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Abstract. CO serves as a tracer for dynamics in the polar
winter middle atmosphere. This work presents the retrieval
and the characterization of ground-based CO measurements
from the winters 2008/2009 and 2009/2010 by the Kiruna
microwave radiometer KIMRA, located in northern Sweden
(67.8◦ N, 20.4◦ E). Furthermore, the dataset is used for an
extensive comparison to the recent satellite instruments MLS
on Aura, ACE-FTS, and MIPAS on Envisat.

The vmr profiles are retrieved using the optimal estima-
tion approach. A detailed analysis of the averaging kernel
functions is carried out, showing sensitivity of the measure-
ments between 40 and 80 km altitude, a vertical resolution
of 16 to 22 km, as well as a residual influence of the re-
gion up to 130 km altitude. An error assessment reveals a
total error of the retrieved profile that increases with altitude
and is approx.±0.1 ppmv at 50 km altitude and±3 ppmv
at 80 km altitude. The main contributions to this total error
arise from the measurement noise and the uncertainty of the
used temperature profiles. The expected dynamical features
of the polar winter middle atmosphere are qualitatively iden-
tified in the retrieved time series, but are not quantitatively
analyzed here.

The dense MLS dataset is used to investigate the influence
of the collocation criteria on the satellite comparison, show-
ing that relaxing the distance criterion causes a high bias for
MLS. The comparison including the other instruments is dif-
ficult because of the small number of coincidences. However,
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it suggests that there is a general agreement between KIMRA
and the satellite instruments below 65 km altitude, but a high
bias for KIMRA above this altitude. Furthermore, the shape
of the KIMRA profile appears to be systematically different
from the satellite profiles.

1 Introduction

Carbon monoxide (CO) is a good tracer for dynamical pro-
cesses in the middle atmosphere during polar night, first, be-
cause of its long chemical lifetime, and second, because of a
strong increase in its volume mixing ratio (vmr) in the meso-
sphere and lower thermosphere (MLT) region. This strong
vertical gradient, which allows tracking of vertical motions,
is the result of CO production by the photolysis of CO2 in
the MLT region and CO destruction by a reaction with OH in
the stratosphere (e.g.Solomon et al., 1985).

The dynamical situation of the middle atmosphere in the
winter hemisphere is dominated by a strong zonal westerly
wind band, forming the polar vortex, which separates polar
air masses from the mid-latitudes. The meridional circula-
tion is directed toward the winter pole, resulting in conver-
gence and descent of air masses above the pole (e.g.Holton
and Alexander, 2000). Dynamics in the middle atmosphere
exhibit a strong variability on different timescales, intro-
ducing variability in other atmospheric parameters, e.g. in
stratospheric ozone abundances. One pronounced example
of interseasonal variability are sudden stratospheric warm-
ings (SSW), during which the polar vortex may break down
completely (e.g.Labitzke and van Loon, 1999; Manney et al.,
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2009). The tracer CO is a useful tool to study the different
dynamical processes involved.

Since CO has a simple rotational spectrum in the mi-
crowave region with approximately equally spaced lines ev-
ery 115 GHz, it can be observed using microwave radiome-
try. Emission spectra and respective vmr profiles of meso-
spheric CO have already been obtained byWaters et al.
(1976); Goldsmith et al.(1979); Künzi and Carlson(1982).
Since then, a number of ground-based microwave radiome-
ters have been developed and used for studies covering vari-
ous time periods in several locations, demonstrating the po-
tential of analyses of CO datasets (e.g.Bevilacqua et al.,
1985; Aellig et al., 1995; Forkman et al., 2003; Di Biagio
et al., 2010).

In addition to the microwave technique, ground-based
Fourier transform infrared spectrometry has also been ap-
plied in the study of strato-mesospheric CO (Kasai et al.,
2005). With this technique, long term datasets have already
been obtained and analysed (Velazco et al., 2007; Borsdorff
and Sussmann, 2009); however, this technique is limited to
sunny weather conditions and the measurement of the strato-
mesospheric CO column.

In parallel to the development of ground-based measure-
ments, satellite observations of strato-mesospheric CO have
also been established (e.g.López-Valverde et al., 1993;
Dupuy et al., 2004; Filipiak et al., 2005; Clerbaux et al.,
2008; Funke et al., 2009). In contrast to ground-based mea-
surements, which provide a high temporal and horizontal res-
olution at the measurement location, the advantage of satel-
lite observations is good spatial coverage, and therefore a
global view on CO abundances.

In this paper we present the first two winters (2008/2009
and 2009/2010) of the ongoing CO measurements by the
ground-based microwave radiometer KIMRA in Kiruna,
Sweden, as well as an intercomparison with three recent
satellite instruments. In Sect.2, we briefly introduce the in-
strument and the obtained dataset. In Sect.3, we describe the
retrieval of the vmr profiles together with a detailed analysis
of the retrieval performance and an error estimation. Sect.4
contains a brief discussion of the obtained CO vmr time se-
ries and in Sect.5 the satellite comparison is presented.

2 Instrument and dataset

2.1 Measurement location

The observations are carried out in Kiruna, northern Sweden
(67.8◦ N, 20.4◦ E, 425 m elevation) in the labs of the Swedish
Institute of Space Physics (Institutet för rymdfysik, IRF).
During the winter season, the state of the middle atmosphere
above this location is mainly given by polar vortex condi-
tions. However, Kiruna is close to the Arctic circle and the
vortex boundary may cross the measurement location several
times during a winter season, so that mid-latitude air may be

measured (Raffalski et al., 2005). This will demand a care-
ful separation of these periods in the scientific interpretation
of the dataset but it also gives opportunities like to compare
different air masses in a continuous dataset or to investigate
the timing of the overpasses in models.

2.2 Instrument

The Kiruna Microwave Radiometer KIMRA is a joint ven-
ture of the IRF and the Institute for Meteorology and Climate
Research, Karlsruhe Institute of Technology (KIT). KIMRA
contains a cryogenically cooled conventional Schottky diode
mixer and has a receiver noise temperature of about 1800 K
in single side band (SSB) mode. KIMRA covers the fre-
quency range from 195 to 234 GHz and has been operated
at IRF Kiruna since 2002.

The observations are performed according to the reference
beam-method suggested byParrish et al.(1988). However,
for the reference beam and the balanced calibration an inter-
nal adjustable reference load (Berg et al., 1998) is used.

KIMRA has a periscope-like mirror system, which allows
for observations with an azimuth angle between 0◦ and 360◦

as well as with an elevation angle between 0◦ and 90◦ (hor-
izontal to vertical). The azimuth angles of all the observa-
tions in this work are either 0◦ or 180◦, whereas the optimal
elevation angle is automatically chosen according to the tro-
pospheric transmissivity. In case of a change of the tropo-
spheric conditions, the ongoing observation is stopped and
a new measurement is automatically started, using the new
optimal elevation angle. Therefore the integration time per
spectrum varies between approx. 30 and 360 min. All spec-
tra obtained are generally saved without any further quality
check at the time of the measurement and are sorted later in
the retrieval process according to the particular requirements.

In a first period of operation from 2002 until 2007 only O3
measurements have been performed (Raffalski et al., 2005)
using a wide-band acusto-optical spectrometer (AOS, band-
width 1.2 GHz, 2048 channels). Data of this period was used
for the validation of the GOMOS (Meijer et al., 2004) and
MIPAS (Steck et al., 2007) instruments on board the satellite
ENVISAT.

In 2007, KIMRA was extended to be capable of mea-
suring strato-mesospheric CO simultaneously with O3 (see
Fig. 1 for an overview of the spectral region). For this, a
high-resolution Fast-Fourier-Transform spectrometer (FFTS,
bandwidth 110 MHz, 1024 channels) was included, which
is able to resolve the narrow CO emission line at 230 GHz.
Since then, KIMRA is routinely operated with both spec-
trometers in parallel. The present study of CO is, however,
focused on the high-resolution spectra (Fig.2, top panel), ob-
tained with the FFTS.
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Fig. 1. Sketch of the emission lines in the spectral region around the
CO line of interest calculated with ARTS to visualize the line po-
sitions. The black dashed lines indicate the spectral region covered
by the FFT spectrometer. Continuum emission has been omitted in
the calculation of this plot.

2.3 Dataset

Operational measurements have been performed since the
end of the year 2008, so that the obtained spectra cover the
winter 2008/2009 from December 2008 on and the full win-
ter 2009/2010. In principle, data for the winter 2007/2008
are also available, but due to the experimental state of the in-
strument during that time, the desired data quality cannot be
guaranteed.

One winter of continuous measurements is considered to
last from September to April. However, periods of instru-
ment maintenance and bad weather conditions may cause in-
terruptions of several days to weeks. The measurements from
the summer months are generally not analyzed since the in-
creased humidity causes the background radiation to be too
high for reasonable CO retrievals.

The signal-to-noise ratio varies from spectrum to spectrum
due to both changes in the atmosphere (humidity and CO it-
self) and changes of instrument parameters (elevation angle,
azimuth angle and the integration time; Sect.2.2). A quality
check is applied before retrieving the spectra, which was ad-
justed in tests under consideration of different criteria (total
integration time, ratio of atmospheric and calibration integra-
tion time, spikes in spectra, noise).

In total 1497 spectra were retrieved, which are distributed
over 309 days in the measurement period and have a mean
atmospheric integration time of approx. 1 h. Further char-
acteristics of this subset of spectra are summarized in Ta-
ble 1. Note that due to the change of the elevation angle
between single measurements, spectra cannot be averaged to
produce spectra with a uniform integration time. The spec-
tra are therefore retrieved as they are and the profiles may be
averaged afterwards if necessary. The change of the azimuth
angle is not relevant for the retrieval but may be considered
in detailed analyses of the obtained profiles.

Table 1. Characteristics of the measurements.

Period Dec 2008–Apr 2009
Sep 2009–Apr 2010

Days covered 309 of 393
Total number of spectra 1497
Mean number on measurements per day 3.8
Mean integration time per spectrum 59± 20 min
Mean noise on spectra 0.20± 0.04 K
Mean elevation angle 30◦ ± 15◦

Min/Max elevation angle 5◦/90◦

Number of spectra with azimuth 180◦ 802
Number of spectra with azimuth 0◦ 695

3 Retrieval of vertical profiles

3.1 Theory

The retrieval of a vertical profile from a measured microwave
spectrum is based upon the pressure broadening of the re-
spective emission line. The derivation of the profile is
achieved by an inversion of the forward modelF . It sim-
ulates a spectrumy, which would have been measured if the
atmosphere had a given statex.

y = F (x) + ε (1)

whereε represents the measurement noise. The assumed at-
mospheric statex is then iteratively modified until the sim-
ulated spectrum fits the measured one. However, this im-
plicit inversion of the forward model is an ill-posed problem,
so that a regularization is necessary to find an appropriate
solution.

The regularization approach used here is the optimal esti-
mation (OE) method, which has been described extensively
in Rodgers(2000). In OE, statistical a priori knowledge
about the state of the atmosphere is used to constrain the so-
lution. In particular, a Gaussian distribution with meanxa,
the a priori profile, and the corresponding a priori covariance
matrixSa of the respective species are used. The fact that the
measured spectrumy is affected by measurement noiseε, is
reflected by the inclusion of the measurement noise covari-
ance matrixSε .

The best estimator̂x for the true atmospheric state in OE
is then found by minimizing the expression

[y − F (x)]T S−1
ε [y − F (x)] + [x − xa]

T S−1
a [x − xa] . (2)

After the iteration,̂x can be expressed as

x̂ = xa + D(y − K xa) (3)

with the Jacobian of the forward modelK and the “contribu-
tion function matrix”D:

D =

(
KT S−1

ε K + S−1
a

)−1
KT S−1

ε . (4)
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Information on the measurement sensitivity and vertical res-
olution is contained in the “averaging kernel” (AVK) matrix
A, which relates changes in the true statex and the retrieved
statex̂:

A =
∂x̂

∂x
= D K . (5)

The AVK for a particular altitudezi is contained in the re-
spective rowAi· of the AVK matrixA. It is a measure for the
sensitivity of the retrieved valuêxi to perturbations of the
true state in any single altitude considered in the retrieval.A
usually deviates from the identity matrix, reflecting the lim-
ited altitude resolution of the retrieval. The retrieved profile
is not only governed by the atmospheric state but also by both
the instrumental properties and the a priori, so that the rela-
tionship between the retrieved and the true state is given by
the transfer function

x̂ = xa + A(x − xa). (6)

Equation (6) is also used to compare the retrieved profiles
with vertically better resolved measurements, assuming that
the independent measurement represents the true statex.

3.2 Retrieval setup

In this paper, the first operational version of the retrieval of
the KIMRA CO spectra, called KIMRA CO version 1.1, is
presented. It was developed and performed by the Institute
of Environmental Physics, University of Bremen (IUP).

The forward model for the radiative transfer used in this
study is the atmospheric radiative transfer simulator, ARTS,
version 1.0.216 (Bühler et al., 2005). For the inversion
with OE, the tool Qpack, version 1.0.93, is used (Eriksson
et al., 2005). Besides the CO emission line of interest at
230.5 GHz, ozone lines in this spectral region are also mod-
eled to account for their influence on the baseline (Fig.1).
Furthermore, the continuum absorption of H2O, O2, and N2
is accounted by inclusion of the MPM93 absorption model
(Bühler et al., 2005, and references therein). The line param-
eters as input for the forward model are taken from the HI-
TRAN 2004 spectroscopic database (Rothman et al., 2005).

Pressure- and temperature profiles needed as input for the
retrieval have generally been taken from the SABER satellite
instrument (Remsberg et al., 2008). Only the lower part up
to 17 km altitude comes from ECMWF Operational Analyses
data. This is in contrast to the retrieval of ozone performed at
IUP (Palm et al., 2010), for which ECMWF data with a static
extension in higher altitudes are used. The latter turned out
to be insufficient for the CO retrieval because of the greater
importance of contributions from the lower thermosphere to
the CO emission. The SABER profiles within a collocation
box from 50◦ N to 75◦ N latitude and 15◦ E to 25◦ E longi-
tude have been averaged daily prior to the use in the retrieval.
The collocation box extends so far south because the north-
ern edge of the SABER coverage changes from 83◦ N (north

viewing mode) to 52◦ N (south viewing mode) approx. ev-
ery 60 days (Remsberg et al., 2008). Thus, during periods
with usage of the south viewing mode, only the southern-
most part of the chosen collocation box contains profiles. A
possible bias caused by this fact has been considered in the
error assessment (Sect.3.5.2). Note that the use of SABER
temperature data as retrieval input has the disadvantage, that
the presented KIMRA CO retrieval cannot be performed con-
tinuously in future after SABER is not operational anymore.
Therefore it is intended to use other temperature datasets,
once a consistent long-term time series of the KIMRA CO
is of interest. The presented dataset, serves in this case as
standard to assess the influence of different temperature data.
However, the present application of the retrieved time series
are dynamical studies of the available period, for which the
use of the SABER dataset is the best choice.

The a priori profiles of CO (Fig.3), as well as O3, O2, and
H2O are based on a run of the Whole Atmosphere Commu-
nity Climate Model (WACCM) (Garcia et al., 2007), which
was provided by Douglas Kinnison, National Center for At-
mospheric Research (NCAR), Boulder, USA. An averaged
profile over a complete modeled winter is used as a priori for
the complete retrieved time series. This gives the confidence
that all the variations in CO seen in the time series (Sect.4)
come from the measurement alone. The used N2 abundance
is taken from the FASCOD subarctic winter scenario (An-
derson et al., 1986). The a priori covariance matrixSa has
initially been based on the respective WACCM CO standard
deviation, but was then empirically modified to give the re-
trieval enough freedom to fit the spectra of the whole course
of the winter sufficiently. Major changes have thereby been
made above 80 km altitude, where the available information
on the CO statistics is least certain. Non-diagonal elements
are zero, thus possible correlations between vertical layers
are not considered. Like the a priori profiles,Sa is also left
constant for the complete retrieval run. It is defined in frac-
tions of the a priori on the retrieval grid. The diagonal ele-
ments converted to absolute vmr

√
Sii

a ·xi
a are shown in Fig.3,

red dashed curve. The noise covariance matrixSε is calcu-
lated for each spectrum from the noise in a region that only
contains the background signal.

Furthermore, the retrieval accounts for instrumental ar-
tifacts, which cannot completely be suppressed during the
measurements. In particular, the magnitude of standing
waves is fitted, which are undulations of the spectrum base-
line that arise from minor reflections in the instrument optics.
Generally, this can be challenging, since it is often difficult
to distinguish these standing waves from the actual emission
line. In the present case, however, the emission line is much
smaller than the spectral bandwidth, so that large parts of
the spectrum directly show the disturbed baseline and can be
used to identify the standing waves. Additionally, the stand-
ing waves have relatively large wavelengths, so that they
are distinguishable from the emission line. Three different
wavelengths (55 MHz, 36.6 MHz and 27.5 MHz) are fitted
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Fig. 2. Top panel: spectrum measured on 29 October 2009, 06:52 h
(black) and the same spectrum corrected for standing waves (blue),
together with the fit calculated by the retrieval process (red). Bot-
tom: the corresponding residuum (difference of the corrected spec-
trum and the fitted spectrum), which contains only noise contribu-
tions, showing that the CO line was fitted adequately.

with resulting amplitudes of approximately 0.1 K. Likewise,
a baseline offset of the order of about 1 K is fitted.

The retrieval is performed on a pressure grid that corre-
sponds to fixed altitudes with 1 km spacing between 0.5 km
and 130.5 km, which is much more narrow than the actual
vertical resolution of the measurement. Such a narrow grid
is used to gain numerical stability of the retrieval although
it may cause spurious structures of smaller vertical extent in
the retrieved profile, which do not have a representation in
the real atmosphere (Sect.3.3). However, this is unproblem-
atic, since the real vertical information content is given by
the AVK functions (Sect.3.4).

In order to deal with the strong gradient in the CO vmr,
the retrieved quantity is the profilêxfrac in fractions of the a
priori xa, instead of the vmr profilêxvmr itself:

x̂i
= x̂i

frac =
x̂i

vmr

xi
a

. (7)

The gained AVK matrix also corresponds to the fractional
profiles (A = Afrac) and has to be converted to be representa-
tive for the vmr profile

A
ij
vmr = xi

a · A
ij

frac/x
j
a . (8)

In the following, the short terms “fractional AVK” matrix and
“vmr AVK” matrix are used to refer toAfrac andAvmr respec-
tively, although both representations are dimensionless.

3.3 Typical retrieval results

The retrieval result of 29 October 2009, 06:52 h, is a typical
example of the retrieved dataset in the sense that the values
for the integration time and the elevation angle of the selected
spectrum are close to the mean values of the complete data
set. The spectrum (Fig.2, top panel) is fitted adequately by
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Fig. 3. Retrieved CO profiles (selected to cover the complete
range of the CO change during a winter), as well as the constant
a priori profile and its assumed standard deviation represented by√

Sii
a · xi

a. The range of sensitivity of the KIMRA CO measure-
ments (Sect.3.4) is marked with black dashed lines. Out of this
range the profiles are not reliable, but are shown here for a com-
plete demonstration of the retrieval results.

the retrieval process, so that the residuum (Fig.2, bottom
panel) contains only the noise contribution.

The respective profile and the constant a priori are shown
(together with two more example profiles) on the retrieval
grid over the full altitude range (Fig.3), albeit the sensitive
vertical range is located between 40 and 80 km with a ver-
tical resolution of approx. 20 km (Sect.3.4). With that, the
interesting part of the profile, the steep increase of CO in the
mesosphere, is covered. As expected, the retrieved profiles
tend toward the a priori as the sensitivity above the meaning-
ful range decreases.

Note that at the location of the transition from low CO
to the steep increase, a small negative overshoot may be re-
trieved (Fig.3, profile of 30 September 2009 at about 60 km).
Although being an unphysical result, this behavior is unprob-
lematic since the vertical extent of the negative vmr is smaller
than the vertical resolution of the measurement (Sect.3.4).
Thus it is an example for possible artifacts produced by the
narrow retrieval grid as mentioned in Sect.3.2.

3.4 Performance of the retrieval

To specify the performance of the retrieval, particular prop-
erties of the AVK matrix (Eq.5) are examined in the follow-
ing according toRodgers(2000). It will be shown, that the
retrieval works generally reasonable between 40 and 80 km
with a vertical resolution of 16 to 22 km. However, the region
between 70 and 80 km has to be treated with care depending
on the particular application.

Note that the performance varies from profile to profile
since the signal-to-noise ratio, which determines the infor-
mation content, is not constant (Sect.2.3). Therefore gen-
eral properties of the AVKs, calculated as averages over the
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whole dataset, are discussed first, before a typical set of
AVKs is shown in Sect.3.4.5.

Note further that the retrieval performance is not compared
here to previous studies mentioned in the introduction. Al-
though this could generally be an additional indication for
the functioning of the of the developed retrieval setup, it is
not necessarily conclusive, since many properties (integra-
tion time, receiver noise temperature, measured CO transi-
tion, spectral resolution) of the underlying measured spec-
tra differ significantly, which is expected to influence the re-
trieval characteristics. To give the reader a rough idea, a sen-
sitive vertical range between approx. 50 to 85 km altitude and
vertical resolutions between approx. 7 and 20 km have been
reported in previous studies.

3.4.1 Data usage and related realization of the AVKs

The retrieval is based on profiles that are normalized with the
a priori (Eq.7), since the strong vmr gradient is numerically
difficult to treat. This implies the existence of two realiza-
tions of the AVKs (Sect.3.2; Eq. 8), Afrac andAvmr, which
might lead to confusions, so that a comment on this in ad-
vance is in order.

The main application of the presented retrieved dataset is
the comparison to modeled data or satellite observations with
a focus on the temporal CO variability. These independent
datasets have commonly a higher vertical resolution, so that
they have to be convolved with the KIMRA AVKs (Eq.6) to
be directly comparable. For such kind of comparison, both
realizations of the AVKs are equivalent as long as all quanti-
ties are consistently either normalized or not normalized. As
will be shown in the following, the retrieval is optimized for
normalized profiles and, in this case, the retrieval character-
istics are more straightforward, so that the results might be
easier to interpret if the normalized representation is used.

The retransformation to the vmr representation, reintro-
duces the strong gradient of CO, but also amplifies smaller
retrieval artifacts (Sect.3.4.5). The characteristics for this
vmr representation are therefore not ideal. This is, however,
only relevant if the vmr itself is of particular interest (in con-
trast to e.g. its variation in time) and individual KIMRA vmr
profiles are regarded as stand-alone and not relative to each
other or to independent data. Since such a stand-alone use
is not a major application of the presented dataset, the pre-
sented KIMRA retrieval is not optimized for this case.

3.4.2 Sensitivity

The retrieved value at a certain target altitude is sensitive to
the true profile if the area under the corresponding AVK is
close to unity. Smaller areas indicate a greater influence of
the a priori on the retrieved state. The area of the AVK for
a certain altitude is calculated by summing up the respective
row of the AVK matrix.

Physically, the lower limit of the sensitivity is in this case
defined by the noise of the spectrum (since the spectrometer
has a sufficient bandwidth, which could also be the limit-
ing factor) preventing the broad and flat part of the line from
being fitted uniquely. The upper limit is defined by the tran-
sition from the pressure broadening regime to the Doppler
broadening regime (besides the influence of the frequency
resolution of the spectrometer), in which the linewidth is
mainly controlled by temperature and does not contain any
altitude information anymore.

Assuming that an AVK area greater than 0.8 contains
enough information from the measurement, we find general
sensitivity (Fig.4a) in a range of 34 to 87 km for the retrieval
converted to vmr and a range of approx. 27 to 83 km for the
fractional retrieval. This range matches the maximum expec-
tations, but is narrowed by considering further criteria in the
following.

Note that due to the comparatively high amount of CO in
the thermosphere, the retrieval has some residual sensitivity
up to 130 km, which has to be considered for the retrieval to
be complete, but which is not sufficient to derive independent
information.

3.4.3 Center of AVKs

The center of a certain AVK (weighted mean of all altitudes
using the AVK entries as weighting factors) should ideally
be located at the respective target altitude. Thus, the part of
the center vs. target altitude relation that is close to the line
of origin (Fig. 4b) indicates the altitude range where the re-
trieval works reasonably. The deviation from the line of ori-
gin has, however, to be seen in relation to the respective ver-
tical resolution (Sect.3.4.4). For this, the difference between
corresponding center and target altitudes is shown normal-
ized with the full width at half mean (FWHM) of the AVK in
Fig. 4d.

This criterion is fulfilled for the fractional retrieval be-
tween 40 and 80 km, which defines the reasonable range of
the retrieval in the normalized representation. The respec-
tive curve (Fig.4b) for the vmr representation is, however,
shifted to lower altitudes by about 4 to 10 km up to an al-
titude of about 70 km and even more so at higher altitudes.
This behavior is the result of an amplification of negative
overshoots of the vmr AVKs and will be discussed further
in Sect.3.4.5. The deviation from the line of origin has to
be considered in data analyses using the vmr representation;
the altitude of observed features does not directly correspond
to the geometric altitude in the atmosphere anymore, but is
shifted by a few kilometers to higher altitudes. This corre-
sponds to 25 to 50 % of the FWHM between 40 and 60 km
altitude (where the FWHM of the vmr represenation is mean-
ingful; Sect.3.4.4) and is therefore still below the order of
the vertical resolution. Above 70 km, however, the center al-
titude does not further increase with the target altitude so that
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Fig. 4. Retrieval characteristics averaged over the complete dataset shown for the fractional retrieval (blue) and the retrieval converted to
vmr (red).(a) Sensitivity given by the sum of the AVKs. The black solid line marks the threshold of 0.8, under which data is not considered
to be reliable.(b) Altitude of the center of the AVKs. The black solid line marks the line of origin.(c) FWHM of the AVKs as a measure for
the vertical resolution. Values for the vmr AVKs are not reasonable in all altitudes (Sect.3.4.4). (d) The deviation of the curves in(b) from
the line of origin normalized with the FWHM.(e)Mean profile of all retrieval results and the constant a priori.

the inclusion of this region in the vmr represenation should
be considered with care.

This behavior is connected to special characteristics that
the center vs. target altitude relation (Fig.4b) generally ex-
hibits also in the normalized representation, but which is
there only relevant above 80 km altitude. First, the cen-
ters of the AVKs with target altitudes between 80 and about
110 km are constant at approx. 80 km. Second, above 110 km
the centers of the AVKs even decrease again down to about
68 km (fractional retrieval). The latter is explained by the
fact that the temperature in the thermosphere is increasing
strongly, which leads to a stronger Doppler broadening. Ac-
cordingly, the Doppler broadened contribution to the line
from 130 km has the same width as the pressure broadened
contribution from about 68 km, so that a unique attribution
to the altitude is impossible. However, this ambiguity is ne-
glectable since the signal from above 110 km is generally low
(Fig. 4a). In principle, this effect should also be present be-
tween 80 km and 110 km, but is superimposed by the lim-
ited frequency resolution of the spectrometer. The change of
the linewidth with altitude in that region is small due to the
cold temperatures around the mesopause and cannot be re-
solved anymore, so that all the contributions are attributed to
a single altitude.

3.4.4 Vertical resolution

The vertical resolution of the measurement in a certain al-
titude is indicated by the FWHM of the respective AVK
(Fig. 4c). For the fractional retrieval, we find a FWHM of
about 16 km between altitudes of approx. 40 and 57 km, and

increasing values with an average of approx. 22 km between
altitudes of 57 and 80 km. This suggests that the measure-
ments provide two (and a fraction of a third) independent
layers of information in the range of maximum sensitivity
between 40 and 80 km. The FWHMs for the vmr AVKsAvmr
have to be treated with care, since some AVKs show an os-
cillating shape for which the FWHM-concept is not appro-
priate. Whereas the FWHM values of 15 to 20 km between
40 and 60 km altitude can be regarded as a good indication
for the real vertical resolution, the values above are too low
(Sect.3.4.5).

An alternative measure for the degrees of freedom in the
observation is the trace of the AVK matrix (Rodgers, 2000),
which is 3.17 on average for the KIMRA CO retrieval. This
matches the above values considering that there is some re-
maining information outside of the 40 to 80 km range. Fur-
thermore, this measure of the degrees of freedom does not
depend on the particular realization of the AVKs. Hence it is
also valid for the vmr representationAvmr, suggesting inde-
pendently from the FWHM concept, that the vertical resolu-
tions of both representations are comparable.

Note that two maxima of the FWHM are found at ap-
prox. 70 km and 115 km respectively, which correspond to
the ambiguity explained in Sect.3.4.3.

It is emphasized here that the limited vertical resolution
has to be taken into account for the use and interpretation
of the data (e.g. comparisons to other datasets) by consider-
ing the appropriate realization of the AVKs using Eq. (6),
depending on whether normalized quantities are used or
not. The AVKs are therefore, together with the a priori, an
essential part of the dataset.
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Fig. 5. Selected AVK functions for the measurement of 29 Octo-
ber 2009, 06:52 h, for several altitudes. Different colors represent
vertical ranges with different measurement characteristics. The tar-
get altitudes in km of the respective kernels are imprinted with ar-
rows. The 120 km kernel (blue) was multiplied by 50 to make it
visible in the given scale. Left panel: fractional AVKs. The 110 km
AVK has been omitted since it is to small. Right panel: vmr AVKs.
The 10 and 20 km AVKs have been omitted for the same reason.

3.4.5 Individual AVK functions

Figure5 shows a subset of both representations of AVKs re-
lated to the retrieval example discussed earlier (Sect.3.3).
In this subset all interesting altitude ranges are represented
to illustrate the results of the preceding subsections (the frac-
tional AVKs, Fig.5 left panel, show these features more clear
and are therefore discussed first):

– The range below the main sensitivity (below 40 km;
black): the area of the AVKs increases with altitude,
whereas all AVKs peak at the same altitude of ap-
prox. 37 km.

– The range of main sensitivity (between 40 and 80 km;
green): the area of the AVKs is comparable and the
AVKs peak at their respective target altitude, whereas
the widths of the AVKs increase with altitude.

– The range above the main sensitivity where the spec-
trometer cannot resolve altitude information (between
80 and 110 km; red; see also Sect.3.4.3): the area of the
AVKs decreases with altitude, whereas all AVKs peak
at about 80 km.

– The range above the main sensitivity where the spec-
trometer resolves ambiguity of the linewidths (above
110 km; blue; see also Sect.3.4.3): the area of the AVKs
is comparatively small. The peak altitude actually de-
creases with increasing target altitude.

The fractional AVKs of all altitudes have slight negative
overshoots, which is common for such retrievals.

Figure5 (right panel) shows the corresponding vmr AVKs
Avmr, converted using Eq. (8). It is obvious that the negative
overshoots are much more pronounced here, giving some of
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Fig. 6. Selected altitude-dependent factors for the conversion from
fractional AVKs to vmr AVKs. Single curves, the labeling, and the
coloring correspond to ones in Fig.5, so that the curves belong to
AVKs with target altitudes between 10 and 120 km in 10 km steps
from left to right. It is obvious, that AVKs with high target altitudes
are mainly amplified, whereas AVKs with low target altitudes are
mainly diminished.

the vmr AVKs an oscillatory shape. This is explained by
the shape of the CO profile that goes into the conversion:
The calculation of the pure conversion factors (evaluation
of Eq. 8 with the matrix of ones in place ofAfrac; results
shown in Fig.6) reveals that, for each AVK, all entries below
the target altitude are amplified whereas the entries above
the target altitude are diminished. The result is that vmr
AVKs with high target altitudes are strongly amplified by
the conversion and formerly small negative overshoots be-
come pronounced. This in turn affects the AVK diagnostics
presented in Sects.3.4.3and3.4.4. The entries below the tar-
get altitude gain more weight, which shifts the centers of the
AVKs downward and due to the stronger oscillatory shape of
some vmr AVKs, the FWHM-concept is partly not applicable
anymore.

As a result, the overall appearance of the vmr AVKs does
not look reasonable at first glance, which may cast doubts
on the general retrieval performance, although the retrieval
works adequately: First, the diagnostics related to the nor-
malized retrieval result,Afrac, are reasonable. Thus, particu-
lar data analyses and comparisons can be performed on the
basis of normalized quantities, completely without consider-
ation of the vmr AVKs. Second, looking closer at the vmr
AVKs Avmr, it can be seen that the vmr AVKs in the range
of 40 km to at least 70 km altitude are reasonable, although
their center is shifted downwards by a few kilometers due
to the stronger negative overshoot. Third, the impact of the
pronounced oscillations of the vmr AVKsAvmr with higher
target altitudes is mostly weak. Considering a vmr AVK that
has a second (negative) peak below the main peak of sim-
ilar absolute strength, the meaning of such an AVK is that
a change of 1 ppmv in the true atmosphere at either the one
or the other peak altitude has a similar influence on the re-
trieved value. However, looking at the CO profile, a change
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of 1 ppmv would be a much bigger relative change at the
lower altitude in comparison to the higher altitude, and is
much more unlikely.

3.5 Error assessment

3.5.1 Theory

The realization of the error assessment is based on the work
done byPalm et al.(2010), and thereby also follows the de-
scription inRodgers(2000). The deviation of the retrieved
statex̂ from the unknown true statex can be expressed as the
sum of certain error contributions, in particular the smooth-
ing error (Eq.9), the forward model error (Eq.10), the errors
of the forward model parameters (Eq.11), and the noise error
(Eq.12):

x̂ − x = (A − I) (x − xa) (9)

+ D 1F (x, b, b̂) (10)

+ D Kb (b − b̂) (11)

+ Dε (12)

with b being the true forward model parameters,b̂ the re-
spective estimates used in the retrieval,Kb = ∂F

∂b
the Jacobian

of the forward model with respect to the parametersb, and
1F the deviation of the forward model implementation from
the true forward model.

The first two error sources are not examined here, since an
estimate is difficult, and in this context not necessary. The
smoothing error denotes that the retrieved profile is inexact
due to the vertical averaging caused by the limited vertical
resolution. For the estimation of this error, the true state, or
at least a precise statistical description of the true state, is
necessary (Rodgers, 2000). This description is not available,
but since information about the vertical resolution is stored
in the AVKs, another way of dealing with that error source is
to provide the AVKs and the a priori together with the pro-
files, as it is done here. In comparisons, the smoothing error
is automatically addressed by using Eq. (6). The other error
not examined here is caused by possible deficiencies of the
forward model, and can only be estimated using independent
data or in comparison with other models. The performance
of the forward model used in this study has already been ex-
amined byMelsheimer et al.(2005).

For the calculation of the third contribution, meaning the
errorsσ fp caused by the uncertainties of the forward model
parameters, the expressionD Kb in Eq. (11) is identified as
an AVK matrix with respect to these parameters,Ab, which
is derived from the calculation of the respective derivatives

D Kb = Ab =
∂x̂

∂b
. (13)

With an estimated covariance matrix of the forward model
parametersSb, the respective covariance matrix of the re-
trieved profileSfp is derived using

Sfp = Ab Sb AT
b . (14)

Finally, the standard deviation of the profile caused by the
forward model parameters is given by

σ i
fp =

√
Sii

fp, (15)

without consideration of off-diagonal entries.
The forth error contribution, caused by the noise on the

spectrumσ η, is calculated using the noise covariance matrix
Sε via

Sη = D Sε DT (16)

and

σ i
η =

√
Sii

η . (17)

3.5.2 Setup

The error contributions from five different forward model pa-
rameters have been considered. The first three (σ I0, σ γair, and
σ nair) belong to the main spectroscopic parameters, specifi-
cally the line intensityI0, the pressure broadening parame-
ter γair and its temperature dependency parameternair (see
Bühler et al., 2005 and references therein for exact defini-
tions). Furthermore, the contributionσ T from the uncer-
tainty of the used temperature profiles, as well as the contri-
butionσ TC

from a possible calibration error of the absolute
spectrum, have been considered. The total error is given by

σ i
tot =

√(
σ i

γair

)2
+

(
σ i

nair

)2
+

(
σ i

I0

)2
+

(
σ i

T

)2
+

(
σ i

TC

)2
+

(
σ i

η

)2
. (18)

The derivation of the underlying uncertainty values is
explained in the following; the values are summarized in
Table2.

As for the spectroscopic parameters themselves, the
HITRAN catalog is generally used also for estimates of the
uncertainties. The uncertainty for the line intensityI0 is
given with a value lower than 1 %. However a comparison
with the respective value in the JPL catalog (Pearson et al.,
2010) shows a discrepancy of approx. 2 %, so this value is
used instead. The other spectroscopic parameters are not
covered by the JPL catalog.

For the error on the used SABER temperature profiles
(Sect.3.2), it is not enough to consider the given uncertainty
for a single profile, since the effect of the locational mis-
match of the satellite measurements has to be included. This
can be addressed by taking the standard deviation of the av-
eraged profiles in the collocation box into account. How-
ever, another complication comes from the fact that this box
is filled only at the southern edge every 60 days (Sect.3.2),
which may introduce an additional systematic error. The
maximum uncertainty that has to be expected from the tem-
perature profiles has therefore been estimated by checking
several configurations of collocated profiles (comparison of
a complete box during the north-viewing mode phase with
a subset of these profiles south of 52◦ N, a comparison of a
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Table 2. Considered error contributions. See text for further justification.

Quantity Used uncertainty Reason Reference

Line intensityI0 2 % Deviation of quantities in catalogs HITRAN and JPL Rothman et al.(2005); Pearson et al.(2010)
Pressure broadeningγair 2 % Maximum error given in HITRAN Rothman et al.(2005)
Temperature dependencynair 5 % Maximum error given in HITRAN Rothman et al.(2005)
Temperature profileT below 80 km 5 % Mismatch of measurement locations
Temperature profileT above 100 km 10 % Mismatch of measurement locations
Temperature profileT in between interpolated from Mismatch of measurement locations

5 % to 10 %
Calibration error 2 K Conservative estimation including possible side effects

north viewing mode phase (October 2009) with a real south-
viewing mode phase (December 2009), as well as the stan-
dard deviations in these boxes). The individual tests showed
uncertainties of a similar order of magnitude and a rough es-
timation of the maximum values has been derived from these
values.

A conservative estimate of the calibration error of the ab-
solute spectrum is in the order of 2 K. The tolerance of the
adjustable reference load is about one order of magnitude
lower, but in the sense of a rough estimation of the maxi-
mum uncertainty side effects, as e.g. a possible temperature
drift, were included in this larger error.

3.5.3 Results of the error estimation

The single contributions to the total error may differ from
spectrum to spectrum, which is expected because of the vary-
ing signal-to-noise ratio (Sect.2.3). However, the follow-
ing general statements can be made (examples are shown in
Fig. 7):

– According to the shape of the CO profile, the abso-
lute error increases strongly with altitude, and is ap-
prox. 0.1 ppmv at 50 km and approx. 3 ppmv at 80 km
altitude.

– The dominating contributions to the total uncertainty
σ tot are the noise errorσ η and the temperature errorσ T .

– Frequently, the spectroscopic contributionσ I0 shows a
peak of a few tenths of a ppmv at approx. 60 km, which
is strong enough to dominate the total uncertaintyσ tot
in this altitude (Fig.7, bottom panel).

– The other spectroscopic contributions as well as the cal-
ibration error are negligible.

– The errorσ I0 is systematic and alsoσ T may have a
systematic nature, since it can be caused by a south-
ward bias of the collocated SABER temperature pro-
files. This means that a reduction of the total errorσ tot
by averaging over a subset of KIMRA profiles can only
be achieved as long as the noise errorσ η dominates.
In this sense, these systematic contributions define the
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Fig. 7. Typical examples of error contributions. The dominating
contributions to the total errorσ tot come from the measurement
noise errorση, from the temperature errorσT, and frequently from
the spectroscopic errorσ I0. For comparison, the corresponding vmr
profiles are also included (black dashed lines). Top panel: example
of 29 October 2009, which has no dominating spectroscopic contri-
bution. Bottom panel: example of 4 February 2009, which shows a
pronounced spectroscopic contribution at approx. 60 km.

lower limit of the total error which can be achieved by
averaging of KIMRA profiles.

3.5.4 Variation of the a priori

In addition to the error analysis based on the standard re-
trieval theory, an experiment with different CO a priori
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Table 3. Details of the a priori influence experiment, valid for the
vertical range of the main sensitivity between 40 and 80 km altitude.

Modification of a priori +50 % −50 %

Min. deviation −12 % -8 %
Max. deviation +13 % +10 %
Mean abs. deviation 8 % 4 %
Mean deviation 1 % 1 %
Partial col. deviation 4 % −0.3 %

profiles was carried out, to investigate the influence of the a
priori on the retrieval result independently from the AVK dis-
cussion (Sect.3.4). For that the standard a priori (Sect.3.2)
was reduced (alternatively raised) by 50 % constantly over
the full altitude range, whereas the a priori covariance in ab-
solute units was kept constant. The complete dataset was re-
trieved with this modified setup. To find systematic effects,
total average profiles over the three different datasets were
calculated (Fig.8, top panel) as well as the deviations to the
standard results (Fig.8, bottom panel). In addition the partial
columns of CO between 40 and 80 km were compared.

The results from the modified setups slightly oscillate
around the standard profile in the range of the main sensi-
tivity, whereas the deviation aside of the main sensitivity ap-
proaches the original magnitude of 50 %, as expected. In
conclusion, an incorrect choice of the a priori may introduce
a systematic bias of about 6 % on average (for details see Ta-
ble 3) in the range of main sensitivity on the basis of a 50 %
deviation of the a priori.

4 Retrieved CO time series

The retrieved time series of CO profiles will be described
here only briefly, since its detailed scientific application is
beyond the scope of this paper and will be published sepa-
rately. It is more illustrative to present the measured time
series on the retrieval grid with narrow grid spacing although
the real vertical resolution is coarser (Sect.3.4). Therefore,
the reader is reminded, that altitude levels close together are
not independent of each other, i.e. the AVKs have to be con-
sidered in quantitative analyses.

Several well-known dynamical features such as the po-
lar winter descent, sudden stratospheric warmings (SSWs),
and final warmings are identified in the KIMRA CO time
series (Fig.9). The descent of mesospheric air is obvious
in fall 2009: The location of the strong vertical gradient is
shifted downward by approx. 20 km (e.g. 75 to 55 km for
the 4 ppmv level) from mid September to mid November.
Therefore the estimated average descent velocity is roughly
300 m d−1, which is in general agreement with previous stud-
ies (e.g.Funke et al., 2009; Forkman et al., 2005; Allen et al.,
2000).
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Fig. 8. Test of the retrieval stability when the a priori is changed
by a factor of 0.5 or 1.5 respectively. Top panel: mean profiles,
associated standard deviations, as well as a priori profiles for the
standard retrieval and one modified retrieval setup (factor 0.5) in
the range of sensitivity between 40 and 80 km. It is obvious, that
the change of the mean profile introduced by an a priori change is
much smaller than the standard deviation, which is mainly produced
by the annual variability. Profiles of the factor 1.5 case behave sim-
ilarly and are not shown. Bottom: deviation of the mean profiles of
both modified cases from the standard retrieval profile, plotted for
the complete vertical range, normalized with the standard a priori.
The deviation is small in the range of sensitivity between 40 and
80 km and approaches, as expected, 50 % where the sensitivity van-
ishes completely.

As the nature of a SSW is a strong perturbation of the polar
winter circulation, CO in the polar vortex is also affected. In
particular, the CO vmr shows a fast decrease during a SSW
(Manney et al., 2009). A SSW may be followed by a strong
downwelling of air masses, which in turn increases the CO
rapidly. The presented CO time series contains the two SSWs
that occurred during the measurement period in January 2009
and January 2010 respectively.

The breakup or final warming of the vortex is the begin-
ning of the transition from the winter to the summer circula-
tion. It leads like a sudden stratospheric (midwinter) warm-
ing to a decrease in the CO vmr. Major interest has been in
the timing of the breakup, which is very variable with a possi-
ble timespan from February to May (Waugh and Rong, 2002)
and which influences the spring polar temperature and ozone
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Fig. 9. Time series of the retrieved CO profiles covering the complete analyzed period. The descent of air in fall 2009, the two sudden
stratospheric warmings in 2009 and 2010, respectively, as well as the two final warmings in both winters can be easily identified. The black
areas mark periods without measurements due to rainy weather or maintenance of the instrument. The white area marks the summer period
from which CO measurements can generally not be retrieved reasonably.

Fig. 10. Time series corresponding to Fig.9, but measured by the MLS satellite instrument, showing that all major features are contained
similarly in both datasets. Collocated profiles within a distance of 500 km around Kiruna were selected, convolved with the KIMRA AVK
and averaged daily.

(Waugh et al., 1999). The presented time series (Fig.9) of
CO profiles contains the breakup phases during spring 2009
and spring 2010.

To allow for a qualitative consistency check between in-
dependent measurements, the corresponding time series of
the satellite instrument MLS is shown in Fig.10. A detailed
satellite comparison of average profiles, including an instru-
ment description, is presented in Sect.5. Here the main in-
tention is to show that all the major features described above

are consistently measured by both instruments. Further-
more, the KIMRA dataset shows more variability on short
timescales, whereas the MLS time series looks smoother.
This comes from the averaging that has to be applied to the
collocated MLS profiles; all MLS profiles within a distance
of 500 km around Kiruna were selected, convolved with the
KIMRA AVK functions using Eq. (6) and then averaged
daily.
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5 Satellite comparison

One important application of ground-based observations is
the intercomparison with satellite data to investigate the
agreement between these independent methods in certain re-
gions. However, to our knowledge there are no such compar-
isons published for strato-mesospheric CO in polar regions
and using the microwave technique. Data of one ground-
based microwave radiometer in the mid-latitudes was in-
cluded in the validation of the ACE-FTS CO product, but
here only two coincidences were found (Clerbaux et al.,
2008). Indeed, properties of both the polar region and the
microwave technique cause special difficulties in the com-
parison of polar CO:

– The CO vmr in this region shows strong horizontal and
vertical gradients, so that the choice of tight collocation
criteria is particularly important.

– The polar coverage of some satellite instruments is
sparse, especially during polar night, which demands, in
contrast to the first point, for relaxed collocation criteria.

– Although the upper limit of reasonable information
of the KIMRA measurements is approx. 80 km, there
is some residual sensitivity up to approx. 130 km
(Sect.3.4.2), where also the available satellite datasets
cannot provide reasonable information anymore. Due
to the limited vertical resolution of the KIMRA
measurements (considered by smoothing with the
KIMRA AVKs), however, the profile parts of this region
may also affect the comparison in the range of interest
below 80 km.

Nevertheless, we relate here our dataset to those of
three recent satellite instruments using different measure-
ment techniques. Although being not the main motivation,
another outcome of this study is a rough comparison of the
satellite instruments with each other. Therefore it is an ad-
dition to the satellite intercomparisons included in the ex-
tensive validation studies (e.g.Pumphrey et al., 2007; Cler-
baux et al., 2008) in the sense, that this comparison is fo-
cused spatially on a certain area around Kiruna. However,
it is also restricted to the coarse vertical resolution of the
KIMRA instrument, so that smaller vertical structures can-
not be compared.

Note that this satellite comparison is restricted to the com-
parison of mean profiles. Whereas a detailed comparison
of the time evolution will be conducted in future, the gen-
eral consistency of the datasets measured by KIMRA and the
satellite instrument MLS was already shown in Sect.4.

5.1 Procedure

The analysis of systematic deviations between the datasets
is based on mean profiles of all datasets for the analyzed
KIMRA period. The procedure with which these profiles are

derived is described here briefly. First, the original satellite
profiles are sorted according to following collocation criteria:

– Area: circle around Kiruna with the radiusR.

– Deviation of potential vorticity (PV): PV is used to sep-
arate inner-vortex air from mid-latitudinal air, in which
the CO vmr is much lower during polar winter. The PV
is calculated from ECMWF Operational Analysis wind
fields in 40, 50 and 60 km altitude. The deviation

1PV(z) =
PVKiruna(z) − PVSat(z)

PVKiruna(z)
(19)

may not exceed a certain threshold in any of the alti-
tudes for the profile to be considered.

– Period: profiles have to be measured at the same day to
be considered comparable throughout this study.

The profiles selected are interpolated to the KIMRA re-
trieval grid, on which the analysis is performed.

As explained above, information from the unreasonable
parts of the satellite profiles may affect the comparison in the
interesting vertical range. To avoid that physically implausi-
ble values are considered, the upper parts of the satellite pro-
files are replaced with the KIMRA a priori before the convo-
lution with the KIMRA AVKs. This in turn may artificially
improve the mutual agreement between the satellite datasets
in the upper part, so that the considered altitude range has
still to be restricted, after the convolution with the AVKs,
to a lower top altitude than it would nominally be possible
(Table4). The modified satellite profiles are convolved with
the respective KIMRA AVK functions (Eq.6) using the vmr
AVK functionsAvmr of the closest KIMRA measurement for
each satellite profile. Note that we use here intentionally the
vmr representation of the dataset over the widest possible al-
titude range between 40 and 80 km, to investigate also the
behavior between 70 and 80 km altitude, the region in which
the vmr representation has to be treated with care (Sect.3.4).

The next step, in which daily averages from the convolved
profiles are computed, results in a time series of one profile
per day and dataset, in which single datasets may still have
gaps due to the collocation criteria or lack of measurements.
Such periods with a gap in at least one of the datasets will be
removed in all other datasets. Thus the resulting time series
contains only days with at least one measurement in every
single dataset, which minimizes a possible bias due to differ-
ent periods in the average. The averages have been computed
as weighted averages with the inverse standard deviation of
each original profile as weighting factor.

In the last step, these preprocessed time series are aver-
aged to produce the mean profiles for the comparisonxSat
andxKIMRA respectively. Besides these profiles themselves,
also the deviation

1x = xSat − xKIMRA (20)
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Table 4. Properties of the satellite instruments considered in this study.

Dataset Technique Version Nominal Used Number Reference
limit limit of
[km] [km] profiles

Aura-MLS microwave, limb 3.3 ≈85 70 24 682 Pumphrey et al.(2007),
Livesey et al.(2011)

ACE-FTS infrared, solar occulatation 3.0 ≈95 80 168 Clerbaux et al.(2008)

MIPAS NOM infrared, limb V4OCO 200 ≈70 60 2451 Funke et al.(2009)
(IMK/IAA)

MIPAS MA infrared, limb V4OCO 501 ≈95 80 72
(IMK/IAA)

is evaluated. Note that we found a possible normalization of
this deviation with the KIMRA profilexKIMRA not to be in-
sightful, since the strong gradient of the CO profile, as well
as profile values close to zero (Sect.3.3), produce large val-
ues, thus a bumpy curve which, is difficult to interpret.

5.2 Satellite instruments

Three recent satellite instruments, MLS, ACE-FTS and MI-
PAS, are considered in this comparison (see Table4 for basic
properties).

MLS (Microwave Limb Sounder) flies on the Aura satel-
lite in a sun synchronous polar orbit and measures microwave
emission in limb viewing geometry (Waters et al., 2006). The
dataset provides by far the largest numbers of possible co-
incidences, so that first, the tightest collocation criteria are
applied for MLS and second, the influence of relaxing these
criteria is studied using MLS. However, the reasonable verti-
cal range after the AVK convolution (upper limit 70 km) does
not cover the full KIMRA range (Sect.5.1) .

ACE-FTS(Atmospheric Chemistry Experiment – Fourier
Transform Spectrometer) is an infrared Fourier transform
spectrometer, measuring atmospheric absorption in solar oc-
cultation mode (Clerbaux et al., 2008). This technique pro-
duces high quality profiles, but only a small number of pos-
sible coincidences, so that relaxed collocation criteria have
to be used. Nevertheless, the ACE-FTS comparison is in-
teresting because of the good vertical coverage, which in-
cludes the full KIMRA range also after the convolution with
the KIMRA AVKs.

MIPAS (Michelson Interferometer for Passive Atmo-
spheric Sounding) onboard the Envisat satellite also is a
Fourier transform spectrometer but measures atmospheric in-
frared emission in limb viewing geometry. Measurements
are performed in three different modes covering different
vertical ranges. CO data of the nominal mode (NOM)
and the middle atmosphere mode (MA, observations every
10th day) are available for this study. The NOM dataset pro-
vides more possible collocations but allows only reasonable

comparisons up to 60 km whereas the MA mode provides,
like ACE-FTS, a limited number of collocations with full
vertical coverage. MIPAS CO data versions used in this study
(V4O CO 200 and V4OCO 501 for NOM and MA obser-
vations, respectively, generated by IMK/IAA) are based on
version V3OCO 9+10 (Funke et al., 2009) with some mi-
nor modifications related to the changed spectral resolution
since 2005.

5.3 Comparison with MLS

The dense MLS dataset allows for the tightest collocation cri-
teria in this study (R = 50 km,1PV = 5 %) for which 29 days
with coincidences are found (Fig.11 red dashed curve; see
Table 5 for an overview of all experiments). The devia-
tion between KIMRA and MLS is in the range of−0.2 and
0.2 ppmv between 40 and 65 km, which is in the same order
of magnitude as the estimated systematic error contributions
for the KIMRA dataset (Sect.3.5.3). Above 65 km the devi-
ation shows an increasing high bias for KIMRA with a max-
imum deviation of−2.5 ppmv at 70 km which exceeds the
estimation of 1 ppmv.

Looking at the shape of the deviation, it is obvious, that
it oscillates around zero between 40 and 65 km, representing
a systematic difference of the profile shapes of KIMRA and
MLS: The MLS profile is more curved, whereas the KIMRA
profile shows a weaker increase of CO with altitude up to
about 60 km and a stronger increase above, which then re-
sults in the large deviation at 70 km. This difference of the
profile shapes can be recognized more or less pronounced in
all comparisons in the following.

5.3.1 Influence of collocation criteria

Figure 11 also shows averages of MLS profiles in differ-
ent areas around Kiruna. First, no PV criterion was ap-
plied, whereas second only profiles in the respective area
with 1PV< 5 % were selected.

Atmos. Meas. Tech., 4, 2389–2408, 2011 www.atmos-meas-tech.net/4/2389/2011/



C. G. Hoffmann et al.: Observation of CO above Kiruna with microwave radiometry 2403

0 1 2 3 4 5 6
40

45

50

55

60

65

70

VMR [ppm]

A
lt
it
u
d
e
 [
k
m

]

 

 

−2.5−2−1.5−1−0.5 0 0.5 1 1.5
40

45

50

55

60

65

70

Abs. deviation [ppm]

A
lt
it
u
d
e
 [
k
m

]KIMRA, R=50km

KIMRA, R=50km, ∆ PV=5%

MLS, R=50km

MLS, R=50km, ∆ PV=5%

MLS, R=200km

MLS, R=200km, ∆ PV=5%

MLS, R=1000km

MLS, R=1000km, ∆ PV=5%

Fig. 11. Investigation of the influence of the collocation area using
the MLS dataset. In the first case (solid lines) only the area criterion
with different radiiR was applied. In the second case (dashed lines)
a PV threshold of1PV = 5 % was additionally applied. Left panel:
mean profiles derived according to Sect.5.1. KIMRA profiles are
only shown for the tightest collocation criteria since their sensitivity
to a criterion change is low (a dependency only exists, if the aver-
aged period changes as result of a criterion change). Right panel:
deviation between the KIMRA and the satellite profiles calculated
with Eq. (20).

For all cases, the difference of the profile shape with re-
spect to the KIMRA profile remains, but instead of being
centered around zero, the oscillatory part of the deviation is
shifted into the positive sector, which means that the MLS
profiles show an increasing high bias up to 69 km altitude
with an increasing collocation area. This behavior is ex-
pected, since CO increases non-linearly toward the winter
pole, so that a widening of the collocation area in meridional
direction automatically leads to an increasing average value.
If, in addition, the allowed PV deviation is restricted, this re-
lation is not clearly identified anymore; e.g. the agreement is
better forR = 1000 km and1PV< 5 % than forR = 200 km
and1PV< 5 %. The reason for this might be an effect of
the lower number of coincidences when the PV criterion is
applied, although the comparatively dense MLS dataset was
used here.

Figure12 shows the resulting profiles and deviations of a
similar experiment, in which the1PV threshold was varied
in the maximum area withR = 1000 km. Again, the deviation
of the profile shape is similar and the high bias for MLS is
increased by relaxing the1PV threshold. However, with a
PV threshold of greater than 10 % only a small number of
profiles in the collocation area are rejected. Thus, the results
obtained for different values of1PV greater than or equal to
10 % do not differ much, whereas the 5 % threshold reduces
the deviation between KIMRA and MLS. This underlines the
importance of keeping this limit in the order of 5 % or lower,
which was, however, only possible for the MLS dataset.
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Fig. 12. Investigation of the influence of the PV collocation crite-
rion using the MLS dataset in a constant radius ofR = 1000 km. Left
panel: mean profiles derived according to Sect.5.1. Right panel:
deviation between the KIMRA and the satellite profiles calculated
with Eq. (20).

5.3.2 Influence of measurement period

This experiment was performed to clarify, if the observed
deviation of the profile shape depends on the observation
period, i.e. on the amount of CO during the measure-
ments. In addition to the collocation criteriaR = 200 km and
1PV = 5 %, five periods were chosen, for which average pro-
files were calculated: two periods of high CO after the fall
descent in both winters, as well as three periods with low CO
after the final warmings in both winters and the SSW 2010.

Although the number of coincidences for the single cases
are small, the shape deviation is by tendency common to all
periods (Fig.13, only two selected cases are shown). But ad-
ditionally, the experiment indicates that the oscillatory pat-
tern is vertically shifted between high and low CO periods.
This can be seen by looking at the individual maximum of the
deviation, which is below 60 km for the high CO cases and
above approx. 64 km for the low CO cases. This behavior
appears plausible since the high CO scenarios are produced
by a downward transport of CO, which roughly also shifts
the CO profile and its properties to lower altitudes.

5.4 Multi-instrument comparison

The extension of the comparison to the other satellite datasets
is difficult, since relaxed collocation criteria have to be cho-
sen (Table5), contradicting the findings made with the MLS
collocation experiments. Furthermore, despite this relaxation
the number of days with coincidences still remains low, so
that effects of the small sample size cannot be excluded.

After MLS, the MIPAS NOM dataset provides the most
collocations with moderate collocation criteria, however, the
comparison is restricted to 40 to 60 km altitude (Fig.14). Be-
tween 40 and 50 km the MIPAS NOM and the MLS profile
are in close agreement, showing a 0.3 ppmv high bias in com-
parison to KIMRA, which corresponds to the widened collo-
cation criteria (Sect.5.3.1). Between 50 and 55 km MIPAS
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Table 5. Summary of setups of the satellite comparison experiments.

Experiment R [km] 1PV [%] Period Days Figure

Area (MLS) Fig.11
50 complete 40

200 complete 215
1000 complete 300

50 5 complete 29
200 5 complete 101

1000 5 complete 157
PV (MLS) Fig.12

1000 5 complete 157
1000 10 complete 270
1000 20 complete 293
1000 50 complete 300

Period (MLS) Fig.13
High CO 2008 200 5 15 Dec 2008–15 Jan 2009 6
High CO 2009 200 5 1 Nov 2009–30 Nov 2009 9
Low CO 2009 200 5 1 Apr 2009–30 Apr 2009 14
Low CO 2010 (SSW) 200 5 29 Jan 2010–28 Feb 2010 7
Low CO 2010 200 5 1 Apr 2010–30 Apr 2010 9

Multi Instrument
MIPAS NOM, MLS 250 20 complete 42 Fig.14
ACE-FTS, MLS 1000 20 complete 22 Fig.15
MIPAS MA, MLS 1000 20 Jan 2009–Apr 2009 9 Fig.16
ACE, MIPAS MA, MLS 1000 50 18 Mar 2009 1 Fig.17
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Fig. 13. Investigation of the influence of the averaged period using
the MLS dataset in a constant radius ofR = 200 km. Two cases with
comparatively high (red) or low (blue) CO values are shown. Three
more cases were analyzed but are not shown for clarity of the figure;
for details see Table5. Left panel: mean profiles derived according
to Sect.5.1. Right panel: deviation between the KIMRA and the
satellite profiles calculated with Eq. (20).

NOM approaches the KIMRA profile with a minimum devia-
tion of less than 0.1 ppmv whereas the deviation of MLS and
KIMRA gets stronger in accordance with the systematic de-
viation of the profile shape. Above 55 km also MIPAS shows
this tendency of an increasing deviation. This, together with
the shown comparisons including ACE-FTS and MIPAS MA
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Fig. 14. Comparison of KIMRA with MIPAS (NOM mode) and
MLS using the collocation criteriaR = 250 km and1PV = 20 %.
42 days with coincidences were found. Left panel: mean profiles
derived according to Sect.5.1. Right panel: deviation between the
KIMRA and the satellite profiles calculated with Eq. (20).

that cover the complete KIMRA altitude range (Figs.15, 16,
and17), exemplifies the following findings which are com-
mon to all multi-instrument satellite comparisons performed:

– In tendency, the profile shape of the KIMRA dataset de-
viates similarly from all satellite datasets as described
in Sect.5.3.
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satellite profiles calculated with Eq. (20).

– The satellite datasets mostly show a high bias in com-
parison with the KIMRA dataset below 65 km, which is
in the order of the high bias caused by relaxed colloca-
tion criteria (Sect.5.3.1). Thus, this bias is not neces-
sarily an intrinsic property of the KIMRA dataset.

– In many cases, the satellite profiles deviate among each
other in the same order of magnitude as they deviate
from the KIMRA profile. The reason for this is prob-
ably a mixture of three error sources. First, there are
known systematic deviations between the single satel-
lite datasets (e.g. ACE-FTS and MIPAS±26 % in all
altitudes and ACE-FTS and MLS−25 % to−100 % be-
tween 42 to 65 km; seeClerbaux et al., 2008for details
and definitions), however these are usually estimated
using global data and may differ for a comparison re-
stricted to polar latitudes. Second, the wide colloca-
tion criteria may also lead to biases between the satel-
lite datasets and third, noise effects play a role due to
the small number of coincidences.

5.5 Discussion of the profile shape deviation

The reasons for the deviation of the KIMRA profiles in com-
parison to the satellite profiles are speculative, but it is likely
that the general error source has to be sought in the KIMRA
measurements, since the deviation appears consistently in
the comparisons to all the satellite datasets. Note that sim-
ilar structures were previously found for O3 in ground-based
microwave vs. satellite comparisons byBoyd et al.(2007)
and Palm et al.(2010), who also attribute the reason to
the ground-based microwave measurements. Figure7, bot-
tom panel, suggests, that oscillatory systematic deviations
may arise from uncertainties in the spectroscopic parameters,
however, this can also be a result of a complex interplay of
many instrumental and retrieval parameters.
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Fig. 16.Comparison of KIMRA with MIPAS (MA mode) and MLS
using the collocation criteriaR = 1000 km and1PV = 20 %. 9 days
with coincidences were found. Left panel: mean profiles derived
according to Sect.5.1. Right panel: deviation between the KIMRA
and the satellite profiles calculated with Eq. (20).

Generally the error source of different vertical resolu-
tions is excluded by the convolution of all datasets with the
KIMRA AVKs. This in turn means, that the established de-
viation is also smoothed by the AVKs and does not directly
correspond to real atmospheric altitudes. Having in mind,
that the KIMRA vertical resolution is about 22 km at 80 km
altitude, the strong high bias for KIMRA in this region in-
dicates a general discrepancy in the region between 70 and
90 km, where satellite observations also get more uncertain.

6 Conclusions

This work presents ground-based CO measurements of the
Kiruna microwave radiometer KIMRA, located in northern
Sweden (67.8◦ N, 20.4◦ E).

The instrument measures the CO emission line at 230 GHz
together with O3 continuously from September to April dur-
ing each winter. Here, we have analyzed the CO spectra of
the two winters, 2008/2009 and 2009/2010. This dataset in-
cludes approx. 1500 spectra with a mean integration time of
approx. 1 h.

Vertical profiles of the CO vmr have been retrieved us-
ing the optimal estimation approach according toRodgers
(2000). The a priori profile as well as the a priori covariance
matrix needed for this approach have been kept constant for
the complete period, so that the variations with time of the
retrieved profiles come certainly from the measurements.

A detailed analysis of the averaging kernel (AVK) func-
tions has revealed that the measurements are sensitive be-
tween 40 and 80 km altitude with a vertical resolution of
16 to 22 km. Thus the obtained profiles are smoothed due
to the limited vertical resolution, which has to be considered
in comparisons by convolving better resolved profiles with
the KIMRA AVKs. Furthermore, the AVKs show contribu-
tions in the received signal from up to 130 km altitude, which
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Fig. 17. Comparison of KIMRA with ACE-FTS, MIPAS (MA
mode), and MLS using the collocation criteriaR = 1000 km and
1PV = 50 %. 1 day with coincidences was found. Left panel: mean
profiles derived according to Sect.5.1. Right panel: deviation be-
tween the KIMRA and the satellite profiles calculated with Eq. (20).

comes from the special shape of the CO vmr profile that is
steeply increasing toward the thermosphere.

An error assessment has been performed to estimate po-
tential errors of the retrieved profiles arising from different
sources in the measurement and retrieval process. We have
found that the total error increases with altitude from ap-
prox. 0.1 ppmv at 50 km altitude to approx. 3 ppmv at 80 km
altitude. The main contributions to the total error arise from
the noise on the spectra and the uncertainty of the used tem-
perature profiles. Frequently, the error at about 60 km al-
titude is dominated by the uncertainty of the line intensity
used for the forward model calculation.

The KIMRA dataset has been used in this work for a de-
tailed comparison with CO data from recent satellite instru-
ments. Included in this comparison are the instruments MLS
on Aura, ACE-FTS, and MIPAS on Envisat (nominal mode
and middle atmosphere mode). To our knowledge, a compar-
ison of ground-based microwave observations and satellite
measurements of strato-mesospheric CO has not been pub-
lished in such detail before.

MLS, which provides the most dense dataset, has been
used to investigate the influence of the collocation criteria
first. Whereas no bias has been found below 65 km altitude
between KIMRA and MLS for a maximum allowed distance
of 50 km, a high bias for MLS was introduced by widening
this distance, which is expected because of the horizontal CO
distribution above the winter pole. The experiment addition-
ally suggests, that the PV difference of profiles, which are
considered as collocated, should not be greater than 5 %.

The comparison including also the other instruments has
generally been complicated by the small number of coinci-
dences, even if the collocation criteria are strongly relaxed
in contrast to the previous findings. Although noise effects
and sampling errors can therefore not be excluded, the com-
parison suggests that there is general agreement between
KIMRA and the satellites instruments below 65 km altitude,

but a high bias for KIMRA above 65 km, which increases
with altitude and reaches the order of 5 ppmv at 80 km alti-
tude. Furthermore, the shape of the KIMRA profile appears
to be systematically different from the satellite profiles: the
satellite profiles are more curved, whereas the KIMRA pro-
file shows a weaker increase of CO with altitude up to about
60 km altitude and a stronger increase above. The reason for
this deviation is not clear, but it seems to be connected with
the ground-based microwave measurements.

It has been shown qualitatively that the retrieved time se-
ries of CO profiles contains all the expected dynamical fea-
tures of the polar winter middle atmosphere, the descent of
mesospheric air in fall 2009, the sudden stratospheric warm-
ings in 2009 and 2010, as well as the final warmings in both
years. A quantitative analysis of these features is, however,
beyond the scope of the present paper and will be carried
out later.
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