tb(r = 1) = Ta. At the balloon center, the heat flux is
imposed to vanish as a result of the symmetry of the problem,
viz. (∂Tb/∂r)r=0 = 0.

Equation (4) presents a simplification, because the work
and convection terms associated with the expansion of the
gas are not considered. This avoids the requirement of using
the mass conservation equation to close the system. It should
be noted that the suppression of the expansion terms is equiv-
alent to considering the gas as incompressible; in particular,
it implies that the balloon effective radius remains constant
while heat diffuses. This constraint is justified for the small
time intervals (0.3–1 s, see Sect.3) over which heat diffusion
is evaluated using Eq. (4). At the end of each time interval,
both the temperature distribution and the balloon effective
radius are corrected to account for the gas expansion. The
correction procedure will be described later in Sect.3.

The molecular heat diffusion coefficient is approximated
by its average over the balloon volume. This approximation
constitutes a correction to the fact that heat convection is not
taken into account in the present model. In addition,〈D〉 is
assumed to be constant over time intervals of a few seconds.
This is granted because so short time intervals correspond to
just a few percent of the characteristic time of diffusion (see
discussion below). The assumption of constant〈D〉 is par-
ticularly valuable since it turns Eq. (4) into a simple partial
differential equation.

Under these conditions Eq. (4) is amenable to an analytical
solution (Carslaw and Jaeger, 1959). The latter is expressed
as a Fourier series whose coefficients involve the computa-
tion of integrals over the radial coordinater, requiring sig-
nificant computational effort. In the balloon ascent model,
we rather solve Eq. (4) numerically by the Finite Element
Method. For a description of the Finite Element Method ap-
plied to the problem of heat diffusion, see e.g.Lewis et al.
(1996). The analytical solution is however useful in two dif-
ferent aspects. Firstly, it can be used to estimate the magni-
tude of the characteristic time of diffusion,τ = R2/(π2D).
The estimate is calculated in AppendixA. It is found thatτ
decreases from∼ 900 s at ground to∼ 300 s at 30 km alti-
tude, validating that the temperature distribution inside the
balloon varies little over time intervals of a few seconds.
Secondly, the analytical solution can be used to study the
convergence of the finite element solution in simple cases of
reference. Evidences for the convergence of the numerical
solution are provided in AppendixB.

2.3 Balloon drag coefficient

In this section, the dynamics of the drag coefficient of a per-
fect sphere are detailed first. These are then used as a basis
for the discussion of the drag coefficient of spheroids, aimed
at illustrating the case of almost spherical objects. From
these two steps, the current knowledge on the drag coefficient

of objects placed in a cross-flow is found to be insufficient to
precisely model the balloon ascent. To compensate for this,
information on the drag coefficient of sounding balloons is
extracted from experimental flights in a third step.

2.3.1 Drag coefficient of a perfect sphere

As pointed out by numerous experimental studies (e.g.,Son
et al., 2010), the drag coefficient of a perfect sphere is mainly
a function of two other dimensionless numbers, namely the
Reynolds number,Re, and the free-stream turbulence inten-
sity, Tu (see below). The Reynolds number is a measure of
the ratio of inertial energy,ρavz

2, to viscous energy,µvz/R,
whereµ is the dynamic viscosity of the fluid. Consequently,
Re = ρaRvz/µ quantifies the relative importance of these
two types of energies for given flow conditions. In the case
of a sounding balloon, whose typical effective radius is of the
order of 1 m at ground and mean ascent rate of the order of
5 m s−1, the Reynolds number decreases from∼8–9× 105

at ground to∼6–9× 104 at 30 km altitude. In this range of
Reynolds numbers, the drag coefficient of perfect spheres
undergoes a sudden increase, referred to as thedrag crisis,
as the Reynolds number decreases and experiences a transi-
tion from the super- to the sub-critical regimes (Vennard and
Street, 1976). The drag crisis is explained by a transition
of the boundary layer from turbulent to laminar asRe de-
creases, which advances the position of the boundary layer
separation point upstream at the surface of the sphere (Ven-
nard and Street, 1976). In summary, for a balloon ascend-
ing in the atmosphere the sequence of dynamical changes is
as follows: height increases→ air density decreases→ Re

decreases→ boundary layer turns from turbulent to lami-
nar→ boundary layer detachment point advanced upstream
at the surface of the balloon→ drag coefficient increases.
According toAchenbach(1972), the critical Reynolds num-
ber at which the drag crisis occurs, lies in the range 3.5–
3.8× 105 in the case of a negligible free-stream turbulence
intensity (Tu = 0.45 %). His experimental curve obtained
from a rigid sphere held fixed in space in a cross-flow wind
tunnel is partly reproduced in Fig.1. It can be observed that
in the super-critical regime (Re > 3.5×105) the drag coef-
ficient slightly decreases from its starting value of∼0.1 at
Re = 106, then rapidly increases during the drag crisis, be-
fore stabilizing in the sub-critical regime (Re < 3.5× 105)
where it remains almost constant at a value of∼ 0.5.

The free-stream turbulence intensity,Tu, is defined as the
ratio of the standard deviation of the incident air velocity
fluctuations to the mean incident air velocity (e.g.,Son et al.,
2010). Contrary toRe, Tu is purely a property of the fluid.
As the free-stream turbulence intensity is increased, the crit-
ical Reynolds number is observed to shift to lower values
(Son et al., 2010). This is explained by the turbulence in-
tensity delaying the boundary layer transition from turbulent
to laminar, hereby leading to a drag crisis at lower Reynolds
numbers. The experimental drag curves ofSon et al.(2010)
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Fig. 1. Drag coefficient of a sphere as a function of the Reynolds
number:Tu = 0.45 % (-· - · -), data fromAchenbach(1972); Tu =

4 % (©), Tu = 6 % (�), Tu = 8 % (1), data fromSon et al.(2010).

characteristic for a sphere held fixed in space at three differ-
entTu values are also reproduced in Fig.1, where the term
“drag curve” refers to the curve ofcD as a function ofRe at
givenTu. It can be observed that a level of free-stream turbu-
lence as low as 4 %, which is a typical value of the turbulence
intensity of the free troposphere (e.g.,Hoyle et al., 2005), is
sufficient to decrease the value of the critical Reynolds num-
ber by more than 50 % as compared to the turbulence-free
curve, leading to a decrease ofcD by as much as 70 % in the
range of Reynolds numbers 2–3×105. Likewise, the varia-
tion of cD between the drag curves atTu = 4 % andTu = 6 %
may reach more than 40 % depending on the Reynolds num-
ber. It is concluded that the drag curve of a perfect sphere is
extremely sensitive to the level of free-stream turbulence.

2.3.2 Drag coefficient of a spheroid

For a spheroid, the drag coefficient dependence onRe qual-
itatively resembles that of a perfect sphere as a result of
the similarity of both shapes (Loth, 2008). In particular,
also the drag coefficient of a spheroid is a function ofRe

and Tu. It is expected to tend to the value for a perfect
sphere as the respective lengths of the principal axes of the
spheroid converge to the same value. Thus, the drag coef-
ficient of a spheroid also depends on the departure of the
spheroid shape from a perfect sphere. This departure is mea-
sured in terms of the aspect ratio,E, defined as the ratio
of the length of the vertical symmetry axis to that of the
horizontal axes of the spheroid. For example,Loth (2008)
reports that the drag coefficient of an oblate spheroid with
E = 0.5 is about twice that of the volume-equivalent sphere
for 2×103 < Re < 3×105 and negligibleTu.

To the best of the authors’ knowledge, EricLoth (2008)
is the only author to report experimental investigations of
the drag coefficient of spheroids at very high Reynolds num-
bers (Re > 104). He unfortunately considers only one single
value for the aspect ratio, namelyE = 0.5. He also does not
investigate the influence of the free-stream turbulence inten-
sity on the drag curve. More importantly, his study does not
extend beyondRe > 3×105, which leaves the entire super-
critical regime unexplored to date. It should be noted that
these last two limitations do not apply only to the work of
Loth on the drag coefficient of spheroids, but also to all stud-
ies published to date on the drag coefficient of non-spherical
objects. To compensate for this lack of knowledge, and since
parameters other thanRe, Tu andE – such as unsteadiness
or turbulence intensity length scale – are also known to af-
fect the drag coefficient (e.g.Wang et al., 2009; Neve, 1986),
an attempt is made here to derive a mean experimental drag
curve for sounding balloons, based on a dataset of balloon
flights. This attempt is expected to resolve also another prin-
cipal complication, namely the fact that experimental inves-
tigations of drag coefficients normally let a heavy body fall
freely in a viscous fluid or hold a solid body fixed in space
and then expose it to a flow of the surrounding medium,
e.g. in a wind tunnel. In such experiments detaching vor-
tices in the wake of the particle affect very little the motion
of the body, whose mass, due to the setup, appears to be ex-
tremely high. In contrast, a sounding balloon, whose mass is
only a small fraction of that of the displaced air, is severely
affected by the detaching vortices. As such, the analysis of
a dataset of observed ascents appears to be the best way for-
ward at the present time.

2.3.3 Procedure for the derivation of a drag curve for
sounding balloons from experimental flights

The dataset is chosen from the flights which took place at
Lindenberg (Germany) in 2008 during the Lindenberg Upper
Air Methods Intercomparisons (LUAMI) flight campaign,
whose main aim was to compare different airborne water-
vapor sounding methods (Immler, 2008). During the cam-
paign, the masses of the payload (including the parachute)
and the balloon envelope were measured before each flight,
as well as the uplift mass; this allows for the balloon total
mass,mtot, and the balloon radius at ground,R(z = 0), to
be calculated. It should be mentioned that the uplift mass is
defined as the value of the payload mass for which the free
lift is equal to zero (see Sect.2.1). Respective uncertainty er-
rors of±100 g and±200 g in the measurements of the uplift
and payload masses cannot be excluded, which in turn result
in respective uncertainties of±200 g and±10−2 m in mtot
andR(z = 0). During the flights, air temperature and pres-
sure were measured every second by the radiosondes. The
balloon altitude was also recorded at the same frequency by
a GPS on board the radiosondes. Of the 27 balloons launched
during the campaign, only the 15 released at night are kept in
this analysis to enforce the assumption of negligible radiative
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Fig. 2. Derivation of the experimental drag curve from LUAMI flight L007 launched on 7 November 2008 at 22:45 UTC.(a) The 60 s-low
pass filtered ascent rate profile derived from the GPS data (—), and its mollified version usingε = 4 km (—); (b) experimental drag curve
derived using the procedure described in Sect.2.3 (+). The curves ofAchenbach(1972) andSon et al.(2010) for a perfect sphere are
reported here for comparison (see Fig.1).

heat transport into the balloon. A further selection is made
removing five flights, three presenting strong evidence of de-
fect (error in the reported value of the measured uplift mass
or in the recording of the flight data) and two using a different
type of sounding balloon. The dataset is therefore left with
ten flights in total, all of which used the same type of sound-
ing balloon, namely the TX1200 balloon from the Japanese
company Totex.2

In order to derive a drag curve for sounding balloons from
each of the ten selected experimental flights, the drag coef-
ficient is calculated from Eq. (3) every minute of each flight
as a function ofvz, R andρa. To this end, the balloon radius
is computed using the algorithm presented in Sect.3, and
the air mass density is determined from the 60-s low pass
filtered atmospheric temperature and pressure data recorded
during the balloon ascent. The challenge lies in the estima-
tion of vz, as only the ascent rate with respect to the ground,
vz,g, can be deduced from the radiosonde GPS data. The as-
cent rate in still air corresponds to the vertical velocity mea-
sured with respect to ambient air, which cannot be directly
retrieved from the measurements. Thus, only an estimate of
vz can be obtained by smoothing the profile ofvz,g as a func-
tion of altitude. This procedure is based on the assumption
of vertical air motion having a normal distribution with near-
zero mean value (Wang et al., 2009). The smoothing process
is performed by convoluting the vertical profile ofvz,g with
the mollifierηε(z), where

ηε(z) =

{
(c/ε)exp

[
ε2/(z2

−ε2)
]

if z ∈ [−ε,ε],

0 otherwise,
(5)

and the constantc is chosen to ensure the unity of the integral
of ηε (Salsa, 2008). The parameterε controls the spatial scale
on which the profile ofvz,g is smoothed. A value ofε = 4 km

2http://www.totex.jp

is chosen here so as to ensure that gravity waves, whose typi-
cal vertical wavelengths are 2–5 km in the lower stratosphere
(Fritts and Alexander, 2003), are properly removed from the
measured ascent rate by the smoothing process. Other val-
ues (ε = 2 km andε = 5 km) have been investigated, but with
negligible influence on the derived experimental drag curve
(not shown).

An example of balloon ascent rate profile and of its asso-
ciated mollified version is shown in Fig.2a. The profile is
observed to present an overall S-shape, which is typical for
sounding balloons and can be simply explained by Eq. (3).
Due to the diffusion of heat inside the balloon, the difference
between the mean balloon temperature and the atmospheric
temperature remains approximately constant over the tropo-
sphere and the stratosphere separately (not shown). Under
this condition, it can be shown that the expression ofvz in
Eq. (3) is proportional to the−1/6 power of the atmospheric
density (Yajima et al., 2009). This accounts for the fact that
the balloon ascent rate increases with altitude over the tro-
posphere and the stratosphere separately. The decrease in
the ascent rate at the tropopause results from the sudden in-
crease in the potential temperature. This can be interpreted as
the balloon being suddenly colder than its environment and
therefore decelerating, until its temperature difference with
the surrounding atmosphere stabilizes and its ascent rate in-
creases again as the−1/6 power of the atmospheric density.
The decrease of the ascent rate above 25 km altitude observed
in Fig. 2a is thought to result from another process. Shortly
before bursting, the envelope of the balloon presents bubbles
and excrescences on its surface due to an inhomogeneous dis-
tribution of the envelope material. This is expected to sub-
stantially increase the drag coefficient and consequently be
at the origin of the balloon deceleration.

The drag curve corresponding to Fig.2a and obtained by
the aforementioned procedure is depicted in Fig.2b. As
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expected from the aspherical shape of the balloon, this curve
is observed to deviate significantly from those byAchenbach
(1972) andSon et al.(2010) for a perfect sphere. However,
the balloon drag curve presents a qualitative shape similar to
the curves bySon et al.atTu = 6 % andTu = 8 %. This sug-
gests that the turbulence intensity of the atmosphere is of the
order of 6 % to 8 %, which is in the range of typical values for
the free troposphere reported byHoyle et al.(2005). Com-
parison of the balloon drag curve with the curves bySon et al.
reveals that the drag coefficient of the balloon is on aver-
age three times higher than the one of its volume-equivalent
sphere. This difference cannot be solely explained by the
asphericity of the balloon. Indeed,Loth (2008) reports an
increase of only 100 % in the drag coefficient of a spheroid
with E = 0.5 as compared to a perfect sphere in the range
of Reynolds number 0.5–3×105 and at negligibleTu. The
magnitude of this increase is expected to remain of roughly
the same order atTu > 0, while reducing with higher values
of E. Therefore, the increase incD due to the limited depar-
ture of the balloon shape from spherical is clearly less than
a factor of 2. This leaves part of the observed discrepancy
between the balloon’s and the perfect sphere’s drag curves
unexplained. Mainly three mechanisms are thought to be re-
sponsible: the pendulum effect of both the parachute and the
payload attached to the balloon (Wang et al., 2009), the de-
formation of the balloon shape through the propagation of
waves on its elastic envelope and the generation of vorticity
in the wake of the balloon.

Regarding the latter mechanism,Govardhan and
Williamson (2005) report the observation of two vortex
threads detaching periodically from behind spheres placed in
a cross-flow. In their experiments, the spheres are attached
with a single tether to the upper wall of the wind tunnel so
as to let them free to move in the horizontal plane (in both
the directions parallel and perpendicular to the flow). The
authors elegantly demonstrate that the periodically detaching
vortex threads exert an oscillating force on the spheres in
a direction transverse to the flow. Yet,Veldhuis et al.(2009)
demonstrate that this force is usually not restricted to the
plane transverse to the flow in the case of buoyant spheres
rising freely in a Newtonian fluid. As a consequence, the
component of this force in the direction of the spheres’
motion is non-zero, which results in a so-calledlift-induced
drag. The latter adds to the drag predicted from the curves
by Achenbach(1972) or Son et al.(2010) for a sphere held
fixed in space. Thus,Veldhuis et al. estimate the apparent
cD of spheres rising freely to be higher by a factor 1.5
to 2 than expected from the standard drag curves alone.
Unfortunately, the range of Reynolds number they consider
is limited to the interval 1–2×103. However, we expect the
generation of a lift-induced drag to be significant also for
higher values ofRe, and even more so for buoyant objects
with non-spherical shape. This may account for a significant
fraction of the unexpected drag depicted in Fig.2b.

From a physical point of view, the balloon drag curve pic-
tured in Fig.2b is supported by the specifications of the bal-
loon manufacturing company, according to which the balloon
drag coefficient atRe ∼ 5–8× 105 is in the range 0.2–0.3.
Furthermore, this curve is in good agreement with the ob-
servations ofMapleson(1954), who reports an increase of
up to 400 % in the drag coefficient of sounding balloons as
compared to a perfect sphere for 1.3×105 < Re < 7×105.

2.3.4 Reference drag curve for sounding balloons

The drag curves derived from the ten LUAMI flights all
present the same qualitative behavior as the curve described
above. However, there are systematic offsets incD amongst
these ten drag curves in the range±25 %, corresponding to
±0.15 absolute units incD, as shown by the light gray curves
in Fig. 3. We must attribute part of these offsets to errors in
the estimated uplift and payload masses, i.e. in the prepara-
tory measurements before each balloon launch during the
LUAMI campaign. Indeed, an error of 100 g in the uplift
mass shifts the corresponding drag curve by 6 % through its
effect on the values ofR(z = 0) andmtot (not shown). Sim-
ilarly, an error of 200 g in the payload mass would result in
a shift of 7 % in the balloon drag curves. Therefore, such er-
rors might explain about half of the observed offsets incD.
The other half might be due to differences in the manufactur-
ing process of the individual balloons, as invoked byMaple-
son(1954) to explain the divergence of his results. While we
cannot correct for these unknown differences in the manufac-
turing process, the confidence ranges of the uplift and pay-
load masses can be taken into account in order to reduce the
spread of the drag curves. To this end,R(z = 0) andmtot are
adjusted within their accepted confidence ranges, minimiz-
ing the mean-square difference between the drag curves. The
ten drag curves with adjusted offsets are pictured in green in
Fig. 3. They are then fitted by a second-order polynomial in
order to retrieve the single reference drag curve (blue line),
which will be used in Sect.3 to derive the balloon ascent rate
in still air:

cD = 4.808×10−2(lnRe)2
−1.406lnRe+10.490. (6)

The mean standard deviation of the ten experimental curves
with respect to the polynomial fit is equal to 4.1× 10−2.
Therefore, the values of the drag coefficient derived from the
reference curve must be considered to have an uncertainty
error of approximately±0.04.

Several important aspects of Eq. (6) should be stressed.
First, the expression of the drag coefficient is observed not
to depend on the turbulence intensity of the atmosphere.
This results directly from the impossibility to determineTu

to the necessary precision from balloon flights, and implies
that Eq. (6) accounts only for the mean profile of the atmo-
spheric turbulence intensity. Deviations from this mean pro-
file, such as the generation of turbulence intensity through
gravity wave breaking, cannot be taken into account by the
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Fig. 3. Derivation of a reference drag curve for sounding balloons.
(—) Experimental drag curves derived from the ten LUAMI bal-
loon flights; (—) same but with adjusted values forR(z = 0) and
mtot; (—) fit to the ten experimental drag curves using a second-
order polynomial (Eq.6). The curves ofAchenbach(1972) (dashed)
andSon et al.(2010) (symbols) for a perfect sphere are shown for
comparison (see Fig.1).

model. Second,Re in Eq. (6) is a function of the balloon as-
cent rate (see Sect.2.3.1). As a consequence, fluctuations in
the balloon vertical velocity are explicitly taken into account
in our drag calculation. Finally, it should be emphasized that
Eq. (6) is valid only for TX1200 balloons launched at night.
However, the procedure described above could be applied to
any set of soundings featuring the required data. We have for
example derived a reference drag curve for the two TX2000
balloons launched at night during the LUAMI campaign, and
which were removed from the original dataset of night flights
in Sect.2.3.3. As compared to the TX1200 balloons, the val-
ues of the drag coefficient have been observed to be lower
in the troposphere and much higher in the stratosphere (not
shown), hereby pointing to the significant impact of the bal-
loon shape on the drag curve.

3 Balloon ascent model

The balloon ascent model developed in this work aims to de-
termine the ascent rate of sounding balloons in still air as
a function of time. The model’s time step is denoted by1t

in the following and the corresponding increase in the bal-
loon altitude by1z; the two are related through the relation
1z = vz1t +O(1t2).

A single step of the model comprises two parts:

1. the computation of the balloon effective radius and ra-
dial temperature distribution at timet + 1t knowing
their values at timet ; and

2. the simultaneous determination of the drag coefficient
and the balloon ascent rate in still air at timet+1t from
Eq. (3).

For convenience of the reader, the computations performed
in these two parts – to be detailed below – are summarized
under the form of a pseudo-code in Fig.4.

In order to increase the accuracy of the balloon’s effec-
tive radius computation, part1 uses substeps to resolve the
balloon effective radius at intermediate times betweent and
t +1t . The intermediate times are computed using a sub-
time step,δt , chosen as a fixed fraction of the characteristic
time of diffusion. This ensures that Eq. (4) is solved using
a constant normalized time step,δt/τ , during the whole bal-
loon ascent. In the following discussion, let{tn}n=1,...,N be
the set of intermediate times betweent and t +1t , where
tn = t +nδt andN is the number of intermediate steps. In
a single substep of part1, the balloon effective radius at time
tn+1 is computed from the balloon effective radius at timetn
in three stages (see left panel of Fig.4):

(i) Adiabatic expansion of the balloon (pictured in Fig.5a).
In this stage, the balloon is considered to ascend from
altitudez(tn) to altitudez(tn+1). Let R∗ andTb

∗ denote
respectively the balloon effective radius and tempera-
ture distribution inside the balloon after the adiabatic
expansion has taken place. Assuming that the pres-
sure remains uniform inside the balloon and equilibrates
with the ambient atmospheric pressure during the pro-
cess,

R∗
=

(
pa(tn)

pa(tn+1)

)1/3γ

R(tn), (7)

Tb
∗(r) =

(
pa(tn)

pa(tn+1)

)(1−γ )/γ

Tb(r,tn), (8)

whereγ = cV /cp > 1 is the adiabatic index of the lift-
ing gas (cV is the lifting gas specific heat at constant
volume) and Eq. (8) is valid for all r ∈ [0,1]. In the
right-hand side of Eq. (8), r denotes the radial coordi-
nate normalized byR(tn), whereas in the left-hand side
it is normalized byR∗.

(ii) Heat diffusion inside the balloon at constant pressure
(pictured in Fig. 5b). As stated above in Sect.2.2,
this stage assumes the lifting gas to be incompress-
ible; as a consequence, the balloon volume remains
constant during the diffusion of heat. The mean heat
diffusion coefficient is computed from the temperature
distribution Tb

∗ obtained in stage (i). Assuming that
〈D〉 remains constant, Eq. (4) is then solved numeri-
cally by the Finite Element Method using a time step of
δt = tn+1 − tn. Tb

∗ is chosen as the initial temperature
distribution, and the temperature at the balloon surface

Atmos. Meas. Tech., 4, 2235–2253, 2011 www.atmos-meas-tech.net/4/2235/2011/



A. Gallice et al.: Modeling the ascent of sounding balloons 2243

Fig. 4. Schematic representation of the different steps of the model. The notation is introduced in Sect.3.
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Fig. 5. Schematic representation of the three stages used in part1 of the model to compute the balloon effective radius at timetn+1 from the
balloon effective radius at timetn. The upper panel shows the evolution of the balloon altitude and effective radius at each step, the lower
panel indicates the corresponding changes in the temperature distribution inside the balloon. The notation used in the figure is introduced
in Sect.3. (a) Adiabatic expansion of the balloon from altitudez(tn) to altitudez(tn+1). (b) Heat diffusion inside the balloon at constant
pressure.(c) Correction to the balloon effective radius and temperature distribution.

is kept constant and equal toTa(tn+1). The temperature
distribution at the end of the diffusion process is denoted
by Tb

†.

(iii) Correction to the temperature distribution and balloon
effective radius (pictured in Fig.5c). To compensate
for the above assumption of gas incompressibility dur-
ing the diffusion of heat,Tb

† andR∗ are corrected in
this stage. To this end, letS be a spherical shell con-
centric to the balloon and whose normalized radius and
infinitesimal thickness are denoted byr (r < 1) and dr,
respectively. The temperature ofS is known from step
(ii) to be Tb

†(r). Given this configuration, the aim is to
find the normalized radius and thickness, respectively
denoted byr̄ and d̄r, thatS would have had if it had
been let expand in step (ii). In such a case, its tempera-
ture would still have increased fromTb

∗(r) to Tb
†(r) as

a result of heat diffusion. On the other hand, its pressure
would have remained constant and equal topa(tn+1),
while its volume would have increased from 4πr2dr to
4πr̄2dr̄. Using the ideal gas law in association with the
conservation of gas moles insideS,

4πr2dr

Tb
∗(r)

=
4πr̄2dr̄

Tb
†(r)

. (9)

In this equation,̄r is understood as a function of the un-
corrected normalized radiusr. Integrating Eq. (9) with

respect tor,

r̄(r) =

(
3
∫ r

0

Tb
†(r ′)

Tb
∗(r ′)

r ′2dr ′

)1/3

. (10)

It must be emphasized that bothr̄ andr are normalized
by the balloon effective radiusR∗ resulting from step
(i). Thus, the corrected balloon effective radius at time
tn+1 is given by

R(tn+1) = r̄(1)R∗, (11)

and the corrected balloon temperature distribution at
time tn+1 reads

Tb
(
r̄/r̄(1),tn+1

)
= Tb

†(r), (12)

wherer̄(1) is evaluated from Eq. (10).

Stages (i)–(iii) are repeatedN +1 times until the balloon ef-
fective radius at timet +1t is evaluated. This terminates
part1 of the model.

In part 2, Eq. (3) is used to compute the balloon ascent
rate in still air at timet +1t (see right panel of Fig.4). The
required air mass density is determined from the ambient at-
mospheric temperature and pressure, and the result obtained
in part1 is used for the balloon effective radius. The drag co-
efficient is determined from the reference second-order poly-
nomial drag curve shown in Fig.3. To this end, an estimation
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of the Reynolds number at timet +1t is derived from the
balloon ascent rate at timet . The estimatedRe is then re-
ported in the drag curve to estimate the drag coefficient. By
inserting the latter in Eq. (3), a first estimate ofvz(t +1t)

is obtained, which is subsequently used to refine the initial
estimate ofRe. This generates a loop, which is iterated until
the convergence criterion is satisfied, namely until the rela-
tive variation of the ascent rate between two successive loops
is less than 5×10−4 %. At the end of part2 of the model, the
values of bothcD andvz at timet +1t are known.

The vertical profile of the balloon ascent rate in still air
is derived by going through parts1 and 2 of the model at
each time step. The value of1t is fixed here to 1 min, which
corresponds to a vertical resolution of∼ 300 m. Based on
a trade-off between computational time and the convergence
study presented in AppendixB, the choiceδt = 10−3τ is
made,τ being computed at each step of the model. This
results in a number of substeps (N ) increasing from∼ 60 to
∼ 180 between ground level and 30 km altitude.

To reflect the uncertainty in the reference drag curve (see
end of Sect.2.3), three different runs of the model are rec-
ommended. The first run, corresponding to the reference
case, uses the reference drag curve itself to calculate the most
probable profile of the balloon ascent rate in still air. The two
additional runs are aimed at determining the range of uncer-
tainty in this profile. To this end, they are based on instances
of the reference drag curve shifted along thecD-axis by−σcD

and+σcD , respectively, whereσcD = 0.04 denotes the uncer-
tainty in the values of the drag coefficient derived from the
reference drag curve (see Sect.2.3).

In case the model is runafter the balloon flight, advan-
tage can be taken of the data collected during the ascent to
improve the model in two respects. Firstly, the ascent rate
derived from the GPS data can be used to correct the refer-
ence drag curve. The procedure consists in shifting the latter
along thecD-axis so as to minimize the mean-square differ-
ence between the measured and modeled ascent rate profiles.
This process is based on the assumption that the vertical wind
follows a normal distribution with near-zero mean value, as
supposed byWang et al.(2009). Secondly, the uncertainty in
the values of the drag coefficient derived from the shifted ref-
erence drag curve can be narrowed down. This uncertainty
has been estimated for the general case in Sect.2.3, where
it has been defined as the mean standard deviation,σcD , of
the difference between the experimental drag curves and the
reference drag curve. In case the model is run after the ac-
tual flight, the experimental drag curve associated with the
flight can be computed following the procedure described in
Sect.2.3. Only this experimental curve – instead of the ten
of Fig. 3 – is then used to estimate the uncertainty in the val-
ues ofcD derived from the shifted reference drag curve. This
uncertainty, denoted byσ ∗

cD
, corresponds to the standard de-

viation of the difference between the experimental drag curve
associated to the flight and the shifted reference drag curve.
It is observed thatσ ∗

cD
is generally lower as compared toσcD .

4 Model evaluation and potential application

4.1 Model evaluation

Due to the lack of available flight data with precisely mea-
sured uplift and payload masses, the validating set consid-
ered in this section is composed of the same ten LUAMI
night flights used in Sect.2.3 to derive the reference drag
curve. Following the procedure described in the previous
section, the latter is corrected for each flight so as to mini-
mize the departure of the modeled ascent rate from the mea-
sured one. It should be noted that this section does not con-
sider the payload and uplift masses measured before each
flight during the LUAMI campaign, but rather the adapted
values of these masses calculated in Sect.2.3 to reduce the
spread in the experimental curves.

An example of adapted drag curve is pictured in
Fig. 6a; the corresponding profile of the balloon ascent rate
in still air is shown in Fig.6b. In this case, the correction of
the reference drag curve allows for the decrease of the dis-
crepancy between the modeled and measured ascent rates by
∼ 0.4 m s−1 below 10 km altitude. On the other hand, the
balloon ascent rate in still air derived from the corrected ref-
erence drag curve appears to be overestimated in some re-
gions, mostly in the lower troposphere below 2 km altitude
and just below the tropopause between 10 and 12 km alti-
tude. In these two altitude intervals, the Reynolds number is
7.5–8.5×105 and 4–5×105, respectively. As such, the ap-
parent over-estimations of the ascent rate are related to the lo-
cal maxima of the experimental drag curve atRe = 8.5×105

andRe = 4×105, respectively, which are unaccounted for by
the (corrected) reference drag curve (see Fig.6a). The latter
considers lower drag coefficient values than the experimen-
tal drag curve at these Reynolds numbers, hereby leading to
a lower drag force and consequently to a larger ascent rate
in still air than expected from the smoothed observations.
It must be emphasized that these apparent over-estimations
of the ascent rate in still air may actually result from a lo-
cal downward air motion affecting both the measured ascent
rate and the experimental drag curve. Such a downdraft of
the air would indeed slow down the actual ascent of the bal-
loon and consequently increase its apparent drag coefficient,
which could explain the observed difference between the ref-
erence and experimental drag curves. This could particu-
larly be the case between 10 km and 12 km altitude, where
the measured ascent rate is observed to drop below the lower
uncertainty limit of the modeled ascent rate, hereby indicat-
ing a probable downward air motion. On the contrary, it is
more likely that the overestimation of the ascent rate below
2 km altitude is due to the inaccuracy of the (corrected) refer-
ence drag curve. It should be mentioned that the presence of
an unwinder between the balloon and its payload during the
actual flight can be held responsible for part of the overesti-
mation by the model. The unwinder – whose role is to pro-
gressively increase the length of the cable linking the payload
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Fig. 6. Evaluation of the model on LUAMI flight L003b launched on 5 November 2008 at 22:45 UTC.(a) Corrected reference drag curve
(—) obtained by shifting the reference drag curve (—, see Fig.3) by −0.03 along thecD-axis. The experimental drag curve derived from
the flight is indicated by the green crosses. The curves byAchenbach(1972) andSon et al.(2010) for a perfect sphere are reported here for
comparison (see Fig.1). (b) Vertical profile of the balloon ascent rate in still air derived from the corrected drag curve (—), and the lower and
upper limits of its range of uncertainty (– – –). The ascent rate in still air derived from the non-corrected reference drag curve (solid purple
curve in panel(a)) is indicated here for comparison (—), along with the 60 s-low pass filtered ascent rate calculated from the GPS data (—).

to the balloon – remains active during the first 60 to 120 s of
flight. Since the final length of the cable is about 50 m, this
implies that the unwinder reduces the ascent rate of the pay-
load as compared to that of balloon by 0.5 to 1 m s−1 in the
lowermost 300 to 600 m of the ascent, which explains the
lowermost part of the discrepancy between the modeled and
the measured vertical velocities. No sharp conclusion can
however be drawn regarding the precision of the model since
the air vertical velocity was not measured independently dur-
ing the LUAMI campaign.

The range of uncertainty in the ascent rate profile is ob-
tained from the two additional runs of the model based on the
reference drag curve shifted by+σ ∗

cD
and−σ ∗

cD
along thecD-

axis, respectively, whereσ ∗
cD

denotes the standard deviation
of the difference between the corrected reference drag curve
and the experimental drag curve (see end of Sect.3). In the
case of the example pictured in Fig.6, σ ∗

cD
= 0.03. The cor-

responding uncertainty invz is shown in panel (b) of the fig-
ure; it is observed to decrease significantly when crossing the
tropopause (z = 12 km) while remaining globally constant
over the troposphere and the stratosphere separately. This
suggests the use of two different uncertainty ranges, the first
one associated with the troposphere and the second one with
the stratosphere. Averaging the uncertainty invz below and
above the tropopause, respectively, it is found that the bal-
loon ascent rate in still air is defined up to an additive factor
of ±0.4 m s−1 in the troposphere, while this factor reduces
to ±0.2 m s−1 in the stratosphere. The uncertainty error in
vz therefore decreases by a factor of∼ 2 when crossing the
tropopause.

Evaluation of the model on the nine remaining LUAMI
flights results in observations similar to those described
above. The uncertainty in the modeled ascent rate aver-
aged over the whole dataset is∼ 0.5 m s−1 in the troposphere
and ∼ 0.2 m s−1 in the stratosphere. As a consequence, it
is assumed that the present model calculates the balloon as-
cent rate in still air with uncertainties of±0.5 m s−1 and
±0.2 m s−1 below and above the tropopause, respectively,
in the case where the flight data can be used to correct the
reference drag curve. In comparison,Wang et al.(2009)
model the balloon ascent rate in still air with an uncertainty
of ±0.9 m s−1. On top of its increased accuracy, the present
model enables the fairly good derivation of the ascent rate be-
low 5 km altitude, contrary to the model byWang et al.which
systematically underestimates the ascent rate in this altitude
range. As an example, a comparison of the two models on
a particular flight is pictured in Fig.7a. The present model is
observed to be in greater agreement with the smoothed ob-
servations, particularly in the troposphere (z < 12 km). This
results in the altitude of the balloon as a function of time be-
ing modeled more accurately, as shown in Fig.7b.

In the case where the flight data are not available to correct
the reference drag curve (e.g. in forecasting applications),
the uncertainty in the latter is higher; in particular, its as-
sociated values of the drag coefficient are determined up to
a precision of±σcD = ±0.04 (see Sect.2.3). Similarly to
above, the corresponding uncertainty in the modeled ascent
rate is obtained by computing the difference between the pro-
file derived by the first run of the model and the two addi-
tional profiles based on the reference drag curve shifted by
+σcD and−σcD along thecD-axis, respectively. The average
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Fig. 7. Comparison of the predictions by different models with data measured during the balloon ascent in the case of LUAMI flight L005
launched on 6 November 2008 at 22:45 UTC. Measured data (—); predictions by the present model based either on the shifted reference
drag curve (—) or on the reference drag curve itself (– – –); predictions by the model byWang et al.(2009) (—); predictions by the model
by Engel(2009) (—). (a) Vertical profile of the balloon ascent rate.(b) Altitude of the balloon as a function of time.

over the ten LUAMI flights estimates the uncertainty in the
modeled ascent rate to be±0.6 m s−1 in the troposphere and
±0.3 m s−1 in the stratosphere in this case. These uncer-
tainty ranges are slightly larger than in the case where the
reference drag curve can be corrected; they however remain
smaller than those of the model byWang et al.(2009). As
pictured in Fig.7a, the absence of correction to the refer-
ence drag curve may result in a systematic offset of the most
probable ascent rate derived from the first run of the model
as compared to the measured ascent rate. This is thought to
result from differences in the manufacturing process of the
individual balloons, responsible for an unpredictable varia-
tion of the drag coefficient from one balloon to the other, as
mentioned previously in Sect.2.3. In practice, this implies
that the present model may systematically over- or under-
estimate the balloon altitude as a function of time when used
to forecast the balloon trajectory, as can be observed for ex-
ample in Fig.7b. The magnitude of the systematic error in
the modeled ascent rate is bounded by the aforementioned
limit of the uncertainty invz, namely 0.6 m s−1 in the tro-
posphere and 0.3 m s−1 in the stratosphere. It should be
mentioned that the current accuracy of the drag coefficient
is closely linked to the LUAMI flight data set used for the
derivation of the drag curve. Extending this analysis to more
soundings with carefully recorded payload and uplift masses
is therefore highly desirable.

The present model based on the (non-corrected) reference
drag curve proves a better forecasting tool than the one by
Engel(2009), which assumes for simplicity a constant ascent
rate of 5 m s−1. As a matter of fact, the error in the calculated
balloon altitude at burst time, averaged over the ten LUAMI
flights, is 1.4 km when using the present model as opposed
to 2.7 km when using the model byEngel(not shown). The
predictions of the two models can be compared on the par-

ticular example of Fig.7a. It is observed that, despite its
systematic offset, the present model based on the reference
drag curve matches more precisely the overall profile of the
measured ascent rate. This results in the altitude of the bal-
loon as a function of time being forecasted more accurately
by the present model, as shown in Fig.7b.

4.2 Derivation of the vertical air motion

Given the above evidence for the model accuracy, the present
section aims at illustrating an application: vertical air motion
is estimated from the data collected during LUAMI flight
L003a launched on 11 November, at 22:45 UTC. To this end,
the balloon ascent rate in still air is calculated according to
the model and then subtracted from the measured balloon as-
cent rate, as pictured in Fig.8. The resulting profile of the
air vertical velocity shown in panel (b) is difficult to validate
owing to the same limitation as already encountered byWang
et al.(2009), namely the “lack of coincident [vertical veloc-
ity] data from other measurements.” In an attempt at com-
pensating for this lack, the potential temperature lapse rate
measured during the flight is taken as an approximate proxy
for the vertical velocity. Indeed, in a first approximation, air
parcels advected upwards cool down adiabatically on small
spatial scales. As a consequence, their potential tempera-
ture,θa, remains approximately constant on such scales. We
therefore expect the vertical profile of the potential tempera-
ture lapse rate, dθa/dz, to present sharp decreases in regions
of vertical updraft. Conversely, we expect the potential tem-
perature lapse rate to increase significantly in regions of ver-
tical downdraft, where air parcels of higher altitude and with
larger potential temperature are advected downwards. Thus,
in a first approximation, the profiles of the estimated vertical
velocity of air and the potential temperature lapse rate should
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Fig. 8. Air vertical velocity during LUAMI flight L003a launched on 5 November 2008 at 22:45 UTC.(a) Balloon ascent rate in still air as
calculated from the model (—); actual balloon ascent rate derived from the GPS data (—).(b) Air vertical velocity obtained by subtracting
the ascent rate in still air from the actual ascent rate (—), and the upper and lower limits of its associated range of uncertainty (– · – · –);
deviations of the potential temperature lapse rate from its still air value, derived from the atmospheric temperature recorded during the
balloon ascent (—). The vertical velocities derived byHoyle et al.(2005) from aircraft measurements are indicated here as thin gray lines
for comparison: typical gravity-wave fluctuations,±0.3 m s−1 (—); strong fluctuations representing less than∼ 2 % of all wave occurrences,
±1 m s−1 (– – –).

present evidences of anti-correlation. This reasoning is nev-
ertheless limited, since temperature fluctuations can be sensi-
tive to both low- and high-frequency gravity waves, whereas
vertical velocity fluctuations are more affected by higher-
frequency gravity waves (Lane et al., 2003; Geller and Gong,
2010). As such,Gong and Geller(2010) experimentally ob-
serve that “the apparent dominant vertical wavelengths [of
the gravity waves] estimated fromT ′ [(temperature fluctu-
ations)] andw′ [(vertical velocity fluctuations)] profiles are
different for some cases.”

Evidences of anti-correlation are however apparent on
Fig. 8b, which pictures the vertical profile of1(dθa/dz) be-
side the estimated profile of the air vertical velocity. The
quantity 1(dθa/dz) corresponds here to the potential tem-
perature lapse rate from which its mean value over the tropo-
sphere or stratosphere, depending on the altitude at which it
is evaluated, has been subtracted. A particularly noticeable
example of anti-correlation can be found in the altitude range
12–15 km, where the fluctuation amplitudes of the air verti-
cal velocity and of the potential temperature lapse rate are
relatively large. The correlation coefficient between the two
profiles is−0.31, and the probability that this value could
be obtained at random from two independent distributions
is as low as 2.4× 10−3. This suggests that the profiles of
the air vertical velocity and of1(dθa/dz) are globally anti-
correlated.

However, the sole comparison with the potential temper-
ature lapse rate does not enable us to validate the estimated

vertical air motion owing to the aforementioned limitations.
This comparison also does not provide any quantitative in-
formation on the precision of the derived air vertical veloc-
ity. The analysis of the model uncertainty in the previous
section however suggests that the uncertainty error of this
velocity is within the range±0.5 m s−1 in the troposphere
and±0.2 m s−1 in the stratosphere, as indicated in panel (b)
of Fig. 8. Moreover, the estimated velocity is within the
range of the typical vertical wind fluctuations in the tropo-
sphere reported byHoyle et al.(2005) and indicated as thin
gray lines in Fig.8b. These fluctuations were derived from
aircraft measurements performed during the SUCCESS cam-
paign (Subsonic Aircraft: Contrail and Cloud Effects Special
Study) which took place in the middle troposphere in cirrus
clouds over the eastern Pacific Ocean. In their derivations,
Hoyle et al.(2005) made sure to avoid perturbated regions to
focus on free tropospheric gravity waves, similar to the sit-
uation during the LUAMI campaign in the northern German
flatland.

One may argue that the vertical air motion could be es-
timated by a much more simplistic approach than the one
presented above. Indeed, to obtain an approximation of
the balloon ascent rate in still air, one may simply consider
the smoothed profile of the actual balloon ascent rate (see
Sect.2.3) instead of using the balloon ascent model. A com-
parison of this simplistic approach with the one based on the
model is shown in Fig.9 in the case of LUAMI flight L025.
The respective profiles of the balloon ascent rate in still air
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Fig. 9. Comparison of the model with the method based on the smoothing of the measured balloon ascent rate in the case of LUAMI
flight L025 launched on 19 November 2008 at 22:45 UTC.(a) Vertical profile of the balloon ascent rate in still air derived from the model
(—); smoothed profile of the balloon ascent rate measured during the actual flight (—) (for a description of the smoothing technique, see
Sect.2.3). The actual ascent rate derived from the GPS data is indicated as a thin black line for comparison.(b) Corresponding profiles of
the air vertical velocity estimated from the model (—) and from the smoothed profile of the measured balloon ascent rate (—). The vertical
velocities derived byHoyle et al.(2005) from aircraft measurements are indicated here as thin gray lines for comparison: typical gravity-wave
fluctuations,±0.3 m s−1 (—); strong fluctuations representing less than∼2 % of all wave occurrences,±1 m s−1 (– – –).

estimated by the two methods are relatively dissimilar (see
panel (a)). The one derived from the method using the model
presents a finer resolution: it responds more physically to the
fluctuations of the atmospheric temperature. In panel (b) of
Fig. 9, it can be observed that the respective estimations of
the air vertical velocity by the two methods differ by up to
0.5 m s−1 either in the troposphere and in the stratosphere.
Yet, the method based on the model cannot be proven to de-
scribe the balloon ascent more precisely than the other one.
The absence of independent measurements of the vertical air
motion during the LUAMI campaign make the quantitative
evaluation of any of the two approaches impossible.

5 Discussion and conclusion

Very few models of the ascent of sounding balloons in the
atmosphere are available to date (Engel, 2009; Wang et al.,
2009). In this study, a new model is proposed and shown to
be an improvement over the present state of the art. Derived
by equating the free lift and the drag force, the balloon as-
cent rate in still air is found to depend on three variables: the
air mass density, the balloon drag coefficient and the bal-
loon effective radius. The air mass density is assumed to
be known either from numerical weather forecast or from the
atmospheric temperature and pressure measured during the
flight. The balloon effective radius, defined as the radius of
the balloon’s volume-equivalent sphere, is computed at each
step of the model in three stages: (i) the balloon is first adia-
batically expanded; (ii) heat is then allowed to diffuse at con-

stant pressure from the surrounding air into the balloon while
assuming the lifting gas to be incompressible; and (iii) the ef-
fective radius and temperature distribution of the balloon are
finally corrected to account for the expansion of the lifting
gas discarded in step (ii). Since solar radiation – which has
a strong impact on the balloon temperature distribution – is
not resolved, the model is only applicable to night flights in
its present state. Application to daytime soundings calls for
a further study, but it should be possible provided that solar
radiation is modeled as a diffusive process inside the bal-
loon and that heating of the balloon envelope is taken into
account. To compensate for the lack of data on the drag co-
efficient of almost spherical objects in a turbulent medium,
a reference drag curve for sounding balloons is derived from
a dataset of flights launched during the LUAMI campaign.
This drag curve applies only to a particular type of sounding
balloon, but using the methods we describe in this paper, it
should be straightforward to derive a similar curve for other
types of balloon. At each step of the model, the balloon drag
coefficient can be obtained from the reference drag curve by
refining the initial estimate of the Reynolds number through
a loop.

A priori, the ascent rate in still air predicted by the model
has an uncertainty of±0.6 m s−1 in the troposphere and
±0.3 m s−1 in the stratosphere, where the range of uncer-
tainty is defined as a difference of plus or minus one standard
deviation from the calculated value. For some flights,
a systematic offset between the predictions of the model
and the subsequently measured actual ascent rate points to
differences in the manufacturing process of the individual
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Fig. 10. Effect of the ten-fold increase of the mean molecular heat diffusion coefficient on the model.(a) Experimental drag curves derived
from the ten LUAMI flights (—), and their associated reference drag curve (—), in the case of the enhanced〈D〉. The ten experimental curves
(—) and the reference drag curve (– – –) pictured in Fig.3 are reported here for comparison, along with the curves byAchenbach(1972) and
Son et al.(2010) for a perfect sphere.(b) Vertical profile of the balloon ascent rate in still air calculated from the corrected reference drag
curve in the case of LUAMI flight L003b (see Fig.6); 〈D〉 increased by a factor of ten (—); 〈D〉 normal (– – –). The 60-s low pass filtered
vertical profile of the ascent rate calculated from the GPS data is indicated here for comparison (—).

balloons. These differences are responsible for unpredictable
departures of the balloon drag coefficient from the reference
drag curve and result in a mean uncertainty error of±1.5 km
in the altitude of the balloon at burst time predicted by the
model. The curve of the ascent rate in still air as a function of
altitude captures the measured ascent rate profile very well,
suggesting the model to be a valuable a priori trajectory fore-
cast tool. As such, the algorithm could be used, for example,
to improve the precision of the balloon trajectory forecasts
required during match flight campaigns. Up to the present,
forecast trajectory models used during such campaigns have
assumed a constant ascent rate of 5 m s−1 for the balloon (e.g.
Engel, 2009).

A posteriori, the data collected during the ascent can be
used to adapt the reference drag curve and hereby reduce the
discrepancy between the modeled and measured ascent rate
profiles, as described in the final paragraph of Sect.3. In this
case, the air vertical velocity can be evaluated by subtracting
the ascent rate in still air from the actual ascent rate. This
procedure is shown to provide an estimation of the air mo-
tion which is within the range of the typical air velocity fluc-
tuations derived byHoyle et al.(2005) from the SUCCESS
campaign in the middle troposphere (see panel (b) of Figs.8
and9). Its uncertainty error is estimated to be 0.5 m s−1 in
the troposphere and 0.2 m s−1 in the stratosphere. In case this
uncertainty could be reduced, the air vertical velocity derived
in this way would be useful, for example to parametrize the
cooling rate in cirrus cloud box models (Hoyle et al., 2005).

The neglect of heat eddy diffusion or heat convection in-
side the balloon affects the reference drag curve and the accu-
racy of the model. Indeed, assuming eddy diffusion or con-
vection leads to an enhanced transfer of heat into the balloon

and therefore to an increase of the expansion of the balloon
volume with altitude. As a consequence, the uplift force
is larger mainly in the stratosphere, where the influence of
the heat transfer into the balloon on the ascent rate is the
strongest. This results – mainly in the region corresponding
to the stratosphere (5×104 6Re 6 5×105) – in the increase
of the experimental drag curves derived from the ten LUAMI
flights, as pictured in Fig.10a, where〈D〉 has been increased
by a factor of ten in order to simulate eddy diffusion. As ob-
served in the figure, the reference drag curve is steeper and
shifted upwards in the case where eddy diffusion is resolved
as compared to the case where only molecular diffusion is
assumed. Based on this curve and the molecular heat diffu-
sion coefficient increased ten times, the model is found to not
capture the general feature of the ascent rate profile and par-
ticularly the maximum close to the tropopause. This appears
clearly in the example pictured in panel (b) of Fig.10, where
the vertical profiles ofvz obtained from the model based on
〈D〉 and 10〈D〉, respectively, can be compared. This sug-
gests that heat eddy diffusion and heat convection are not
likely and that the main process responsible for the propaga-
tion of heat inside the balloon is molecular diffusion.

The model can be improved with respect to several as-
pects. Firstly, more experimental night flights should be used
for the derivation of the reference drag curve, also during
other seasons and in other locations. This would give the
statistical mean performed by the polynomial fit more rel-
evance from an ensemble point of view. Only ten flights
are considered in this study owing for the plain difficulty
to find high resolution datasets including accurate measure-
ments of the uplift and payload masses. Indeed, as already
noted byWang et al.(2009), the uplift and payload masses
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are currently neither measured precisely nor stored system-
atically before each flight. In fact, the information regard-
ing these masses could be found only in the case of the
balloons launched during the LUAMI campaign. Unfortu-
nately, even during the LUAMI campaign it was not con-
sidered that mass measurements of great precision would be
required later, which explains a part of the spread of the ex-
perimental drag curves discussed in Sect.2.3. We therefore
strongly suggest that the balloon launch protocols must take
account of precise measurements and recordings of both the
payload and uplift masses. Secondly, radiative heat trans-
fer into the balloon could be resolved, which would allow
for day flights to be modeled. Taking solar radiation into
account would require the balloon envelope emissivity and
the cloud cover to be considered, which would substantially
complicate the treatment of heat inside the balloon. Finally,
the validation of the reference drag curve lacks the support
of studies on the drag coefficient of sounding balloons. In
particular, the mechanisms at the origin of the large magni-
tude of this drag coefficient should be investigated in more
detail. This includes an analysis of the deformation of the
balloon shape during the ascent and a better characterization
of both the lift-induced drag and the drag coefficient of al-
most spherical objects at very high Reynolds numbers and
non-negligible turbulence intensity levels. Independent mea-
surements of the air vertical velocity would also be useful for
the validation of the reference drag curve.

Appendix A

Derivation of the characteristic time of diffusion

The analytical solution to Eq. (4) provided with the boundary
conditionsTb(1,t) = Ta(t) and(∂Tb/∂r)r=0 = 0 for all t > 0
reads (Carslaw and Jaeger, 1959):

Tb(r,t)=
2

r

∞∑
n=1

(
αn +βn(t)

)
e−D(πn/R)2t sin(πnr), (A1)

where

αn =

∫ 1

0
rTb,0(r)sin(πnr)dr,

βn(t) =
πD

R2
n(−1)n+1

∫ t

0
Ta(s)e

D(πn/R)2s ds,

andTb,0 : [0,1] 7→ R denotes the initial temperature distribu-
tion. In Eq. (A1), r ∈ [0,1] and t > 0. The solution adopts
a much simpler expression in the case where the initial tem-
perature distribution is uniform, viz.Tb,0 is a constant, and
the temperature atr = 1 is kept constant over time, viz.Ta is
constant. In such a case,

Ta−Tb(r,t)

Ta−Tb,0
=

2

πr

∞∑
n=1

(−1)n+1

n
e−D(πn/R)2t sin(πnr), (A2)

Fig. A1. Radial distribution of the quantity on the left-hand side of
Eq. (A2) at different times.τ = R2/(π2D) denotes the characteris-
tic time of diffusion.

Table A1. Typical values of some parameters associated with the
balloon at two different altitudes. The lifting gas is assumed to be
hydrogen, whose specific heat capacity at constant pressure equals
1.4×105 J kg−1 K−1).

Altitude R (m) κ W m−1 K−1)) ρb (kg m−3)

ground 1 0.18 0.09
30 km 4 0.14 10−3

where the quantity on the left-hand side is the temperature
difference between the outside and the inside of the balloon
normalized by the initial difference. The radial profile of
this quantity is shown in Fig.A1 for different times. The
characteristic time of diffusion is obtained from Eq. (A2) by
considering only the dominant coefficient associated ton = 1
in the Fourier series, which leads toτ = R2/(π2D). Using
the expressionD = κ/(ρbcp) and the typical values of Ta-
bleA1, the characteristic time of diffusion is observed to de-
crease from∼ 900 s at ground to∼ 300 s at 30 km altitude in
the case where the lifting gas is hydrogen. Diffusion occurs
faster at higher altitude as a result of the lower mass density
of the lifting gas.

Appendix B

Convergence study of the finite element code

In the balloon ascent model, Eq. (4) is discretized spatially
according to the Finite Element Method. The numerical solu-
tion is expressed in terms of a basis of second-order polyno-
mials, which corresponds to a discretization scheme of sec-
ond order in space. Regarding the time discretization, the
first-order Euler backwards scheme is preferred – for stability
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Fig. B1. Variation ofσ at t = 0.1τ as a function of the time step.
Three different space discretization intervals are considered:δr =

10−2 (–×); δr = 2×10−2 (–◦); andδr = 5×10−2 (–| ).

purposes – to the second-order Cranck-Nicolson one. The
latter introduces oscillations in the numerical solution when
used in association with the Finite Element Method.

Convergence of the numerical solution is analyzed here in
the simple reference case where the initial temperature inside
the balloon is uniform and the temperature at the balloon’s
surface is constant. LetTb,anaandTb,num respectively denote
the analytical and numerical solutions in this case, the ex-
pression ofTb,anabeing derived from Eq. (A2). Convergence
is measured in terms of the second moment of the difference
Tb,ana−Tb,num,

σ 2(t) =
3

(Ta−Tb,0)2

∫ 1

0
r2[Tb,ana(r,t)−Tb,num(r,t)

]2dr, (B1)

whereTa andTb,0 are defined as in AppendixA. The quantity
σ corresponds to the numerical error averaged over the bal-
loon volume and normalized by the initial temperature dif-
ference between the inside and the outside of the balloon.

Let δr andδt respectively denote the space discretization
interval and the time step used by the numerical scheme.
Variation of σ at a fixed time as a function ofδt is shown
in Fig. B1 for three different values ofδr. It is observed that
the numerical error scales linearly with the time step and sat-
urates for small values ofδt . The error does not depend on
δr for large time steps, contrary to the saturation value. This
implies that a finer spatial discretization is valuable only if
conjugated with a finer time resolution. In practice, a time
step of 10−3τ is chosen in the balloon ascent model, as it
is observed to result in relatively short computational times
(not shown) while leading to an acceptable mean error of
0.1 % compared to the analytical solution. This implies that
a space discretization as large as 5×10−2 can be used, as
a finer choice ofδr would not improve the precision of the
numerical solution (see Fig.B1).
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École Polytechnique F́ed́erale de Lausanne (EPFL, Lausanne,
Switzerland) for fruitful discussions and his revision of our work.
This work was in part supported within the COST action ES0904,
Atmospheric Water Vapour in the Climate System, funded by the
Swiss State Secretariat for Education and Research (SER).

Edited by: A. Stoffelen

References

Achenbach, E.: Experiments on the flow past spheres at very high
Reynolds numbers, J. Fluid Mech., 54, 565–575, 1972.

Alexander, M., Geller, M., McLandress, C., Polavarapu, S.,
Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hert-
zog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M.,
Vincent, R., and Watanabe, S.: Recent developments in gravity-
wave effects in climate models and the global distribution of
gravity-wave momentum flux from observations and models, Q.
J. Roy. Meteorol. Soc., 136, 1103–1124,doi:10.1002/qj.637,
2010.

Carslaw, H. and Jaeger, J.: Conduction of Heat in Solids, Clarendon
Press, 2nd Edn., 1959.

Engel, I.: Trajectory Modelling of Match Balloon Soundings for
Cirrus Cloud Characterisation, Master’s thesis, Swiss Federal In-
stitute of Technology Zurich, 2009.

Fritts, D. and Alexander, M.: Gravity wave dynamics and ef-
fects in the middle atmosphere, Rev. Geophys., 41, 1003,
doi:10.1029/2001RG000106, 2003.

Geller, M. A. and Gong, J.: Gravity wave kinetic, poten-
tial, and vertical fluctuation energies as indicators of differ-
ent frequency gravity waves, J. Geophys. Res., 115, D11111,
doi:10.1029/2009JD012266, 2010.

Gong, J. and Geller, M. A.: Vertical fluctuation energy in United
States high vertical resolution radiosonde data as an indicator of
convective gravity wave sources, J. Geophys. Res., 115, D11110,
doi:10.1029/2009JD012265, 2010.

Govardhan, R. and Williamson, C.: Vortex-induced vi-
brations of a sphere, J. Fluid Mech., 531, 11–47,
doi:10.1017/S0022112005003757, 2005.

Hamilton, K. and Vincent, R.: High-resolution radiosonde data
offer new prospects for research, EOS Transactions, 76, 497,
doi:10.1029/95EO00308, 1995.

Hoyle, C., Luo, B., and Peter, T.: The origin of high ice crystal
number densities in cirrus clouds, J. Atmos. Sci., 62, 2568–2579,
2005.

Immler, F.: Report on the LUAMI campaign, Tech. Rep.,
WMO, available at: http://www.hydrometeoindustry.org/
Meetings2008/LUAMILindengergNov2008/LUAMI v2.pdf,
last access: Fall 2008, 2008.

Lane, T. P., Reeder, M. J. and Guest, F. M.: Convectively gen-
erated gravity waves observed from radiosonde data taken dur-
ing MCTEX, Q. J. Roy. Meteorol. Soc., 129, 1731–1740,
doi:10.1256/qj.02.196, 2003.

Lewis, R., Morgan, K., Thomas, H., and Seetharamu, K.: The Finite
Element Method in Heat Transfer Analysis, John Wiley & Sons
Inc, 1996.

Atmos. Meas. Tech., 4, 2235–2253, 2011 www.atmos-meas-tech.net/4/2235/2011/

http://dx.doi.org/10.1002/qj.637
http://dx.doi.org/10.1029/2001RG000106
http://dx.doi.org/10.1029/2009JD012266
http://dx.doi.org/10.1029/2009JD012265
http://dx.doi.org/10.1017/S0022112005003757
http://dx.doi.org/10.1029/95EO00308
http://www.hydrometeoindustry.org/Meetings2008/LUAMI_Lindengerg_Nov2008/LUAMI_v2.pdf
http://www.hydrometeoindustry.org/Meetings2008/LUAMI_Lindengerg_Nov2008/LUAMI_v2.pdf
http://dx.doi.org/10.1256/qj.02.196


A. Gallice et al.: Modeling the ascent of sounding balloons 2253

Loth, E.: Drag of non-spherical solid particles of regular and irreg-
ular shape, Powder Technol., 182, 342–353, 2008.

Mapleson, W.: The drag of spherical rubber balloons, Q. J. Roy.
Meteorol. Soc., 80, 449–451, 1954.

Musso, I., Cardillo, A., Cosentino, O., and Memmo, A.: A balloon
trajectory prediction system, Adv. Space Res., 33, 1722–1726,
doi:10.1016/j.asr.2003.07.044, 2004.

Neve, R.: The importance of turbulence macroscale in determining
the drag coefficient of spheres, Int. J. Heat Fluid Fl., 7, 28–36,
1986.

Palumbo, R.: A Simulation Model for Trajectory Fore-
cast, Performance Analysis and Aerospace Mission Plan-
ning with High Altitude Zero Pressure Balloons, Ph.D. the-
sis, Universit̀a degli Studi di Napoli “Federico II”, avail-
able at: http://www.fedoa.unina.it/1839/1/PalumboIngegneria
AerospazialeNavalee della Qualita.pdf, 2007.

Rex, M., Von Der Gathen, P., Braathen, G., Harris, N., Reimer, E.,
Beck, A., Alfier, R., Kr̈uger-Carstensen, R., Chipperfield, M.,
De Backer, H., Balis, D., O’Connor, F., Dier, H., Dorokhov, V.,
Fast, H., Gamma, A., Gil, M., Kyr̈o, E., Litynska, Z., Mikkelsen,
I. S., Molyneux, M., Murphy, G., Reid, S. J., Rummukainen,
M., and Zerefos, C.: Chemical ozone loss in the arctic winter
1994/95 as determined by the match technique, J. Atmos. Chem.,
32, 35–59, 1999.

Salsa, S.: Partial Differential Equations in Action: From Modelling
to Theory, Springer, 2008.

Shutts, G., Kitchen, M., and Hoare, P.: A large amplitude gravity
wave in the lower stratosphere detected by radiosonde, Q. J. Roy.
Meteorol. Soc., 114, 579–594,doi:10.1002/qj.49711448103,
1988.

Son, K., Choi, J., Jeon, W., and Choi, H.: Effect of free-stream
turbulence on the flow over a sphere, Phys. Fluids, 22, 045101,
doi:10.1063/1.3371804, 2010.

Vargaftik, N., Flippov, Lev, P., and Tarzimanov, Amin, A.: Hand-
book of Thermal Conductivity of Liquids and Gases, CRC Press,
ISBN: 0-8493-9345-0, 1994.

Veldhuis, C., Biesheuvel, A., and Lohse, D.: Freely rising
light solid spheres, Int. J. Multiphas. Flow, 35, 312–322,
doi:10.1016/j.ijmultiphaseflow.2009.01.005, 2009.

Vennard, J. K. and Street, R. L.: Elementary Fluid Mechanics, Wi-
ley, 5th Edn., 1976.

Wang, J., Bian, Jianchun, Brown, William O., Cole, Harold,
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