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Abstract. Monitoring tropospheric ozone from space is of
critical importance in order to gain more thorough knowl-
edge on phenomena affecting air quality and the greenhouse
effect. Deriving information on tropospheric ozone from
UV/VIS nadir satellite spectrometers is difficult owing to the
weak sensitivity of the measured radiance spectra to varia-
tions of ozone in the troposphere. Here we propose an al-
ternative method of analysis to retrieve tropospheric ozone
columns from Ozone Monitoring Instrument radiances by
means of a neural network algorithm. An extended set of
ozone sonde measurements at northern mid-latitudes for the
years 2004–2008 has been considered as the training and test
data set. The design of the algorithm is extensively dis-
cussed. Our retrievals are compared to both tropospheric
ozone residuals and optimal estimation retrievals over a sim-
ilar independent test data set. Results show that our algo-
rithm has comparable accuracy with respect to both correla-
tive methods and its performance is slightly better over a sub-
set containing only European ozone sonde stations. Possible
sources of errors are analyzed. Finally, the capabilities of our
algorithm to derive information on boundary layer ozone are
studied and the results critically discussed.
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1 Introduction

Deviations of tropospheric ozone concentrations from back-
ground values have strong impacts on both climate and air
quality. Tropospheric ozone levels are mainly determined
by two processes: stratosphere-troposphere exchange (STE),
and photochemical production (WMO, 2002). It has been es-
timated that the observed and modeled enhancement of tro-
pospheric ozone derived from human activities (see, e.g.Lo-
gan et al., 1999; Vingarzan, 2004; Oltmans et al., 2006;
Jonson et al., 2006) is the third major source of the green-
house effect (IPCC, 2001; Shindell et al., 2009). High lev-
els of ozone near the surface may also be a threat to human
health and may damage crops (Seinfeld and Pandis, 1998;
The Royal Society, 2008). Monitoring patterns of ozone at
lower altitudes, and analyzing the possible interconnections
with sources and sinks, is crucial to understand phenomena
of a great importance for the life on Earth. For these reasons,
monitoring ozone concentrations and trends, especially in the
troposphere, is a relevant topic in recent geoscience research.

Observing height-resolved atmospheric ozone, with a
particular emphasys at the troposphere, from satellites is
thus an exciting advance. UV/VIS nadir sensors, e.g. the
Solar Backscatter Ultraviolet (SBUV) instruments, the
Global Ozone Monitoring Experiment (GOME), the SCan-
ning Imaging Absorption SpectroMeter for Atmospheric
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CHartographY (SCIAMACHY), the EOS-Aura Ozone Mon-
itoring Instrument (OMI) and the MetOp GOME-2, are par-
ticularly useful for this. Also, infrared sensors, including
the Tropospheric Emission Spectrometer (TES) and the In-
frared Atmospheric Sounding Interferometer (IASI) can be
used to derive tropospheric ozone from space. The OMI
instrument provides a particularly good opportunity to con-
tribute to the understanding of ozone-related phenomena in
the troposphere, owing to the relatively small pixel size at the
near-nadir portion of its measurement swath; it is also useful
for efficient monitoring owing to its daily global coverage
(Levelt et al., 2006).

Different techniques have been recently proposed to mon-
itor tropospheric ozone from satellites including OMI: see,
e.g. the methods proposed byZiemke et al.(2006a,b); Yang
et al. (2007); Schoeberl et al.(2007); Stajner et al.(2008);
Liu et al. (2010b). Three major techniques exist within this
field. The first is the tropospheric ozone residual (TOR) tech-
nique (first introduced byFishman and Larsen, 1987 and
then applied to OMI data byZiemke et al., 2006b; Schoe-
berl et al., 2007): the stratospheric ozone column, which can
be measured with a limb sounder like the Microwave Limb
Sounder (MLS), is subtracted from a co-located total column
ozone measurement, which can be acquired with a nadir in-
strument like OMI. In this case, one must deal with measure-
ments from two different sensors considering issues related
to non-homogeneous data sets. The horizontal resolution
may be degraded by the use of limb measurements, which
have lower horizontal resolution and/or horizontal coverage
than nadir observations. The second technique is the con-
vective cloud differential method (Ziemke et al., 1998; Valks
et al., 2003). This methodology is based on the knowledge of
the cloud top pressure to separate the stratosphere from the
troposphere. This method has the drawback of being limited
to regions with deep convective clouds and generally not ap-
plied to individual satellite pixels, but used to derive monthly
means. The third technique is based on optimal estimation
(OE) (Rodgers, 2000) to retrieve height-resolved ozone con-
centrations, including the troposphere (see, e.g. the papers
by Munro et al., 1998; Liu et al., 2010b). OE relies on the
use of a forward radiative transfer model, which requires sub-
stantial computation. It may be susceptible to model errors in
the presence of aerosols and clouds. It requires the radiance
spectra to be accurately calibrated.

Neural network (NN) algorithms have demonstrated en-
couraging capabilities as an alternative tool to retrieve
height-resolved ozone concentrations from satellite data,
(see, e.g.Del Frate et al., 2002, 2005; Müller et al., 2003;
Iapaolo et al., 2005; Sellitto et al., 2011). Recently, NN al-
gorithms for both ozone profile retrieval (e.g.Sellitto et al.,
2007b, 2011), and tropospheric ozone column retrievals,
(e.g.Sellitto et al., 2007a) from SCIAMACHY have been de-
veloped. Some first experiments have been done for strato-
spheric and upper tropospheric ozone profile retrieval from
OMI (Sellitto et al., 2008). NNs have several advantages over

the TOR and the OE techniques in this application: they learn
the inverse relationship between the radiance spectra and the
tropospheric ozone column (TOC) from a set of sample data
so that a direct model is not necessary. They are expected to
be less sensitive than OE to systematic errors of input spec-
tra, and to clouds and aerosols. Once trained, a NN is able to
operate in real time. However, its performances depend on
the quality of the training set and a statistically complete set
of external measurements is not always available.

We present the OMI-TOC NN, a NN algorithm to retrieve
TOCs from OMI Level 1b data.

In Sects.2.1and2.2brief overviews of NNs and OMI are
given. Sections2.3 and2.4 introduce and discuss the avail-
able data set and the general methodology to train and test
our NN algorithm. Results are presented in Sect.3, including
a comparison of our retrievals with those ofLiu et al.(2010b)
andSchoeberl et al.(2007). We address the causes of error
for our retrievals (Sect.4.1) and evaluate the capability of
the OMI-TOC NN to detect ozone information at the lowest
altitude levels (Sect.4.2). Section5 presents conclusions.

2 Data and methodology

2.1 Neural networks algorithms

An artificial neural network (NN) is a mathematical model
able to extract the underlying relationships between input and
output quantities by means of a learning stage. During this
stage, a set of experimental or simulated input-output pairs
is given to the NN to train the model. NNs are based on
biological nervous systems, and, as such, are organized as
parallel structures. A NN is composed by elementary pro-
cessing units, called neurons, linked by weighted synapses.
The neurons can be organized in layers, e.g. one input layer
that receives the input quantities, one or more hidden layers,
and an output layer that gives the output quantities. If the
information flows only from input to hidden to output layers,
the model is called a feedforward NN. Each neuron in a layer
receives the signal from all the outputs of the neurons of the
previous layer, in the form of a weighted sum, whose weights
are the parameters associated to the synapses connecting one
neuron to the neurons of the previous layer. The input signal
to one neuron is then processed with an activation function
(AF) to produce the output of the neuron, which will be fed
to the next layer. Non-linear AFs, e.g. squashing sigmoidal
functions, are usually used. During the learning stage, a set
of input-output pairs is presented to the NN. It is possible to
define an error function to measure the differences between
the true output values and the outputs that are calculated by
the NN model. From the analysis of the gradient vector in the
error hypersurface it is then possible to define some criteria
to adjust the weight parameters to make the model learn the
underlying relationships between input and output quantities.
Comprehensive theoretical descriptions of NNs are found in
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Fig. 1. Geographical distribution of the OS stations at mid-latitudes. Black and red stations are used for training

and test, respectively
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Fig. 1. Geographical distribution of the OS stations at mid-latitudes. Black and red stations are used for training and test, respectively.

(Bishop, 1995; Haykin, 1999; Kecman, 2001), while a rig-
orous demonstration that NNs are universal approximators is
given byHornik et al.(1989).

2.2 The EOS-Aura Ozone Monitoring Instrument

The Ozone Monitoring Instrument (OMI) is a contribution of
the Netherlands and Finland to NASA’s Aura mission. OMI
is a nadir-viewing pushbroom spectrometer that operates in
the UV/VIS spectral range (270 to 500 nm), with a spectral
resolution of 0.42–0.63 nm and a direct nadir spatial resolu-
tion of 13 km along track× 24 km across track (the spatial
resolution at the ends of the swath is substantially larger)
(Levelt et al., 2006). The wide (114◦) field of view of the
telescope corresponds to a 2600 km wide swath on the sur-
face, which make it possible a daily global coverage. The
light entering the telescope is depolarized using a scrambler
and then split into two channels: the ultraviolet (UV) channel
(wavelength range 270–380 nm) and the visible (VIS) chan-
nel (wavelength range 350–500 nm). The OMI heritage is
the European Space Agency Global Ozone Monitoring In-
strument (GOME) (Burrows et al., 1999) and the SCanning
Imaging Absorption SpectroMeter for Atmospheric CHar-
tographY (SCIAMACHY) (Bovensmann et al., 1999) instru-
ments, which introduced the concept of measuring the com-
plete spectrum in the UV/VIS/NIR wavelength range with
moderate spectral resolution. The high spatial and moder-
ate spectral resolutions are simultaneously possible for the
OMI by the use of a two-dimensional detector. The small
pixel size in principle enables OMI to have more cloud free
pixels. Pixels affected by row anomalies (http://www.knmi.
nl/omi/research/product/rowanomaly-background.php), af-
ter May 2007, have been implicitly filtered out and then not
used within our work, based on a threshold on fitting residu-
als for the correlative OE algorithm (see Sect.3).

2.3 Training and test data

The topology of our OMI-TOC NN algorithm, which will
be more thoroughly described in Sect.2.4, includes an in-
put layer taking the OMI Level 1b normalized radiances
at selected wavelengths, with some additional information,
e.g. the total ozone column from the OMTO3 operational
OMI Level 2 product (Bhartia and Wellemeyer, 2002), and
an output layer yielding the TOC (surface-200 hPa). During

the training/test phase, several input-output pairs are given to
the net. For the output, TOCs are obtained from co-located
ozone sonde (OS) measurements. We have a limitation based
on the available output data in forming a large set of input-
output pairs to train and test the net. We chose as truth refer-
ence the extended ozone sondes data set also used bySchoe-
berl et al.(2007), covering the years 2004–2008 and obtained
from the Aura Validation Data Center (AVDC).

As stated byHornik et al.(1989), a NN can approximate
an unknown functional relationship as long as the training
data set is sufficiently large, i.e. statistically representative
of the retrieved quantities. In our case it is necessary for
the data set to cover the inherent ozone climatology. Ozone
sonde launches are relatively expensive and sparse both in
time and in space, so it is difficult to build a significant data
set to train a NN algorithm. Our approach is to limit the data
set in space, to avoid confusion into the learning phase by
giving the NN a large number of different climatologies: we
restrict our development to northern mid-latitudes, 30◦ N–
60◦ N. Figure1 shows the distribution of the training and test
stations. The overall number of the available ozone sonde
stations is 37. They cover different periods each, but overall
from the end of 2004 to April 2008.

We subdivide the available ozone sonde stations by con-
sidering theirclimatological and campaign-basednature.
The criterion of this subdivision is related to the continu-
ity of the available measurements for each station: sta-
tions that operated continuously are consideredclimatolog-
ical while stations that operated less continuously are con-
sideredcampaign-based. Some of these latter come from
measurement campaigns, e.g. the INTEX-B Ozonesonde
Network Study 2006 (IONS-06) (http://croc.gsfc.nasa.gov/
intexb/ions06.html) (Thompson et al., 2003).

Following this subdivision, we use theclimatologicalsta-
tions to generate the training data set and thecampaign-
basedstations for the test data set. This is done to maintain
the two data sets as independently as possible.Campaign-
basedstations are often operating in locations or periods
of time with peculiar climatologies, e.g. high altitude sta-
tions, so that testing the performance of the NN with these
measurements gives an indication of the generalization capa-
bility of the algorithm, with conditions that are not present
in the training data set. Table1 summarizes the number
of measurements for every ozone sonde station in America,
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Table 1. Available OS stations.

Name Typology Number of available measurements Latitude Longitude

Boulder Climatological/Training 95 40.0◦ N 105.2◦ W
Bratts Lake Climatological/Training 108 50.2◦ N 104.7◦ W
Churchill Climatological/Training 91 58.7◦ N 94.1◦ W
Egbert Climatological/Training 103 44.2◦ N 79.8◦ W
Goose Bay Climatological/Training 126 53.3◦ N 60.4◦ W
Huntsville Climatological/Training 82 34.7◦ N 86.6◦ W
Kelowna Climatological/Training 116 49.3◦ N 119.4◦ W
Trinidad Head Climatological/Training 57 40.8◦ N 124.2◦ W
Wallops Island Climatological/Training 159 37.9◦ N 66.1◦ W
Beaumont Campaign-based/Test 3 30.1◦ N 94.1◦ W
Beltsville Campaign-based/Test 10 39.0◦ N 76.5◦ W
College Station Campaign-based/Test 1 30.6◦ N 96.3◦ W
Edmonton Campaign-based/Test 99 53.5◦ N 114.1◦ W
Holtville Campaign-based/Test 15 32.8◦ N 115.4◦ W
Houston Campaign-based/Test 52 29.7◦ N 95.4◦ W
Lamont Campaign-based/Test 15 36.7◦ N 97.6◦ W
Narragansett Campaign-based/Test 73 41.5◦ N 71.4◦ W
Sable Island Campaign-based/Test 25 43.9◦ N 60.0◦ W
Socorro Campaign-based/Test 22 36.4◦ N 106.9◦ W
Vanscoy Campaign-based/Test 1 52.0◦ N 107.0◦ W
Walsingham Campaign-based/Test 18 42.6◦ N 80.6◦ W
Yarmouth Campaign-based/Test 79 43.9◦ N 66.1◦ W
Barajas Climatological/Training 107 40.5◦ N 3.6◦ W
Hohenpeissenberg Climatological/Training 360 47.8◦ N 11.0◦ E
Legionowo Climatological/Training 179 52.4◦ N 21.0◦ E
Lindenberg Climatological/Training 161 52.2◦ N 14.1◦ E
Payerne Climatological/Training 463 46.5◦ N 6.6◦ E
Uccle Climatological/Training 390 50.8◦ N 4.3◦ E
De Bilt Campaign-based/Test 120 52.1◦ N 5.2◦ E
Haute Provence Campaign-based/Test 2 43.9◦ N 5.7◦ E
Jaegersborg Campaign-based/Test 2 55.8◦ N 12.5E
Kuehlungsborn Campaign-based/Test 10 54.0◦ N 11.6◦ E
Prague Campaign-based/Test 133 50.0◦ N 14.4◦ E
Isfahan Climatological/Training 36 32.5◦ N 51.7◦ E
Sapporo Climatological/Training 117 43.1◦ N 141.3◦ E
Tateno Climatological/Training 120 36.0◦ N 140.1◦ E
Kagoshima Campaign-based/Test 21 31.6◦ N 130.6◦ E

Europe and Asia. We do not assign all measurements de-
riving from actual campaigns to thecampaign-basedcate-
gory. For example, Egbert station, Ontario, Canada, oper-
ated in the framework of the IONS-06 campaign but we used
it for training because of the relevant number of measure-
ments (103, see Table1) in an area with little ozone sonde
coverage. This is done to maintain reasonable statistics in
both the training and test data sets; if a stricter subdivision
was made, we might have unbalanced training/test data sets,
e.g. in America we might have more test than training sam-
ples, while a ratio of about 75 % (training) to 25 % (test) is
desirable (Hornik et al., 1989).

A matching procedure is implemented to create the
input-output pairs for the OMI-TOC NN. OMI pixels are

considered to match with ozone sonde launches if data are
collected within a maximum time interval of 12 h with re-
spect to the OMI overpass, and if the station is contained
within the OMI pixel.

We obtained about 4500 input-output samples, with 75 %
in the training data set and 25 % in the test data set. We
train one NN with the whole mid-latitudes data set: adaptive
approaches to define different NN algorithms for America,
Europe and Asia are under investigation.

2.4 Algorithm configuration

Once the training and test data sets have been generated, ad-
ditional configuration issues must be considered, and then
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the net must be trained. Our neural processing chain, which
has been described in e.g.Del Frate et al.(2002, 2005) and
is applied here, relies on two separate phases. The first one
is off-line and gives as output the values of the network pa-
rameters. The second one is operational and completely au-
tomatic and yields the estimated quantities, i.e. the output. A
brief description of each step of the OMI-TOC NN process-
ing chain, and how it is practically applied, follows.

Since OMI measures radiances at many wavelengths, we
need to select the most informative wavelengths to use in
the retrieval, minimizing the ill-conditioning of the inversion
problem (Twomey, 1996). Automatic wavelength selection
has the purpose of lowering the number of elements that char-
acterize the input of the net while preserving as much infor-
mation as possible. This is achieved by an extended pruning
(EP) procedure (Del Frate et al., 2005) that is performed af-
ter a preliminary screening of the sensitive sub-bands done
with a radiative transfer model (Sellitto et al., 2011). Nor-
mally, a pruning procedure is applied to a trained net to op-
timize its structure. The network is examined to assess the
relative importance of its weights, and the least important
ones are deleted. This is followed by further training of the
pruned network: the pruning and training may be repeated
for several cycles. In order to select the most convenient in-
puts for an application, the EP procedure is prolonged to the
input layer. The EP scheme is summarized as follows: (1) a
net with a maximum input dimensionality is trained; (2) the
synapse with the lowest magnitude is pruned; (3) the net
is retrained without re-initialization and with a lower num-
ber of training cycles; (4) the training errorE is evaluated:
if E is larger than a threshold valueEthr then the pruning
in stopped, otherwise the algorithm restarts from point (2).
In this phase only measurements from the UV channel are
considered. 19 UV wavelengths are selected, in the ranges
305–307 nm and 322–325 nm. They are in approximately
the same spectral intervals used for SCIAMACHY TOC re-
trievals (Sellitto et al., 2011). Sellitto et al.(2011) describes
the physical importance of the selected wavelengths. The
spectral input quantities are the ratios of the UV Earth’s ra-
diance spectra (global mode), taken from the OML1BRUG
product, with respect to the corresponding solar irradiance
spectra, taken from the OML1BIRR product, at the 19 se-
lected wavelengths. The radiance spectra are normalized by
the solar irradiance in order to limit the effects of instrumen-
tal parameters on the spectral shape. The input vector also
includes the solar zenith angle (SZA), to take into considera-
tion the geometry of observation, and the total column ozone
from coincident OMI Level 2 data, from the OMTO3 collec-
tion 3 v8.5 product (Bhartia and Wellemeyer, 2002), which is
based on the Total Ozone Mapping Spectrometer (TOMS) v8
total ozone algorithm. The OMTO3 derived ozone columns
have been extensively validated (McPeters et al., 2008). The
value of the total column ozone is expected to act as a reg-
ularization parameter when used into the input vector of our
net. We compared the results of our algorithm with those

from a NN with the same input vector and topology defini-
tions, and trained and tested over the same data sets, but with-
out the total ozone in input. We found that the performances
of this latter algorithm are more than 20 % worse in terms
of both the correlation coefficient and the RMS deviations
of retrieved versus reference OS TOCs over the test data set.
The output quantities are the TOCs from the integration of
the ozone concentrations derived from ozone sonde measure-
ments, from the surface to 200 hPa. Please note that, differ-
ently from physically-based methods, NNs do not allow the
calculation of averaging kernels and so a formal definition
of the vertical sensitivity of the output cannot be given here.
Input and output quantities are linearly scaled, between−1
and 1 and between 0 and 1, respectively, to let the AFs of the
NN to operate within their optimal interval of acceptance.

To improve the general applicability of the algorithm, the
different seasonal and regional effects have to be considered
and the learning and test sets have to be generated with a sta-
tistically significant number of patterns. Moreover, statistical
independence between the training and the test set has to be
assured to avoid limiting the robustness of the network. The
independence of the training and test data sets is reasonably
assured for OMI-TOC NN by using theclimatologicaland
campaign-basedstations, respectively, for them.

NN models are mainly specified by the net topology and
training rules (Bishop, 1995). The term topology refers to the
structure of the network as a whole: the number of its input,
output, and hidden units and how they are interconnected.
Among various topologies, we have found that a multi-layer
perceptron (MLP) has the best-suited topology for our inver-
sions. The hidden layer structure providing the optimal per-
formance is selected. If the number of neurons is too small,
the input-output associative capabilities of the net are too
weak. If it is too large, the capability can be being tailored
too much on the training set, and the computational complex-
ity of the algorithm does not improve its applicability. We
optimize the algorithm using a heuristic approach, systemat-
ically analyzing the network performance when varying ei-
ther the number of hidden layers (one or two) or the number
of hidden units and selecting the best topology on the basis
of the accuracy of the obtained results on a set of samples not
used for training. We use the early stopping method to deter-
mine when to stop the training. According to this criterion,
the performance of the net during the training phase is eval-
uated either on the training set or on an independent test set.
In the training set, the overall error keeps decreasing with the
training epochs, approaching a value of convergence. Con-
versely, the error on the test set reaches a minimum value,
after which it starts increasing if we continue the training op-
erations. At this point the learning phase is interrupted. We
select a 21-21-1 topology for the OMI-TOC NN, with main
characteristics given in Fig.2. The scaled conjugate gradi-
ent (SCG) method is chosen for the training algorithm. It
is expected to converge in a shorter time then standard er-
ror back-propagation procedures (Møller, 1993). Indeed, we
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Fig. 2. General scheme, including topology, of the OMI-TOC NN algorithm.
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Fig. 2. General scheme, including topology, of the OMI-TOC NN
algorithm.

reach a minimum value for the training error in only about
1500 epochs.

The previously described off-line phase provides the net-
work parameters (topology and weights). Once these de-
termined, the retrieval proceeds via a fully automatic, real-
time processing chain. The pre- and post-processing mod-
ules only apply (de)normalization procedures. The neural
implementation itself is very fast, and requires minimal com-
putational capability. The software implementation is done
with the Interactive Data Language (IDL) tool from ITT Vi-
sual Information Solutions. Running on a personal com-
puter with modest technical specifications (1 double core
2.26 GHz CPU with a 4 GB RAM), it requires less than 1 min
to analyze a full day of measurements (15 OML1BRUG orbit
files, 42 000 pixels per orbit), once the data are extracted.

3 Results and comparisons with OE and TOR

OMI-TOC NN retrievals are compared to the reference co-
located ozone sonde measurements for the test data set at
campaign-based stations. Figure3 is a scatter plot showing
NN retrievals versus sonde data. Data at different seasons
are indicated by different colors. In Fig.4 we show sim-
ilar results, but obtained from only cloud-free pixels (both
training and test data sets have been screened for cloudy pix-
els). The criterion for cloud-free pixels is the same one used
by Schoeberl et al.(2007) and Liu et al. (2010b): a pixel
is considered as cloud contaminated if the effective cloud
fraction is greater than 0.3. The cloud fraction informa-
tion is derived from co-located OMTO3 data. Comparing
the two scatter plots and the correlation coefficients therein,
the OMI-TOC NN algorithm is substantially insensitive to
clouds. Further investigations to fully understand the reasons
for this behaviour are currently ongoing.

The statistical characterization of this data set can be com-
pared with the similar scatter plot analysis reported in Fig. 4
of Schoeberl et al.(2007), where mid-latitude TOC retrievals
with a TOR algorithm using OMI and MLS (“Schoeberl al-
gorithm TOCs”) are reported and compared with co-located

Fig. 3. Scatter plot of OMI-TOC NN retrievals versus correspond-
ing OS TOCs for the test data set. Seasons are plotted in different
colors (see legend).

Fig. 4. Scatter plot of OMI-TOC NN retrievals versus correspond-
ing OS TOCs for the test data set, in cloud-free conditions. Seasons
are plotted in different colors (see legend).

ozone sonde measurements. From Figs.3 and4, the OMI-
TOC NN correlation is comparable to that ofSchoeberl
et al.(2007), with Pearson coefficients of 0.61/0.60 (Schoe-
berl’s are 0.45–0.68, depending on the season) and root
mean square (RMS) differences of 8.92/8.61 DU (Schoe-
berl’s RMS differences are 8.7–13 DU, depending on the sea-
son), while the OMI-TOC NN’s regression is better, hav-
ing slope and intercept of 0.69/0.70 and 12.95/13.48 (Schoe-
berl’s slope is 0.36–0.52, depending on the season, while the
intercept is not reported but from visual inspection seems
larger than for our algorithm). The seasonal effect which is
apparent in the TOR methodology is not present in our NN.

The OMI-TOC NN retrievals are compared with co-
located TOCs from the now well-established OMI ozone
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profile product from OE (Liu et al., 2010b); This product
has been validated in the stratosphere with co-located MLS
profiles (Liu et al., 2010a). The OE-based profiles are inte-
grated from the surface to 200 hPa to produce a data set of
TOCs (“Liu algorithm TOCs”) which is comparable to the
NN TOCs. Retrievals from both algorithms are compared
to co-located ozone sonde TOCs, taken as a reference. Fig-
ure 5 shows a histogram of the absolute deviations of our
retrievals and those from the Liu algorithm, with respect to
the reference data. A symmetrical distribution is obtained for
OMI-TOC NN, with no systematic differences, while a sys-
tematic difference is present both for Liu algorithm retrievals
(about 2 DU) and Schoeberl algorithm retrievals (from about
3 DU to more than 5 DU, depending on the season); this lat-
ter result can be seen in Fig. 4 ofSchoeberl et al.(2007).
The NN results should be unbiased by definition as they are
derived from OS measurements. The Liu and the Schoeberl
systematic differences reflect physical retrievals which are
independent from the OS measurements. The standard devi-
ation of the absolute differences is about 8.5–9.0 DU for both
NNs, and Liu and Schoeberl algorithms (the latter in sum-
mer and fall seasons; for the Schoeberl algorithm in winter
and spring, significantly higher values, up to 13 DU are ob-
served). The percent RMS deviation for NN is about 20 %,
slightly lower than for the Liu algorithm. From a Student’s t-
test analysis, the Liu algorithm TOC distribution has a higher
mean, 4.42 DU at ap = 1.08× 10−5 level, compared to the
OMI-TOC NN retrievals. Please note that the retrievals are
not filtered out for extreme off-nadir positions (which cause
large systematic biases due to inadequate radiometric cal-
ibration) and cloudy pixels: the standard deviation is re-
duced by 1.3 DU for the Liu algorithm when these factors
are considered.

Comparisons are presented for the overall European data
set (Fig.6), from two European test stations (De Bilt, the
Netherlands in Fig.7) and Prague, Czech Republic in Fig.8),
and from the only Asian test station, Kagoshima, Japan
(Fig. 9). For every comparison at a single ozone sonde sta-
tion the time series of OMI-TOC NN and Liu algorithm TOC
retrievals, and of ozone sonde TOC reference values, are re-
ported to show how NNs are capable to catch temporal trends
of the TOCs. In each plot, the monthly mean TOCs from the
three sources of data, with standard deviations, are also in-
cluded. Plots of the time series of absolute differences of
NN and Liu algorithm retrievals with respect to ozone sonde
measurements, including monthly means, are also shown for
each station. Finally, a comparison of scatter plots of NN
versus ozone sonde and Liu algorithm TOCs versus ozone
sonde is given for these stations. For the overall European
data set, a histogram of absolute differences is also reported
for the two methodologies.

From Fig.6a and b, the OMI-TOC NN shows better agree-
ment with sondes, by about 1 DU for the RMS difference
than the Liu algorithm, in Europe. The better agreement of
the NN over European ozone sonde stations is also clear from

Fig. 5. Histogram of the absolute deviations of OMI-TOC NN (in
red) and OE TOC (in blue) retrievals from the OS reference values
for the test data set. OE TOCs are derived from the algorithm de-
scribed inLiu et al.(2010b). Statistical parameters are also reported
in red and blue, respectively.

the histograms in Figs.5 and6c and the statistical parameters
therein. In particular, in Europe the distribution of the abso-
lute differences of the NN with respect to reference ozone
sonde TOC values, in addition to being unbiased, shows
lower standard deviation (8.25 DU) and a percent RMS dif-
ference with values almost as low as 20 %. From a Stu-
dent’s t-test analysis, the Liu algorithm TOC distribution has
a higher mean, 4.96 DU at ap = 9.57× 10−7 level, with re-
spect to OMI-TOC NN retrievals. The complete time series
of the TOCs at the different stations being considered are
shown in Figs.7a,8a and9a, while the time series of the ab-
solute differences with respect to the ozone sonde reference
data are shown in Figs.7b, 8b and9b. OS data are missing
at De Bilt for most of the year 2007, so they are excluded
from the comparisons. Although the time trends are gener-
ally well reproduced, in some time periods the Liu algorithm
gives substantially larger values, e.g. from December 2004
to March 2005 and from December 2007 to February 2008
at De Bilt (Fig.7a and7b) and from January to March 2008
at Prague (Fig.8a and8b). Some periods of marked dis-
agreement also occur for NN, e.g. the marked overestima-
tion during March 2007 at Prague. From the scatter plots in
Figs.7c–d,8c–d and9c–d the NN performances shows bet-
ter agreements with sondes than the Liu algorithm at De Bilt
and Prague, while at Kagoshima they are comparable. Over
American locations, Liu has slightly better agreement with
sondes than the OMI-TOC NN. In general, these two algo-
rithms have comparable agreement over the worldwide data
set.
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Fig. 6. Scatter plot of OMI-TOC NN retrievals (in red) and OE (in blue) versus corresponding OS true data

(a,b); histogram of the absolute deviations of OMI-TOC NN retrievals (in red) and OE (in blue) with respect to

the OSs reference values, for the European points of the test data set. Statistical parameters are also reported

(c).

stations (De Bilt, the Netherlands in figure 7) and Prague, Czech Republic in 8), and from the only

Asian test station, Kagoshima, Japan (figure 9). For every comparison at a single ozone sonde

station the time series of OMI-TOC NN and Liu algorithm TOC retrievals, and of ozone sonde TOC

reference values, are reported to show how NNs are capable to catch temporal trends of the TOCs. In

each plot, the monthly mean TOCs from the three sources of data, with standard deviations, are also290

included. Plots of the time series of absolute differences of NN and Liu algorithm retrievals with

respect to ozone sonde measurements, including monthly means, are also shown for each station.

Finally, a comparison of scatter plots of NN versus ozone sonde and Liu algorithm TOCs versus

ozone sonde is given for these stations. For the overall European data set, a histogram of absolute

differences is also reported for the two methodologies.295

From figures 6a and b, the OMI-TOC NN shows better agreement with sondes, by about 1 DU

for the RMS difference than the Liu algorithm, in Europe. The better agreement of the NN over

European ozone sonde stations is also clear from the histograms in figures 5 and 6c and the statistical

13

Fig. 6. Scatter plot of OMI-TOC NN retrievals (in red) and OE (in blue) versus corresponding OS true data(a), (b); histogram of the absolute
deviations of OMI-TOC NN retrievals (in red) and OE (in blue) with respect to the OSs reference values, for the European points of the test
data set. Statistical parameters are also reported(c).

4 Sensitivity analysis

4.1 Analysis of outliers

We examine the points in Fig.3with maximum distance from
the 1:1 straight line. For these outliers, the ozone sonde pro-
file is analyzed to understand if there are any systematic fea-
tures that are useful for identifying specific weaknesses of
our NN approach. Figure10 shows three of these profiles.
For most of the outliers, high vertical variability, with an
additional peak of ozone concentration values in the upper
troposphere, is observed. This includes the possible polar
filament at Haute-Provence (France) station (first profile in
Fig. 10). We observe a systematic underestimation of the re-
trieved TOCs with respect to the ozone sonde values when
such enhancements in the ozone sonde profiles occur. We
conclude that NNs may not be able to detect small scale ver-
tical patterns in the troposphere, probably owing to a lack
of vertical sensitivity inherent in the spectroscopic measure-
ments that define the physical content of the measurements.
This is also apparent from averaging kernels and smoothing
errors in the OE algorithm development (Liu et al., 2010b).

More analyses over a greater data set will better characterize
this issue.

4.2 Sensitivity in the boundary layer

We examine whether the OMI-TOC NN is able to extract
information about ozone concentrations at the lowest alti-
tudes from the radiance data. Recently it emerged that satel-
lite ozone measurements might contain some useful infor-
mation on planetary boundary layer (PBL).Kar et al.(2010)
have shown, in particular, that OMI/MLS combined mea-
surements with a TOR methodology can identify the signa-
ture of big cities, perhaps including the PBL contribution,
even though sporadically. It is important to detect both urban
and rural PBL information in TOC satellite measurements in
order to better understand processes that can affect air quality
and its monitoring on a continuous and global basis.

To investigate the NN’s capability for the detection of
information in the lowest layers of ozone, we train two
different NNs for the retrieval of surface-506.625 hPa and
surface-759.937 hPa ozone columns. The two top pressure
levels, which define the first Umkehr layer and half of it,
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Fig. 7. Time series of OMI-TOC NN (in red) and OE (in blue) retrievals, and OS reference data (in green) (a);

time series of absolute differences between OMI-TOC NN retrievals and OS (in red), and OE retrievals and OS

(in blue). A monthly mean is over plotted (crosses with errorbars and lines) (b); scatter plot of OMI-TOC NN

retrievals (in red) and OE (in blue) versus corresponding OS true data (c,d) for De Bilt, Netherlands.

parameters therein. In particular, in Europe the distribution of the absolute differences of the NN

with respect to reference ozone sonde TOC values, in addition to being unbiased, shows lower300

standard deviation (8.25 DU) and a percent RMS difference with values almost as low as 20%.

From a Student’s t-test analysis, the Liu algorithm TOC distribution has a higher mean, 4.96 DU

at a p=9.57·10−7 level, with respect to OMI-TOC NN retrievals. The complete time series of the

TOCs at the different stations being considered are shown in figures 7a, 8a and 9a, while the time

series of the absolute differences with respect to the ozone sonde reference data are shown in figures305

7b, 8b and 9b. OS data are missing at De Bilt for most of the year 2007, so they are excluded from

the comparisons. Although the time trends are generally well reproduced, in some time periods the

Liu algorithm gives substantially larger values, e.g., from December 2004 to March 2005 and from

December 2007 to February 2008 at De Bilt (figures 7a and 7b) and from January to March 2008

at Prague (figures 8a and 8b). Some periods of marked disagreement also occur for NN, e.g. the310

marked overestimation during March 2007 at Prague. From the scatter plots in figure 7c,d, 8c,d and
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Fig. 7. Time series of OMI-TOC NN (in red) and OE (in blue) retrievals, and OS reference data (in green)(a); time series of absolute
differences between OMI-TOC NN retrievals and OS (in red), and OE retrievals and OS (in blue). A monthly mean is over plotted (crosses
with errorbars and lines)(b); scatter plot of OMI-TOC NN retrievals (in red) and OE (in blue) versus corresponding OS true data(c), (d) for
De Bilt, the Netherlands.

respectively, correspond to about 5.5 km and 2.0 km. The
same training and test data sets and the same design method-
ology were used as for the surface-200.0 hPa column algo-
rithm described in Sect.2. As in Sect.3, the retrievals
were compared with the reference co-located ozone sondes
columns over the test data set. In Fig.11a and b the two
scatter plots, surface-506.625 hPa and surface-759.937 hPa,
are shown. There is clearly some retrieval capability for the
0–5.5 km case, but the retrieval capability for 0–2.0 km is
very poor: the dynamic range of the NN retrievals is very
compressed and the correlation with ozone sondes columns
is low. We also analyze the results of a further NN al-
gorithm, designed with the same criteria, this time retriev-
ing the 759.937–200.0 hPa ozone column, i.e. the TOC of
Sect.2 without the lowest 2.0 km. Figure11c shows the
scatter plot for this experiment. Comparing these results
with those in Fig.3, shows that while the correlations for
the two plots are of a similar magnitude, the fitting line for
the 759.937–200.0 hPa ozone column has both a bigger slope

and a relevantly smaller intercept. Thus we are inclined to
consider the signal from the PBL as a source of error, more
than information, for NNs. We carried out a similar test with
the retrievals from the Liu algorithm and also found out lim-
ited sensitivity to PBL ozone (Liu et al., 2010b), suggesting
this is not a specific issue of the OMI-TOC NN.

5 Conclusions

We present a novel approach to retrieve tropospheric ozone
columns at mid-latitudes from Ozone Monitoring Instrument
radiance measurements based on a neural network algorithm
(the OMI-TOC NN algorithm). The truth reference TOCs
used to train the net are extracted from an extended set of
ozone sondes measurements. The algorithm obtained has
been tested over an independent data set by comparing re-
trievals to ozone sonde TOCs atcampaign-basedstations.
The performance of the OMI-TOC NN is encouraging. The
OMI-TOC NN results in this study are independent of clouds
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Fig. 8. Time series of OMI-TOC NN (in red) and OE (in blue) retrievals, and OS reference data (in green) (a);

time series of absolute differences between OMI-TOC NN retrievals and OS (in red), and OE retrievals and OS

(in blue). A monthly mean is over plotted (crosses with errorbars and lines) (b); scatter plot of OMI-TOC NN

retrievals (in red) and OE (in blue) versus corresponding OS true data (c,d) for Prague, Czech Republic.

9c,d the NN performances shows better agreements with sondes than the Liu algorithm at De Bilt and

Prague, while at Kagoshima they are comparable. Over American locations, Liu has slightly better

agreement with sondes than the OMI-TOC NN. In general, these two algorithms have comparable

agreement over the worldwide data set.315

4 Sensitivity analysis

4.1 Analysis of outliers

We examine the points in figure 3 with maximum distance from the 1:1 straight line. For these

outliers, the ozone sonde profile is analyzed to understand if there are any systematic features that

are useful for identifying specific weaknesses of our NN approach. Figure 10 shows three of these320

profiles. For most of the outliers, high vertical variability, with an additional peak of ozone con-

centration values in the upper troposphere, is observed. This includes the possible polar filament at
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Fig. 8. Time series of OMI-TOC NN (in red) and OE (in blue) retrievals, and OS reference data (in green)(a); time series of absolute
differences between OMI-TOC NN retrievals and OS (in red), and OE retrievals and OS (in blue). A monthly mean is over plotted (crosses
with errorbars and lines)(b); scatter plot of OMI-TOC NN retrievals (in red) and OE (in blue) versus corresponding OS true data(c), (d) for
Prague, Czech Republic.

and seasons. The accuracy is comparable to that of existing
algorithms, including Schoeberl’s tropospheric ozone resid-
ual (Schoeberl et al., 2007) and Liu’s optimal estimation (Liu
et al., 2010b) for similar mid-latitude data sets. The OMI-
TOC NN gives better agreement with OS than the Liu al-
gorithm at European test locations, i.e. our retrievals have
a better correlation, a better fitting line, and lower RMS
deviations. The Liu algorithm gives slightly better agree-
ment for American test locations. The OMI-TOC NN has
also shown a close-to-zero mean value of the differences
with respect to ozone sonde reference TOCs, while about
2.0–3.5 DU were found in the case of Liu algorithm for the
overall mid-latitudes and Europe, respectively. This effect
can be due to the fact that the NN algorithm is trained by
ozone sonde TOCs, while the Liu (and the Schoeberl) algo-
rithm is physically independent from them. Please note that
the performances of the OMI-TOC NN have been evaluated
only at ozone sondes stations locations and future works will
characterize the quality of our retrievals over extended areas,

including, e.g. oceans. Please also note that our training data
set is limited in time and a regular refresh of the NN coef-
ficients by retraining with updated data sets is envisaged to
maintain the OMI-TOC NN performances over time. The
NN algorithm is much faster than OE-based algorithms, and
so is preferable when large data sets of Level 1b data have
to be analyzed. However, the NN algorithm has been found
unreliable in presence of small scale vertical patterns in the
ozone vertical profile. A study of the sensitivity of the OMI-
TOC NN to ozone at the lowest altitudes has shown that this
algorithm has little sensitivity to planetary boundary layer
ozone. Studied are planned to extend the training set with
tropical and Southern Hemisphere samples and/or to develop
dedicated algorithms which can be effectively used at differ-
ent regions, i.e. with different climatologies.
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Fig. 9. Time series of OMI-TOC NN (in red) and OE (in blue) retrievals, and OS reference data (in green) (a);

time series of absolute differences between OMI-TOC NN retrievals and OS (in red), and OE retrievals and OS

(in blue). A monthly mean is over plotted (crosses with errorbars and lines) (b); scatter plot of OMI-TOC NN

retrievals (in red) and OE (in blue) versus corresponding OS true data (c,d) for Kagoshima, Japan.

Haute-Provence (France) station (first profile in figure 10). We observe a systematic underestimation

of the retrieved TOCs with respect to the ozone sonde values when such enhancements in the ozone

sonde profiles occur. We conclude that NNs may not be able to detect small scale vertical patterns in325

the troposphere, probably owing to a lack of vertical sensitivity inherent in the spectroscopic mea-

surements that define the physical content of the measurements. This is also apparent from averaging

kernels and smoothing errors in the OE algorithm development (Liu et al. (2010b)). More analyses

over a greater data set will better characterize this issue.

4.2 Sensitivity in the boundary layer330

We examine whether the OMI-TOC NN is able to extract information about ozone concentrations at

the lowest altitudes from the radiance data. Recently it emerged that satellite ozone measurements

might contain some useful information on planetary boundary layer (PBL). Kar et al. (2010) have

shown, in particular, that OMI/MLS combined measurements with a TOR methodology can identify
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Fig. 9. Time series of OMI-TOC NN (in red) and OE (in blue) retrievals, and OS reference data (in green)(a); time series of absolute
differences between OMI-TOC NN retrievals and OS (in red), and OE retrievals and OS (in blue). A monthly mean is over plotted (crosses
with errorbars and lines)(b); scatter plot of OMI-TOC NN retrievals (in red) and OE (in blue) versus corresponding OS true data(c), (d) for
Kagoshima, Japan.

Fig. 10. OS concentration profiles at Haute-Provence, France, for February 18th, 2005; De Bilt, the Nether-

lands, for February 16th, 2006; Yarmouth, Canada, for January 04th, 2006. TOC values from OS, NN and OE

are also given.

the signature of big cities, perhaps including the PBL contribution, even though sporadically. It is335

important to detect both urban and rural PBL information in TOC satellite measurements in order to

better understand processes that can affect air quality and its monitoring on a continuous and global

basis.

To investigate the NN’s capability for the detection of information in the lowest layers of ozone,

we train two different NNs for the retrieval of surface-506.625 hPa and surface-759.937 hPa ozone340

columns. The two top pressure levels, which define the first Umkehr layer and half of it, respectively,

correspond to about 5.5 km and 2.0 km. The same training and test data sets and the same design

methodology were used as for the surface-200.0 hPa column algorithm described in section 2. As

in section 3, the retrievals were compared with the reference co-located ozone sondes columns over

the test data set. In figure 11a,b the two scatter plots, surface-506.625 hPa and surface-759.937345

hPa, are shown. There is clearly some retrieval capability for the 0-5.5 km case, but the retrieval

capability for 0-2.0 km is very poor: the dynamic range of the NN retrievals is very compressed

and the correlation with ozone sondes columns is low. We also analyze the results of a further

NN algorithm, designed with the same criteria, this time retrieving the 759.937-200.0 hPa ozone

column, i.e. the TOC of section 2 without the lowest 2.0 km. Figure 11c shows the scatter plot for350

this experiment. Comparing these results with those in figure 3, shows that while the correlations for

the two plots are of a similar magnitude, the fitting line for the 759.937-200.0 hPa ozone column has

both a bigger slope and a relevantly smaller intercept. Thus we are inclined to consider the signal

from the PBL as a source of error, more than information, for NNs. We carried out a similar test

with the retrievals from the Liu algorithm and also found out limited sensitivity to PBL ozone (Liu355

et al., 2010b), suggesting this is not a specific issue of the OMI-TOC NN.
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Fig. 10. OS concentration profiles at Haute-Provence, France, for 18 February 2005; De Bilt, the Netherlands, for 16 February 2006;
Yarmouth, Canada, for 4 January 2006. TOC values from OS, NN and OE are also given.

www.atmos-meas-tech.net/4/2375/2011/ Atmos. Meas. Tech., 4, 2375–2388, 2011



2386 P. Sellitto et al.: TOC retrieval from the OMI by means of NNs

Fig. 11. Scatter plot of test NN retrievals versus corresponding
OS values of the ozone columns in the altitude intervals:(a) sur-
face to 506.625 hPa,(b) surface to 759.937 hPa, and(c) 759.937 to
200.0 hPa, for the test data set. Seasons are plotted in different col-
ors (see legend).
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