
Atmos. Meas. Tech., 4, 2809–2822, 2011
www.atmos-meas-tech.net/4/2809/2011/
doi:10.5194/amt-4-2809-2011
© Author(s) 2011. CC Attribution 3.0 License.

Atmospheric
Measurement

Techniques

Towards space based verification of CO2 emissions from strong
localized sources: fossil fuel power plant emissions as seen
by a CarbonSat constellation

V. A. Velazco1,*, M. Buchwitz1, H. Bovensmann1, M. Reuter1, O. Schneising1, J. Heymann1, T. Krings1,
K. Gerilowski 1, and J. P. Burrows1

1Institute of Environmental Physics (IUP), University of Bremen, 28359 Bremen, Germany
* now at: Center for Atmospheric Chemistry, University of Wollongong, Wollongong, NSW 2500, Australia

Received: 13 July 2011 – Published in Atmos. Meas. Tech. Discuss.: 12 August 2011
Revised: 30 November 2011 – Accepted: 12 December 2011 – Published: 21 December 2011

Abstract. Carbon dioxide (CO2) is the most important man-
made greenhouse gas (GHG) that cause global warming.
With electricity generation through fossil-fuel power plants
now being the economic sector with the largest source of
CO2, power plant emissions monitoring has become more
important than ever in the fight against global warming. In
a previous study done byBovensmann et al.(2010), ran-
dom and systematic errors of power plant CO2 emissions
have been quantified using a single overpass from a pro-
posed CarbonSat instrument. In this study, we quantify er-
rors of power plant annual emission estimates from a hypo-
thetical CarbonSat and constellations of several CarbonSats
while taking into account that power plant CO2 emissions are
time-dependent. Our focus is on estimating systematic errors
arising from the sparse temporal sampling as well as random
errors that are primarily dependent on wind speeds. We used
hourly emissions data from the US Environmental Protection
Agency (EPA) combined with assimilated and re-analyzed
meteorological fields from the National Centers of Environ-
mental Prediction (NCEP). CarbonSat orbits were simulated
as a sun-synchronous low-earth orbiting satellite (LEO) with
an 828-km orbit height, local time ascending node (LTAN)
of 13:30 (01:30 p.m. LT) and achieves global coverage after
5 days. We show, that despite the variability of the power
plant emissions and the limited satellite overpasses, one Car-
bonSat has the potential to verify reported US annual CO2
emissions from large power plants (≥5 Mt CO2 yr−1) with a
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systematic error of less than∼4.9 % and a random error of
less than∼6.7 % for 50% of all the power plants. For 90 %
of all the power plants, the systematic error was less than
∼12.4 % and the random error was less than∼13 %. We ad-
ditionally investigated two different satellite configurations
using a combination of 5 CarbonSats. One achieves global
coverage everyday but only samples the targets at fixed lo-
cal times. The other configuration samples the targets five
times at two-hour intervals approximately every 6th day but
only achieves global coverage after 5 days. From the statis-
tical analyses, we found, as expected, that the random errors
improve by approximately a factor of two if 5 satellites are
used. On the other hand, more satellites do not result in a
large reduction of the systematic error. The systematic error
is somewhat smaller for the CarbonSat constellation config-
uration achieving global coverage everyday. Therefore, we
recommend the CarbonSat constellation configuration that
achieves daily global coverage.

1 Introduction

Carbon dioxide (CO2), a major greenhouse gas that con-
tributes to global warming had been at values between 270
and 290 ppm for the past thousand years before industrial-
ization (Forster et al., 2007, FAQ 2.1 Fig. 1). Since the in-
dustrial revolution (around 1750 AD), CO2 has increased by
36 % (Forster et al., 2007). Global warming is now recog-
nized as an impending threat to mankind and the ecosystem,
driven mainly by the increase of man-made greenhouse gases
(GHG). In order to curb the increase of greenhouse gases,
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Fig. 1. Hourly CO2 emissions from four selected power plants in the US as reported to the EPA. For consistency, the hourly CO2 emissions
(in tons CO2 h−1) were converted to Mt CO2 yr−1.

legally binding agreements to cut greenhouse gas emissions
have been established under the Kyoto protocol. However,
compliance, monitoring and verification of emissions is and
will still remain a challenge.

Up to three quarters of the atmosperic CO2 increase have
been attributed to fossil fuel combustion (e.g. in power
plants, steel plants), gas flaring (at refineries, oil platforms,
etc.) and cement production (Forster et al., 2007). How-
ever, despite their importance, these CO2 sources have not
been well quantified. For example, the uncertainty in world’s
annual fossil fuel emissions is±6 to ±10 % (or 0.6 to
1.0 Pg C yr−1) (Marland and Rotty, 1984, Marland, 2008).
This uncertainty is 1.5 to 3.3 times larger than the un-
certainty in the atmospheric CO2 accumulation (±0.3 to
±0.4 Pg C yr−1) (Marland, 2008). The uncertainty in fos-
sil fuel emissions is also an important limitation in inver-
sion calculations of global carbon mass balance because, as
pointed out byOda and Maksyutov(2011), most common
inversion frameworks assume fossil fuel emissions as well
known quantities, only biospheric and oceanic fluxes are cor-
rected via optimization (e.g.Gurney et al., 2002). As a re-
sult, even small uncertainties in the budget and the distribu-
tion of fossil fuel emissions introduce substantial errors in the
overall carbon budget derived from atmospheric inversions,
when the resolution is increased from continental scales to
regional, national or urban carbon budgets. As an example
to highlight this,Gurney et al.(2005) did a sensitivity study

Fig. 2. Diurnal cycle of CO2 emissions summed over all power
plants (PP) in the US emitting more that 1.0 Mt CO2 yr−1 for 2008.
The hours between 06:00 a.m. to 06:00 p.m. (daytime) are high-
lighted in yellow.

of atmospheric inversions. They illustrated that the lack of
seasonality on fossil fuel emissions produced biases of up
to 50 % of the seasonal flux estimates during certain times of
the year in the US. In another study,Corbin et al.(2010) used
a high resolution fossil fuel inventory for the US and showed
that regional near-surface CO2 concentrations are altered by
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Fig. 3. Top panel: one-day coverage for one-CarbonSat (configu-
ration 001). Middle panel: one-day coverage for a 5-satellite con-
stellation with each satellite passing over the target on the same day
every 2 h (configuration 002). Bottom panel: one-day coverage for
a 5-satellite constellation all with a local time at ascenting node of
13:30 and one day apart (configuration 003). The assumed swath
width of CarbonSat is 500 km.

more than 15 ppm when seasonal variablility of fossil fuel
emissions was included in their model.

Power plants play a big role in the magnitude of fos-
sil fuel emissions. For instance, in 2009, fossil-fuel power
plants supplied about 69 % of the US electricity demand
and is responsible for 41 % of the total anthropogenic CO2
emissions in the US (US EPA:www.epa.gov/climatechange/
emissions/co2human.html), making it the economic sector
with the largest source of CO2 (Petron et al., 2008). Al-
though the US has strict emissions reporting laws under the
1990 Clean Air Act, the maximum allowed error in hourly
reported power plant CO2 emissions using Continuous Emis-
sion Monitoring Systems (CEMS) are around 14 % (Peischl
et al., 2010). In Europe, under the European Union Emis-
sions Trading Scheme (EU ETS) (Ellerman and Buchner,
2007), large CO2 emitters (>500 kt CO2 yr−1, accounting for
∼40 % of EU CO2 emissions) are required to report annual

Fig. 4. Approximate number of overpasses per year over a target as
a function of latitude. Power plants in the mid latitudes will have
about 50 overpasses per year for a 1-CarbonSat scenario (configura-
tion 001). Clear sky probability obtained from MODIS can be used
to provide an approximation of the cloud free measurements over a
target (see Fig. 5).

Fig. 5. Clear-sky probability from MODIS calculated at
16×16 km2.

emissions and are entitled to emission allowances. Since
1 January 2005, CO2 emission allowances can be bought or
sold by more than 11 500 installations across Europe (Eller-
man and Buchner, 2007). The value of the allowances dis-
tributed under the EU ETS (2005–2007) is about $41 billion
(at aboutC 15/t CO2, with C 1.00 = $ 1.25) (Ellerman and
Buchner, 2007). The amount of money involved makes ac-
curate CO2 reporting valuable. However,Evans et al.(2009)
examined the CO2 calculation approach implemented in the
EU ETS and mentioned that it contains a bias that can be up
to 20 % against direct measurement. Power plant emissions
monitoring is therefore becoming more and more important,
not only because CO2 means money under the existing cap
and trade systems, but more importantly to improve our un-
derstanding of the carbon sources and sinks as needed for re-
liable climate prediction. To accomplish this globally, mech-
anisms that are not intrusive nor infringe upon sovereignty of
countries are required, such as satellites.
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Fig. 6. Top panel: CO2 emissions of a power plant in Arizona, USA (Navajo generating station) reported to the EPA for 2008 (black lines).
The color-coded triangles represent simulated overpasses for three different CarbonSat configurations (001–003, see Table 1) during clear sky
conditions (defined as less than 10 % cloud cover in a 32× 32 km area near the position of the power plant and its surroundings). Weekends
are indicated by the gray shaded areas. The second y-axis represent the wind speeds (yellow, superimposed). The “true” value of 20.43
(in Mt CO2 yr−1) is simply the sum of the reported CO2 for this year. The “retrieved” values of 21.28, 21.10, 21.23 and the corresponding
1-σ errors (in Mt CO2 yr−1) are the values that would have been retrieved for CarbonSat configurations 001, 002 and 003, respectively. For
clarity, days 145 to 165 are zoomed in (lower panel) showing the cloud cover (in %, pink lines).

SCIAMACHY on ENVISAT (Burrows et al., 1995,
Bovensmann et al., 1999) is the first satellite to perform
Planetary Boundary Layer (PBL)-sensitive measurements of
column-averaged CO2 and CH4 mixing ratios (i.e.XCO2 and
XCH4) using the short-wave infrared and near infrared spec-
tra (Buchwitz et al., 2007, Frankenberg et al., 2011, Schneis-
ing et al., 2011). There are also a number of satellite in-
struments that measure tropospheric CO2 in nadir mode such
as HIRS/TOVS (Chédin et al., 2002, 2003), AIRS (Engelen
et al., 2004, Engelen and Stephens, 2004, Engelen and Mc-
Nally, 2005), IASI (Crevoisier et al., 2009), and TES (Ku-
lawik et al., 2010). These instruments measure in the thermal
infrared (TIR) part of the electromagnetic spectrum, yielding
high sensitivity in the middle and upper troposphere but have
low sensitivity in the lower atmospheric layers, where the re-
gional GHG source and sink signals are largest. This low
sensitivity limits the information content with respect to re-
gional CO2 and CH4 sources and sinks. And so, dedicated
greenhouse gas satellite instruments have been built recently
as a response to the urgency of quantifying CO2 from space;
the Orbiting Carbon Observatory (OCO) from the USA’s side
(Kuang et al., 2002; Crisp et al., 2004; Miller et al., 2007)
and Japan’s Greenhouse Gases Observing Satellite (GOSAT)

(Hamazaki et al., 2004; Kuze et al., 2009). These instruments
were designed to perform highly accurate and precise global
CO2 (and CH4 for GOSAT) measurements from space down
to the PBL. GOSAT was successfully launched in 2009, but
unfortunately, OCO failed to reach orbit and was lost shortly
after its launch on 24 February 2009 (Palmer and Rayner,
2009). However, because of the importance of remote ver-
ification of CO2 emissions from space, the US government
under the Obama administration has decided to build OCO-2
(Boesch et al., 2011), an exact copy of OCO, expected to be
launch-ready by 2013. Active remote sensing of CO2 using
satellite-based laser systems are also under investigation (see
Amedieck et al., 2009, Bréon and Ciais, 2009and references
given therein). In spite of the numerous remote sensing satel-
lites and the improvements in CO2 and CH4 measurements,
monitoring of strong localized sources such as power plants
using satellite observations is still not possible now and in the
near future. To achieve this, and to continue the time series of
PBL-sensitive CO2 and CH4 observations from space, which
started with SCIAMACHY on Envisat, CarbonSat (Bovens-
mann et al., 2010) was proposed. And just recently, the po-
tential of remote sensing to determine power plant emission
was successfully demonstrated using an airborne instrument
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Fig. 7. Same as Fig. 6 for the power plant Gibson in Indiana.

applying the same methodology as proposed for CarbonSat
(Krings et al., 2011).

CarbonSat has been selected by the European Space
Agency (ESA) to be one of two candidates for the 8th Earth
Explorer Opportunity Mission (EE-8) to be launched in 2019
at the earliest. CarbonSat’s goal is to globally measure atmo-
spheric CO2 and CH4 with the precision, accuracy, spatial
resolution and coverage needed to provide crucial informa-
tion on the sources and sinks of these greenhouse gases. Due
to the wide coverage (goal: 500 km swath width) and high
spatial resolution (2 km× 2 km) of CarbonSat, its measure-
ments can be used for several applications. One of them is
monitoring of greenhouse gas “hot spot” emission sources,
such as power plants.

In this paper, we extend the work done byBovensmann
et al.(2010) by utilizing actual power plant emissions in the
USA combined with high-resolution re-analyzed data of lo-
cal meteorological conditions (winds and cloud cover). We
present a characterization of systematic and random errors
that would arise from power plant monitoring using hypo-
thetical CarbonSat constellations. For the systematic errors,
we focus on errors of annual emission estimates arising from
sparse temporal coverage. The random error is due to instru-
ment (detector) noise. The orbits and sampling characteris-
tics were simulated for this purpose. We are able to quantify
this type of systematic error because the power plant emis-
sions are known in this study. In reality only the random
error is known and the sampling error component has to be
estimated e.g. from the results of the study at hand.

This manuscript is organized as follows: In the next sec-
tion, we describe the power plant emission database and the
meteorological fields that were used, together with the simu-
lated satellite constellation overpasses. A concise description
of the statistical analyses used to arrive at the error estimates
are also presented. In Sect. 3, we show the results from the
statistical analyses and provide discussions explaining the er-
rors and the differences between the selected constellation
configurations. We also attempt to investigate the year-to-
year variablity in emissions of some power plants. Conclu-
sions for this study and arguments for a preferred constella-
tion are presented in Sect. 4.

2 Data and methods

This section describes the data we used for the statistical
analyses, most of which are originally available online from
United States government agencies. For this work we focus
on power plants in the conterminous United States due to the
exemplary strictness of the reporting requirements imposed
on electric generation utility power plants in this country.

2.1 Environmental Protection Agency Clean Air
Markets-Data and maps (EPA CAMD) emissions
database

Electric Generation Utility (EGU) power plants in the US are
required by law to report hourly averaged emissions of nitro-
gen oxides (NOx), sulfur dioxide (SO2) and carbon dioxide
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Fig. 8. Same as Fig. 6 for the power plant W. A. Parish in Texas.

(CO2) as indicated under Title 42 of the US code section
7561k (Peischl et al., 2010). The latest emission data from
major power plants are delivered by Continuous Emission
Monitoring Systems (CEMS), which determine mixing ra-
tios of NOx, SO2 and CO2 from the stack exhaust of each
plant. Hourly emission fluxes are calculated by combin-
ing the information on the mixing ratios with stack flow
rate measurements. These data are subject to quality con-
trol procedures and reported to the US Environmental Pro-
tection Agency (EPA) every quarter. The data are then
posted and made available for download at the EPA web-
site (http://camddataandmaps.epa.gov/gdm/index.cfm). Dif-
ferent contractors perform periodical assessments of the ac-
curacy of the data through independent sampling of the stack
gases and flow rates. In order for CEMS to be compliant
with the US Code of Federal Regulations (C.F.R.), tests must
agree to within±10 % for NOx, SO2 and CO2 concentra-
tions (with CEMS showing no low bias compared to the
tests) and within±10 % for stack flow rates, as mentioned
in Peischl et al.(2010). Assuming random errors are nor-
mally distributed, mass emission rates from EGUs equipped
with CEMS should be accurate to better than±14 % (after
summing the concentration and flow uncertainties in quadra-
ture) and enhancement ratios (e.g. NOx/CO2) should also be
accurate to better than±14 %, assuming the stack flow rate
uncertainties are the same for each trace gas measurement
(Peischl et al., 2010). Note that±14 % is the maximum
difference allowable for CEMS and the independent tests,
howeverEvans et al.(2009) mentioned that measurements

of CO2 concentrations from certified CEMS have a typical
uncertainty of<1 % and flow rates from certified gas flow
CEMS have typical uncertainties of<5 %. So that the overall
uncertainty of CO2 flux measurements for any given hour is
less than 5.1 %. Thus, the EPA CAMD data provide a unique,
objective and detailed estimation of the CO2 emissions from
power plants (Petron et al., 2008). Petron et al.(2008) further
established the robust nature of the CAMD data set by pre-
senting cases of regional-scale emissions anomalies that are
apparent in the data set and explaining these anomalies by
known events in regional power generation and distribution.

Figure 1 shows the hourly CO2 emissions from four se-
lected power plants in the US. By making use of the CAMD
data, the strong daily, weekly and seasonal cycles of CO2
emissions from power plants can be taken into account in
studying the associated errors arising from the sampling
characteristics of CarbonSat. For our purpose, we only se-
lected power plants with more than or equal to 1 Mt CO2 yr−1

emissions because 1) CarbonSat error limitations dictate that
only power plants emitting above 0.8 Mt CO2yr−1 could be
measured (Bovensmann et al., 2010) and 2) Power plants
emitting more than 1 Mt CO2 yr−1 are more likely to supply
the electricity to the grid continuously.

Electrical consumption is not constant throughout the day,
so power plants have to adjust their power output according
to this demand. This is reflected on the power plant CO2
emissions. Figure 2 shows the characteristic emissions of
all power plants in the US summed over the days in a week
(emissions are taken at the local times of the power plants).

Atmos. Meas. Tech., 4, 2809–2822, 2011 www.atmos-meas-tech.net/4/2809/2011/
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Fig. 9. Same as Fig. 6 for the power plant Crystal River in Florida.

An important feature is that the demand and therefore the
emissions, have strong diurnal variations. The average day-
night difference in emissions alone are around 9 % from all
power plants. During the day, power demand varies strongly.
The peak demand usually happens around mid-morning and
around late afternoon. However, since power plants may also
supply a city thousands of kilometers away (e.g. Navajo Gen-
erating Station supplying Los Angeles∼900 km away), the
times of the peak demands may vary. There are also day-to-
day variations in the emissions, i.e. weekends have usually
lower emissions and peak emissions are usually observed in
the middle of the week (see also Fig. 4 ofPetron et al., 2008).
This makes it even more important for an instrument to have
short revisit times in order to monitor power plant emissions
and capture its variablity from space.

2.2 NCEP-NARR wind vectors and cloud cover

National Centers for Environmental Prediction-North Amer-
ican Regional Reanalysis (NCEP-NARR) is an extension of
the NCEP global reanalysis. It is run over the North Amer-
ican region. The NCEP-NARR model uses very high reso-
lution NCEP Eta Model (32 km/45-layer) together with the
Regional Data Assimilation System (RDAS). This system
assimilates precipitation along with other variables. The
improvements in the model/assimilation have resulted in a
dataset with substantial improvements in the accuracy of
temperature, winds and precipitation compared to the NCEP-
DOE Global Reanalysis 2 (http://www.esrl.noaa.gov/psd/

data/gridded/data.narr.monolevel.html). Outputs of surface
(10 m above ground) wind vectors (u and v) and cloud cover
are given in 3 h bins, which are then interpolated to the re-
ported hourly emissions of each power plant. NCEP NARR
wind and cloud cover data are given in a 32 km× 32 km grid.
For our purpose, we selected the data points closest to the
power plant targets.

2.3 CarbonSat constellation configurations

Studies have been performed on different satellite orbit con-
figurations, while taking into account the reported CO2 emis-
sions and the NCEP meteorology. Our first approach was to
simulate overpasses from a single CarbonSat satellite with
the following characteristics: orbit height: 828 km, inclina-
tion: 98.7◦, orbit period: 6087.6 s and a Local Time Ascend-
ing Node (LTAN) of 13:30 (01:30 p.m.). This orbit was sim-
ulated using Satellite Tool Kit (STK,http://www.agi.com/
products/by-product-type/applications/stk/). We define this
as configuration 001, where global coverage is achieved ap-
proximately every 5 days (see Fig. 3, top panel). Configura-
tion 002 is an extension of configuration 001. It has 5 Car-
bonSat satellites that also have the same orbit characteris-
tics but with LTANs that are two hours apart. Global cov-
erage is also achieved in approximately 5 days (see Fig. 3,
middle panel). Lastly, configuration 003 has also 5 Carbon-
Sat satellites all having an LTAN of 13:30 and are one day
apart, which means that global coverage will be achieved
every day (Fig. 3, lowest panel). Table 1 summarizes the
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Fig. 10.Error analysis for different CarbonSat configurations, done for power plants with emissions of more than or equal to 5 Mt CO2 yr−1.
The systematic errors for different configurations (color-coded) are shown in the top panel and random errors are shown in the bottom panel.

characteristics of the different CarbonSat configurations. For
visual clarity, we also plotted the expected number of Car-
bonSat overpasses per year as a function of latitude in Fig. 4.
Power plants in the mid-latitudes, where most industrialized
nations are located, will have about 50 overpasses per year.
The clear-sky probabilities obtained from MODIS can help
to provide an approximation of the cloud-free measurements
over a target (Fig. 5), so that from the number of theoretical
overpasses (Fig. 4), one can deduce the expected cloud free
measurements just by looking at the MODIS dataset. How-
ever, care must be taken in doing the interpretation because
very thin cirrus clouds are sometimes hard to detect with pas-
sive satellite instruments (Reuter et al., 2009).

2.4 Estimation of errors

Bovensmann et al.(2010) analyzed and quantified several
error sources arising from the retrieval of power plant CO2
emissions. From a single CarbonSat overpass, they stud-
ied errors due to aerosols, instrument noise, advection and
mixing. They found that the random error arising from
instrument noise primarily depends on near-surface wind
speed (∼1 Mt CO2 per 1 ms−1) because with increasing wind
speed, the amplitude of the CO2 emission plume gets smaller
so that instrument noise becomes more important. They

also found that neglecting enhanced aerosol concentrations
in the power plant plume may result in errors in the range
of 0.2–2.5 Mt CO2 yr−1, depending on power plant aerosol
emission.

In this study, we focus on systematic errors of inferred
annual emissions arising from sparse sampling and on the
wind speed dependent statistical (random) error, which can
be interpreted as the CO2 emission detection limit for power
plants and other strong CO2 point sources as mentioned in
Bovensmann et al.(2010).

The total error of the derived annual power plant emis-
sions is a combination of sampling error (systematic error)
and random error (due to wind speed). Within this study, we
are able to quantify both error components because the power
plant emissions are assumed to be known. Whereas in real-
ity, only the random error is known and the sampling error
component would have to be estimated e.g. from the results
of the study at hand.

First, we determine the systematic errors due to sparse
sampling. We simulated satellite overpasses for each power
plant location. For each overpass, we took the power plant’s
reported CO2 emission (at 13:00 LT – local time) and as-
sume that CarbonSat would measure the same amount of
CO2 without errors. Since the power plant load and the corre-
sponding CO2 emissions vary with time, this sparse sampling
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Table 1. Different CarbonSat configurations.

Configuration Number of LTAN Global coverage
ID satellites

001 1 13:30 after 5 days

002 5 09:30, after 5 days
11:30,
13:30,
15:30,
17:30

003 5 13:30 after 1 day

at fixed time intervals is expected to yield a bias in the CO2
annual emission estimate. The sparse sampling will be fur-
ther reduced depending on the cloud cover at the power plant
location because we assume that CarbonSat will not be able
to measure during scenarios with a cloud fraction of more
than 10% in a 32× 32 km2 area (i.e. we require an essentially
cloud-free scene around the power plant in order to observe
most of the CO2 emission plume. So simulated overpasses
with cloud contamination of>10 % are flagged and consid-
ered as “no measurement”. The estimated annual CO2 emis-
sion measured by CarbonSat (Ê) over a certain power plant
is then calculated as:

Ê =
1

n

n∑
j=0

Et
j N. (1)

Et
j is the “true” CO2 emitted by a power plant at the overpass

hour j , with values reported in tons CO2 h−1. This is the
value that CarbonSat would measure. We multiply this by
N , the number of hours in a year so thatÊ has the units of
Mt CO2 yr−1, then divide byn, the actual number of overpass
hours. The “true” power plant annual emission (ET , in units
of Mt CO2 yr−1) is the sum of allEt

i , the reported CO2 at
hoursi for the whole year:

ET
=

N∑
i=0

Et
i . (2)

The bias is simply the difference between̂E (the annual
emission as retrieved from CarbonSat) andET (the true an-
nual CO2 emission) (see results shown in Figs. 6–9 for dif-
ferent CarbonSat scenarios applied to selected power plants,
as discussed in detail below).

As mentioned before, we assume that the error of each
simulated measurement is only dependent on the wind speed
at the time of the satellite pass over the power plant loca-
tion, neglecting other possible error sources. In line with the
findings of Bovensmann et al., 2010, we also assume that
the measurement random errors are linear, i.e. we conser-
vatively assigned a 1.0-Mt CO2 yr−1 error for every 1-ms−1

Fig. 11. Reported annual emissions from the Springerville generat-
ing station in Arizona, USA (1997–2010). The yearly (true) emis-
sions are denoted by the magenta line. The simulated measurements
from three different CarbonSat constellation configurations are rep-
resented by the bars (color-coded). The height of the bars represent
the random errors for the annual emission estimate.

wind speed (Bovensmann et al., 2010showed that the error
is to a good approximation 0.8 Mt CO2 yr−1 per 1 ms−1 wind
speed) .

We calculate the random error of̂E by consequently ap-
plying the laws of error propagation. With CarbonSat mea-
surementsEt

j expressed in Mt CO2 yr−1 we can write the Jo-

cobian ofÊ as:

K
Ê

=

[
1

n
, ...,

1

n

]
(3)

wheren is equal to the number of overpasses. The error co-
variance matrixS

Ê
is given by

S
Ê

=

 Var (E1) ··· Cov (E1, En)
...

. . .
...

Cov (En, E1) ··· Var (En)

. (4)

The diagonal terms ofS
Ê

represent the errors (squared) de-
rived from the wind speed at the time of the overpass at the
power plant location. We assume that the data are indepen-
dent so that the off diagonals ofS

Ê
are zero. The variance of

the estimateÊ is then calculated as:

Var
(
Ê

)
= K

Ê
S

Ê
KT

Ê
(5)

which is equivalent to:

Var
(
Ê

)
=

1

n2

n∑
j=0

Var
(
Ej

)
. (6)

Thinking of the application to real measurements where no
true emission values are known, one could use the method
proposed byReuter et al.(2010) to estimate the total error of
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an averaged quantity as a combination of the measurement
error and the sampling error without knowledge on the true
average value of the distribution.

3 Results and discussion

Figure 6 shows typical hourly emissions of a power plant
in Arizona, USA (Navajo Generating Station) for 2008.
The top panel of Fig. 6 shows the systematic error cal-
culations obtained from the different configurations. For
each overpass, a measurement consists of two values, the
estimated emission (assumed to be free of systematic er-
rors) and its wind speed-dependent statistical uncertainty
(random error). The estimated annual emission as in-
ferred from the CarbonSat observations is the mean of
the measured emissions of all overpasses, i.e.Ê. The
variance of Ê follows from Eq. (5). As can be seen
for this example (see bar on top), the true emission is
20.43 Mt CO2 yr−1. For configuration 001 the estimated
emission is 21.28± 0.65 Mt CO2 yr−1. For configuration
002, the retrieved value would be 21.10± 0.28 Mt CO2 yr−1

and for configuration 003: 21.23± 0.23 Mt CO2 yr−1. As ex-
pected, systematic errors occur due to the sparse sampling.
As also expected, the estimated uncertainty (random error)
is reduced by about a factor of two for a constellation of
5 satellites (square root dependence). The systematic error is
somewhat smaller if 5 satellites are used but only marginally.
This is because, in this example, the CO2 emissions during
day do not vary so much (therefore one sample per day is
sufficient). Also, the day-to-day variations are small, even
when comparing weekdays with weekends (grey shaded ar-
eas). The Navajo generating station partially supplies the city
of Los Angeles (∼900 km away) as well as the city of Las
Vegas (www.srpnet.com/about/stations/navajo.aspx). These
are two cities that have a huge electricity demand for air-
conditioning, leading to a large day-night difference in power
demand, especially in the summer months. Figures 7–9 show
similar plots for three other power plants. These plants are
only some of the highest CO2-emitting power plants in the
US. As can be seen, the characteristics of the hourly emis-
sions are different for each power plant. For example, for
the power plant Crystal River (Fig. 9), the day/night contrast
is substantial. Since power consumption at night is usually
lower than during the day, this leads to systematically higher
retrieved values for all configurations. We have also com-
pared the differences in emissions during cloudy and clear
skies. Although there is a link between temperature and elec-
trical consumption (Petron et al., 2008), we found that the
difference in emissions during cloudy and clear days is very
small (∼3 %) when averaged over all the power plants we
investigated.

The statistics for all power plants are shown in Fig. 10.
It shows the results for power plants emitting more than or
equal to 5 Mt CO2 yr−1 in the US (157 power plants). The

Fig. 12. Same as Fig. 11 for the Navajo generating station in Ari-
zona, USA.

results can be summarized as follows: The systematic error
of the annual CO2 emissions of all power plants in the US
emitting more than or equal to 5 Mt CO2 yr−1 as obtained
from one CarbonSat due to sparse time sampling is less than
4.9 % for 50 % of the power plants and less than 12.4 % for
90 % of all power plants. Using a combination of 5 Carbon-
Sats essentially does not result in a large reduction of this er-
ror. However, the smallest systematic error is obtained with
configuration 003. This is because the day-to-day variabil-
ity is larger (e.g. differences between weekdays and week-
ends) compared to the variability during the day (i.e. from
09:00 a.m. to 05:00 p.m.) as can be seen in Fig. 1.

The statistical (or random) error of the estimated emis-
sions using one CarbonSat is less than 6.7 % for 50 % of
the power plants (≥5 Mt CO2 yr−1) and less than 13.0 % for
90 % of all power plants (≥5 Mt CO2 yr−1) . This improves
by approximately a factor of two if 5 CarbonSats are used
(configuration 002 and 003). Qualitatively, the same conclu-
sions can be drawn if all power plants emitting more than
1 Mt CO2 yr−1 are used (see Table 2) or all those emitting
more than 10 Mt CO2 yr−1.

By contrast, hourly mass emission rates reported by
Electric Generation Utility (EGU) power plants in the US
equipped with CEMS are reported to only require an accu-
racy of 14 % or better (Peischl et al., 2010), despite the fact
that the CO2 flux estimates from CEMS can have an uncer-
tainty of<5.1 % (Evans et al., 2009). CEMS can also be used
in the EU-ETS as long as the comparison with calculated
data shows equal or less uncertainty. As however pointed
out by Evans et al. (2009), “uncertainty as it is used here
has nothing to do with accuracy (i.e. closeness to “truth” or
lack of bias) ... only with the precision or repeatability of the
data”. Moreover, the CO2 calculation approach used in the
European Trading Scheme may have a bias of up to 20 % in
annual CO2 emissions compared to direct measurement ac-
cording toEvans et al.(2009). The study was done on power
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Table 2. Error estimates on annual power plant (PP) emissions from three different CarbonSat configurations.

Power Plant (PP) emissions and associated errors from CarbonSat estimates (in %)

Error type Power plant ≥1 Mt CO2 yr−1
≥5 Mt CO2 yr−1

≥10 Mt CO2 yr−1

Sample size Configuration ID Configuration ID Configuration ID

001 002 003 001 002 003 001 002 003

Systematic 50 % of all PP ≤6.1 ≤5.7 ≤5.6 ≤4.9 ≤4.3 ≤3.9 ≤4.1 ≤4.5 ≤3.8
90 % of all PP ≤17.4 ≤16.6 ≤17.6 ≤12.4 ≤12.3 ≤10.2 ≤10.9 ≤8.9 ≤9.6

Random 50 % of all PP ≤11.4 ≤9.0 ≤9.5 ≤6.7 ≤3.0 ≤3.4 ≤4.3 ≤1.8 ≤2.0
90 % of all PP ≤24.3 ≤23.9 ≤23.3 ≤13.0 ≤6.2 ≤6.2 ≤7.0 ≤3.2 ≤3.3

plants with capacities of∼500 MW (i.e. power plants emit-
ting approximately 5 Mt CO2 yr−1).

In another study,Ackerman and Sundquist(2008) inves-
tigated annual CO2 emissions from 828 coal-fired power
plants. They compared two databases – the EPA eGRID
database containing directly measured CO2 and the De-
partment of Energy’s Energy Information Administration
(DOE/EIA) database of fuel data from individual power
plants. Ackerman and Sundquist(2008) found that the av-
erage absolute difference between calculated and (within
stack) measured annual CO2 emissions was 17.1 % (Table 1
of Ackerman and Sundquist, 2008). Based on their analy-
sis, Ackerman and Sundquist(2008), concluded that “it is
important to recognize that the ongoing quantification of ac-
curacy and uncertainties will always require the application
of multiple estimation procedures.” CarbonSat or a constel-
lation of CarbonSats, while not outperforming CEMS based
monitoring systems, will be able to independently provide
an estimate on power plant emissions, especially for those
areas of the world, where no CEMS or equivalent systems
are available or accessible.

Regarding changes in annual CO2 emissions, it is also
important to know up to what extent CarbonSat would be
able to detect reductions or increases in emissions of power
plants. Therefore, we extend our method to 14 years of
emissions data reported by three selected power plants. Fig-
ure 11 shows the annual variability of CO2 emissions from
the Springerville generating station as well as the estimated
annual CO2 emissions from three different CarbonSat con-
stellation configurations (color-coded). It can be seen that
CarbonSat captures the changes in emissions, for example,
the huge increase in 2006 after the company has installed a
third unit (418 MW). The decrease in emissions from 2008–
2009, probably as a consequence of a fire at the station,
is also detected. In December 2009, Unit 4 (400 MW)
became operational, this explains the increased emissions
in the following year, which is also captured by Carbon-
Sat. For information on the power plant and its history, see
also: www.tucsonelectric.com/Company/News/SGS3/index.

Fig. 13. Same as Fig. 11 for the Coronado generating station in
Arizona, USA

aspandwww.sourcewatch.org. Figure 12 shows the annual
emissions of the Navajo generating station. There is a slight
tendency for CarbonSat to over-estimate the annual emis-
sions, but the variability could be well captured. The re-
duction in 2010 could also be noticed. A possible expla-
nation to this reduction is the implementation of the renew-
able energy policy by the Los Angeles Department of Wa-
ter and Power (LADWP). In 2010, LADWP has achieved
its goal of reducing CO2 emissions (∼2.5 Mt CO2 yr−1) by
sourcing up to 20 % of its power from green and renewable
energy (www.ladwp.com/ladwp/cms/ladwp04197.jsp). Fig-
ure 13 shows an example of a somewhat steady annual CO2
emission from a power plant (Coronado generating station in
Arizona). The agreement between the reported CO2 emis-
sions and the simulated CarbonSat measurements are quite
good, especially in the years after 1998. Figures 11–13 indi-
cate that CarbonSat has the potential to be an important tool
for monitoring power plant annual emission changes.
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4 Summary and conclusions

From the orbit, swath and measurement characteristics of
the proposed CarbonSat satellite instrument, we have char-
acterized errors arising from power plant CO2 emissions
monitoring. We quantified two types of errors: (i) sys-
tematic error of annual emissions arising from sparse sam-
pling of the power plant’s emission and (ii) wind speed-
dependent random errors caused by instrument detector noise
(Bovensmann et al., 2010). We used a database containing
hourly CO2 emissions from US power plants and combined
this with reanalyzed meteorological conditions (wind, cloud
cover). Two CarbonSat constellations, both comprising of
5 CarbonSat satellites, were also studied. We have shown
that, despite the variability of the power plant emissions
and the limited satellite overpasses, one CarbonSat can inde-
pendently verify reported annual CO2 emissions from large
power plants (≥5 Mt CO2 yr−1) with a systematic (sampling)
error of∼4.9 % or better for 50 % of all the power plants and
∼12.4 % or better for 90 % of all the power plants. Using
a combination of 5 CarbonSats improves the random errors
by approximately a factor of two, but essentially does not re-
sult in a large reduction of the systematic error. The reason
is that the systematic error caused by sparse time sampling
is mainly determined by day/night emission characteristics
(CarbonSat can only measure during daytime).

Two configurations of 5-CarbonSat constellations have
been investigated. One achieves global coverage every day
but only at fixed local times (configuration 003). The other
performs measurements every 2 h but only achieved global
coverage after 5 days (configuration 002). For the purpose
of power plant emissions monitoring, both configurations
are similar but configuration 003 achieves somewhat smaller
systematic errors. Configuration 002 might be advantageous
for observing the daily cycle of CO2, but for other reasons,
fast global coverage is important; for instance, in monitoring
important events that only last a few days. Examples of these
events are: biomass burning, (mud) volcanic eruptions and
sudden release of CH4 below ice/snow after melting in spring
or ice break up (Siberia, Alaska). A constellation of exactly
identical CarbonSats in essentially identical orbits has also
the advantage of higher accuracy due to better (easier) inter-
calibration between the various satellites. In retrospect, we
mentioned that we assumed data independence so that the
off-diagonal elements of Eq. (4) are zero. This may hold true
for configurations 001 and 003. But for a typical wind speed
of about 3 m s−1, an air parcel travels approximately 21.6 km
within 2 h, i.e. it is still “close” to the power plant when
the next CarbonSat overpass is to be expected. Under these
circumstances, which may arise for configuration 002, non-
diagonal elements may be relevant indicating positive corre-
lations. In this case the precision reduction upon averaging
will be smaller compared to uncorrelated observations. For
these reasons, we therefore conclude that the preferred con-
figuration is configuration 003, i.e. the one which achieved

global coverage within the shortest time period (even if only
one measurement per day can be taken).

CarbonSat can also serve as an independent verification
system by checking the reported emissions at the hours of the
overpasses for countries with an hourly reporting system as
in the US. By comparing the routinely reported power plant
emissions and the coincident CarbonSat measurements for
that hour, the systematic errors from the sparse sampling will
not be a significant error source anymore. Instead, other error
sources such as aerosols, wind speeds, albedo, etc. will be
more important. These can be improved through retrieval
algorithm development.
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