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Abstract. Stratospheric methane (CH4) profiles have been
derived from solar occultation measurements of the SCan-
ning Imaging Absorption spectroMeter for Atmospheric
CHartographY (SCIAMACHY) on ENVISAT with an up-
dated version of the Onion Peeling DOAS (ONPD) method.
The SCIAMACHY solar occultation measurements cover the
latitudinal range between about 50◦ N and 70◦ N. Currently,
reasonable results are obtained between 20 and 40 km alti-
tude. Comparisons with correlative ACE-FTS measurements
show an average agreement within the expected accuracy of
the ACE-FTS data of about 10 %. To demonstrate the ca-
pability of SCIAMACHY solar occultation measurements
in the context of greenhouse gas monitoring, time series of
stratospheric CH4 profiles covering the period from 2003 to
2010 have been generated. The SCIAMACHY CH4 profile
solar occultation temporal series shows a strong seasonal cy-
cle. This is attributed to the variations in both time and space
of the retrieved data set. At lower altitudes, the observed tem-
poral variations are explained by variations of the tropopause
height. The temporal data set is also impacted by variations
of the size and duration of the polar vortex in the northern
hemisphere. The data set provides unique information about
CH4 changes in the stratosphere at mid to high latitudes.

1 Introduction

Atmospheric methane (CH4) is after water vapour and CO2
the most important greenhouse gas. CH4 is released into the
troposphere by both natural processes and anthropogenic ac-
tivity. Because of its long tropospheric chemical lifetime of
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about 8 to 10 yr, CH4 can be transported into the stratosphere
where it is oxidised. The latter is initiated primarily by re-
actions with OH, O(1D) and also Cl atoms. Thereby CH4
is the major source of water vapour and HCl. As a result
CH4 plays a significant role in stratospheric chemistry. In
the lower stratosphere these loss reactions are however suffi-
ciently slow that CH4 can be also used as a dynamical tracer
at these altitudes (see e.g.De Mazìere et al., 2008). The cou-
pling between stratospheric CH4 and water vapour (and their
trends) is of relevance for atmospheric chemistry and climate
change (see e.g.Rohs et al., 2006).

Several space-borne instruments provided stratospheric
CH4 data in the past, among these the Atmospheric Trace
Molecule Spectroscopy experiment (ATMOS;Gunson et al.,
1990), the Improved Stratospheric and Mesospheric Sounder
(ISAMS; Taylor et al., 1993; Remedios et al., 1996), the
Cryogenic Limb Array Etalon Spectrometer (CLAES;Roche
et al., 1996) and the Halogen Occultation Experiment
(HALOE; Russell et al., 1993). All these instrument are no
longer operating. Currently, CH4 profiles are e.g. provided
by the Atmospheric Chemistry Experiment Fourier Trans-
form Spectrometer (ACE-FTS) on SCISAT (Bernath et al.,
2005), launched in 2003, and the Michelson Interferometer
for Passive Atmospheric Sounding (MIPAS;Fischer et al.,
2008; Payan et al., 2009) on ESA’s environmental satellite
ENVISAT.

The SCanning Imaging Absorption spectroMeter for
Atmospheric CHartographY (SCIAMACHY;Bovensmann
et al., 1999) is also part of the atmospheric chemistry pay-
load of ENVISAT, which was launched in 2002. Originally
the lifetime of ENVISAT was guaranteed by its constructors
to be 5 yr and the concept was to have a series of ENVISAT
satellites to produce a long term data record. However, EN-
VISAT and its instruments, including SCIAMACHY, are still
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operational. An extension of the ENVISAT mission to at
least 2014 and hopefully beyond is planned.

SCIAMACHY makes measurements of the electromag-
netic radiation leaving the top of the atmosphere in nadir,
limb and both solar and lunar viewing geometries. Ap-
propriate mathematical inversion of these data yields the
amounts and distributions of atmospheric trace gases, cloud
and aerosol parameters.

In this manuscript the retrievals of CH4 from solar oc-
cultation measurements, which are performed every orbit
at Northern latitudes between about 50◦ and 70◦, are de-
scribed and analysed. Although these measurements are lim-
ited in latitude range the signal-to-noise ratio of the occul-
tation measurements is high (see e.g.Noël et al., 1998) and
they are less sensitive to calibration issues, yielding high pre-
cision retrieved data products. The long duration of SCIA-
MACHY of already now more than 9 yr provides a unique set
of decadal data about the atmospheric composition at mid to
high latitudes in the Northern Hemisphere.

In this manuscript results from a new retrieval method,
used to derive stratospheric profiles of methane (CH4) from
SCIAMACHY solar occultation measurements, are pre-
sented. The retrieval method is based on a combination of
an onion peeling approach (see e.g.Russell and Drayson,
1972) with a weighting function DOAS (Differential Opti-
cal Absorption Spectroscopy) fit (see e.g.Coldewey-Egbers
et al., 2005). This is an extension of the Onion Peeling DOAS
(ONPD) method which has already been successfully applied
to water vapour (Noël et al., 2010). The main differences
of the present method compared to the method described in
Noël et al.(2010) are the use of weighting functions instead
of optical depths and the different (a-posteriori) saturation
correction (as described in the following sections). A dis-
cussion on the advantages and disadvantages of the ONPD
method in comparison to other strategies like optimal esti-
mation is given inNoël et al.(2010).

Here, we present first retrieval results for stratospheric
CH4 profiles from SCIAMACHY and compare them with
correlative data from ACE-FTS. Furthermore, time series
of stratospheric methane profiles (based on 8 yr of SCIA-
MACHY solar occultation data) are presented, showing the
capability of SCIAMACHY solar occultation measurements
in the context of greenhouse gas monitoring.

The manuscript is structured as follows: in Sect.2 the re-
trieval method is described. Section3 contains the results
of the comparison with ACE-FTS. An analysis of SCIA-
MACHY stratospheric CH4 time series for the time interval
August 2002 to December 2010 is given in Sect.4. The re-
sults are then summarised in the conclusions (Sect.5).

2 Retrieval method

2.1 General approach

The Onion Peeling DOAS (ONPD) algorithm is based on a
weighting function DOAS (Differential Optical Absorption
Spectroscopy) fitting approach (see e.g.Coldewey-Egbers
et al., 2005) which is combined with an onion peeling ap-
proach (see e.g.Russell and Drayson, 1972).

For the onion peeling the atmosphere is divided into lay-
ers. The retrieval starts at the top layer and then propa-
gates downwards, taking into account the results of the up-
per layers. Weighting functions are used to describe the
change of the measured signal as a function of the absorber
amount (or other atmospheric parameters, like temperature)
in each layer.

Let ci,k be the atmospheric parameter associated to the ab-
sorption features (e.g. the number density of absorberk) in
atmospheric layeri. With Ij we denote the measured radi-
ance in solar occultation for an instrument looking at tangent
altitudej . I0 is the corresponding radiance at a high refer-
ence altitude where atmospheric absorption can be neglected.
In the present case,I0 is taken from a measurement at about
200 km tangent altitude. By analogy to the weighting func-
tion DOAS approach, the logarithm of the solar transmittance
Ij/I0 is then given by:

ln

(
Ij

I0

)
= Pj + ln

(
Ij,ref

I0,ref

)
+

Nabs∑
k=1

Nlayer∑
i=j

αij,k ai,k (1)

The quantitiesIj,ref andI0,ref are the corresponding radi-
ances for the same tangent altitudes calculated for a reference
scenario (i.e. for a reference set of parametersci,k,ref) with a
radiative transfer program (SCIATRAN V2.2 in transmission
mode;Rozanov et al., 2005).

The quantityαij,k describes the change of the (logarith-
mic) transmittance when changing the atmospheric parame-
terk (evaluated atci,k,ref):

αij,k :=
∂ ln(Ij/I0)

∂ci,k

∣∣∣∣
ci,k,ref

(2)

Theαij,k are therefore equivalent to relative weighting func-
tions. They are determined by radiative transfer calculations
with SCIATRAN 2.2. A main advantage of the weighting
function DOAS method is, that dependencies on pressure and
temperature can be handled in a similar way as for absorbers,
i.e. via corresponding weighting functions. Therefore,c may
in principle be any parameter, which influences the measured
(or simulated) radiance, e.g. a number density of an atmo-
spheric constituent, pressure or temperature.

ai,k is a scalar factor which is defined as the relative change
of ci,k, i.e.:

ai,k :=
1ci,k

ci,k,ref
=

ci,k −ci,k,ref

ci,k,ref
(3)
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Pj is a low-order polynomial by which – as it is typical
for DOAS methods – differences between simulated and real
broadband absorption features are handled. For solar occul-
tation measurements at the wavelength of the CH4 absorp-
tion the signal is dominated by the transmitted solar radi-
ance; scattering processes can be neglected to a first approx-
imation. Therefore the polynomial here mainly compensates
uncertainties in the radiometric calibration.

The retrieval starts at the top of the atmosphere (j = Nlayer)
and then propagates downwards. For each tangent altitude
the coefficients ofPj and the correspondingaj,k are de-
termined via a non-linear least squares fit. Furthermore, a
(wavelength independent) spectral shift is fitted to account
for uncertainties in the spectral calibration. Note that for
each atmospheric parameterk only oneaj,k needs to be de-
termined in one step as the values for altitudesi > j have
been determined before.

Finally, the atmospheric parametercj,k (e.g. the number
density of the absorberk at altitudej ) is then given by (see
Eq.3):

cj,k = (1+aj,k) cj,k,ref (4)

As mentioned above,cj,k,ref is the reference value forcj,k

as used in the radiative transfer calculations from which the
simulated transmissionsIj,ref/I0,ref as well as theα’s have
been determined.

With the ONPD method it is in principle possible to de-
rive profiles for all kind of atmospheric constituents, which
can be handled by the radiative transfer model, provided suf-
ficient information on these constituents is contained in the
measured spectra. The actual constituents which need to be
considered depend on the selected fit window. In case of
methane retrieval, a fit window of 1559–1671 nm has been
selected, and the considered quantities are CH4 and CO2 con-
centrations and temperature.

2.2 Radiative transfer data base

The ONPD method uses a pre-calculated data base of refer-
ence transmission spectra (Ij,ref/I0,ref), and weighting func-
tions (αij,k). These quantities are determined using the SCI-
ATRAN radiative transfer model for fixed atmospheric con-
ditions, considering also refraction effects. In the present
case, pressure and temperature profiles have been (arbi-
trarily) taken from ECMWF (European Centre for Medium
Range Weather Forecasts) data for 26 July 2005, 00:00 UTC,
51◦ N, −49.5◦ E. For CO2 a constant volume mixing ratio
(VMR) of 380 ppmv has been assumed. The CH4 profile
is taken from the 1976 US standard atmosphere. The ac-
tual choice of these reference conditions is of minor impor-
tance for the retrieval results, as deviations between real and
simulated conditions are handled by the weighting functions.
The underlying assumption, however, is a linear relationship
between absorber amount and measured absorption features,
i.e. it is assumed that the weighting functions do not depend

on the actual absorber amount. In a first order approximation
this is true, but especially for strong line absorbers like CO2
and CH4 non-linearities play a (lower order) role. These are
handled by additional corrections applied after the retrieval,
as explained below.

The reference radiance spectraI0,ref andIref have been cal-
culated based on spectrally high resolved simulated SCIA-
TRAN transmissions and a solar reference spectrum deter-
mined from an empirical solar line list provided by G. Toon,
NASA JPL. The ratioIj,ref/I0,ref is determined after convo-
lution of the radiance spectra.

The high-resolution spectral radiances are convolved with
the SCIAMACHY spectral response function (or slit func-
tion), which is assumed to be a Gaussian with full width at
half maximum (FWHM) of 1.15 nm. This FWHM has been
determined as a best fit value for the occultation retrieval,
i.e. it is the FWHM, which results in the smallest errors of
the fitted parameters. Note that the derived FWHM is smaller
than the FWHM used in e.g. nadir retrievals (which is about
1.3 nm); this is because the solar occultation measurements
are performed with a smaller aperture, which alters the slit
function.

2.3 Application to SCIAMACHY methane retrieval

The altitude grid used in the retrieval extends from 0 to 50 km
in 1 km steps. The retrieval is performed for all altitudes
starting at 50 km until 15 km, but for methane useful results
are only achieved between 20 and 40 km due to tropospheric
effects at lower altitudes and too much noise at higher alti-
tudes. An extension of the retrieval to lower altitudes will be
subject to further studies.

SCIAMACHY performs solar occultation measurements
by regular scans over the solar disk while following the ris-
ing sun. Note that due to the orbital motion of the satellite
SCIAMACHY sees a sunrise, but the local time at the tan-
gent point corresponds to sunset. One upward or downward
scan takes 2 s. The integration time for the SCIAMACHY
measurements depends on wavelength. In the CH4 fit win-
dow 16 readouts are taken during one scan, pointing at dif-
ferent regions of the sun. A subset of these SCIAMACHY
data has been selected for the retrieval, namely only upward
scans and four readouts close to the solar centre. This results
in a typical vertical sampling of about 3 km. The transmis-
sion is computed for tangent altitudes below 60 km by divi-
sion of the spectrum obtained at a certain tangent height to a
corresponding spectrum measured at around 200 km tangent
height, considering matching relative positions on the sun.
Dead/bad detector pixels have been removed using a manu-
ally determined mask. To avoid impacts on CH4 time series
the same dead/bad pixel mask has been used for all data.

Before the retrieval the (logarithms of the) transmissions
measured by SCIAMACHY are (linearly) interpolated to
the retrieval grid; this interpolation is required by the onion
peeling method.
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Fig. 1. Example for a CH4 fit. (a) Measured and fitted spectra
at 25 km tangent altitude (top) and resulting residual (bottom).(b)
Derived number density profile: uncorrected (red) and after all cor-
rections (green); blue: corresponding ACE-FTS profile.(c) Corre-
sponding CH4 VMR profiles.

Figure1 shows in sub-panel (a) an example for a CH4 fit
at 25 km and the corresponding residual. The two strong
absorption features below about 1620 nm are due to CO2
absorption whereas the structures above 1620 nm are dom-
inated by CH4 absorption with some underlying CO2. The
two CO2 absorption features below 1620 nm are also fitted

and have been mainly included to constrain the underlying
CO2 absorption in the spectral range of the CH4 absorption.
This results in a reduced error of the retrieved CH4 concen-
trations. As can be seen, the agreement between measure-
ment and fit is quite well; maximum residuals are about 0.3 %
at this altitude. Note that between 20 and 40 km the resulting
residuals are very similar; they increase a bit towards lower
altitudes but are still of comparable magnitude.

After the retrieval, some additional corrections are ap-
plied which are described in Sect.2.4. Sub-panel (b) of
Fig. 1 shows an example for a CH4 number density pro-
file derived directly from the fit (red curve) and the corre-
sponding profile after application of all corrections includ-
ing vertical smoothing (green curve). For illustration, a pro-
file derived from collocated ACE-FTS measurements is also
plotted (blue curve); for this purpose the original ACE-FTS
VMRs have been converted to number densities using pres-
sure and temperature data also provided by ACE-FTS.

Finally, VMRs are derived from retrieved SCIAMACHY
CH4 number densities using pressure and temperature infor-
mation obtained from collocated ECMWF data. In future re-
trievals pressure and temperature information could also be
obtained directly from SCIAMACHY retrievals, e.g. by us-
ing observations of O2. The resulting profiles for the exam-
ple case are shown in sub-panel (c) of Fig.1, together with a
corresponding collocated ACE-FTS VMR profile.

As can be seen, SCIAMACHY CH4 VMRs are somewhat
higher than the ACE-FTS data between about 30 km and
37 km and lower above and below. This is in general con-
firmed by an extended comparison involving a larger set of
collocated data which is described in Sect.3 below.

For the results presented in this paper only retrieved CH4
VMRs with an absolute error (derived from the fit residuals
as described in Sect.2.5) smaller than 1 ppmv between 20
and 40 km are considered. This criterium is used to identify
and remove data resulting from poor fits. However, only two
profiles of more than 33 000 for the whole time interval until
end of 2010 considered here are affected by this.

2.4 Corrections

2.4.1 Vertical smoothing

The original radiative transfer calculations for the reference
data base as well as the retrieval are performed on a 1 km al-
titude grid. However, the vertical resolution of the measure-
ments is limited by the vertical size of the SCIAMACHY
field of view (0.045◦, corresponding to about 2.6 km at the
tangent point). Furthermore, the vertical atmospheric range
seen by SCIAMACHY during one readout is extended by
the vertical scan over the sun (covering about 2.4 km) and
the movement of the rising sun (about 0.4 km during one
readout). During upward scan, all these contributions add
up to a total vertical range of about 4.1 km covered by one
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Fig. 2. (a)Saturation correction for CH4 as function of altitude and
(smoothed) CH4 concentration.(b) Saturation correction for CO2
as function of altitude and (smoothed) CO2 concentration.(c) CO2
correction factor for CH4 as function of altitude and (saturation cor-
rected) CO2 concentration.

SCIAMACHY measurement1. To consider this, the retrieved
profiles are vertically smoothed using a boxcar of width
4.1 km. This accounts for the limited vertical resolution of
the measurement and also removes artificial oscillations in
the profiles introduced by the retrieval.

1Note that due to the scan only half of the field of view size
contributes to this number.

2.4.2 Saturation correction

Absorption features of CH4 and CO2 (and also water vapour)
are highly structured. The spectral resolution of the SCIA-
MACHY instrument is not sufficient to resolve the strongly
varying individual absorption lines in the region around
1.6 µm. The measured signal is a convolution of saturated
and non-saturated lines. This results in a non-linear relation-
ship between absorber amount and absorption depth (usu-
ally referred to as saturation effect). This means that the
weighting function depends on the linearisation point, i.e. the
absorber concentration.

Furthermore, as mentioned in the previous subsection,
the vertical resolution of the SCIAMACHY measurements
(about 4.1 km) is lower than the retrieval grid size (1 km).
This is not considered in the radiative transfer calculations
used to determine the weighting functions and reference
spectra.

To account for these effects, a correction is applied which
depends on tangent altitude and the (retrieved) absorber
density. This correction is called here “saturation cor-
rection”, although it in facts corrects for more than just
saturation effects.

The saturation correction is determined by application of
the retrieval to a set of simulated data for different absorber
amounts, realised by scaling the input profiles of the corre-
sponding absorber for the radiative transfer calculations by
a given (altitude independent) factor. In the present case 12
scaling factors between 10 % and 300 % have been used to
cover the spatial and temporal variability of CH4 number
densities. Furthermore, the simulated input spectra are sam-
pled to the (in this fit window) typical SCIAMACHY spec-
tral sampling of about 0.8 nm and vertically smoothed by a
4.1 km boxcar to account for the limited vertical resolution.

The functional dependence between the retrieved and the
true CH4 density is derived for each altitude. Examples
for five altitudes are shown in sub-panel (a) of Fig.2. The
correction is then performed by interpolation of the ‘true’
number density to the retrieved CH4 number density (after
smoothing) at a given altitude.

As can be seen from Fig.2a, the correction is typi-
cally larger at lower altitudes and small for CH4 densities
close to the reference density. However, for CH4 num-
ber densities deviating larger than about±50 % from the
reference the effect increases and would typically result in
an under-estimation of the retrieved concentrations, if not
corrected for.

2.4.3 CO2 correction

Unfortunately, the saturation correction for CH4 is not only
a function of the CH4 concentrations only, but also de-
pends slightly on the CO2 number density. Although the
CO2 VMRs are rather constant in both time and altitude as

www.atmos-meas-tech.net/4/2567/2011/ Atmos. Meas. Tech., 4, 2567–2577, 2011
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Fig. 3. Comparison of retrieved SCIAMACHY methane profiles (ONPD V3.3.6) with ACE-FTS data (V2.2).(a) Mean absolute difference
(red) and its standard deviation (blue); mean absolute error of SCIAMACHY data (green).(b) Mean relative difference (red) and its standard
deviation (blue); mean relative error of SCIAMACHY data (green).(c) Mean profiles (red: SCIAMACHY, blue: ACE-FTS, green: average
of both). (d) Correlation between SCIAMACHY and ACE-FTS data.

compared to that of CH4, the CO2 number densities vary with
temperature and pressure and thus with season.

Overall, an additional CO2 correction is required for CH4.
The CO2 correction is a multiplicative factor which depends
on tangent altitude and the retrieved CO2 density. It is deter-
mined in a similar way as the CH4 saturation correction by
application of the retrieval to a set of simulated data, but now
with constant (100 %) CH4 but varying (scaled) CO2 profiles.
The CO2 correction factor is defined as the ratio of the true
to the retrieved CH4 number density. Note that the impact of
variable CH4 on the retrieved CO2 is very low, usually much
less than 1–2%, which is uncritical for the CO2 correction.

The CO2 correction is applied to the (saturation corrected)
CH4 profiles and depends on altitude and the retrieved CO2
number density. Therefore it is also necessary to compute a
saturation correction for CO2. This is done in a similar way
as for CH4, using the scaled CO2 profiles mentioned above.
The result is shown in sub-panel (b) of Fig.2. The shape of
the derived CO2 saturation correction is very similar to the
CH4 case. However, for CO2 the corrections are typically
larger at higher altitudes.

The derived CO2 correction (Fig.2c) is based on the same
set of scaling factors as used for CH4; actual CO2 correc-
tion factors are then obtained by interpolation to the retrieved
(saturation corrected) CO2 number density. However, for the
spatial and temporal range covered by the SCIAMACHY so-
lar occultation measurements the derived variability of the
CO2 number densities is much smaller than for CH4 (only
about 50 %). Therefore, the actually required CO2 correc-
tion factor is usually only a few percent.

2.5 Errors of the SCIAMACHY methane product

The error estimated for the SCIAMACHY methane concen-
trations as used in the present paper is essentially determined
from the root mean square (RMS) of the fit residuals divided
by the corresponding weighting function (which converts the
spectral error into a trace gas error). As mentioned above, the
fit residual – and therefore also the RMS – is rather constant
with altitude, but the weighting functions significantly de-
crease with altitude. As a consequence, the estimated errors
typically increase with altitude. It is expected that the ad-
ditional corrections applied to the data after the retrieval (as
described in Sect.2.4) reduce the error on the data product.
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Fig. 4. Time series of daily averaged CH4 profiles August 2002 – December 2010.(a) Retrieved number densities.(b) Volume mixing
ratios (VMRs) derived from combination with ECMWF pressure and temperature data. In both sub-figures the latitudinal range covered by
the SCIAMACHY measurements is indicated on the top. The black curve on the bottom shows the average tropopause height, derived from
collocated ECMWF data. The vertical grey bars mask out periods of reduced SCIAMACHY data quality (e.g. due to instrument switch-offs
or decontamination periods).
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However, the impact of these corrections on the errors is dif-
ficult to be quantified. For example, the smoothing proce-
dure changes the vertical resolution of the data, and there-
fore also the weighting functions. On the other hand, the
vertical sampling of the original measurements is only about
3 km, whereas the retrieval is performed on a 1 km grid us-
ing interpolated measurements. The estimation of the impact
of the additional saturation correction and CO2 correction is
even more difficult, as these also affect potential systematic
errors. Therefore, the a-posteriori corrections have explicitly
not been considered in the error estimates, which results in
an over-estimation of the estimated error. A discussion of
other potential systematic error sources (e.g. spectroscopy or
pointing uncertainties) can be found inNoël et al.(2010).

3 Preliminary validation

The retrieved CH4 profiles have been compared with collo-
cated CH4 profiles derived from the Atmospheric Chemistry
Experiment Fourier Transform Spectrometer (ACE-FTS).
ACE-FTS is the main payload of the Canadian SCISAT satel-
lite (Bernath et al., 2005), launched in August 2003. The
ACE-FTS instrument performs solar occultation measure-
ments in the infrared wavelength range (2.2 to 13.3 µm).
It provides altitude profiles for temperature, pressure and
VMRs of various atmospheric molecules, including CH4 as
a key species.

In this manuscript we compare with ACE-FTS CH4 data
V2.2. These data have been intensively validated by various
comparisons with ground-based, balloon-borne and satellite-
based measurements (seeDe Mazìere et al., 2008), resulting
in an estimated accuracy of the CH4 profiles within about
10 % in the upper troposphere and lower stratosphere and
within 25 % in the middle and higher stratosphere and the
lower thermosphere. Recently, an updated ACE-FTS data
set (V3) has been made available, but no validation results
have been published yet; therefore we currently restrict our
analysis to the V2.2 data.

About 900 collocations between SCIAMACHY and ACE-
FTS are found assuming a maximum tangent point distance
of 500 km and measurements at the same day during lo-
cal sunset. For these collocations the following statistical
quantities are determined:

– The mean and standard deviation of the difference be-
tween SCIAMACHY and ACE-FTS VMRs, in VMR
units (shown in Fig.3a).

– The estimated mean error of the SCIAMACHY VMRs,
i.e. the averaged error (as described in Sect.2.5) of the
single profiles (green line in Fig.3a).

– The mean SCIAMACHY and ACE-FTS profiles for the
set of collocated data and their difference (see Fig.3c).

– The mean relative deviations between SCIAMACHY
and ACE-FTS and the corresponding standard devia-
tions (Fig. 3b, red and blue lines). These have been
obtained by dividing the absolute values from Fig.3a
by the arithmetic mean of the average SCIAMACHY
and ACE-FTS profiles given in Fig.3c.

– The estimated mean relative error of the SCIAMACHY
VMRs (green line in Fig.3b), obtained by dividing the
absolute errors by the average SCIAMACHY profile.
This error can be interpreted as a typical error of a single
SCIAMACHY CH4 profile.

– The correlation coefficient (Pearson’s r) between the
SCIAMACHY and the ACE-FTS data, which is shown
in Fig. 3d.

As shown in Fig.3, SCIAMACHY and ACE-FTS CH4
VMRs agree within about±10 %, which is in line with the
expected accuracy of the ACE-FTS V2.2 data product of
about 10 %. Below about 28 km SCIAMACHY VMRs are
typically lower than the corresponding ACE-FTS values (up
to 0.1 ppmv below 25 km); between 28 and 35 km SCIA-
MACHY VMRs are larger that ACE-FTS VMRs; above they
agree very well. The estimated mean error of the SCIA-
MACHY CH4 profiles lies between 10 and 20 % below
30 km and strongly increases for higher altitudes, reaching
more than 100 % at 40 km. The agreement with ACE-FTS
at these altitudes is however still good. This is probably be-
cause the given SCIAMACHY errors are under-estimated, as
described in Sect.2.5.

The correlation between the SCIAMACHY and ACE-FTS
CH4 VMRs is always larger than 0.8; between 30 and 35 km
it reaches 0.95. This indicates that CH4 variations seen by
ACE-FTS are also seen by SCIAMACHY.

4 Time series

Up to now, the ONPD method has been applied to all SCIA-
MACHY solar occultation measurements from August 2002
until end of 2010. Up to 13 CH4 profiles are obtained per day
at almost the same latitude but different longitudes. Based on
these data, daily averages are computed which are shown in
Fig. 4a for number densities and Fig.4b for VMRs. Because
of the different longitudes covered during one day these are
in fact also zonal averages. Data from times of reduced in-
strument performance, like instrument switch-offs or decon-
taminations (marked by grey vertical bars in Fig.4), have not
been included in these averages.

Because of the sun-fixed ENVISAT orbit there is a one-
to-one relationship between the latitude of the tangent point
and time, as can be seen from the top parts of each sub-panel.
Furthermore, also the tropopause height (calculated from
collocated ECMWF data and shown as a black line in the
lower part of the sub-figures) varies as function of time and
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Fig. 5. Time series of SCIAMACHY CH4 VMRs (August 2002 to December 2010) at different altitudes based on daily average data.

latitude. This systematic coupling of observational time and
space complicates the interpretation of the SCIAMACHY
solar occultation time series.

The variation of the number densities and also VMRs with
time seems rather smooth. There is a distinct seasonal varia-
tion visible in the CH4 time series. This variation occurs at all

altitudes, but is most pronounced at lower altitudes with max-
imum VMRs occurring in summer (about 1.4 ppmv at 20 km)
and minimum VMRs in winter (about 1.0 ppmv at 20 km),
following roughly the variation of the tropopause height.

The shape of the seasonal signal in the CH4 time series
varies with altitude, as can be seen from Fig.5, showing
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series for 20, 25, 30, 35 and 40 km extracted from the daily
average VMR data set given in Fig.4b. Whereas the sea-
sonal variation at lower altitudes have mainly a sinusoidal
shape, very similar to the tropopause height variations, the
time series at higher altitudes (where tropospheric influence
is reduced) become more complex. Fig.5 also shows that
there is a significant day-to-day variation, especially in win-
ter (and thus at high latitudes), which can not be that eas-
ily identified from the contour plots of Fig.4. These short
term variations are related to the occurrence of the polar vor-
tex. CH4 concentrations inside the polar vortex are gener-
ally lower than outside the vortex, which is attributed to the
downward transport of stratospheric air inside the vortex (see
e.g.Nassar et al., 2005). In winter, the daily mean SCIA-
MACHY VMRs therefore depend strongly on the extent of
the (usually asymmetric) polar vortex. Especially, on some
days (e.g. 11 December 2002, 2 December 2003, 22 Novem-
ber 2005, 18 February 2007) sharp peaks are visible in the
data. At these days only very few measurements were avail-
able (only 3–4 profiles), and these happen to be outside the
vortex, which is why the average concentration is higher than
the typical daily average in winter which usually contains
data from both inside and outside the vortex.

5 Conclusions

First stratospheric CH4 profiles derived with an updated ver-
sion of the Onion Peeling DOAS (ONPD) algorithm (current
data product version 3.3.6) from SCIAMACHY solar occul-
tation data look very promising. Reasonable results are ob-
tained between 20 and 40 km altitude, but the mean errors of
the SCIAMACHY CH4 product are still considerably high
(10–20 % below 30 km and strongly increasing above). How-
ever, these errors are based solely on fit residuals and consid-
ered to be upper estimates. An extension of the retrieval to
lower altitudes is desired but needs further investigation.

Comparisons of the SCIAMACHY CH4 profiles with
ACE-FTS V2.2 data show a good correlation. SCIAMACHY
and ACE-FTS VMRs agree typically within 10 %. This is in
line with the expected accuracy of the ACE-FTS methane
data.

Due to the observational geometry the SCIAMACHY CH4
profiles are restricted to a latitudinal range between about
50◦ N and 70◦ N. Furthermore, there is a direct coupling be-
tween time and place of a measurement, which results in a
pronounced seasonal cycle in the derived time series. This
seasonal signal varies with altitude; tropospheric influence is
visible at lower altitudes, i.e. the seasonality observed in the
lower altitudes is mainly influenced by the seasonality of the
tropopause height. Furthermore, there is an underlying short-
time variation which is especially strong in winter at higher
latitudes, indicating an impact of the polar vortex.
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Noël, S., Bramstedt, K., Rozanov, A., Bovensmann, H., and Bur-
rows, J. P.: Water vapour profiles from SCIAMACHY solar oc-
cultation measurements derived with an onion peeling approach,
Atmos. Meas. Tech., 3, 523–535,doi:10.5194/amt-3-523-2010,
2010.

Payan, S., Camy-Peyret, C., Oelhaf, H., Wetzel, G., Maucher, G.,
Keim, C., Pirre, M., Huret, N., Engel, A., Volk, M. C., Kuell-
mann, H., Kuttippurath, J., Cortesi, U., Bianchini, G., Mencar-
aglia, F., Raspollini, P., Redaelli, G., Vigouroux, C., De Mazière,
M., Mikuteit, S., Blumenstock, T., Velazco, V., Notholt, J.,
Mahieu, E., Duchatelet, P., Smale, D., Wood, S., Jones, N., Pic-
colo, C., Payne, V., Bracher, A., Glatthor, N., Stiller, G., Grunow,
K., Jeseck, P., Te, Y., and Butz, A.: Validation of version-4.61
methane and nitrous oxide observed by MIPAS, Atmos. Chem.
Phys., 9, 413–442,doi:10.5194/acp-9-413-2009, 2009.

Remedios, J. J., Ruth, S. L., Rodgers, C. D., Taylor, R. W., Roche,
A. E., Gille, J. C., Gunson, M. R., Russell, III, J. M., Park, J.,
Zipf, E. C., and Erdman, P. W.: Measurements of methane and ni-
trous oxide distributions by the improved stratospheric and meso-
spheric sounder: Retrieval and validation, J. Geophys. Res., 101,
9843–9871, 1996.

Roche, A. E., Kumer, J. B., Nightingale, R. W., Mergenthaler, J. L.,
Ely, G. A., Bailey, P. L., Massie, S. T., Gille, J. C., Edwards, D. P.,
Gunson, M. R., Abrams, M. C., Toon, G. C., Webster, C. R.,
Traub, W. A., Jucks, K. W., Johnson, D. G., Murcray, D. G., Mur-
cray, F. H., Goldman, A., and Zipf, E. C.: Validation of CH4 and
N2O measurements by the cryogenic limb array etalon spectrom-
eter instrument on the Upper Atmosphere Research Satellite, J.
Geophys. Res., 101, 9679–9710,doi:10.1029/95JD03442, 1996.

Rohs, S., Schiller, C., Riese, M., Engel, A., Schmidt, U.,
Wetter, T., Levin, I., Nakazawa, T., and Aoki, S.: Long-
term changes of methane and hydrogen in the stratosphere
in the period 1978–2003 and their impact on the abundance
of stratospheric water vapor, J. Geophys. Res., 111, D14315,
doi:10.1029/2005JD006877, 2006.

Rozanov, A., Rozanov, V., Buchwitz, M., Kokhanovsky, A., and
Burrows, J. P.: SCIATRAN 2.0 – A new radiative transfer model
for geophysical applications in the 175–2400 nm spectral region,
Adv. Space Res., 36, 1015–1019,doi:10.1016/j.asr.2005.03.012,
2005.

Russell, III, J. M. and Drayson, S. R.: The Inference of Atmospheric
Ozone Using Satellite Horizon Measurements in the 1042 cm−1

Band, J. Atmos. Sci., 29, 376–390, 1972.
Russell, III, J. M., Gordley, L. L., Park, J. H., Drayson, S. R., Hes-

keth, W. D., Cicerone, R. J., Tuck, A. F., Frederick, J. E., Harries,
J. E., and Crutzen, P. J.: The Halogen Occultation Experiment, J.
Geophys. Res., 98, 10777–10797, 1993.

Taylor, F. W., Rodgers, C. D., Whitney, J. G., Werrett, S. T.,
Barnett, J. J., Peskett, G. D., Venters, P., Ballard, J., Palmer,
C. W. P., Knight, R. J., Morris, P., Nightingale, T., and Dud-
hia, A.: Remote Sensing of Atmospheric Structure and Com-
position by Pressure Modulator Radiometry From Space: The
ISAMS Experiment on UARS, J. Geophys. Res., 98, 10799–
10814,doi:10.1029/92JD03029, 1993.

www.atmos-meas-tech.net/4/2567/2011/ Atmos. Meas. Tech., 4, 2567–2577, 2011

http://dx.doi.org/10.1029/JD095iD09p13867
http://dx.doi.org/10.1029/2005GL022671
http://dx.doi.org/10.5194/amt-3-523-2010
http://dx.doi.org/10.5194/acp-9-413-2009
http://dx.doi.org/10.1029/95JD03442
http://dx.doi.org/10.1029/2005JD006877
http://dx.doi.org/10.1016/j.asr.2005.03.012
http://dx.doi.org/10.1029/92JD03029

