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Abstract. The motivation of this study is to verify theoretical
expectations placed on ground-based microwave radiometer
(MWR) techniques and to confirm whether they are suitable
for supporting key missions of national weather services,
such as timely and accurate weather advisories and warnings.
We evaluate reliability and accuracy of atmospheric tempera-
ture profiles retrieved continuously by the microwave profiler
system HATPRO (Humidity And Temperature PROfiler) op-
erated at the aerological station of Payerne (MeteoSwiss) in
the time period August 2006–December 2009. Assessment
is performed by comparing temperatures from the radiome-
ter against temperature measurements from a radiosonde ac-
counting for a total of 2107 quality-controlled all-season
cases.

In the evaluated time period, the MWR delivered reliable
temperature profiles in 86 % of all-weather conditions on a
temporal resolution of 12–13 min. Random differences be-
tween MWR and radiosonde are down to 0.5 K in the lower
boundary layer and increase to 1.7 K at 4 km height. The
differences observed between MWR and radiosonde in the
lower boundary layer are similar to the differences observed
between the radiosonde and another in-situ sensor located
on a close-by 30 m tower. Temperature retrievals from above
4 km contain less than 5 % of the total information content
of the measurements, which makes clear that this technique
is mainly suited for continuous observations in the boundary
layer. Systematic temperature differences are also observed
throughout the retrieved profile and can account for up to
±0.5 K. These errors are due to offsets in the measurements
of the microwave radiances that have been corrected for in
data post-processing and lead to nearly bias-free overall tem-
perature retrievals. Different reasons for the radiance offsets

are discussed, but cannot be unambiguously determined ret-
rospectively. Monitoring and, if necessary, corrections for ra-
diance offsets as well as a real-time rigorous automated data
quality control are mandatory for microwave profiler systems
that are designated for operational temperature profiling. In
the analysis of a subset of different atmospheric situations, it
is shown that lifted inversions and data quality during precip-
itation present the largest challenges for operational MWR
temperature profiling.

1 Introduction

A key mission for the national weather services is to provide
timely and accurate weather advisories and warnings, with
severe events being major concerns. For this, modern Nu-
merical Weather Prediction (NWP) models are key sources
of forecast guidance used by operational meteorologists in
their work. A challenge is the forecast at local scale and down
to the hour and minute scale, because such information can
best minimize damages to property, transport, and popula-
tion caused by weather-related disasters. To provide high-
resolution forecasts, it is imperative to improve the quality,
the spatial density and the temporal resolution of crucialat-
mospheric measurements.

Currently, the global radiosonde network, for the most
part, makes observations only two times a day. In contrast
data assimilation schemes for high-resolution localized now-
cast (zero to 2 h) and short-term forecast (2 to 12 h), would
very much benefit from observations every few minutes. This
can be provided only by automated upper air remote sens-
ing technologies, such as Wind Profilers and MicroWave
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Radiometers (MWR). A European network of Wind Profilers
has already been established within the CWINDE project and
the ability of wind profilers to improve numerical weather
prediction model performance has been demonstrated i.e. by
Calpini et al. (2011). However, NWP models also require
upper air temperature and humidity data for improved pre-
dictions, especially in the lower troposphere where severe
weather is frequently triggered and satellite remote sensing
capability is limited. Calpini et al. (2011) explicitly note that
MWR are still within a validation phase and have there-
fore not been operationally assimilated into the MeteoSwiss
weather forecast model. This paper intends to contribute to
this validation phase with respect to continuous temperature
profiling and make clear what current MWR are capable of
in terms of accuracy, where error sources can be found and
how systematic errors can be minimized during operational
measurements.

While the humidity profile from MWR has a relatively low
vertical resolution (i.e. less than 2 pieces of information),
Löhnert et al. (2009) have also shown that MWR temperature
retrievals can provide on the order of 4 independent pieces of
information in the vertical. Former studies have shown tem-
perature accuracies as a function of height, e.g. Güldner and
Sp̈ankuch (2001) show STandard DEViations (STDEV) of
the MWR-retrieved minus the radiosonde temperature rang-
ing from 0.7 K in the boundary layer to 1.6 K in 7 km. Note,
that throughout this paper STDEV will refer to standard de-
viation of two comparable quantities (i.e. MWR-retrieved
temperature minus the radiosonde temperature at a certain
height). The temperature retrieval approach of Güldner and
Sp̈ankuch (2001) relies on coincident radiosonde and MWR
measurements, which are used to periodically update a multi-
linear regression algorithm. This type of retrieval is indepen-
dent on radiative transfer simulations and largely eliminates
systematic errors originating from MWR calibration offsets
or the gaseous absorption model. Liljegren et al. (2005) also
show similar STDEV differences (1 K in the boundary layer
and 2 K in the mid-troposphere) with additional systematic
differences (BIAS) varying in height between radiosonde and
MWR up to absolute values of 1 K throughout the whole tro-
posphere. Their approach relies on a multi-linear regression
built upon a radiosonde climatology on the order of 10 000
ascents, where the radiosondes are used to calculate the
MWR radiances via radiative transfer simulations and these
simulations are then used for calculating the multi-linear re-
gression between temperature profile and MWR radiance. In
contrast to the G̈uldner and Sp̈ankuch (2001) approach, this
retrieval does not rely on coincident MWR/radiosonde ob-
servations, is however subject to systematic error. Liljegren
et al. (2005) could show that the observed BIAS was par-
tially due to the applied microwave absorption model, how-
ever large discrepancies especially in the lower troposphere
still remain. In a paper from Crewell and Löhnert (2007)
the importance of elevation scanning measurements for mi-
crowave profilers has been shown to increase the retrieved

temperature accuracy specifically in the boundary layer. Es-
pecially in the lowest 500 m STDEV are on the order of
0.5 K. All different retrieval approaches mentioned above
have been compared and evaluated against each other in a
comprehensive overview by Cimini et al. (2006), where the
advantages and disadvantages of each of the methods are out-
lined in detail on the basis of radiosonde comparisons carried
out during the TUC campaign (Ruffieux et al., 2006). Addi-
tionally performance of a sophisticated 1D-VAR approach,
which uses NWP output as a priori data, is compared to the
other regression methods.

While different retrieval methods have been proposed and
evaluated, this paper now goes a step further and focuses on
the long-term (i.e. years) operational performance of MWRs
for temperature profiling. The goal is to assess the potential
of MWR-retrieved temperature profiles for contributing to
data assimilation and model evaluation with specific focus
on the boundary layer – a range of the atmosphere that is
difficult to assess via satellite remote sensing.

In this study, MWR performance is evaluated against ra-
diosondes using a unique 3.5 yr data set of MWR-retrieved
temperature profiles with collocated vertical soundings of the
atmosphere. Here we build upon the more simple retrieval
methods (Liljegren et al., 2005; Crewell and Löhnert, 2007),
which provide robust and all-weather temperature-profiles.
The questions addressed are:

– What are the long-term random and systematic differ-
ences between MWR and radiosonde at one and the
same location?

– Where do systematic differences come from and how
can they be removed?

– How high is the availability of reliable MWR-retrievals?

– How do MWRs perform during “extreme” conditions?

– What are the data-quality control measures needed in
order to maintain the described performance?

The article has been organized in the following way. Sec-
tion 2 shortly describes the Payerne Observatory where the
data used in this study originates from. The actual instru-
ments used in this study are then described in detail in Sect. 3.
The relevant specifications of the applied MWR are ex-
plained in Sect. 3.1, whereby special focus is given to the cal-
ibration procedure and data quality control including BIAS
correction. Section 3.2 introduces the radiosonde and its ac-
curacy with a reference to the 30 m tower measurements car-
ried out at Payerne. In Sect. 4 we describe the quality control
procedure applied to the data set prior to retrieval applica-
tion. The retrieval procedure itself is described in Sect. 5 and
the data analysis as well as the resulting accuracy assessment
is discussed in Sect. 6.
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2 Payerne observatory

The aerological station Payerne (Latitude 46.82◦ N, Longi-
tude 6.95◦ E, Elevation 491 m m.s.l.) of the Swiss Federal
Institute of Meteorology and Climatology (MeteoSwiss) is
situated in a rural area halfway between the Jura and the
Pre-Alp Mountains. The first upper air balloon soundings
(radiosondes) were launched 1942, whereas regular service
with two radiosondes per day started in 1954. Next to car-
rying out the upper air soundings, Payerne is also the major
Swiss center for testing and implementing novel remote sens-
ing techniques. The latter include an operational water vapor
Raman lidar, wind profilers as well as microwave profilers.
At the same location, MeteoSwiss operates a measurement
field for the Baseline Surface Radiation Network (BSRN)
that includes a 30 m tower with sensors at various heights.

Recently MeteoSwiss achieved the installation of a net-
work with three remote-sensing sites that combine radar
wind profiling and microwave temperature profiling. The
main goal of this network is to monitor horizontal and verti-
cal wind structures, as well as atmospheric stability in a near-
real-time manner around the Swiss nuclear power plants in
order to be able to characterize the propagation conditions in
case of a nuclear leak (Calpini et al., 2011). As part of this
network MeteoSwiss has been continuously operating a Hu-
midity And Temperature PROfiler (MWR, Rose et al., 2005)
multi-channel multi-angle microwave radiometer since Au-
gust 2006 at Payerne. This microwave profiler allows tempo-
rally highly resolved (currently 12–13 min) retrievals of the
tropospheric temperature profile.

3 Instruments

In the following the instruments used in the comparisons car-
ried out in this study are described and their errors are char-
acterized.

3.1 HATPRO

The microwave profiler HATPRO was manufactured by Ra-
diometer Physics GmbH, Germany (RPG) as a network-
suitable microwave radiometer with very accurate retrievals
of Liquid Water Path (LWP) and Integrated Water Vapor
(IWV) at high temporal resolution (1 s). The spectral char-
acteristics of the instrument also make it possible to observe
the temperature profile and to a limited extent also the humid-
ity profile. HATPRO is comprised of total-power radiome-
ters utilizing direct detection receivers within two bands. The
first band (K-band) contains seven channels from 22.335 to
31.4 GHz and the second band (V-band) contains seven chan-
nels from 51 to 58 GHz (Fig. 1). Whereas the seven channels
of the first band contain highly accurate information on atmo-
spheric humidity and cloud liquid water content (Löhnert and
Crewell, 2003), the seven channels of the second HATPRO
band (51.26, 52.28, 53.86, 54.94, 56.66, 57.30, 58.00 GHz)
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Fig. 1.Brightness temperature as a function of frequency in the mi-
crowave spectrum (V-Band: 50–60 GHz). The spectrum (black line)
is calculated for the long-term average Payerne atmospheric state.
The colored, dashed vertical lines show the center frequencies of
the MWR HATPRO channels together with their band passes (nor-
malized to 1).

contain information on the vertical profile of temperature
within the lower and middle troposphere due to the homo-
geneous mixing of O2 (Crewell and L̈ohnert, 2007). The re-
ceivers of each frequency band are designed as filter-banks
in order to acquire each frequency channel in parallel. In ad-
dition, this approach allows setting each channel band pass
individually. Typical HATPRO channel band passes are illus-
trated in Fig. 1. Unfortunately, the exact center frequencies
and band passes for the instrument analysed in this study
have not been determined yet. The band passes shown in
Fig. 1 are from an identically constructed instrument oper-
ated by the University of Madison, WI, USA and are cur-
rently the best estimate available.

A steerable parabolic mirror, covered by a microwave
transparent radome, guarantees that radiation from±90◦ ele-
vation may be received at the radiometer. The radome is pro-
tected by a heated blower system to prevent the formation
of dew and the accumulation of precipitation. The antenna
beam width for the channels along the oxygen line is 2–2.5◦

full width at half maximum (FWHM) with a side lobe sup-
pression of better than 30 dB so that 99.9 % of the received
power stems from an angular range of±3◦. Additionally,
falling precipitation is flagged by an automatic precipitation
sensor and furthermore, environmental sensors for tempera-
ture, humidity and pressure as well as a GPS clock are part
of the system.

The measurement quantity of a MWR isbrightness tem-
perature (TB). Instead of calibrating in terms of radiance
(W m−2 sr−1 Hz−1), where one would be dealing with very
small numbers over a few degrees of magnitude, the DC ra-
diometer output voltage is directly converted into a bright-
ness temperature via the Planck function. This implies that
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the range of measurements will be between 2.7 K (cosmic
background) and ambient temperature.

Absolute calibration for the channels of the V-band is per-
formed using a liquid-nitrogen-cooled load that is attached
externally to the radiometer box during maintenance. The
cooled load can be considered as a black body at the LN2
boiling temperature of∼77 K. This standard – together with
an internal ambient black body load – is used for the ab-
solute calibration procedure. Note that when looking at a
perfect black body the physical temperature and the Planck-
equivalent brightness temperature are identical. Assuming a
linear characteristic of the detector diode, these two points
then lead to an absolute calibration of the MWR. During the
time period from 2006 to 2009 five LN2 calibrations were
performed at the dates listed in Table 1. Further details on
the HATPRO calibration procedure, i.e. on the detector non-
linearity correction and the continuous gain adjustment are
given by Rose et al. (2005).

3.2 Radiosonde

At Payerne a PTU (Pressure, Temperature, hUmidity) ra-
diosonde is launched twice a day at 00:00 and 12:00 UTC.
The radiosonde is launched one hour before the official
time to cope with ascent times and data processing is-
sues, however the exact launch time is coded within the
sounding data. The radiosonde flies through the atmo-
spheric Boundary Layer (BL) and reaches an elevation of
approx. 3000 m within the first 10 min and reaches 10 km
within approx. 30 min of flight. It then generally continues
up to 30 km. After the first 20 s of flight, the time resolution
of the samples varies from 1 s to 10 s, which gives a vertical
resolution that ranges from 10 to a maximum of 80 m.

The Swiss radiosonde SRS 400 used here was introduced
in 1990. The sensors of this radiosonde include copper-
constantan thermocouples of 0.063–0.050 mm diameter for
temperature, a full range water hypsometer for pressure,
and a carbon hygristor for relative humidity (Richner and
Hünerbein, 1999). The accuracies of the sensors are listed
in Table 2.

3.3 Tower measurements

The 30 m BSRN-tower (Baseline Surface Radiation Net-
work) is located 200 m to the south of the HATPRO site
and radiosonde launch area. It has sensors for environmen-
tal measurements at 2, 10 and 30 m respectively. The tem-
perature sensors have precisions better than 0.2 K through-
out the whole dynamic range and deliver instant values every
10 min. The tower measurements were used as a comparison
with the radiosonde to evaluate the differences between two
in-situ methods, which can then be set into relation with the
differences between radiosonde and MWR. At 30 m above
ground, the BIAS between BSRN sensor and radiosonde and
over the time period from 1993 to 2004 (7625 samples) is

Table 1. Absolute calibration times of the HATPRO instrument at
Payerne between 2006 and 2009.

Date Time (UTC)

28 September 2006 12:00–13:00
24 April 2007 13:00–14:00
24 October 2007 07:00–08:00
28 March 2008 13:00–15:00
17 September 2009 12:00–14:00

0.07 K, whereas the standard deviation of the difference be-
tween BSRN and radiosonde is 0.53 K. Note that the dif-
ferences include uncertainties due to the altitude of the ra-
diosonde (±10 m according to the precision of the hypsome-
ter) and due to linear interpolation in height, because the ra-
diosonde rarely gives a value at exactly 30 m.

4 Data quality control

All radiosondes from 1992–2009 were quality controlled for
physical consistency according to Nörenberg et al. (2008).
This resulted in 12 524 radiosondes that could be used for
temperature retrieval development. During the time period
of MWR measurements from August 2006–December 2009,
a total of 2107 quality-controlled all-season, all-weather ra-
diosondes could be matched in time to MWR measurements.
This is far more than during previous studies, such as dur-
ing the TUC experiment, which could only account for about
220 radiosondes. An MWR temperature retrieval was carried
out every 12–13 min of which the closest in time was used
for comparison against the radiosonde ascent.

The study relies on∼24 000 h of HATPRO measurements
from August 2006 until December 2009. Most of the time
the instrument operated continuously (average data availabil-
ity >90 %), except for a longer period of maintenance from
11 May to 17 September 2009 following a 2 months period
with intermittent failure. A number of quality checks, re-
spectively correction procedures were applied to the MWR
brightness temperatures to ensure that only trustworthy data
flows into the analysis:

– Cases where the MWR precipitation sensor detected
rain (or snow) were excluded from the analysis.

– Cases when the MWR recorded non-physical bright-
ness temperatures (i.e. lower than 2.7 K or higher than
a threshold value of 330 K) or retrieved non-physical
air temperatures (i.e. lower than 180 K and higher than
330 K) were excluded from the analysis.

– All the data were cross-checked “by eye” to ex-
clude inconsistent spikes in the TB-channels, which
may be caused by Radio Frequency Interference (RFI)
or non-meteorological “disturbances” (sun, moon, hu-
mans, birds, aircraft, . . . ).

Atmos. Meas. Tech., 5, 1121–1134, 2012 www.atmos-meas-tech.net/5/1121/2012/



U. Löhnert and O. Maier: Operational profiling of temperature using MWR 1125

Table 2.Accuracies of the Swiss SRS400 radiosonde sensors.

Parameter Sensor type
Accuracy in the
troposphere

Temperature copper-constantan±0.2 K
thermocouples

Pressure water hypsometer ±2 hPa (accuracy
increases with height)

Humidity carbon hygristor ±10 to 20 %
until April 2009

capacitive polymer ±5 to 10 %
starting May 2009

– Periods after strong precipitation where the dew blower
was not powerful enough to evaporate the water on the
radome immediately were also excluded “by eye” from
the analysis.

These quality controls lead to a reduction of the total avail-
able MWR data for the radiosonde comparison of about
14 %, whereby 4 % were rejected due to cross-checking “by
eye”. The latter point still remains an open issue for all oper-
ational MWR applications: cross-checking “by eye” is cer-
tainly not an option for an operational MWR application,
although necessary for the analysis of the current data set.
This clearly demands for sophisticated automatic RFI filters,
as well as for quality controls concerning the sanity of the
receiver system.

5 Temperature retrieval

The retrieval algorithm (Fig. 2) uses simulated TBs at re-
quired frequencies and elevation angles (see below) derived
from the 1992–2009 Payerne radiosonde data via radiative
transfer calculations using pressure, temperature and humid-
ity profiles of each sounding. Liquid clouds are assumed to
be present at temperatures above−20◦C and at relative hu-
midity values higher than 95 %. The liquid water content is
calculated with a modified liquid adiabatic model based on
an empirical correction accounting for entrainment (Karstens
et al., 1994). Temperature and pressure information was gen-
erally available up to 30 km height for the simulation, so that
no systematic under-estimation is expected due to the omis-
sion of layers in the stratosphere, which contribute to the mi-
crowave signal.

For the radiative transfer simulations, gaseous absorption
is calculated according to Rosenkranz (1998), whereby the
water vapor continuum is modified according to Turner et
al. (2009) and the 22 GHz water vapor line width is modified
according to Liljegren et al. (2005). The latter could show
that the broadening of the line also has influence on the V-
band channels.
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Fig. 2. Flow chart of retrieval derivation and comparisons per-
formed in this study. Note that the following input is needed in order
to perform radiative transfer calculations: temperature profileT (z),
pressure profilep(z), humidity profileq(z), liquid water content
profile LWC(z).

For retrieval derivation we have applied monochromatic
simulations at the center frequencies of HATPRO (Fig. 1)
assuming infinitively small antenna beam widths (pencil
beam approximation) – both representing common approx-
imations. The effects of these approximations are discussed
in Sect. 5.2.

5.1 Theory

At the opaque center of the O2 absorption complex at
60 GHz, most of the temperature information originates from
near the surface, whereas further away from the center, the
atmosphere becomes less and less opaque so that more and
more information also originates from higher atmospheric
layers. Using the frequency dependent information alone at
zenith results in the order of∼2.5 independent pieces of
vertical temperature information throughout the troposphere
(Löhnert et al., 2009).

Since the development of the BL is of special interest due
to the large transfer of energy between the surface and the at-
mosphere, a higher vertical resolution, especially in the lower
troposphere is desired. Therefore combined elevation scan-
ning and multiple frequency methods have been developed
by Crewell and L̈ohnert (2007). The retrieval presented here
uses the same brightness temperature measurements at six
elevation angles 90.0◦, 42.0◦, 30.0◦, 19.2◦, 10.2◦ and 5.4◦
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1126 U. Löhnert and O. Maier: Operational profiling of temperature using MWR

corresponding to air mass factors of about 1, 1.5, 2, 3, 5, and
10. By assuming horizontal homogeneity of the atmosphere,
the observed radiation systematically originates from higher
altitudes the higher the elevation angle. In case of an opti-
cally thick channel (i.e. when all of the radiation received at
the radiometer originates from the closer environment of the
instrument), the lower elevation angles can be attributed to
the temperature in the lower layers, whereas higher elevation
angles contain temperature information from multiple layers
higher above. This fact leads to high accuracy temperature
retrievals in the lowest 1 km and can enhance the number
of independent pieces of vertical temperature information to
∼4. Since brightness temperatures of optically thick chan-
nels typically vary only slightly with elevation angle, eleva-
tion scanning temperature retrievals require highly sensitive
radiometers, a fact which is realized in the HATPRO instru-
ment by a high thermal stability and by using wide band-
widths up to 2 GHz in the optically thick channels 56.66–
58.00 GHz. In contrast, the lower four channels have band-
widths of 230 MHz in order to guarantee a higher degree of
spectrally independent information.

5.2 Implementation

As performed by Crewell and L̈ohnert (2007), a multi-linear
regression between the forward modelled TBs and atmo-
spheric temperature as measured by the radiosonde at a de-
fined height level is carried out. Temperature profiles are then
retrieved from the TBs measured with the radiometer from
2006 to 2009, using the derived regression coefficients. Algo-
rithms were developed up to a height of 10 km above ground
level on a 50 m spacing vertical grid close to the ground grad-
ually increasing to 1 km in the upper troposphere. Note that
this grid is much finer than the true vertical resolution of
the retrievals but similar to the one used by current weather
forecast models. Elevation scans were performed every 12–
13 min, so that high-quality temperature profiles are available
approximately four times an hour. In between, zenith obser-
vations are performed to infer atmospheric water vapor and
liquid water path.

Next to the random temperature errors, the retrievals are
also almost always subject to systematic error. Such errors
can originate from instrumental effects as well as from the
radiative transfer simulation. In the following we show how
systematic errors may be reduced through assessing the sys-
tematic TB offsets. We observe that during clear sky situ-
ations at Payerne, V-band HATPRO measurements and ra-
diative transfer calculations using collocated radiosonde data
show significant differences. For selecting sounding cases
at clear sky conditions, the product APCADA (Duerr and
Philipona, 2004) is used, that derives a global cloud cov-
erage estimation from radiation measurements at Payerne,
although it does not necessarily detect thin cirrus clouds,
which is irrelevant here, because HATRPO measurements
are insensitive to cirrus. Typically, APCADA values of 0 or

1 octa are considered as clear sky conditions. For the selected
cases, the LWP values derived from the MWR are then cross
checked one hour before and two hours after the radiosonde
launch for being close to zero and stable.

Principally we do not expect a perfect agreement because
the MWR performs a point measurement in time and cap-
tures the whole atmospheric column within an instant, while
the radiosonde is subject to wind drift and has an ascent time
of ∼30 min before reaching the top of the troposphere. How-
ever, no significant systematic error is to be expected from
this discrepancy. The results of these comparisons are shown
in Fig. 3, which makes clear that large systematic offsets
of up to 5 K and more are evident in the more transparent
V-band channels. Note, that Hewison et al. (2006) also ob-
served offsets on the same order of magnitude employing ra-
diometers from a different manufactorer. TB offsets are also
present in the off-zenith observing directions as shown in Ta-
ble 3, where the necessity of considering the offset correction
for the optically thinner frequency channels even down to
low elevation angles becomes apparent. The temporal vari-
ation of the TB offsets (Table 3) is less than 0.5 K for the
channels that are more optically thick. In contrast to this, the
two optically thinner channels (51.26 and 52.28 GHz) show
variations up to 2.5 K. Since these channels are more trans-
parent, the effects of the time delay and the spatial drift of the
radiosonde with respect to the instantaneous MWR measure-
ment are more evident. Additionally, these variations arise
from radiometric noise as well as from random uncertainties
in the oxygen absorption model.

The fact that some of the observed offsets seem to “jump”
after each LN2 calibration, hints towards a problem with the
calibration. Typical error sources in the LN2 calibration pro-
cedure are water condensate forming on the aluminium plate
reflector connecting the cold load and the radiometer or on
the radiometer radome itself, as well as a non-homogenous
covering of the absorber material of the cold load with LN2.
TB offsets after the first, second and fourth calibrations re-
semble each other, while the TB offsets after the third and
fifth calibration are also similar to each other. We here as-
sume that the third and fifth calibrations were faulty in the
sense that water condensate formed on the aluminium plate
or the radome leading to an additional emission signal and
in consequence to a underestimation of the TBs as shown
in Fig. 3. In order to prevent this, MWR radome blowers and
heaters should be operated with maximum power and contin-
uous checks of the radome state should be carried out during
calibration.

Assuming that the first, second and fourth LN2 cali-
brations were performed correctly, the following possible
sources remain to describe the TB offsets:

Center-frequency offset: a systematic TB BIAS could re-
sults from the fact that the nominal center-frequency of
a specific channel does not correspond to the actual cen-
ter frequency the instrument is measuring at. In order to
quantify this possible error, we have calculated the shift in
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Figure 3: TB offset time series at 90° elevation for 6 HATPRO V-band channels: TB(measured by 621 
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Fig. 3.TB offset time series at 90◦ elevation for 6 HATPRO V-band channels: TB(measured by MWR)-TB(simulated from sonde). The thick
vertical lines indicate the absolute calibration times with liquid nitrogen.

Table 3.Clear sky offsets (MWR – simulated from sonde) and their
standard deviations (both in K) for the MWR elevation angles and
optically thin V-band frequency channels during the period between
the fourth and fifth LN2 calibration (268 cases).

Elevation
angle/channel 51.26 52.28 53.86 54.94
in GHz

90◦ 3.96/1.70 0.23/1.32 1.50/0.51 −0.35/0.39
42◦ 5.70/1.73 0.71/1.22 0.96/0.43 −0.03/0.47
30◦ 5.51/1.99 −0.01/1.26 0.59/0.38 −0.04/0.42
19.2◦ 5.04/2.33 −0.49/1.29 0.35/0.38 −0.08/0.44
10.2◦ 2.22/1.48 −0.89/0.62 0.14/0.40 −0.15/0.47
5.4◦ 0.52/0.95 −0.44/0.42 −0.10/0.41 −0.20/0.46

mid-frequency necessary to match the observations to the
simulations (Table 4). These calculations are based on the
1992–2009 mean atmospheric profiles of temperature, pres-
sure and humidity of Payerne. Only monochromatic and in-
finitively narrow (pencil beam) radiative calculations have
been considered. The highest shifts on the order of−140
to −80 MHz are necessary at the most transparent channel
51.26 GHz. At the other channels the necessary shifts are on
the order of−30 to +20 MHz. Measurements of the exact
center-frequencies from an identically constructed HATPRO

instrument have shown differences to the nominal frequen-
cies on the order of−30 to +80 MHz, so that the incomplete
knowledge on the exact mid-frequency may account for a
large parts of the offset. However it must again be under-
lined, that no exact measurements of the mid-frequency are
available for the instrument used here so that this is only a po-
tential, while plausible error source. Note, in contrast to the
older Generation 1 (G1) HATPRO type used in this study,
the current Generation 2 (G2) of HATPRO exhibits exactly
determined mid-frequencies with an accuracy of better than
1 MHz considering the complete receiver system response.
RPG (T. Rose, personal communication, 2011) has compared
multiple G2 instruments to a reference radiometer and found
maximum TB differences of 0.5 K at the optically thin V-
band channels.

Band pass effect:Fig. 4 shows the effects of the consid-
eration of HATPRO band passes given in Fig. 1. In order to
calculate the band-pass-averaged TB, monochromatic radia-
tive transfer calculations were carried at a total of 40–50 (de-
pending on the channel) frequencies ranging from the mini-
mum to the maximum of the bandpass and averaged accord-
ingly. On average, the BIAS between bandpass-averaged and
center-frequency monochromatic TB simulations is smaller
than 0.4 K in the V-band, except at the 53.86 GHz chan-
nel, where the monochromatic approximation can lead to an

www.atmos-meas-tech.net/5/1121/2012/ Atmos. Meas. Tech., 5, 1121–1134, 2012
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 625 

Figure 4: Differences in simulated TBs: monochromatic (mc), infinitively narrow beam (pencil beam: 626 

pc) assumption minus realistic HATPRO specifications concerning the bandpass (bdp) and beam 627 

width (bmw). The upper panels show the effects considering band pass characteristics, while the lower 628 

panels show the effects of actual beam width. Left: systematic differences, right: random differences. 629 

The calculations rely on 2579 all-sky radiosonde ascents and are shown for different elevation angles 630 

(colored).  631 
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Fig. 4.Differences in simulated TBs: monochromatic (mc), infinitively narrow beam (pencil beam: pc) assumption minus realistic HATPRO
specifications concerning the band pass (bdp) and beam width (bmw). The upper panels show the effects considering band pass characteris-
tics, while the lower panels show the effects of actual beam width. Left: systematic differences, right: random differences. The calculations
rely on 2579 all-sky radiosonde ascents and are shown for different elevation angles (colored).

underestimation on the order of 1 K at 90◦ elevation. This
high deviation can be explained by the width of the band
pass, which “sees” the absorption-line-peak at∼53.6 GHz.
This effect, however, cannot explain the difference between
measurement and model – a consideration of this phe-
nomenon leads to an even larger difference between mea-
surement and model because of opposite signs. Note, that
the variability of the differences are rather small, i.e. be-
low 0.1 K. It is important to note, that RPG has redesigned
(narrowed) the band passes of the first four HATPRO V-
band channels significantly for the G2 instruments lead-
ing to BIAS values between bandpass-averaged and center-
frequency monochromatic TB simulations lower the 0.2 K
overall.

Beam width effect:radiative transfer calculations consid-
ering realistic beam widths of 2.25◦ FWHM are compared
to the mono-chromatic, pencil-beam calculations (Fig. 4). At
all frequencies and angles larger than 19.2◦, the beam width
effects are smaller than 0.15 K and thus mostly negligible in
contrast to other effects. However, at elevation angles lower
than 19.2◦ and the lower two frequency channels, system-
atic differences up to 0.7 K occur. These overestimations of
the pencil beam approximation may be attributed to a higher
degree of saturation in the lower part of the beam. Because
lower elevation angles than 90◦ are used only at frequencies

higher than 54 GHz in the temperature retrieval, we can ne-
glect the beam width effects from our current discussion.

Gaseous absorption model: studies comparing different
oxygen absorption models for the microwave spectrum (e.g.
Hewison et al., 2006 or Cadeddu et al., 2007) have shown
systematic offsets between model and measurement that are
on the same order of magnitude as the differences shown
here. Thus, it is not possible in this study to discriminate be-
tween the possible sources of discrepancy.

Radiosonde: we do not expect the systematic differences
to originate from the radiosonde measurements because these
would imply unrealistically large temperature offsets (0.5 K)
varying with height in the lower to middle troposphere.

For each measurement period between two subsequent
LN2 calibrations, a separate offset correction procedure is
developed and applied to every TB measurement. This cor-
rection is carried out via a linear relation depending on the
measured TB itself and is also a function of frequency and
elevation angle. The TBs with and without the offset correc-
tion are both applied to MWR measurements and the results
are discussed in Sect. 6 below.

6 Data analysis

The following retrieval data analysis assesses the accuracies
of MWR temperature retrievals under different conditions.
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Table 4.Necessary center frequency shifts [in MHz] to account for the systematic differences shown in Fig. 3.

Before 1st After 1st After 2nd After 3rd After 4th After 5th
calibration calibration calibration calibration calibration calibration

51.26 GHz −170 −140 −80 +190 −140 +100
52.28 GHz −10 ±0 +20 +160 −10 +80
53.86 GHz +10 −20 −20 +30 −30 ±0
54.94 GHz +90 +40 +40 +180 +20 +180
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Figure 5: MWR-retrieved time-height temperature contours between 0 and 4 km on 09 September,  640 

2008. 641 
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Fig. 5. MWR-retrieved time-height temperature contours between
0 and 4 km on 9 September 2008.

We have chosen to divide the analysis into cases only dur-
ing clear-sky and then for all-sky conditions. Additionally
we look into the differences of retrieval performance dur-
ing day and night and try to identify the reliability of MWR
temperature retrievals during significant weather, i.e. frontal-
passages and cold/warm extremes

As an example of a continuous MWR temperature profile
retrieval over 24 h, Fig. 5 shows a time-height contour of a
late summer day with a typical development of the BL start-
ing from a night-time inversion towards a well mixed day-
time BL. After sunset, IR cooling induces again an inversion
close to the surface. A warming of∼4 K in the altitude range
between 2 and 4 km can also be observed throughout the
course of the day. Both at 00:00 and 12:00 UTC the MWR re-
trieval is able to accurately reproduce the radiosonde profile
in the region below 1 km (Fig. 6). Especially the low-level
inversion at night is nicely captured. Above 1 km, the lim-
ited vertical resolution of the MWR measurements become
obvious, i.e. during both cases the lifted inversions are not
retrieved.

Using the average (1992–2009) Payerne profile of tem-
perature, humidity and pressure, the number of indepen-
dent pieces of information contained in the TB for retriev-
ing the temperature profile (degrees of freedom for signal,
DOF) can be determined following Rodgers (2000). The
calculated averaging kernels for 6 distinct heights are shown
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 649 

Figure 6:  Temperature profile at 0 (left) and 12 (right) UTC on 09 September 2008 between 0 and 4 650 

km. The bold line shows the radiosonde profile, the dotted line the MWR retrieval and the dashed line 651 

the radiosonde profile smoothed with the averaging kernel. 652 
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Fig. 6. Temperature profile at 00:00 (left) and 12:00 (right) UTC
on 9 September 2008 between 0 and 4 km. The bold line shows the
radiosonde profile, the dotted line the MWR retrieval and the dashed
line the radiosonde profile smoothed with the averaging kernel.

in Fig. 7, which are defined by the sensitivity of the re-
trieved value at height with indexi to the true value at height
j (δTretrieved,i /δTtrue,j ). Note, a perfect vertical resolution
would give rise to a delta function with a value of 1 at height
i = j and 0 at all other heightsi 6= j . Thus, the broadness of
the averaging kernels gives information on the vertical reso-
lution. The diagonal components of the averaging kernel ma-
trix A correspond to the DOF for each level and the trace of
the averaging kernel matrix yields the total DOF, which are
∼4 in case of the temperature retrieval. If the cumulative dis-
tribution of the DOF with height is regarded (Fig. 7), one can
conclude that about 85 % (95 %) of the temperature informa-
tion originates from the lowest 2 km (4 km).

The radiosonde profile can be brought onto the vertical
resolution of the MWR temperature retrieval by the follow-
ing multiplication (averaging kernel smoothing):

T smoothed= T retrieved+ A (T true− T retrieved) (1)

This accounts for the limited vertical resolution of the MWR
temperature retrieval and the resulting differences can now
be analysed more precisely towards measurement, forward
modelling or statistical representativeness error. In Fig. 6,
the smoothed radiosonde profile is very close to the MWR
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 654 

Figure 7: Temperature averaging kernels (δTretrieved,i/δTtrue,j) for the mean temperature profile from the 655 

complete Payerne data set (1992-2009) as a function of height shown for different heights of 656 

perturbation (left). Cumulative Degrees of Freedom (DOF) for temperature with height (right). The 657 

DOF at each height corresponds to the diagonal value of the averaging kernel. The four different 658 

curves correspond to different seasons (summer/winter) and different radiosonde ascent times (0/12 659 

UTC) derived from complete Payerne data set (1992-2009). 660 

Fig. 7. Temperature averaging kernels (δTretrieved,i /δTtrue,j ) for
the mean temperature profile from the complete Payerne data set
(1992–2009) as a function of height shown for different heights of
perturbation (left). Cumulative Degrees of Freedom (DOF) for tem-
perature with height (right). The DOF at each height corresponds to
the diagonal value of the averaging kernel. The four different curves
correspond to different seasons (summer/winter) and different ra-
diosonde ascent times (00:00/12:00 UTC) derived from complete
Payerne data set (1992–2009).

retrieval in the lowest 2 km, however it becomes clear that
the MWR retrieval cannot resolve the exact details shown
within the radiosonde profile, i.e. the night-time isothermal
layer from 1 to 1.3 km. During night above 2 km, a persis-
tent underestimation (1–2 K) of the MWR retrieval occurs
between radiosonde and retrieved profile as well between
smoothed and retrieved profile. This points to the fact, that
this underestimation is not due to vertical resolution effects
but is more likely due to one of the error sources mentioned
above.

6.1 Clear sky comparisons

In order to test the consistency of the TB offset correction
procedure, a first clear-sky comparison is carried out. Here,
the temperature retrieval coefficients are derived using ex-
actly the same 487 clear-sky cases as for deriving the TB-
offset corrections (Sect. 5.2). This retrieval was then again
applied to the corresponding clear-sky MWR measurements:
once applying the TB offset correction and once using the
original TBs (Fig. 8). If the TB offset correction is not ap-
plied, systematic differences between−0.7 and +0.2 K arise
in the lowest 4 km. The systematic difference is even similar
in size to the random difference in the boundary layer. As ex-
pected, a clear positive influence of the TB-offset correction
can be seen both with respect to BIAS as well as STDEV
between MWR and radiosonde temperature. The BIAS has
practically vanished throughout the profile and the STDEV
values range within 0.4 and 1.3 K within the lowest 2 km in-
creasing to 1.5 K at 4 km. The overall lowest STDEV can
be observed at 250 m with a value of∼0.4 K. The STDEV
value decreases from 0.75 K at the surface to this value due to
the high temperature variability directly close to the surface

APRIL 2012 LÖHNERT AND MAIER 31 

 661 

Figure 8:  Temperature profile differences (BIAS and STDEV) during clear-sky conditions from 662 

August 2006 – December 2009 between MWR and radiosonde measurements. The MWR retrieval 663 

coefficients and the TB-offset correction were derived using exactly the same clear-sky measurements 664 

as considered in the evaluation. Black lines show the retrieval results without using the systematic TB 665 

offset correction while green lines show the results applying the systematic TB offset correction (OC). 666 

Additionally, in red the STDEV is shown after smoothing the radiosonde profile with the averaging 667 

kernel (AVK). A total number of 486 matching MWR/radiosonde cases are evaluated in the plot. 668 
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Fig. 8. Temperature profile differences (BIAS and STDEV) during
clear-skyconditions from August 2006–December 2009 between
MWR and radiosonde measurements. The MWR retrieval coeffi-
cients and the TB-offset correction were derived using exactly the
same clear-sky measurements as considered in the evaluation. Black
lines show the retrieval results without using the systematic TB off-
set correction while green lines show the results applying the sys-
tematic TB offset correction (OC). Additionally, in red the STDEV
is shown after smoothing the radiosonde profile with the averaging
kernel (AVK). A total number of 486 matching MWR/radiosonde
cases are evaluated in the plot.

coupled with the fact that MWR is sensitive to a volume
of air, whereas the radiosonde measures at relatively fixed
points in time and space. Additionally the radiosonde needs
typically 50 m to reach an equilibrium temperature concern-
ing its natural ventilation due to ascent speed.

Additionally, Fig. 8 shows the BIAS and STDEV values
using the smoothed radiosonde profiles (Eq. 1). Whereas the
BIAS using the smoothed and non-smoothed radiosonde val-
ues do not differ, the STDEV values are much lower and
range from 0.3 to 0.7 K in the lowest 4 km. These num-
bers are the errors to expect from the random uncertainty in
TB measurement (0.2–0.5 K) as well as from the radiosonde
measurement. Hereby, the latter is due not only to the sen-
sor uncertainty of 0.2 K (Table 2), but also due to temporal
delay and spatial drifts of the radiosonde with respect to the
quasi-instantaneous MWR measurement.

6.2 All sky comparisons

Next, the retrieval performance is evaluated using 1816 si-
multaneous radiosonde/MWR measurements during all-sky
conditions. Additionally to the clear-sky cases, this data set
also contains cloudy cases. The retrieval algorithm coeffi-
cients, which are applied to this data set, are derived from
all 1992–2009 radiosondes as seen in Fig. 2 and described in
Sect. 5. Using 12 524 radiosondes from this time span allows
to develop a much more robust algorithm that is applicable
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 669 

Figure 9: Temperature profile differences (BIAS and STDEV) during all-sky conditions from August 670 

2006 – December 2009 between MWR and radiosonde measurements. The MWR retrieval 671 

coefficients were derived from the whole 1992-2009 radiosonde data set, whereas and the TB 672 

correction was derived only from clear-sky measurements as in Fig. 8. Black lines show the retrieval 673 

results without using the systematic TB offset correction while green lines show the results applying 674 

the systematic TB offset correction (BC). Additionally, in red the STDEV is shown after smoothing 675 

the radiosonde profile with the averaging kernel (AVK). A total number of 2107 matching 676 

MWR/radiosonde cases were considered; in 1816 cases the MWR measurements passed the quality 677 

control and are evaluated in the plot. 678 
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Fig. 9. Temperature profile differences (BIAS and STDEV) dur-
ing all-skyconditions from August 2006–December 2009 between
MWR and radiosonde measurements. The MWR retrieval coeffi-
cients were derived from the whole 1992–2009 radiosonde data set,
whereas and the TB correction was derived only from clear-sky
measurements as in Fig. 8. Black lines show the retrieval results
without using the systematic TB offset correction while green lines
show the results applying the systematic TB offset correction (OC).
Additionally, in red the STDEV is shown after smoothing the ra-
diosonde profile with the averaging kernel (AVK). A total number
of 1816 matching MWR/radiosonde cases are evaluated in the plot.

for all cases between August 2006 and December 2009. Sim-
ilar to the clear-sky comparison, systematic differences range
between−0.6 and +0.3 K in the lowest 4 km if the TB offset
correction is not applied (Fig. 9). After applying the correc-
tion the overall BIAS is smaller than±0.1 K, except for the
surface point (+0.2 K). This makes clear that the TB offset
correction derived from the clear-sky cases can also signifi-
cantly help reducing the BIAS for all sky cases. Note that the
STDEV values are very similar to the clear-sky values shown
in (Sect. 6.1, Fig. 8) underlining the potential of MWR for
temperature profiling also during cloudy situations. For the
TB-offset corrected values, the RMS values are within 0.4
to 1.4 K in the lowest 2 km and increase to 1.7 K at 4 km.
The high accuracies below 1 km are primarily due to the in-
formation contained in the elevation scans (Löhnert et al.,
2009). These long-term comparisons are also consistent with
the predicted accuracies based on simulations by Crewell and
Löhnert (2007) using an identical retrieval algorithm setup.
Note, that BIAS and STDEV values using the smoothed ra-
diosonde profiles in Fig. 9 are very similar to the clear sky
values (Fig. 8) and range from 0.3 to 0.8 K in the lowest 4 km.
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 684 

Figure 10: Temperature error covariances calculated from all-sky conditions from August 2006 – 685 

December 2009 between MWR and radiosonde measurements. The error covariances are shown for 686 

six specific height levels. Asterisks show the reference heights. 687 
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Fig. 10.Temperature error covariances calculated from all-sky con-
ditions from August 2006–December 2009 between MWR and ra-
diosonde measurements. The error covariances are shown for six
specific height levels. Asterisks show the reference heights.

In order to assess the retrieval uncertainty in a complete
way, it is also necessary to calculate the level-to-level error
covariances. These give information on the correlation of the
temperature error in heighti with the temperature error in
height j as shown in Fig. 10 for six distinct heights. The
relatively sharp and low maximum peak values below 1 km
underline the high potential for BL temperature profiling,
whereas increasing broadness and maximum peak values of
the error covariance curves at heights above 2 km again un-
derline decreasing vertical resolution and accuracy with in-
creasing height. Such error covariance information is neces-
sary for assimilating MWR temperature data into NWP mod-
els, i.e. within a 3DVAR or 4DVAR assimilation system.

In order to correctly interpret Figs. 8 and 9, it is impor-
tant to consider the availability of quality controlled MWR
temperature data during the all-sky cases analysed. Within
the period from August 2006 to December 2009, 2107 cases
of simultaneous MWR and radiosonde measurements have
been identified. 291 (∼14 %) of these cases are not included
in the analysis of Fig. 9 because these did not pass the
MWR measurement quality control due to reasons described
in Sect. 4. In summary the Payerne MWR was able to deliver
reliable and accurate temperature profiles in 86 % of all-sky
cases, with an uncertainty ranging from 0.5 K in the lower
boundary layer and rising up to 1.7 K at 4 km height.
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 693 

Figure 11: Temperature profile differences (BIAS) during all-sky conditions from August 2006 – 694 

December 2009 between MWR and radiosonde measurements differentiated by day and night; red 695 

lines show the retrieval results only at 12 UTC, whereas black lines only at 0 UTC. 920 12 UTC, 696 

respectively 896 0 UTC MWR measurements passed the quality control and are evaluated in the plot. 697 

Dashed lines show retrieval results using 2m-temperature (Ts) as an additional predictor in the linear 698 

regression. 699 
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Fig. 11.Temperature profile differences (BIAS) during all-sky con-
ditions from August 2006–December 2009 between MWR and ra-
diosonde measurements differentiated by day and night; red lines
show the retrieval results only at 12:00 UTC, whereas black lines
only at 00:00 UTC. 920 12:00 UTC, respectively 896 00:00 UTC
MWR measurements passed the quality control and are evaluated in
the plot. Dashed lines show retrieval results using 2 m-temperature
(Ts) as an additional predictor in the linear regression.

6.3 Day vs. night effects

When analyzing TB offset corrected temperature retrievals
for 00:00 and 12:00 UTC radiosondes separately, the STDEV
values are within 0.15 K of each other throughout the low-
est 4 km. However, the BIAS shows a non-zero behavior as a
function of height with opposite sign (Fig. 11). This behavior
varies between−0.16 and +0.3 K at the surface and shows
minima of ±0 K at 250, respectively 1300 m. This effect is
due to the fact that the retrieval coefficients have been de-
rived without discriminating between day and night. System-
atic temperature offsets very similar in size and vertical struc-
ture are obtained when applying the retrieval exactly to those
simulated TBs from the 1992–2009 data set from which the
regression coefficients are derived. However, when differen-
tiating again by day and night, the magnitude and height of
the minimum/maximum bias depends strongly on the ran-
dom TB uncertainty chosen when deriving the linear regres-
sion coefficients. As only radiosonde ascents at 00:00 and
12:00 UTC are available, BIAS errors will always be an is-
sue, even if one would derive separate retrieval coefficients
for day and night. A way to partially reduce these effects is
to include 2 m temperature observations (Fig. 11). Instead of
using only calculated TBs as predictors for the temperature
profile in the multi-linear regression, the 2 m temperature is
additionally included and the BIAS values are much lower at
the surface. The positive amplitude of the BIAS values with
height is also slightly reduced to 0.2 K throughout the lowest
4 km.
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 705 

Figure 12: Temperature profile differences (STDEV) during all-sky (1816), frontal (252), warm 706 

extreme (330), cold extreme (332) and temperature inversion (165) cases (see text for details) from 707 

August 2006 – December 2009 between radiosonde and MWR measurements.  708 
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Fig. 12. Temperature profile differences (STDEV) during all-sky
(1816), frontal (252), warm extreme (330), cold extreme (332) and
temperature inversion (165) cases (see text for details) from Au-
gust 2006–December 2009 between radiosonde and MWR mea-
surements.

6.4 Frontal and extreme conditions

The so far shown results are valid for an average over all
cases. However, it is also necessary to show how the MWR
temperature retrieval performs in frontal or extreme atmo-
spheric conditions, where it is especially important for mod-
els to receive accurate measurement input. The following
subsets of cases are extracted from the radiosonde data set:
frontal conditions, warm extremes, cold extremes and ex-
treme temperature inversions.

A situation is classified asfrontal when available records
report a front or occlusion crossing Zürich (170 km NE of
Payerne) up to 12 h before or after the launch of a Pay-
erne radiosonde. Thewarm extremes are classified as cases
when the surface temperature is outside of the 1-sigma range
as a positive deviation, whereascold extremes are classi-
fied as cases when the surface temperature is outside the 1-
sigma range as a negative deviation. If the radiosonde profile
shows a continuous temperature rise with height below 4 km
throughout a 500 m height interval, the profile is classified as
anextreme temperature inversioncase.

As can be seen in Fig. 12 the STDEV can vary quite con-
siderably with height depending on the subset of cases evalu-
ated. Throughout the lowest 4 km the STDEV during frontal
passages are even up to 0.5 K smaller than in the all-sky
cases. This is due to missing inversions during frontal pas-
sages, in contrast to fair weather situations, i.e. during winter
anti-cyclonic situations or when residual layers occur at night
after a sunny day. This becomes clear when comparing to
other extreme cases. In the 165 evaluated extreme inversion
cases MWR temperature retrieval STDEV is smaller than
1 K below 400 m but is then larger than 2 K already at 2 km.
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Inversions are detected, however their amplitude and sharp-
ness are smoothed out, leading to large differences when
comparing level-to-level with the vertically highly resolved
soundings. The STDEV for the cold curve resembles the in-
version curve because 45 % of the analysed inversion cases
are also classified cold extremes (i.e. night-time inversion
due to strong radiative cooling in winter). Warm extremes,
which can be associated with well-mixed boundary layers,
show up to 0.5 K better STDEV than the all-sky cases. For
these cases, only less than 1 % are also classified as an in-
version. Similarly, only less than 5 % of the frontal cases are
classified as an extreme inversion event. This makes clear
that the performance of the MWR temperature retrieval can
be considered as reliable during frontal conditions. However,
quality-controlled data availability decreases down to 60 %
in these cases, which is a result of the activated internal HAT-
PRO precipitation flag. Hence, temperature profiles during
frontal passages can only be characterized well at times when
precipitation is not reaching the surface and thus obscuring
the MWR measurement. During all of the subsets analysed
above, the BIAS between MWR and radiosonde varies be-
tween−0.5 and +0.5 K as a function of height.

7 Summary and conclusions

This study shows the current strengths and weaknesses of
microwave radiometry for atmospheric temperature profiling
using a unique set of collocated MWR and radiosonde mea-
surements. While the advantages of high temporal resolution
and un-manned routine observations must be stressed, a lim-
ited vertical resolution (with respect to radiosondes) and cor-
responding random error inherent within the measurement
principle must be kept in mind. Random errors range on the
order of 0.5 K in the lower boundary layer and rising up to
1.7 K at 4 km height. Above this height only 5 % independent
information originates from the radiometer measurement it-
self.

While MWR measurement may prove very valuable for
NWP model applications considering the random error, this
study has also quantified and corrected for systematic error.
The different possible sources of the observed systematic dif-
ferences are difficult to allocate in retrospective, but these are
currently subject of intense study in the microwave remote
sensing community (University of Cologne, NOAA-Severe
Storm Laboratory, RPG). This study makes clear that future
operational MWR measurements need to be monitored per-
manently during clear sky conditions, i.e. using simple non-
scattering radiative transfer modelling. Such monitoring is
necessary to identify possible TB-offsets. TB offset correc-
tions are essential for providing an optimized temperature
profile product. The observed “stability” (w.r.t. the radioson-
des) between two LN2 calibrations makes clear that HAT-
PRO type MWRs may only need LN2 calibrations on the
time scale of one year or even less often.

The quality control procedures and offset correction
method described in this paper are currently subject of in-
tense discussion within the newly-found “International net-
work of ground-based microwave radiometers” (MWRnet;
http://cetemps.aquila.infn.it/mwrnet/). It is currently a cen-
tral platform for uniting European-wide MWR measure-
ments under the aspect of harmonization of measurement
modes, data formats, retrievals etc. and is embedded with
the COST action ES0702 EG-CLIMET (European Ground-
Based Observations of Essential Variables for Climate and
Operational Meteorology;http://www.eg-climet.org). Basics
on MWR operations and advice for MWR users are given
through this portal via an open WIKI site.

Acknowledgements.The authors would like to thank the Meteo
Swiss staff for their support of this work: Pierre Huguenin
for installing and operating the HATPRO microwave radiome-
ter at Payerne as part of the CN-MET project from 2006 to
2009, Pierre Jeannet, Gonzague Romanens, Gilbert Levrat and
Roger Bersier for sharing their know-how on sounding practice
and related science and Dominique Ruffieux, Bertrand Calpini and
their teams, for their leadership in making advanced remote sensing
techniques operational for meteorologists and modellers. We also
thank Radiometer Physics GmbH (Thomas Rose) for providing in-
strument details leading to the insights gained in this study. We are
also grateful to David D. Turner (formerly University of Wisconsin,
Madison, Madison, USA, now NOAA Severe Storms Laboratory,
Norman, Oklahoma, USA) for providing us with the HATPRO
bandpass data and enlightening discussion. This work has been
embedded in and partially sponsored by the European COST action
ES0702 (EG-CLIMET) under the lead of Anthony Illingworth,
who is driving the development of ground-based remote sensing
networks for operational weather observation and forecasting. The
Institute of Geophysics and Meteorology, research groupIntegrated
Remote Sensing(Susanne Crewell) at the University of Köln has
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