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Abstract. Nadir observations with the shortwave infrared
channels of SCIAMACHY on-board the ENVISAT satellite
can be used to derive information on atmospheric gases such
as CO, CH4, N2O, CO2, and H2O. For the operational level
1b-2 processing of SCIAMACHY data, a new retrieval code
BIRRA (Beer InfraRed Retrieval Algorithm) has been de-
veloped. BIRRA performs a nonlinear or separable least
squares fit (with bound constraints optional) of the measured
radiance, where molecular concentration vertical profiles are
scaled to fit the observed data. Here we present the forward
modeling (radiative transfer) and inversion (least squares op-
timization) fundamentals of the code along with the further
processing steps required to generate higher level products
such as global distributions and time series. Moreover, vari-
ous aspects of level 1 (observed spectra) and auxiliary input
data relevant for successful retrievals are discussed. BIRRA
is currently used for operational analysis of carbon mono-
xide vertical column densities from SCIAMACHY channel
8 observations, and is being prepared for methane retrievals
using channel 6 spectra. A set of representative CO retrievals
and first CH4 results are presented to demonstrate BIRRA’s
capabilities.

1 Introduction

Nadir sounding of molecular column densities is well es-
tablished in atmospheric remote sensing. For UV instru-
ments observing the back-scattered sunlight, the analy-
sis is traditionally based on a DOAS (Differential Optical
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(sebastian.gimenogarcia@dlr.de)

Absorption Spectroscopy) methodology that considers the
logarithm of the measured signal – essentially the optical
depth. This approach has also been successfully applied to
SCIAMACHY’s (Scanning Imaging Absorption Spectrom-
eter for Atmospheric CHartographY) (Bovensmann et al.,
1999; Gottwald and Bovensmann, 2011) near infrared (NIR)
channels (Buchwitz et al., 2007; Frankenberg et al., 2005b).
Alternatively, the measured radiance spectra can be directly
analyzed. This method is common practice in thermal in-
frared atmospheric spectroscopy and constitutes the core of
the Iterative Maximum Likelihood Method (IMLM) devel-
oped by SRON for analysis of SCIAMACHY’s near infrared
channels (Gloudemans et al., 2005). Recently,Reuter et al.
(2010) also presented an optimum estimation analysis of sun
normalized radiances for improved SCIAMACHY CO2 re-
trievals andLerot et al.(2010) applied a direct fitting to nadir
viewing UV spectra.

The aim of SCIAMACHY nadir NIR observations is to
retrieve information on atmospheric gases such as CO, CH4,
CO2, N2O, or H2O. Ideally, profiles of volume mixing ra-
tio qX(z) or number densitynX(z) = qX(z) ·nair(z) of a given
molecule X can be retrieved, wherez represents altitude and
nair air number density. However, vertical sounding inver-
sions are generally ill-posed problems, so for weakly ab-
sorbing gases it is customary to retrieve only vertical column
densities (VCD),

NX ≡

∫ zTOA

zsrf

nX(z)dz , (1)

wherezsrf is the surface altitude andzTOA the altitude oftop
of the atmosphere(TOA).

In order to have a flexible and robust inversion algorithm
for the efficient processing of level-1b to level-2 data, the
“Beer InfraRed Retrieval Algorithm” (BIRRA) has been de-
veloped at DLR. BIRRA performs a nonlinear least squares
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fit of the observed near infrared (sun-normalized) radi-
ances. First results including a careful intercomparison with
the WFM-DOAS algorithm (Weighting Function Modified
DOAS, University of Bremen,Buchwitz et al., 2007) for or-
bit 8663 (27 October 2003) have been presented inSchreier
et al. (2007). Recently, the BIRRA prototype has been suc-
cessfully implemented in version 5 of the level 1b to 2 SCIA-
MACHY processor for operational data retrievals.

In this paper, the algorithmic basis of BIRRA and its ap-
plication to carbon gas VCD retrievals are presented. The
next section reviews the forward model and the inversion ap-
proach used in BIRRA as well as further processing steps.
Aspects of input data (nb. level 1 issues) and retrieval set-
tings are discussed in Sect.3. Section4 contains a survey of
VCD retrieval results. Conclusions and an outlook are given
in Sect.5. The results presented here have been obtained
with the scientific prototype version of BIRRA and may dif-
fer from the SCIAMACHY operational product. The em-
phasis of this paper is on methodology, where carbon mono-
xide and methane retrievals are presented for illustrations.
For a discussion of spatial and temporal patterns we refer to,
e.g.Buchwitz et al., 2007; Clerbaux et al., 2008; Gloudemans
et al., 2006, 2009; de Laat et al., 2006, 2007; Worden et al.,
2010; Yurganov et al., 2008. A comprehensive discussion
of results for CO and CH4, including validation, will be the
subject of a forthcoming paper.

2 Theory and algorithm

2.1 The forward model – near infrared radiative
transfer

For an arbitrary slant path, the intensity (radiance)I at
wavenumberν received by an instrument ats = 0 is de-
scribed by the equation of radiative transfer (Liou, 1980;
Zdunkowski et al., 2007)

I (ν) = Ib(ν)T (ν) −

∫
∞

0
ds′J (ν,s′)

∂T (ν;s′)

∂s′
, (2)

whereIb is an external contribution,T represents the trans-
mission through the atmosphere, andJ is the source function
comprised of thermal emission and scattering. In the near in-
frared, thermal emission of the atmosphere and Earth’s sur-
face is negligible compared to the reflected and scattered sun-
light. The contribution of molecular (Rayleigh) scattering is
far below 1 % and will be neglected. Aerosol and cloud scat-
tering may have a significant contribution to the intensity but
their effects on the retrieval can be mitigated by proxy mod-
eling (see Subsect.2.3.1, a detailed justification can be found
in Frankenberg et al., 2006; Gloudemans et al., 2008). Thus,
neglecting scattering, Eq. (2) reduces to Beer’s law for a dou-
ble path through the atmosphere

I (ν) =
r(ν)

π
µ�Isun(ν)T↑(ν)T↓(ν)

=
r(ν)

π
µ�Isun(ν)

exp

−

sun∫
earth

ds′
∑
m

nm(s′)km

(
ν,p(s′),T (s′)

)·

exp

−

sat∫
earth

ds′′
∑
m

nm(s′′)km

(
ν,p(s′′),T (s′′)

), (3)

wherer is the surface albedo andT↑ andT↓ (with T = T↑T↓)
denote transmission between reflection point (e.g. Earth sur-
face at altitudezsrf) and observer and between Sun and re-
flection point, respectively.

Assuming spherical symmetry, the path variables is
uniquely related to the altitudez (in a plane–parallel approx-
imations′

= z′/µ with µ ≡ cosθ for an observer zenith angle
θ , similarly s′′

= z′′/µ� for a solar zenith angle (SZA)θ�).
km andnm are the (pressurep and temperatureT dependent)
absorption cross section and number density of moleculem.
In infrared line-by-line models, the absorption cross section
km of moleculem is obtained by summing up the contribu-
tions from many lines,

km(ν,p,T ) =

∑
l

S
(m)
l (T ) g(ν; ν̂

(m)
l ,γ

(m)
l (p,T )), (4)

where each individual linel is described by the product of
the temperature-dependent line strengthS

(m)
l and a normal-

ized line shape functiong describing the broadening mecha-
nism. ν̂ andγ are line position and half width at half max-
imum (HWHM), respectively. The combined effect of pres-
sure broadening (corresponding to a Lorentzian line shape)
and Doppler broadening (Gaussian line shape) is represented
by a Voigt line profile (Schreier, 2011). Line mixing (LM)
is not yet considered in BIRRA.Tran et al.(2010) discussed
consequences of line mixing in the 2ν3 band of methane for
molecular spectroscopy and atmospheric retrievals, conclud-
ing that “from the point of view of atmospheric retrievals,
neglecting LM with suitable effective line parameters is con-
venient and accurate (within current retrieval uncertainties).”

The measured spectrum is modeled by convolution of the
monochromatic intensity spectrum (3) with a normalized in-
strument spectral response functionS

Î (ν) ≡ (I ⊗S)(ν) =

∫
∞

−∞

I
(
ν′

)
×S

(
ν −ν′

)
dν′ ,

For SCIAMACHY measurements, a Gaussian function is
commonly used,

SG(ν,γ ) =
1

γ

(
ln2

π

)1/2

·exp

[
−ln2

(
ν

γ

)2
]

, (5)

whereγ is the half width at half maximum (HWHM). The
BIRRA forward model is based on GARLIC (Generic At-
mospheric Radiation Line-by-line Infrared Code), the For-
tran 90/2003 reimplementation of the Fortran 77 code MI-
RART (Schreier and Schimpf, 2001). GARLIC/MIRART is

Atmos. Meas. Tech., 4, 2633–2657, 2011 www.atmos-meas-tech.net/4/2633/2011/
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a line-by-line code for arbitrary observation constellations
(up-looking, down-looking or limb-viewing in a spherical
geometry), and instrumental field-of-view and spectral re-
sponse. GARLIC/MIRART has been verified in extensive in-
tercomparisons (e.g.von Clarmann et al., 2002; Melsheimer
et al., 2005); recently,Hedelt et al.(2011) used the code suc-
cessfully to model observations of the Venus transit 2004
made by the Tenerife Vacuum Tower Telescope. Further-
more, a multiple scattering enhanced version of MIRART
has been used to study effects of cirrus clouds on mid infrared
limb MIPAS observations (Mendrok et al., 2007). Molecu-
lar spectroscopic parameters fromHITRAN, GEISA, or JPL

databases can be selected; additionally continuum correc-
tions to the molecular absorption are considered, e.g. the
CKD continuum of water (Clough et al., 1989). Jacobians,
i.e. derivatives of transmission or radiance spectra with re-
spect to the parameters to be retrieved, are obtained by means
of automatic differentiation (Griewank, 2000; Hascöet and
Pascual, 2004). For nadir modeling, refraction is only taken
into account for the Sun – Earth path element whereas for
the “down-looking” path segment (satellite – Earth’s surface)
with viewing angles≤ 30◦ refraction is neglected.

2.2 The inverse problem – least squares

Denoting byαm the molecular scale factor to be estimated
and bynprior

m (z) the a-priori (e.g. climatological) number den-
sity of moleculem, the total path transmission in Eq. (3) can
be written as

T ≡ T↑T↓ = exp

[
−

∑
m

τm

]
= exp

[
−

∑
m

αmτ
prior
m

]
, (6)

whereτm is the “true” total optical depth of moleculem (note
that for simplicity this equation is written for a non-refractive
plane-parallel geometry),

τm(ν) =

zTOA∫
zsrf

dz′

(
1

µ
+

1

|µ�|

)
nm(z′)km(ν,z′), (7)

andτ
prior
m the a-priori total optical depth computed withnprior

(Note that for simplicity this equation is written for a plane-
parallel non-refractive atmosphere). From Eq. (6), we have
thatτm(ν) = αmτ

prior
m .

If the observation geometry (i.e.zsrf, zTOA, µ andµ�) is
known, changes in the a-priori molecular cross sectionskm

are neglected and it is assumed that the scale factors do not
depend on altitude, then, recalling Eq. (1), the “true” VCD
of the moleculem can be written as

Nm = αm N
prior
m , (8)

whereN
prior
m =

∫ zTOA
zsrf

n
prior
m (z)dz is the a-priori VCD of the

moleculem.
In addition to the scaling factorsαm, the surface albedo

r (generally modeled by a polynomial in wavenumber) is

treated as an unknown; furthermore, instrumental parame-
ters (i.e. the slit function half width) and an optional baseline
correctionb (again a polynomial) can be considered as fit
parameters.

2.2.1 Nonlinear least squares

The standard approach to estimate unknown quantitiesx ∈

Rn from measurementsy ∈ Rm relies on a (generally nonlin-
ear) least squares fit

min
x

‖y −F (x)‖2 . (9)

Here,F denotes the forward modelF : Rn
→ Rm essentially

given by the radiative transfer and instrument model,

F (x) ≡ Î (ν) =
r(ν)

π
µ�Isun(ν)

×exp

[
−

∑
m

αmτm(ν)

]
⊗S(ν,γ ) + b(ν) , (10)

where the state vectorx ≡ (α,γ,r,b) is comprised of molec-
ular scale parametersα, and optionally “auxiliary” parame-
tersγ,r,b (the arraysr andb denote the coefficients of the
polynomials in wavenumber).

For the solution of the nonlinear least squares problem,
Eq. (9), BIRRA uses solvers provided in the PORT Op-
timization Library (Dennis, Jr. et al., 1981, available at
http://www.netlib.org/port/) based on a scaled trust region
strategy. Furthermore, BIRRA provides the option to use a
nonlinear least squares with simple bounds to avoid unphys-
ical results, e.g. non-negativity,

min
x>0

‖y −F (x)‖2 . (11)

2.2.2 Separable least squares

Note that the surface albedor and the baseline correction(s)
b enter the forward modelF , Eq. (10), linearly and the least
squares problems, Eqs. (9) and (11), can be reduced to a sep-
arable nonlinear least squares problem (Golub and Pereyra,
2003). Splitting the vectorx of parameters to be fitted into
a vectorη of nonlinear parameters and a vectorβ of linear
parameters, i.e.

x −→ (η,β),with x ∈ Rn,

η ≡ (α,γ ) ∈ Rp,β ≡ (r,b) ∈ Rq andn = p+q, (12)

the forward model can be written as

F (x) =

q∑
l=1

βlf l(η) , (13)

wheref l : Rp
→ Rm for l = 1,...,q. Combining these func-

tions in a matrix

A(η) ≡

(
f 1(η),f 2(η),...,f q(η)

)
, with A ∈ Rm×q , (14)
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Equation (9) can be rewritten as a linear least squares prob-
lem

min
β

‖y −Aβ‖
2 (15)

for the vectorβ, that is formally solved by

β =

(
ATA

)−1
ATy . (16)

Inserting this solution in Eq. (13), the original least squares
problem Eq. (9) becomes

min
η

∥∥∥∥∥y −

∑
l

((
ATA

)−1
ATy

)
l
f l(η)

∥∥∥∥∥
2

. (17)

This is a nonlinear least squares problem forη independent
of β and can be solved in the usual way by means of Gauss–
Newton or Levenberg–Marquardt algorithms. Once the op-
timum η is found, the linear parameter vectorβ is obtained
from Eq. (16). The main advantages of this approach are: (i)
the nonlinear least squares solver has to iterate only over a
reduced fit vectorη; (ii) no initial guess is required for the
linear parametersβ; (iii) the size of the Jacobian matrix is
reduced.

2.2.3 Jacobians and altitude sensitivity

The Jacobian,J ≡ ∂F/∂x, the partial derivatives of the
model function with respect to the fit parameters, is an
essential quantity required for Gauss–Newton type itera-
tive solvers of nonlinear least squares problems. Although
BIRRA performs a least squares fit of vertical column den-
sities, derivatives with respect to the (discretized) molecular
abundance profiles deliver insight into the sensitivity of the
retrievals to different altitude regions in addition to useful
hints to the appropriate spectral region selection.

According to Fig.1, in SCIAMACHY channel 8 both
branches of the first CO overtone band at 2.4µm have about
the same impact, however, water interference is less signifi-
cant in the R-branch between 4250 and 4300 cm−1. Further-
more, the plot indicates that the highest altitude sensitivity is
located in the troposphere.

For an assessment of altitude sensitivity in the context
of profile retrievals, specification of averaging kernels relat-
ing the true and estimated state vector (comprising the dis-
cretized profile) is customary. In case of column density re-
trievals as performed by BIRRA, the state vector is composed
of the profile scaling factorsαm of all relevant molecules (and
some additional auxiliary parameters). In order to estimate
the altitude sensitivity, an approach suggested byBuchwitz
et al. (2004) has been used, i.e. a series of BIRRA fits has
been performed using synthetic spectra generated with per-
turbed CO profiles. DenotingN r(z) the VCD retrieved from
the spectrum generated with a profile perturbed at an altitude

Fig. 1. Jacobians[erg/s/(cm2srcm−1)/ppm] for molecular con-
centration profile retrieval in channel 8: CO (top), CH4 (mid), and
H2O (bottom). Note the scaling by 106 of the CO and CH4 Jaco-
bians. The derivatives were calculated using GARLIC for a US
standard atmosphere up to 50 km, a Gaussian slit function with
γ = 0.2 cm−1, and vertical downlooking observer at 800 km.
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Fig. 2. Altitude sensitivity of CO (left), CH4 (mid), and H2O in channel 8.

12

Fig. 2. Altitude sensitivity of CO (left), CH4 (mid), and H2O in
channel 8.

z, andNp(z) VCD corresponding to this perturbed profile,
the altitude sensitivity is estimated by

A(z) =
N r(z)−N

Np(z)−N
, (18)

whereN is the true VCD as in Eq. (1) (the subscriptX is
omitted for brevity). Fig.2 confirms the high sensitivity
of NIR retrievals in the lower troposphere; furthermore, as
pointed out byBuchwitz et al.(2004) andGloudemans et al.
(2008), this sensitivity is depending on the solar zenith angle
and, to lesser extent, on the observation angle.

2.3 Postprocessing

In the previous subsections, the basics of forward modeling
(radiative transfer) and inversion (least squares optimization)
as applied to a single observation have been presented. Here,
we discuss further steps necessary to proceed from the fit-
ted parameters during the inversion process to “higher level
products” such as local and global spatial distributions and
temporal evolutions.

2.3.1 Product definition

Since scattering is neglected in the BIRRA forward model,
the photon path is considered to be the optical path that so-
lar light travels from the top of the atmosphere to the Earth’s
surface, and reflected from the surface up to the observer.
However, the measured radiance has a high probability of
having also a (small or large, depending on the individual
conditions) fraction coming from scattering events in the at-
mosphere, and consequently, having a photon path different
from the pure geometrical one. In addition, the atmospheric
conditions are set a-priori to climatological datasets but the
actual meteorological conditions (e.g. pressure, temperature)

at the time of the observations are unknown. Moreover, the
quality of the observed spectra has a significant impact on
the fitted scaling factors of the atmospheric constituents and,
therefore, calibration open issues and the known growth of
an ice layer on channel 8 detector (Gloudemans et al., 2005)
will affect the retrievals.

In order to account for these unconsidered effects, the
results of the retrieved gases are presented as “proxy”-
normalized vertical column densities instead of directly re-
trieved VCDs. As proxy, it is typical to select a fit pa-
rameter that contains information about the unaccounted is-
sues. In case of CO retrievals from SCIAMACHY channel 8,
methane is a reasonably good candidate to be used as proxy
(Buchwitz et al., 2000). CH4 has strong absorption lines
across the CO spectral fitting window, so the amount of CH4
can be determined with high accuracy. Furthermore, CH4 is
a well-mixed gas with long life time in the atmosphere and,
consequently, it has quite homogeneous global distributions.
The deviations of CH4 concentrations from the a-priori due
to sources and sinks are rarely bigger than 10 %, far smaller
than the deviations of CO that can easily depart by hundreds
percent from the reference value over emitting areas. Thus,
in terms of CO variability, CH4 can be considered as constant
and variations in the retrieved CH4 from the expected a-priori
value can be interpreted as the effect of the unconsidered pro-
cesses. So, the proxy-normalized CO vertical column density
is defined as

xCO≡ N
prior
CO ×

αCO

αCH4
, (19)

whereNCO represents the a-priori CO vertical column den-
sity, andαCO andαCH4 are the fitted scaling factors of CO
and CH4, respectively (see Eq.8). Note that both scaling
factors are retrieved from channel 8 data.

Considering that the retrieval of CH4 under the considera-
tions of homogeneity exposed above is equivalent to the re-
trieval of the dry air mass, the ratioed quantity xCO is called
dry-air column density(Wallace and Livingston, 1990; Yang
et al., 2002). For channel 8 retrievals, however, the ice layer
that grows over the detector has a different impact on CH4
than on CO retrievals. Thus, the CH4-proxy does not en-
tirely account for the effect of the ice layer and special care
has to be taken when correcting for this.

Analogously, using SCIAMACHY channel 6, one can de-
fine thedry-air column mixing ratioof CH4 as

xCH4≡ q
prior
CH4 ×

αCH4

αCO2
, (20)

whereq
prior
CH4 is the a-priori column mixing ratio of CH4, and

αCH4 andαCO2 are the scaling factors of CH4 and CO2, re-
spectively. For the target species CH4, the chosen dry-air
proxy is CO2 (Frankenberg et al., 2006). All conditions men-
tioned above for the CH4-proxy also hold for the proxy CO2.
Further, CO2 is far more homogeneous (vertical and hori-
zontally) than CH4, and the absorption signatures of target
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and proxy species are of comparable magnitude in channel
6, which is desirable but not the case for the CO target with
a CH4 proxy.

2.3.2 Quality criteria

In order to use the fitted data, a variety of quality crite-
ria have to be fulfilled. Convergence of the least squares
fit is requested and only moderate solar zenith angles (typ-
ically < 80dg) are selected. Retrievals with high fit errors
are rejected (typicallyε(αCO) < 0.5, ε(αCH4) < 0.01). Fur-
thermore, for the acceptance or rejection of retrieved data a
quantile analysis is performed, i.e. outliers far off the me-
dian are rejected. As suggested byGloudemans et al.(2009),
different cloud filters are used over land and over sea: in con-
trast to land observations, the NIR albedo of oceans is very
low and, as a consequence, the signal-to-noise ratio of cloud
free observations is very low. Thus, over oceans the pres-
ence of clouds with high albedo significantly enlarges the
signal and enables reliable retrievals. Accordingly, only pix-
els with cloud fraction higher than 20 % are accepted. Over
land, however, the presence of clouds is a source of uncer-
tainties, since the radiative transfer model only accounts for
one photon path and, in case of partial cloud cover, the ob-
served radiances have contributions coming from reflections
at the Earth’s surface and from scattering at the cloud layer.
Therefore, only observations with cloud fraction below 20 %
are accepted.

Observations over ocean require special care. Cloud top
height (CTH) is a crucial parameter for trace gas retrieval
under cloudy conditions. This is specially true for retrievals
over the ocean, since clouds are unavoidable for reliable re-
trievals. In these cases, the main contribution to the measured
intensity comes from the cloud top region, so this informa-
tion helps to understand and improve the retrievals. Since
CH4 is a well-mixed gas, variations in CH4 VCDs can be
related to “obstacles” along the photon path, mainly due to
cloud shielding. Bounds on the CH4 VCD are highly corre-
lated with restrictions on cloud top height. This fact is ex-
ploited byBuchwitz et al.(2004, 2007). Gloudemans et al.
(2009) used cloud information based on CH4 retrieved from
SCIAMACHY channel-8 for ocean CO retrievals.

High clouds introduce uncertainties and systematic errors
to the CO retrievals especially by the scaling with an in-
correctly retrieved CH4 partial column. However, since re-
trievals in presence of high clouds translate, in most cases, to
large CH4 retrieval errors, these can be used for masking out
high cloud observations. Indeed, comparisons of xCO using
the quality criteria previously described and using an extra
condition on cloud top height (namely, CTH< 2 km) show
similar results, since most of the high cloud observations are
already removed by the conditionε(αCH4) < 0.01.

For CO retrievals, the normalization by the CH4 scal-
ing factor accounts for deviations from geometrical pho-
ton paths. However, two systematic errors arise from this

treatment. On the one hand, the ratio of the partial CO
and CH4 VCDs depends on the bottom boundary (surface
or cloud top). Correcting for this, xCO retrieved only over
clouds can be transferred to total vertical column densities,
assuming that the retrieved-to-reference VCD ratio above
and below the clouds is the same. On the other hand, CO and
CH4 have different altitude sensitivity, so deviations from
the reference profiles at different altitudes will have a dif-
ferent impact on the retrieved CO and CH4. This effect has
not been considered. Nonetheless, below 500 mb the altitude
sensitivity of both gases is similar and hence, the error intro-
duced is far smaller than the other contributions (given that
high-cloud observations have been filtered out).

3 Retrieval setup and input data: sensitivity studies

The quality of the input data greatly affects the accuracy of
the retrievals. Since model parameters are optimally varied
during the inversion process to mimic the measured values,
errors in the input spectra will lead to wrong retrievals. In
this section, sensitivity studies with respect to input data and
retrieval settings are presented for carbon monoxide.

Level 1 data (spectra and geolocation) are taken from the
SCIAMACHY level 1 product (SGP version 6.03). Unless
otherwise noted, the dead and bad pixel mask (DBPM) used
corresponds to the prototype of the new level 1 SGP ver-
sion 7.03. For topographic information (surface elevation)
(ETOPO4) data are used. Auxiliary data such as cloud in-
formation are taken from the SCIAMACHY level 2 product
SGP version 3.01.

3.1 Level 1 spectra – trace gases fitting windows

SCIAMACHY spectra are spectrally and radiometrically cal-
ibrated and corrected for several effects, namely: leakage
current, pixel-to-pixel gain, non-linear response, stray light,
and polarization. Reflectances are calculated using in-flight
sun diffuser spectra. Additionally, the degradation of the
instrument is monitored and the quality of the individual
spectral pixels is assessed. For the CO retrievals presented
here, the spectral window in the middle of channel 8, rang-
ing 4282–4303cm−1 (equivalent to 2323–2336nm) is used.
For methane retrievals, two microwindows in channel 6 are
selected: the 5986–6139cm−1 (1629–1671nm) interval with
CH4 as the strongest absorber, and the 6273–6419cm−1

(1558–1594nm) interval with CO2 as the strongest absorber.

3.2 Dead & bad pixel mask (DBPM)

The DBPM contains pixels that are deemed unusable for the
retrieval due to damage mostly caused by enhanced particle
flux during the passing of the Southern Atlantic Anomaly
(SAA). Consequences of the damage are, e.g. high noise val-
ues, disconnection or very high leakage currents. Dark, sun,
and internal lamp measurements are used to determine bad
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Fig. 3. Evolution of pixel mask from 2002 to 2009 (left) and percentage of flagged pixels
(right). Good pixels are marked blue and bad pixels red. Several decontaminations rendering
the detectors temporarily useless due to high temperatures and resulting noise are visible as
horizontal red lines in the left diagram.

shows the effect on CO VCD retrievals of using a constant mask for one year vs. using
a dynamic mask continuously updated Lichtenberg et al. (2010). Even though the total
number of flagged pixels does not change dramatically between February and October
2004, cf. Fig. 3b, the retrieved VCDs differ significantly, i.e. CO fits depend on the
presence of the individual pixels and their quality. This result was already found earlier
by Gloudemans et al. (2005) for CO retrievals with the IMLM algorithm.

3.3 Sensitivity to signal changes in individual pixels

An inversion process aims at gaining information about model parameters from ob-
served quantities. In the case of atmospheric gas retrievals, the observed quantities
are the radiances measured at different wavelengths for a light beam that has traveled
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Fig. 3. Evolution of pixel mask from 2002 to 2009 (left) and percentage of flagged pixels (right). Good pixels are marked blue and bad
pixels red. Several decontaminations rendering the detectors temporarily useless due to high temperatures and resulting noise are visible as
horizontal red lines in the left diagram.

pixels (see, e.g.Lichtenberg et al., 2006), and parameters
such as mean noise or error of dark parameters are calculated.
The DBPM judges the quality of a pixel by setting channel
wide thresholds for dark signal, dark signal noise, dark sig-
nal saturation, residual of dark correction, and sun and white
light source signal. If one or more thresholds is/are violated
in more than 40 % of the cases within one week, the pixel is
masked as bad. The algorithm is based on an approach de-
scribed by SRON (personal communication, October 2006).
Furthermore, a pixel is always either bad or good, there are
no intermediate values.

Since mission start, the number of dead/bad pixels has
grown steadily, cf. Fig.3a, and in June 2009 around 40 %
of the pixels in channel 8 are marked as bad. Fig.4 shows
the effect on CO VCD retrievals of using a constant mask
for one year vs. using a dynamic mask continuously updated
Lichtenberg et al.(2010). Even though the total number of
flagged pixels does not change dramatically between Febru-
ary and October 2004, cf. Fig.3b, the retrieved VCDs differ
significantly, i.e. CO fits depend on the presence of the indi-
vidual pixels and their quality. This result was already found
earlier byGloudemans et al.(2005) for CO retrievals with
the IMLM algorithm.

3.3 Sensitivity to signal changes in individual pixels

An inversion process aims at gaining information about
model parameters from observed quantities. In the case of
atmospheric gas retrievals, the observed quantities are the ra-
diances measured at different wavelengths for a light beam
that has traveled through the Earth’s atmosphere. Since
the absorption of light by atmospheric gas constituents is
wavelength-dependent, the discrete measured radiance spec-
trum contains implicit information of gas concentrations: the
higher the concentration of moleculem, the lower the radi-
ance at wavelengths where gasm absorbs (see Sect.2.1 for
details).

In this subsection, the spectral sensitivity of the molecu-
lar scaling factorsαm is studied by sequential perturbations
on individual pixels of SCIAMACHY channel 8. On the one
hand, a response of a molecular scaling factorαm to a per-
turbation on a given spectral pixel means that this pixel con-
tains information about the atmospheric content of molecule
m and that the inclusion of this pixel would be beneficial for
the inversion. On the other hand, some radiative and spec-
troscopic aspects such as the interference of spectral lines of
the target gas with strong lines of other gases, or insufficient
knowledge of molecular absorption cross sections due to im-
precise spectral line parameters can lead to errors during the
inversion process. Consequently, those critical pixels where
perturbations have large impacts on several molecules at the
same time should be treated with care.

A synthetic SCIAMACHY spectrum covering the whole
channel (1004 pixels ignoring the blinded 20 pixels at the
left and right ends) with a representative viewing geome-
try was produced by means of GARLIC (the BIRRA for-
ward model). An inversion of this unperturbed noise-free
“reference” spectrum delivers scaling factors of unity for all
gases. Gradually, the intensity spectrum was perturbed pixel
by pixel by constant amounts:

I
pert
ij = (1+aj )×I ref

i with aj = 0.1×j

for i = 1,...,1004 andj = −10,...,10 (21)

where the indexi denotes the spectral pixel number andj

the perturbation. For instance,Ii,−10 represents a perturba-
tion on the ith pixel of −100 % (i.e.Ii,−10 = 0), Ii,0 is the
unperturbed reference radianceI ref

i , andIi,10 a perturbation
of 100 % (i.e. 2I ref

i ).
Figure5 shows the results of this study around the CO fit-

ting window (4282–4303cm−1) in channel 8. The absorp-
tion cross sections of CO, CH4, and H2O are depicted in
Fig. 5 (top left panel) for reference. Note that eight CO lines
are shown, whereas only the central six are actually included
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Fig. 4. Comparison of a retrieval using a constant mask flagging only pixels that are marked as “bad” for at least half of the cases of the year
2004 (left) and a retrieval using a dynamic mask appropriate for each measurement (right). In February (top) the results look similar while
the result for October (bottom) is noisier for the constant mask that does not flag all bad pixels. CO VCD in units molec cm−2.

in the aforementioned fitting window. The further panels
show the impact of the perturbations on the fitted molecular
scaling factorsαCO, αCH4 andαH2O. The patterns of the ef-
fect of pixel perturbations on the different gas retrievals look
completely different, reflecting the structure of the cross sec-
tions. Perturbations of pixels close to the center of strong
absorption lines have mostly a large impact on the retrieved
columns, whereas a perturbation on pixels far away in the
wings does not alter significantly the retrievals. In absolute
values, the effect is very different for CO (up to a factor 2)
than for the other two gases (few percent). Both, water vapor
and methane absorb substantially over the entire channel, so
the perturbation of a single pixel is not critical. On the other
hand, carbon monoxide has much weaker absorption lines
and only in part of the channel, and consequently is more
sensitive to the quality of the spectra. Indeed, some pertur-
bations even resulted in negative CO scaling factors. Recall
that for this sensitivity study, the measurement vectory com-
prises 1004 elements. In case of the CO retrieval window,
the size of the measurement vector is considerably reduced
and the effect of radiance perturbations on theα’s increases
significantly (orders of magnitude for CO), since individual
pixels gain in relative weight. Note that for operational re-
trievals the fitting window cannot cover the whole channel
due to the timeliness requirements on data availability.

According to Fig.5, the effect on H2O retrievals seems
to be small. However, water vapor is highly variable spa-
tially and temporally, and the water profile assumed in the
model has a strong impact on the retrieval result, cf. Fig.6.
Furthermore, molecular spectroscopy of water is quite del-
icate and, according toRothman et al.(2009), “the recom-
mended line list for water remains in a state of constant evo-
lution.” In laboratory spectroscopy, an accurate determina-
tion of the amount of water in the absorption cell is difficult,
thus any error in the number densityn leads to a system-
atic error (over- or underestimate) of line strengths. For all
92 water lines in the 4280–4305cm−1 wavenumber interval,
HITRAN 2008 gives an uncertainty range between 5 and 10 %
for line strengths. Note that optical depthτ and transmission
T depend on the product of line strength and number density,
Sn (see Eqs.3 and4); moreover, in the lower atmosphere the
line center value of the molecular absorption is proportional
to Sn/γL whereγL is the Lorentz width. In conclusion, the
uncertainty of both, water density profile and water line pa-
rameters suggests the omission of further pixels sensitive to
water, i.e. those near strong H2O absorption lines possibly
not modeled sufficiently well.
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Fig. 5. Sensitivity of BIRRA CO VCDs with respect to perturbations of individual pixels. Top left: absorption cross sections of CO (red),
CH4 (green dashed), and H2O (blue long dashed) in channel 8 CO fitting window. Other plots: molecular scaling factors as a function of
individual pixel perturbations. Note the different range of the color bars.

  

Fig. 6. Comparison of two VCD [molec/cm2] retrievals for February 2004. Left: all good pixels
in the retrieval window are used. Right: pixels over lines with strong water vapour interference
are excluded. In the latter case several features like enhanced CO values in South-East Asia
and the North-South gradient are more clearly visible.

and number density, Sn (see Eqs. (3) and (4)); moreover, in the lower atmosphere the
line center value of the molecular absorption is proportional to Sn/γL where γL is the
Lorentz width. In conclusion, the uncertainty of both water density profile and water
line parameters suggests the omission of further pixels sensitive to water, i.e. those
near strong H2O absorption lines possibly not modeled sufficiently well.

3.4 Ice layer and instrument transmission

The NIR detectors of SCIAMACHY are the coldest point of the instrument. Since not
all water was removed from ENVISAT during the commissioning phase, an ice layer
is deposited on the detector surface (this layer is regularly removed by heating the
detectors). The ice reduces the transmission in a wavelength dependent way; further-
more it scatters the incoming light and generally leads to a broadening of the spectrum
(Lichtenberg et al., 2006; Gloudemans et al., 2005). To account for this effect in carbon
monoxide retrievals from channel 8 spectra, BIRRA treats the slit function width γG as
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Fig. 6. Comparison of two VCD [molec cm−2] retrievals for February 2004. Left: all good pixels in the retrieval window are used. Right: pix-
els over lines with strong water vapour interference are excluded. In the latter case, several features like enhanced CO values in South-East
Asia and the North-South gradient are more clearly visible.

3.4 Ice layer and instrument transmission

The NIR detectors of SCIAMACHY are the coldest point
of the instrument. Since not all water was removed from
ENVISAT during the commissioning phase, an ice layer is
deposited on the detector surface (this layer is regularly re-
moved by heating the detectors). The ice reduces the trans-

mission in a wavelength dependent way; furthermore it scat-
ters the incoming light and generally leads to a broadening
of the spectrum (Lichtenberg et al., 2006; Gloudemans et al.,
2005). To account for this effect in carbon monoxide re-
trievals from channel 8 spectra, BIRRA treats the slit func-
tion HWHM γ as an additional auxiliary fit parameter.
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Fig. 7. Sun mean reference (SMR) spectrum in channel 8 with ice layer (blue) and with clean
detector (red), normalised to the signal in an arbitrary pixel to illustrate the change in the spec-
tral shape.
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Fig. 7. Sun mean reference (SMR) spectrum in channel 8 with ice
layer (blue) and with clean detector (red), normalised to the signal
in an arbitrary pixel to illustrate the change in the spectral shape.

Figure7 shows a typical sun mean reference (SMR) spec-
trum shortly after decontamination, i.e. with only a thin or
no ice layer and a SMR spectrum several weeks later. The
change of the spectral shape due to the ice extinction is
clearly visible. See also Subsect.4.1 for a discussion about
the impact of the ice layer on mean instrument transmittance
or throughput.

3.5 Solar spectrum

The solar irradiance spectrum used in the radiative transfer
model, Eq. (10), also has some impact on the retrieval prod-
uct. BIRRA can use the SMR spectrum measured daily (as
an average of a series of measurements) by SCIAMACHY
for calibration and scientific purposes. Alternatively, a va-
riety of solar spectra models and measurements is available
(e.g. Abrams et al., 1996; Hase et al., 2006), and BIRRA
can read solar irradiance spectra ofKurucz(1995) (extracted
from MODTRAN4,Berk et al., 1999).

Figure8 illustrates relative differences of some selected fit
parameters when using, on the one hand, the Kurucz model
solar spectrum and the SCIAMACHY SMR spectrum, on the
other hand. The first row shows relative differences for the
CO scaling factorαCO, the second row for the CH4 scaling
factorαCH4 and the third row for xCO column density. The
left column shows the results of the month February 2004
whereas the second one presents those of July 2004. Red-
dish color (indicating higher values of the fit values for the
Kurucz spectrum compared to the SMR spectrum) dominates
in all plots of Fig.8 with no exception, i.e. the use of the Ku-
rucz spectrum biasesαCO, αCH4 and xCO to higher values.
Note, however, that the color bar ofαCH4 ranges from−0.1
to 0.1 (±10 %), whereas that ofαCO and xCO ranges from

−0.5 to 0.5 (±50 %). Thus, the impact of the solar spectrum
is much higher on CO than on CH4. The difference distri-
butions ofαCH4 are quite homogeneous, with the exception
of the Tibetan Plateau and the Andes Cordillera, where the
differences increase. The distributions ofαCO and xCO are
very similar indicating that the effect of the solar spectrum on
xCO is caused basically by the effect of the solar spectrum
onαCO rather than onαCH4. The CO difference distributions
show latitude (solar zenith angle) as well as seasonal depen-
dency (the pattern in February and July differ considerably).

Since SMR and Earth’s spectra are measured with the
same detector, most artificial features are included in both
spectra. This is an advantage of SCIAMACHY’s SMR spec-
trum with respect to Kurucz or any other solar spectrum,
since in the latter cases, artifacts in Earth’s spectra would
be attributed by the model to atmospheric effects. As a
consequence SCIAMACHY’s SMR spectra are used in the
retrievals.

3.6 Spectral calibration

In order to ensure high spectral stability over the lifetime of
the mission, SCIAMACHY has been equipped with a spec-
tral calibration lamp, the “Spectral Line Source” (SLS), for
determining the pixel-to-wavelength relationship. Whereas
the SLS has proved to be suitable for a precise in-flight spec-
tral calibration of channels 1 to 6, it is not sufficient for the
calibration of channel (7 and) 8 due to the lack of enough
SLS spectral lines within these channels. Because of this, the
pixel-to-wavelength relationship of channel 8 in the level-1b
product is set to the on-ground calibration. Although on-
ground calibration was performed under representative flight
conditions (temperature and vacuum), a similar spectral tun-
ing as in the other channels should be applied to channel 8
for a precise spectral calibration.

Information from molecular spectroscopy (as provided by
the HITRAN or GEISA database) can be exploited for spec-
tral calibration, i.e. an in-flight spectral calibration for the
SCIAMACHY channel 8 can be performed utilizing absorp-
tion signatures of atmospheric methane, water vapor and car-
bon monoxide. The spectral correction found has roughly a
second-degree polynomial dependency and its value can be
as large as 0.5 nm (more than 4 pixels) at the right edge of
channel 8, see Fig.9. Within the CO fitting window, the spec-
tral correction is well approximated by a first-degree polyno-
mial, i.e. shift and squeeze.

As shown in Fig.10, the neglect of an appropriate wave-
length calibration leads to negatively biased VCD distribu-
tions (note the different color bars) and unrealistic regional
patterns (e.g. Himalayas).
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Fig. 8. Influence of the solar spectrum on monthly average CO retrievals. The plots show relative differences ofαCO (top),αCH4 (mid), and
xCO (bottom) of retrievals with the Kurucz solar spectrum vs. the SCIAMACHY SMR spectrum for two months in 2004: February (left)
and July (right).

Fig. 9. Spectral correction to the on-ground pixel-to-wavelength relationship.

negatively biased VCD distributions (note the different color bars) and unrealistic re-
gional patterns (e.g. Himalayas).

3.7 Spectroscopic input data: line parameters and continuum

Spectroscopic line parameter databases such as HITRAN (Rothman et al., 2009) or
GEISA (Jacquinet-Husson et al., 2008) are an essential input for the computation of
molecular cross sections (Eq. 4). Recently, Frankenberg et al. (2008a,b) have dis-
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Fig. 9. Spectral correction to the on-ground pixel-to-wavelength
relationship.

3.7 Spectroscopic input data: line parameters and
continuum

Spectroscopic line parameter databases such asHITRAN

(Rothman et al., 2009) or GEISA (Jacquinet-Husson et al.,
2008) are an essential input for the computation of molecular
cross sections (Eq.4). Recently,Frankenberg et al.(2008a,b)
have discussed the importance of accurate and complete line
parameters for methane retrievals in SCIAMACHY channel
6. In the short–wave end of SCIAMACHY channel 8, wa-
ter vapor spectroscopic data are significantly different in the
recent version of these databases.Feng and Zhao(2009) dis-
cusses impacts of changes of the HITRAN database on near
infrared transmittances, and in SCIAMACHY’s channel 8
found the most noticeable changes for wavenumbers larger
than 4350 cm−1. In the middle of this channel used for CO
retrievals, there are only minor changes, and the retrievals do
not show a strong impact.

The default setting for the retrieval of CO column densi-
ties from SCIAMACHY channel 8 considers three absorbers,
i.e. CO, CH4, and H2O. Although there are no CO2 lines in
the center of channel 8, there is a contribution of a small, yet
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Fig. 10.Comparison of xCO retrievals without (left) and with wavenumber calibration. Note the different color bar with xCO values ranging
down to−3·1018molec cm−2 for the unshifted wavenumber retrievals (left). (DBPM provided by M. Buchwitz, personal communication,
October 2006).

non-vanishing CO2 continuum. However, adding CO2 as an
additional absorber has a negligible effect on the retrieved
xCO product.

3.8 Atmospheric input data

VCDs are retrieved in BIRRA by fitting the scaling factors
αm of concentration profilesnm(z) (see Eqs.1, 8). Accord-
ingly, the quality of the retrieval clearly depends on the ad-
equacy of the profiles used. Furthermore, pressure and tem-
perature data are required to evaluate the molecular cross
sectionsk(ν,p,T ) in Eq. (4). Test retrievals for orbit 8663
using the six AFGL model atmospheres (Anderson et al.,
1986) reveal that the fitted CO column densities are espe-
cially sensitive to temperature.

Clearly, the use of just a few atmospheric profiles (as pro-
vided by the AFGL data) does not really cover the full sea-
sonal and spatial variability. There are different strategies to
better represent the atmospheric state in the retrievals:Buch-
witz et al. (2004) use a single profile of temperature, pres-
sure, and trace gas mixing ratios from the US Standard at-
mosphere (with methane scaled to 1750 ppbv), and fits an
additional temperature shift parameter to account for the tem-
perature dependence of the molecular absorption cross sec-
tions. In Gloudemans et al.(2008), temperature and H2O
profiles are taken from the European Centre for Medium-
Range Weather Forecasts (ECMWF).

Because molecular cross sections are computationally ex-
pensive and operational processing imposes timeliness con-
straints, BIRRA uses a compromise and takes a single pres-
sure and temperature profile for each state selected from the
CIRA-86 data base according to time and mean latitude. The
Committee on Space Research (COSPAR) International Ref-
erence Atmosphere (CIRA) provides monthly mean profiles
of pressure vs. temperature for the altitude range 0–120 km
with almost global coverage (80◦ N–80◦ S) (Fleming et al.,

1990, http://badc.nerc.ac.uk/data/cira/). Trace gas profiles
are taken from the US Standard Atmosphere.

3.9 Least squares settings

Solvers for nonlinear least squares problems usually offer
several input parameters to control the iterations. In addi-
tion to termination code due to excessively large number of
iterations, the PORT library delivers convergence codes for
standardx–tolerance (relative change of the norm of thex

state vector) andy–tolerance (relative change of the norm of
the residual vectory −F(x)) (Gay, 1990). In our applica-
tions, “relative function convergence” was reached for most
of the cases.

Ideally, the different least squares solvers provided by
PORT should give identical retrieval results. Figure11a
shows that the retrieved carbon monoxide VCDs (averaged
within a 1 dg latitude belt over all longitudes) of orbit 8663
(27 October 2003) are very similar for all methods. Differ-
ences can be expected for “difficult” observations, i.e. when
the fit did not converge properly or some of the fitted pa-
rameters are exceptionally small or large. Especially in case
where the iterative optimization algorithm suggests a step
leading to one or several negative fit variables, differences
show up in the constrained and unconstrained retrievals. In
fact, the spikes around 20◦ N and 32◦ S do not show up in
both constrained least squares results. Various strategies have
been discussed, how an algorithm should proceed when some
of the physical variables reach “forbidden” (usually negative)
values; common approaches are to stop the iterative solution
process, or to ignore and continue (and accounted for in the
post-processing of the data). In case of unconstrained least
squares fits, BIRRA stops the iteration when it encounters
negative slit function widths or in case of too many negative
scaling factors.

Separable least squares is slightly faster than the non-
linear least squares. The main advantage is the numerical
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robustness and reliability of the separable least squares: us-
ing synthetic “observed spectra” with constant reflectivity
(r0 > 0, r1 = r2 = 0) and fitting with a second order reflec-
tivity polynomial, the separable least squares delivers the
“true” state vector (molecular scaling factors and auxiliary
parameters) correctly in all cases, whereas the nonlinear least
squares fails for about half of the spectra.

4 Carbon monoxide and methane vertical column
densities – a survey

Despite the challenges of nadir NIR retrievals, SCIA-
MACHY observations can be used to estimate time averaged
distributions of carbon gas vertical column densities. In the
following subsections, a survey of BIRRA carbon monoxide
retrieval results is given, followed by a brief presentation of
first BIRRA methane retrievals.

4.1 Monitoring of fit parameters

In the previous subsections, the impact of the level 1b data
quality on carbon monoxide retrievals has been discussed.
Fig. 12 and13 illustrate time series of the fit parameters for
CO retrievals in channel 8. The panels of Fig.12show, from
top to bottom, the mean channel transmission (throughput),
the scaling factors of CO, CH4 and H2O, the HWHM of the
instrument slit function, and the zeroth, first, and second de-
gree coefficients of the albedo polynomial. Although the
throughput is not a fit parameter, it has been included here
for comparison. Because of the difficulty in modeling the
ice layer on top of channel 8, it has an impact on the fitted
parameters.

Since the ice layer reduces the mean intensity, the through-
put (the mean instrument transmission) is a good indicator of
its thickness. Table1 shows the cross-correlationρ of the
different fit parameters with respect to the throughput. Note
that these coefficients are calculated for the 14-days averaged
time series, not for individual observations. They are nor-
malized between−1 (full anti-correlation) and 1 (full cor-
relation). A high correlation coefficient (in absolute value)
means that the two curves follow a similar course and it will
be taken here as evidence for a possible causal relationship.
Table1 illustrates that (the scaling factor of) CH4 is the most
affected parameter by the ice layer growth. The second de-
gree polynomial coefficientr2 has the second highest cor-
relation, suggesting that the normalization of the observed
spectra by the SMR spectrum does not completely elimi-
nate the change in spectral shape due to scattering in the ice
layer. These conclusions are backed by Fig.12. Accord-
ing to Tab.1, the first degree polynomial parameter (r1), the
HWHM and CO are less affected by the ice layer. A detailed
examination of the curves in Fig.12, however, shows that
r1 does have a strong anti-correlation with the throughput,
but two outliers lower the value ofρ. Remarkably, ther0

coefficient shows little correlation with the throughput. Us-
ing an external (constant) solar spectrum, a reduction of the
instrument transmission would likely be interpreted as a re-
duction of albedo by the model. However, by using the mea-
sured SMR, the dependency of the albedo on the throughput
is effectively reduced. H2O shows almost no impact of the
ice layer (ρ ∼ 0) and the seasonal variation is clearly seen.
Notice that the HWHM continuously increases with time,
which may be an indication of general degradation of the
instrument.

Since the ice layer affects CO and CH4 differently, the use
of xCO as estimator of the “true” CO VCD does not remove
the impact of the ice layer and the results will be affected
accordingly.

The time series in Fig.13show a general trend of increas-
ing fit errors indicating that the results become continuously
worse. Since the model remains the same, this can only be
interpreted as a decrease of the measurement quality. The
curves also show some time intervals with exceptionally high
errors, e.g. June 2006 and 2007, most likely due to the incor-
poration of some bad pixels in the fit.

4.2 Carbon monoxide

Carbon monoxide is an important trace gas affecting air qual-
ity and climate. Although CO is not considered as a green-
house gas, it is relevant as a precursor for carbon dioxide. CO
is also one of the major precursors of tropospheric ozone.
It is highly variable in space and time. In the troposphere,
about half of the CO originates from anthropogenic sources
(e.g. fossil fuel combustion), and further significant contri-
butions are due to biomass burning. With its photochemical
lifetime of one to three months, CO is a good tracer of trans-
port in the troposphere as well as in the strato– and meso-
sphere.

With passive atmospheric remote sensing, carbon mono-
xide can be observed in several spectral regions from the
microwave to the near infrared. CO is a target species of
several spaceborne instruments, nb. AIRS (McMillan et al.,
2005, 2008), MOPITT (Deeter et al., 2003, 2009), and TES
(Rinsland et al., 2006) from NASA’s nadir sounders aboard
the EOS satellite series; MIPAS and SCIAMACHY on ESA’s
Envisat, and more recently it has also been observed by IASI
on MetOp (Fortems-Cheiney et al., 2009; George et al., 2009;
Illingworth et al., 2011).

4.2.1 Retrieval errors

The error of the proxy normalized VCD, Eq. (1), is estimated
from the errors of the column scaling factorsαCO andαCH4,
that, in turn, are obtained from the diagonal elements of the
least squares covariance matrix defined by

4 = σ 2
(
J TJ

)−1
with σ 2

= ‖y −F (x)‖2/(m−n)
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Fig. 11. Sensitivity of CO retrievals with respect to least squares algorithm for orbit 8663 (27 October 2003, covering Russia, the Arabic
peninsula, and Eastern Africa):(a) comparison of CH4-normalized CO vertical columns (xCO). “n2g” and “nsg” denote nonlinear and
separable least squares, respectively; “b” indicates the bound constrained versions.(b) Scatter plot of xCO retrieved using nonlinear least
squares (“n2g”, horizontal axis) vs. separable least squares (“nsg”, vertical axis).

Table 1. Cross correlation coefficientsρ between fit parameters and throughput.

parameter CO CH4 H2O HWHM refl0 refl1 refl2

correlation with throughput 0.374 0.701 0.044−0.399 0.257 −0.401 0.526

whereJ denotes the Jacobian (Gay, 1990). Note that the
scaled residual normσ 2 contains both, errors due to instru-
mental noise and deficiencies of the forward model.

Since the spectral information on carbon monoxide in the
observed spectrum is small, the retrievals are specially sensi-
tive to instrumental noise. The signal-to-noise ratio depends
on the surface (or cloud) albedo and solar irradiance (essen-
tially SZA), hence dark areas and high latitudes are expected
to have higher retrieval errors. Since in most of the cases the
CO information is comparable or even lies under the noise
level, the precision of the individual estimates is low and it is
customary to deliver the CO retrievals as spatial and temporal
averages on a regular longitude/latitude grid.

Deficiencies of the forward model introduce systematic er-
rors to the CO estimates. One of the major assumptions in
BIRRA is the neglect of scattering within the atmosphere.
Homogeneous aerosol and cloud (e.g. low marine stratocu-
muli) layers are satisfactorily accounted for by proxy mod-
eling. However, under highly convective conditions, cloud
heterogeneity can cause large retrieval errors.

Figure14shows the spatial distribution of seasonally grid-
ded xCO retrieval errors, averaged over the period 2003 to
2005. Note that the gridded errors represent the mean value
of the individual retrieval errors and not the error associ-
ated with the spatial-temporal averaged xCO estimate. In
this manner, it is possible to visualize the dependence of the
retrieval errors on time (seasons) and location. Moreover,
the contributions to retrieval errors can be identified taking
into account extra information, like surface albedo and cli-
matology. Regions where surface albedo is high (e.g. Sahara,
Arabian Peninsula, Australia) exhibit low xCO errors (typi-
cally lower than 5·1017 molec cm−2). Analogously, regions
with permanent homogeneous marine stratocumuli with high
albedo (e.g. South-East Atlantic, Pacific west of Peru and
California) also have associated low xCO errors. These find-
ings are in accordance with the number of accepted observa-
tions depicted in Fig.15, i.e. a large number of observations
survive the quality screening under ideal retrieval conditions.
On the other hand, systematic errors due to the presence of
highly inhomogeneous convective clouds dominate the xCO
errors. In particular, the highest retrieval errors are found
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Fig. 12. Time series of 14-day averaged fit parameters included in CO retrievals in channel 8.
From top down: the mean channel transmission (throughput), the scaling factors of CO, CH4

and H2O, the half width at half maximum of the instrument slit function, and the zeroth, first, and
second degree coefficients of the albedo polynomial. See the dependency of some parameters
on throughput.
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Fig. 12. Time series of 14-day averaged fit parameters included in CO retrievals from channel 8. From top down: the mean channel
transmission (throughput), the scaling factors of CO, CH4 and H2O, the half width at half maximum of the instrument slit function, and the
zeroth, first, and second degree coefficients of the albedo polynomial. See the dependency of some parameters on throughput.

over the Indian Ocean and West Equatorial Pacific during the
Asian Monsoon period (from June to September, see bottom
left summer panel in Fig.14). Accordingly, only few obser-
vations pass the quality filter, see Fig.15.

The histograms in Fig.16 illustrate the occurrence fre-
quency of xCO errors, i.e. the unnormalized error probabil-
ity density function (PDF). The errors are slightly higher in
summer (right panel) than in winter (left panel), which is re-
flected by the median values and in accordance with Fig.14.

4.2.2 Spatial distributions

CO vertical columns have been processed for several years
from 2003 to 2009 using the BIRRA algorithm and a dy-
namic bad & dead pixel mask (see Subsect.3.2). Figure17
shows the annual mean of CO vertical columns for the years
2003, 2004, and 2005. In addition to the selection criteria
mentioned in Sect.2.3, the relative errors of retrievals (er-
rors ofαCO less than 50 %, error ofαCH4 less than 1 %) are
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Fig. 13. Time series of 14-day averaged errors of fit parameters (see Fig. 12). From top down:
error of the scaling factors of CO, CH4 and H2O, the half width at half maximum of the instrument
slit function, and the zeroth, first, and second degree coefficients of the albedo polynomial.
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Fig. 13. Time series of 14-day averaged errors of fit parameters (see Fig.12). From top down: error of the scaling factors of CO, CH4
and H2O, the half width at half maximum of the instrument slit function, and the zeroth, first, and second degree coefficients of the albedo
polynomial.

taken into account. All annual averages show high densi-
ties at South East Asia due to anthropogenic emissions and
in Central Africa due to high density of biomass burnings
during the dry seasons. It can be also noticed that the CO
column densities were specially high during 2003. This CO
increase in 2003 is related to the increase in biomass burnings
during this year, and has also been reported by other studies
(e.g.Buchwitz et al., 2007).

Figure18 provides a closer look to the African continent.
In this case, the results are presented as a three year aver-
age of the four seasons. Inter-tropical regions are the ar-
eas showing higher seasonality. The weather in the trop-
ical region of the Earth is highly influenced by the trop-
ical rain belt, which oscillates between the Northern and

Southern Hemisphere. In the Northern Hemisphere, the wet
season comprises roughly the months from April to Septem-
ber, whereas the dry season lasts from October to March.
Due to the rain bell oscillation, in the Southern Hemisphere
the wet and dry seasons are reverted. During the dry sea-
son, biomass burning events are more likely to occur. The
seasonality of the fires can be clearly seen in the carbon
monoxide distributions: the inter-tropical regions present the
highest CO VCDs at the end of the dry seasons (January-
February-March in the northern and July-August-September
in the Southern Hemisphere).

Figure19 illustrates the three-year average of xCO over
Southeastern Asia. Regions with a high population den-
sity such as the Sichuan Basin (Red Basin) in South-West
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Fig. 14. XCO mean errors [molec/cm2] averaged over the four seasons 2003 – 2005. Top-
left: December-January-February, top-right: March-April-May, bottom-left: June-July-August,
bottom-right: September-October-November.
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Fig. 14. xCO mean errors [molec cm−2] averaged over the four seasons 2003–2005. Top-left: December-January-February, top-right:
March-April-May, bottom-left: June-July-August, bottom-right: September-October-November.

Fig. 15. Number of observations accepted for carbon monoxide vertical columnn densities
retrievals, seasonal three-year averages. (Arrangement as in Fig. 14)

account. All annual averages show high densities at South East Asia due to anthro-
pogenic emissions and in Central Africa due to high density of biomass burnings during
the dry seasons. It can be also noticed that the CO column densities where specially
high during 2003. This CO increase in 2003 is related to the increase in biomass burn-
ings during this year, and has also been reported by other studies (e.g. Buchwitz et al.
(2007)).

Fig. 18 provides a closer look to the African continent. In this case, the results
are presented as a three year average of the four seasons. Inter-tropical regions are
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Fig. 15. Number of observations accepted for carbon monoxide VCD retrievals, seasonal three-year averages (arrangement as in Fig.14).
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Fig. 16. Histograms of carbon monoxide vertical column density errors, three-year (2003 –
2005) seasonal averages. Left: winter; right: summer.

the areas showing higher seasonality. The weather in the tropical region of the Earth
is highly influenced by the tropical rain belt, which oscillates between northern and
southern hemisphere. In the northern hemisphere, the wet season comprises roughly
the months from April to September, whereas the dry season goes from October to
March. Due to the rain bell oscillation, in the southern hemisphere the wet and dry
seasons are reverted. During the dry season, biomass burning events are more likely
to occur. The seasonality of the fires can be clearly seen in the carbon monoxide
distributions: the inter-tropical regions present the highest CO VCDs at the end of the
dry seasons (January–February–March in the northern and July–August–September
in the southern hemisphere).

Fig. 19 illustrates the three-year average of xCO over Southeastern Asia. Regions
with a high population density such as the Sichuan Basin (Red Basin) in South-West
China or the Chinese eastern coast area are clearly visible with a high carbon mono-
xide abundance, as was already observed by, e.g. SCIAMACHY (Buchwitz et al., 2006;
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Fig. 16. Histograms of carbon monoxide vertical column density errors, three-year (2003–2005) seasonal averages. Left: win-
ter; right: summer.

Fig. 17. Annual mean carbon monoxide
vertical column densities [molec/cm2] for
2003 to 2005. (1◦×1◦ grid with 3◦×3◦ me-
dian filter smoothing)
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Fig. 17. Annual mean carbon monoxide
vertical column densities [molec/cm2] for
2003 to 2005. (1◦×1◦ grid with 3◦×3◦ me-
dian filter smoothing)
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Fig. 17. Annual mean carbon monoxide vertical column densities [molec cm−2] for 2003 to 2005. (1◦ ×1◦ grid with 3◦
×3◦ median filter

smoothing)

China or the Chinese eastern coast area are clearly visible
with a high carbon monoxide abundance, as was al-
ready observed by, e.g. SCIAMACHY (Buchwitz et al.,
2006; Gloudemans et al., 2009) and the MOPITT mission
(Clerbaux et al., 2008).

4.2.3 Intercomparison with ground-based observations

Validation of satellite measurements is frequently performed
by intercomparisons with ground-based observations. For
example,Sussmann and Buchwitz(2005) have compared
column CO measured by SCIAMACHY over Central Europe
with Fourier Transform InfraRed (FTIR) profile retrievals
at the NDACC Zugspitze station. In an extensive study,
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Fig. 18. Three year averages (2003 – 2005) of quarterly mean CO VCDs [molec/cm2] over
Africa. From top-left to bottom-right: January-February-March, April-May-June, July-August-
September, and October-November-December. (0.2◦× 0.2◦ grid with 1◦× 1◦ median filter
smoothing) 43

Fig. 18. Three year averages (2003–2005) of quarterly mean CO VCDs [molec cm−2] over Africa. From top-left to bottom-right: January-
February-March, April-May-June, July-August-September, and October-November-December. (0.2◦

×0.2◦ grid with 1◦
×1◦ median filter

smoothing)

Fig. 19. Three-year average of CO vertical column densities [molec/cm2] over South-East Asia.
(0.2◦×0.2◦ grid with 1◦×1◦ median filter smoothing)

Gloudemans et al., 2009) and the MOPITT mission (Clerbaux et al., 2008).
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Fig. 19. Three-year average of CO vertical column densities
[molec cm−2] over South-East Asia. (0.2◦

×0.2◦ grid with 1◦
×1◦

median filter smoothing).

Dils et al. (2006) described comparisons between SCIA-
MACHY CO, CH4, CO2, and N2O total columns retrieved
by three different algorithms (WFM-DOAS,Buchwitz et al.,
2004; IMAP-DOAS, Frankenberg et al., 2005a; and IMLM,
de Laat et al., 2006) and ground-based FTIR data mea-
sured at eleven NDACC (then NDSC) stations. More re-
cently, de Laat et al.(2010) reported good agreement be-
tween SCIAMACHY IMLM retrievals of carbon monoxide
with twenty ground-based stations (mostly FTIR).

These intercomparisons are delicate since the instruments
have different altitude sensitivity and horizontal resolution,
the temporal match of the observations is not ideal and the lo-
cation of the ground stations and the surrounding terrain may
also be an impediment. Nevertheless, these studies allow an
assessment of, e.g. relative biases or inter-annual variability
and are an important element of the validation efforts.

Satellites observe large areas in contrast to the point-like
view of uplooking ground-based spectrometers, so they see
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in general a larger portion of the atmosphere. If compar-
isons were performed over a largely uniform surface terrain
without emission sources, the problem of the horizontal res-
olution would be reduced. Accordingly, oceans are natural
candidates but, in the absence of clouds, the signal received
is rather weak because of the low albedo of water (see also
Gloudemans et al., 2009). Another possibility is to use desert
areas without significant emissions. Although deserts can
exhibit altitude differences, they typically have high surface
albedos providing high signal-to-noise ratios.

Here, SCIAMACHY CO BIRRA retrievals are compared
to the ground-based measurements provided by the World
Data Center for Greenhouse Gases (WDCGG) Assekrem
Station (Novelli et al., 2003). It is important to note at this
point that the SCIAMACHY CO retrievals represent (dry-
air) columnmixing ratios (i.e. considering the a-priori col-
umn mixing ratioq

prior
CO instead of the a-priori vertical col-

umn densityNprior
CO in Eq. (19)), whereas the Assekrem sta-

tion measuredvolumemixing ratios at surface level. Such a
comparison is only justified for gases with constant mixing
ratio profiles (e.g. O2, CO2) and this is not the case of CO.
This study in not intended to be a validation, since we are
comparing two different quantities. However, both retrievals
should show similar seasonality features and temporal evolu-
tion (and indeed they do) and this is our motivation here.

Figure20illustrates time series of 14-day averaged dry-air
CO column mixing ratios as observed by SCIAMACHY and
CO volume mixing ratios as measured at the Assekrem WD-
CGG ground station. In the Northern Hemisphere, higher
column densities can be expected in winter, and this can be
clearly seen in Fig.20. Furthermore, the seasonal variation of
carbon monoxide retrieved with BIRRA is also evident in the
ground-based measurements. A good agreement of SCIA-
MACHY’s and the Assekrem ground station CO is found for
the years of 2003, 2004 and 2005. Afterward, due to in-
strument degradation, the SCIAMACHY CO shows a higher
dispersion and the seasonal variation is worse represented
(esp. in 2006).

4.3 Methane

Methane is the third (second anthropogenic) most important
greenhouse gas representing one fifth of the whole radiative
forcing of long-life well-mixed gases. Its concentration has
increased by more than a factor of two since pre-industrial
times with a growth rate of about 1 % per annum (until re-
cently). Atmospheric methane results from anthropogenic
(agriculture, fossil fuel combustion, . . . ) as well as natu-
ral (e.g. wetlands, geological processes) sources. With a life
time of about ten years, its spatial and temporal variation is
considerably smaller than for CO. As a consequence, the
required retrieval precision is much higher.

Atmospheric sounding of methane is performed in the
near and thermal infrared, and it is observed by all sensors
mentioned above (e.g.Buchwitz et al., 2005; Frankenberg

Fig. 20. SCIAMACHY CO over Central Sahara and intercomparison with Assekrem WDCGG
station data (Ahaggar Mountains, 2710 m above sea level). Note that the SCIAMACHY CO
retrievals are dry-air column mixing ratios and the Assekrem WDCGG CO data are volume
mixing ratios at surface level. The time step is in both cases 14 days. The error bars represent
the standard deviation of the data.
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Fig. 20. Intercomparison of SCIAMACHY CO over Central Sa-
hara with Assekrem WDCGG station (Ahaggar Mountains, 2710 m
above sea level) data. Note that the SCIAMACHY CO retrievals are
dry-air column mixing ratios and the Assekrem WDCGG CO data
are volume mixing ratios at surface level. The time step is in both
cases 14 days. The error bars represent the standard deviation of the
data.

et al., 2006; Gloudemans et al., 2008). Furthermore, it is
one of the two target gases of the TANSO Fourier trans-
form spectrometer on-board the recently launched GOSAT
satellite (Kuze et al., 2009).

For methane retrievals from SCIAMACHY observa-
tions, two microwindows in channel 6 are utilized: the
5986–6139cm−1 interval with CH4 as the strongest ab-
sorber, and the 6273–6419cm−1 interval with CO2 as the
strongest absorber. For our retrievals, H2O has been consid-
ered as additional absorber in both windows, the Gaussian
slit function HWHM has been fixed to 2.45 and 2.64cm−1

in the two windows, and albedo was modeled as a second
degree polynomial.

Figure21gives an impression of three month averages for
2004. Regions of strong emissions, e.g. the northern South
America, the equatorial region of Africa, and in Asia are
clearly visible and reflect patterns found by, e.g.Frankenberg
et al. (2006); Schneising et al.(2009). Seasonal variability
such as increased emissions in South East Asia due to rice
cultivation is evident especially for July-August-September.
Furthermore, the plot shows the shift of methane emissions
over wetlands from southern to northern Africa and back.

5 Summary and outlook

A new code BIRRA – Beer InfraRed Retrieval Algorithm –
has been developed for level 1b→ 2 processing of SCIA-
MACHY near infrared nadir observations. Recently, the
BIRRA code has been successfully implemented into the op-
erational SCIAMACHY processor for the retrieval of carbon
monoxide vertical column densities. In view of its efficiency,
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Fig. 21. Quarterly means of methane [ppm] for 2004. In view of the reduced signal over
oceans, only CH4 over land is plotted. (2◦×2◦ grid)
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Fig. 21. Quarterly means of methane [ppm] for 2004. In view of the reduced signal over oceans, only CH4 over land is plotted. (2◦ ×2◦

grid)

flexibility and precision, BIRRA is also a suitable tool for
scientific investigations.

The fundamentals of the algorithm have been presented in
Sect.2. BIRRA analyzes radiance spectra instead of optical
thicknesses (as in DOAS-like algorithms), since instruments
measure the convolved radiance rather than the convolved
optical thickness.

The inversion is done by standard nonlinear least squares
or by separable least squares solvers, where linear and non-
linear parameters are treated separately. Further distinctive
features of the code are the optional use of bound constrained
least squares, exact analytical derivatives by automatic dif-
ferentiation, and “on demand” line-by-line computation of
molecular cross sections.

The results presented here are dry-air quantities: vertical
column densities in case of CO, with CH4 as proxy; and
dry-air column mixing ratios in case of CH4, with CO2 as
proxy. Whereas CO2 is a good proxy for the dry air mass of
the observations, CH4 has some deficiencies (much stronger
spectral signatures than CO, spatial variability, non-constant
profile, etc). However, due to the much greater variability of
CO, CH4 can be used as an appropriate proxy.

Several aspects of the level 1 data have been investigated.
It turned out that the effect of the dead/bad pixel mask
(DBPM) has a major impact on the retrievals. In addition to
masking spectral pixels with doubtful level 1 quality, one has

to consider further masking due to spectroscopic aspects; in
particular, interference of spectral lines of the target gas with
strong lines of other gases, or insufficient knowledge of the
molecular cross sections due to imprecise spectral line pa-
rameters. The use of radiance spectra normalized by sun
mean reference (SMR) spectra helps reducing the impact of
the ice layer over the detector on the retrievals. However, in
case of BIRRA, the ice layer affects CO and CH4 differently
and further treatment is needed. The pixel-to-wavelength re-
lationship of channel 8 in SCIAMACHY level-1b product is
set to the on-ground calibration and a spectral correction is
needed. We found that the required spectral correction has
roughly a second-degree polynomial shape that can be well
approximated by a first-degree polynomial in the CO fitting
window.

A survey of carbon monoxide and methane VCD retrievals
has been presented with emphasis on the years 2003 to 2005.
“Pre-” and “postprocessing” of the data turned out to be cru-
cial, i.e. careful preparation of the level 1b data used as in-
put to the least squares fitting and a meticulous examination
of the fitted column density scaling factors for the genera-
tion of scientific products is mandatory. In addition, the final
product is highly sensitive to the correct filtering of dubi-
ous retrievals and to the appropriate consideration of scene
cloudiness. Moreover, careful analysis of the time series
of all fit parameters with respect to the instrumental mean
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transmittance provides valuable hints for the postprocess-
ing. Preliminary work exploiting SCIAMACHY’s channel 6
shows BIRRA’s potential for methane (and carbon dioxide)
retrievals.

The further development of BIRRA is motivated by its
dual role as an operational processor and a scientific tool.
For the “scientific prototype”, we are currently working on
an optimization and fine-tuning of the multiwindow fitting
(required for methane and carbon dioxide retrievals). Fur-
thermore, a better climatology esp. of temperature and wa-
ter would be beneficial and likewise the treatment of clouds
and aerosols can be improved in the forward model and/or
in the post-processing. Finally, our verification and vali-
dation efforts will be intensified, e.g. by intercomparisons
with ground-based observations (NDACC-TCCON) as well
as thermal infrared sounders such as AIRS, GOSAT, IASI,
MOPITT, and TES (Schreier et al., 2010). Clearly, the
lessons learned from the scientific analysis will be a valu-
able guide for the ongoing upgrade of the operational proces-
sor. The further refinement will allow a better analysis of the
years 2006 and beyond that are even more challenging due
to the continuous channel degradation, nb. increasing num-
ber of bad or dead pixels.
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