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Abstract. An algorithm for linear estimation of aerosol bulk
properties such as particle volume, effective radius and com-
plex refractive index from multiwavelength lidar measure-
ments is presented. The approach uses the fact that the total
aerosol concentration can well be approximated as a linear
combination of aerosol characteristics measured by multi-
wavelength lidar. Therefore, the aerosol concentration can
be estimated from lidar measurements without the need to
derive the size distribution, which entails more sophisticated
procedures. The definition of the coefficients required for
the linear estimates is based on an expansion of the particle
size distribution in terms of the measurement kernels. Once
the coefficients are established, the approach permits fast re-
trieval of aerosol bulk properties when compared with the
full regularization technique. In addition, the straightforward
estimation of bulk properties stabilizes the inversion making
it more resistant to noise in the optical data.

Numerical tests demonstrate that for data sets containing
three aerosol backscattering and two extinction coefficients
(so called 3β + 2α) the uncertainties in the retrieval of parti-
cle volume and surface area are below 45 % when input data
random uncertainties are below 20 %. Moreover, using linear
estimates allows reliable retrievals even when the number of
input data is reduced. To evaluate the approach, the results
obtained using this technique are compared with those based
on the previously developed full inversion scheme that re-
lies on the regularization procedure. Both techniques were
applied to the data measured by multiwavelength lidar at
NASA/GSFC. The results obtained with both methods using

the same observations are in good agreement. At the same
time, the high speed of the retrieval using linear estimates
makes the method preferable for generating aerosol infor-
mation from extended lidar observations. To demonstrate the
efficiency of the method, an extended time series of obser-
vations acquired in Turkey in May 2010 was processed us-
ing the linear estimates technique permitting, for what we
believe to be the first time, temporal-height distributions of
particle parameters.

1 Introduction

Theoretical and experimental studies of the last decade
have demonstrated that multiwavelength (MW) Raman li-
dars based on a tripled Nd:YAG laser are able to provide
the height distribution of particle physical parameters, such
as radius, concentration and complex refractive index (Ans-
mann and M̈uller, 2005). Moreover, up to a certain limit
such systems can reproduce the main features of the parti-
cle size distribution in the 0.075–10 µm radii range. To in-
vert the aerosol extinctionα and backscatteringβ coeffi-
cients measured at multiple wavelengths to particle param-
eters, numerous possible approaches have been considered
but for routine processing of lidar measurements the inver-
sion with regularization is now the most commonly used (see
Müller et al., 1999; Veselovskii et al., 2002, 2004, 2009; Kol-
gotin and M̈uller, 2008, and references therein). In order to
adequately address the fundamental non-uniqueness of the

Published by Copernicus Publications on behalf of the European Geosciences Union.



1136 I. Veselovskii et al.: Linear estimation of particle bulk parameters

lidar data interpretation, a family of solutions is generated in
the framework of this approach. Specifically, a series of so-
lutions is generated using different initial guesses, different
aerosol assumptions and different settings of a priori con-
straints. Each single solution is obtained using the regulariza-
tion technique. Then the individual solutions corresponding
to the smallest residuals are averaged and the result of the av-
eraging is taken as the best estimate of the aerosol properties.

This approach has demonstrated the possibility of provid-
ing rather adequate retrievals of aerosol properties. How-
ever it is quite time-consuming, a fact that becomes an is-
sue when large volumes of data need to be analyzed, as for
example from an air- or space-borne lidar system. Installa-
tion of MW lidars on air or space-borne platforms poses an-
other problem: the retrieval algorithm should be more tol-
erant to noise in the input data since reasonable averaging
times are likely to be smaller for moving lidar systems. And
finally, in the regularization approach described in (Müller
et al., 1999; Veselovskii et al., 2002) at least five input opti-
cal data (three backscatterings and two extinctions, so called
3β + 2α) are needed to retrieve the particle size distribution
(PSD), but in many applications it would be highly desir-
able to decrease the number of optical channels. So, the
development of the approach permitting the reliable esti-
mation of particle bulk properties such as volume, surface
density and effective radius from a reduced number of opti-
cal channels would be an important improvement. One way
to assess this possibility is to attempt to approximate the
bulk properties by a linear combination of the input opti-
cal data (extinction and backscattering). The correspond-
ing weight coefficients can be determined by expanding the
PSD in terms of the measurement kernels (Twomey, 1977).
Thomason and Osborn (1992) used this approach to estimate
aerosol mass with the multiwavelength SAGE II extinction
kernels. The interpretation of lidar measurements using the
linear estimate techniques was explored in early studies by
Chaikovskii and Shcherbakov (1985). The potential of this
approach for treating elastic-Raman multiwavelength lidar
measurements was studied by Donovan and Carswell (1997)
under assumption of known refractive index. The technique
was further explored in recent publications (De Graaf et al.,
2009, 2010) where different aerosol models were used to in-
vert optical data without prior information about the particle
refractive index.

In this paper we propose a modified technique, which
here and below we refer to as “linear estimation” (LE). In
difference with the mentioned above approaches the com-
plex refractive index is derived as a part of retrieval proce-
dure together with the bulk aerosol characteristics. In ad-
dition, in order to improve stability of solution we provide
not a single solution but a family of solutions closely repro-
ducing the measurements. To validate LE, we apply it and
the full inversion algorithm (Veselovskii et al., 2009) to the
same data and compare the results. Finally, we apply LE to

an extended series of lidar measurements to evaluate height-
temporal variations of the particle bulk parameters.

2 Algorithm description

The aerosol extinction (α) and backscattering coefficients
(β) are related to the particle volume size distributionv(r)

via integral equations as follows:

gp =

rmax∫
rmin

Kl(m,r) v(r) dr l = (i,λk) = 1, . . .,N0 (1)

Index l labels the type of optical data (i = α, β) and wave-
lengthsλk; Kl(m,r) are the volume kernels (VK) depending
on the complex refractive indexm = mR − i ·mI and particle
radiusr ∈[rmin,rmax]. To get kernelsKl(m,r) in our study
the Mie computations are used, thus the particles are as-
sumed to be spherical. This approach can also be generalized
to treat the particles of irregular shape, by using the kernels
corresponding the ensemble of randomly oriented spheroids
(Mishchenko et al., 2000; Dubovik et al., 2006). In vector-
matrix form Eq. (1) can be rewritten as:

g = K v (2)

Herev is the column vector with elementsvk corresponding
to the particle volume inside radii interval [rk, rk+1] and K
is the matrix containing the discretized kernels as rows. The
volume distributionv(r) can be expanded in terms of the ker-
nels of Eq. (1), as prescribed by Twomey (1977). Such an ex-
pansion assumes that vectorv corresponding tov(r) can be
presented as a combination of the matrixK rows, i.e.

v = vg + v⊥ = KTx + v⊥ (3)

wherevg is the projection of the volume distribution on the
measurement kernels, whilev⊥ is the residual – the part
of volume distribution orthogonal to these kernels (Kv⊥ =

0) and xj are the weight coefficients of expansion. Using
Eq. (3), Eq. (2) can be rewritten as:

g = KK T x + K v⊥ = KK T x (4)

Then, the vectorx of the expansion coefficients can be found
as:

x =

(
KK T

)−1
g (5)

and the volume distribution projected on the kernels is

vg = KTx = KT
(
KK T

)−1
g (6)

The residual then can be written as:

v⊥ = v − vg =

(
I − KT

(
KK T

)−1
K

)
v (7)
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Equations (6)–(7) can now be used to evaluate the linear esti-
mations of the unmeasured aerosol characteristics. If there is
one or several aerosol characteristicspi (i = 1, . . . ,Np) that
are not measured but are needed to be estimated using mea-
surementsg, the dependence ofpi on the size distribution
can be described as:

p = Pv. (8)

Here the elementspi of vectorp are the unmeasured aerosol
characteristics, andP is the matrix of the corresponding co-
efficients. Taking into account Eq. (3) the vectorp can be
expressed as:

p = P(vg + v⊥) = pg + p⊥ = Fg + D⊥v (9)

Herepg represents the vector of projections of characteris-
tics pi on the measured setg andp⊥ represents the vector
of characteristicspi on the null-spacev⊥. In other words,pg

can be estimated fromg, while the measurements provide no
information aboutp⊥. Using Eqs. (6) and (7) the matrices of
coefficientsF andD⊥ can be expressed as

F = P KT
(
KK T

)−1
and

D⊥ = P
(

I − KT
(
KK T

)−1
K

)
(10)

The elements of matrixF can be computed and stored in
the look-up tables making computations ofpg very fast. The
residual termp⊥ cannot be measured with the available set of
observationsg, but can be estimated from numerical model-
ing for typical situations. The situation is particularly favor-
able when particle bulk propertyp (for example, volume,
surface, number density) needs to be estimated (Donovan
and Carswell, 1997). In this case the matrixP contains the
weight coefficients for different integral properties as rows.
For example, for volume(i = 1) P1k = 1, for surface (i = 2)
P2k =

3
rk

and for number density (i = 3) P3k =
3

4πr3
k

. In such

case, the existence of the zero spacev⊥ does not have much
importance and the residualp⊥ is generally expected to be
small, because the observationsg are known to be strongly
sensitive to aerosol total concentrations, while being less
sensitive to the details of the size distribution.

Thus, the projectionpg can be estimated quickly from the
observationsg without calculating the full size distribution
v, i.e. without performing a full inversion of Eq. (2). This
is a significant advantage of the using the linear estimates
pg as compared to the more conventional approach which
yields PSD (e.g. M̈uller et al., 1999; Veselovskii et al., 2002,
2004, 2009; Kolgotin and M̈uller, 2008). Indeed, the calcu-
lation ofpg is fast and defining the coefficientsF is straight-
forward. Following Eq. (10) the calculation ofF involves the
inversion of matrixKK T. In principle this operation can be
ambiguous ifKK T is ill-conditioned. However, in particular
cases when only a very few measured characteristicsgi are

used (for example, in our case we use maximum 5 different
observations), the matrixKK T has small dimension (maxi-
mum 5× 5) and in the case such as here that each of the five
measured characteristicsgi is quite different, is well-posed
and can be inverted exactly. By contrast, the conventional ap-
proaches that provide the size distributionv and must solve
Eq. (2) may face significant difficulties. For example, the
least square solution can of Eq. (2) is:

v =

(
KTK

)−1
KTg (11)

Here the matrixKTK has to be inverted. This matrix has di-
mensionNv × Nv, whereNv is the dimension of size dis-
tribution v. Therefore, matrixKTK has significantly larger
dimension than matrixKK T. For example, the aerosol
retrievals from sun-photometer observations discussed by
Dubovik and King (2000) useNv = 22. In such situations
KTK is known to be ill-conditioned and the inversion of
this matrix becomes ambiguous. Therefore in many practi-
cal applications different types of constraints can be used to
achieve unique and stable solution of Eq. (2). For example,
it can be constrained based on smoothness of the solution as
suggested by Phillips (1962) and Twomey (1977). However,
the use of smoothness or other a priori constraints may re-
quire rather sophisticated developments (see discussion by
Dubovik, 2004). We should mention also that in most of al-
gorithms for lidar data inversion (e.g. M̈uller et al., 1999;
Veselovskii et al., 2002, 2004, 2009; Kolgotin and Müller,
2008), the size distribution is described by a much smaller
number of parameters than 22 (typicallyNv = 5–7). This re-
duces the difficulties associated with the inversion of matrix
KTK , however this also may lead to the introduction of ad-
ditional errors in the algorithm, since some features of the
size distribution are neglected. In this respect the coefficients
F can be calculated using the detailed size distribution with
very largeNv, since matrixKK T has the same dimension as
number of rows ofK . Correspondingly, coefficientsF can
be always found accurately. In our computations we nor-
mally useNv = 100 radii logarithmically distributed inside
the inversion interval.

The measured optical datag∗ contain the error1g

g∗
= g + 1g (12)

Thus the uncertainty of particle parameters estimation is:

1p = Fg∗
− p = F(g + 1g) − (Fg + D⊥v)

= F1g − D⊥v (13)

Then, if the measurement errors1g are random, unbi-

ased (i.e.
〈
1g

〉
= 0) and have covariance matrix

〈
1g1T

g

〉
=

Cg, the corresponding covariance matrix of retrieval
uncertainties1p can be written as

Cp =

〈(
F1g − D⊥v

)(
F1g − D⊥v

)T
〉

= Crandom
p + Csystematic

p (14)
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Here, termCrandom
p represents the contribution of the random

measurement errors1g to Cp andCsystematic
p represents the

non-random part of the errors appearing due to existence of
v⊥ which is orthogonal to the kernelsK . These terms can be
expressed as:

Crandom
p = F

〈
1g1T

g

〉
FT

= FCgFT

= P KT
(
KK T

)−1
Cg

(
KK T

)−1
KPT (15)

Csystematic
p = p⊥pT

⊥
= D⊥

(
vvT

)
DT

⊥

= P
(

I − KT
(
KK T

)−1
K

)(
vvT

)
(

I − KT
(
KK T

)−1
K

)
PT (16)

The first term can be calculated using the covariance matrix
of the measurementsCg and the second term can be esti-
mated using a priori estimates ofv. For example, our model-
ing experiments in the next section show thatp⊥ have gen-
erally rather small values and, therefore, the accuracy of the
retrieval ofp performed using the “projection”pg (see Eq.9)
is acceptable in the majority of cases.

All equations given above are written with the assump-
tion that the matrixK in Eq. (2) and, therefore, matrixF
in Eq. (10) are known accurately. However, this is not really
the case sinceK depends on the complex refractive index.
Therefore, if the actual value of the complex refractive index
m(λ) is not known and we use an estimatem̃(λ), instead of
Eq. (10) we have:

p̃ = P̃(vg + v⊥) = P̃K̃
T
(
K̃ K̃

T
)−1

g + P̃ṽ⊥ (17)

or it can be written in the same manner as Eq. (9)

p̃ = p̃g + p̃⊥ = F̃g + D̃⊥v (18)

Correspondingly, if we use an estimate of the complex re-
fractive index, the estimatep∗

g = Fg∗, should be replaced by

p̃∗

g = F̃g
∗
. The corresponding uncertainties of the retrieval

can be estimated as:

1p = p̃∗

g − p

= F̃g
∗
− (pg + p⊥) = F̃(g + 1g) − (Fg + D⊥v)

= F̃1g − 1Fg − D⊥v = F̃1g − 1FKv − D⊥v

= F̃1g − (1FK + D⊥)v (19)

where1F = F − F̃. The covariance matrix of uncertainties
is:

Cp =

〈(
F̃1g − (1FK + D⊥)v

)
(
F̃1g − (1FK + D⊥)v

)T
〉

= Crandom
p + Csystematic

p (20)

where

Crandom
p = F̃

〈
1g1T

g

〉
F̃

T
= F̃CgF̃

T

= P̃ K̃
T
(
K̃ K̃

T
)−1

Cg

(
K̃ K̃

T
)−1

K̃ P̃
T

(21)

Csystematic
p = (1FK + D⊥)

(
vvT

)
(1FK + D⊥)T

= 1FK
(
vvT

)
KT (1F)T

+ 1FK
(
vvT

)
DT

⊥

+D⊥

(
vvT

)
KT (1F)T

+ D⊥

(
vvT

)
DT

⊥
(22)

Thus, if we compare Eqs. (15) and (21), the only difference
is that Eq. (21) uses matrix of coefficients̃F instead ofF.
It is reasonable to expect that the magnitudes of elements
of F̃ are close to those ofF since the optical characteristics
generally do not exhibit very high sensitivity to variations
of m(λ). Therefore one can expect that the components of
Crandom

p given by Eq. (21) will have magnitudes close to those
given by Eq. (15).

By contrastCsystematic
p in Eq. (22) comparing toCsystematic

p

of Eq. (16) has three extra terms containing1F. If 1F = 0
Eq. (22) coincides with Eq. (16). Another observation is that
if we have a rather complete set of observationsg∗, so that we
do not have a null-space, i.e.D⊥ = 0, then Eq. (14) retains
only one first termCrandom

p , while Eq. (20) still retains the
second term that represents the systematic bias:

Cp = Crandom
p + Csystematic

p = F̃CgF̃
T

+ 1FK
(
vvT

)
KT (1F)T (23)

Thus, the use of estimatẽm(λ) that is different from the ac-
tual value of complex refractive indexm(λ) always leads to
the appearance of a systematic error termCsystematic

p . More-

over, it is rather clear thatCsystematic
p may easily dominate

overCrandom
p in Eq. (23). This becomes rather obvious when

usingg = Kv in Eq. (23):

Cp = F̃CgF̃
T

+ 1F
(
ggT

)
(1F)T (24)

Here the first term containsCg =

〈
1g1T

g

〉
– the covariance

matrix of errors1g of g and the second term contains the
matrix ggT. Since the magnitude of errors1g are generally
much smaller than the magnitudes of measurementsg, the
elements ofCg are much smaller thanggT. Therefore, even
if 1F = F − F̃ is not very significant the magnitude of the
second term of Eq. (23) is likely to remain considerable.

Thus, if the sensitivity ofg∗ to m(λ) is high, the errors due
to wrongly chosenm(λ) can be much higher than errors due
to measurement uncertainties and existence of null-space. At
the same time if the sensitivity ofg∗ to m(λ) is high, and set

of observations(g∗)T
=

(
g∗

1;g∗

2; ...;g∗

N0

)
is quite represen-

tative we can attempt to estimatem(λ) from available obser-
vations. The input optical data (backscatters and extinctions)
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are themselves the particle properties and eachg∗

j can be re-
calculated back from the rest ofN0-1data using Eq. (9), as
suggested in (De Graaf et al., 2009, 2010). By doing so for
each optical data, we getN0 estimates of̃gj that we compare
with the observationsg∗

j . It should be mentioned that we can
not make these estimates using allN0 optical data, because in
that casẽgj andg∗

j coincide. If the sensitivity ofg∗ tom(λ) is
high the magnitudes of errors1gj = g̃j −g∗

j should strongly
depend on the assumed value ofm(λ). Correspondingly, if
we obtained the set of estimatesg̃j (m) using different as-
sumed values ofm(λ) we can attempt to estimatem(λ) by
searching for the smallest errors1gj = g̃j − g∗

j , for exam-
ple by searching for the minimum of the following quadratic
form:

9 (m) =
(
g̃ (m) − g∗

)T C−1
g

(
g̃ (m) − g∗

)
(25)

If the sensitivity ofg∗ tom(λ) is high this form should have a
well-defined minimum andm(λ) can be estimated using the
available measurementsg∗. In our study we assume that the
errors of the measurements are the same for all channels, and
refractive index is spectrally independent inside the spectral
range that is considered. Then the refractive index is found
from the minimum of discrepancy:

ρ =

N0∑
l

(
g∗

p − g̃l(m)
)2

N0
(26)

Since there is no a priori knowledge about the particle size
distribution and refractive index we find the discrepancyρ

for all predefined values ofrmin, rmax, lying in the inter-
val 0.075 µm–10 µm, and for the set of valuesmR and mI
from respective intervals 1.35–1.65 and 0.00–0.03 just as we
did in our regularization algorithm (Veselovskii et al., 2002).
Normally the total number of predefined combinations does
not exceedNT = 3000. Based on our previous experience
(Veselovskii et al., 2002) we prefer to average the solutions
near the minimum of discrepancy rather than take a single so-
lution. Such an averaging procedure stabilizes the inversion.
To choose the averaging interval the solutions are ranged in
accordance with their discrepancy from minimumρmin to
maximumρmax, normally 1 % of solutions are averaged. The
retrieval for each vertical bin was done independently.

The estimation of the refractive index from the minimiza-
tion of ρ in Eq. (26) is illustrated by Fig. 1. The discrepancy
ρ and the uncertainty of the volume retrievalεV are given
for different assumptions of the value ofmR. Synthetic input
data were generated assuming a log-normal aerosol distribu-
tion dV (r)

dlnr
with modal radiusr0=1 µm and variance 0.4; the

model refractive index ism = 1.5–i0.005. Bothρ and εV

have minima atmR = 1.5 corresponding to the “true” value
of mR, thus the minimization of the discrepancy minimizes
the uncertainty of the particle volume estimation. Similar
plots can be provided also for the imaginary part of the re-
fractive index. The presence of noise1g in the input data

Fig. 1.Dependence of discrepancyρ and uncertainty of particle vol-
ume estimationεV on the real part of refractive index. Simulation
was performed forr0 = 1 µm andm = 1.5–i0.005.

naturally increases the minimum value of discrepancyρ that
can be achieved and thus the uncertainty of the refractive in-
dex retrieval. The actual increase of the retrieval uncertainly
also depends on the particle size distribution and specific re-
alization of errors1g in the optical data. To evaluate the cor-
responding uncertainties of the estimation of particle param-
eters numerical simulations using different types of PSD and
different input errors can be performed as we will illustrate
in the next section.

Thus the main difference of described in this section algo-
rithm from the approach presented previously by Donovan
and Carswell (1997); De Graaf et al. (2009, 2010), is that we
consider not a single solution but a family of linear solutions
corresponding different inversion intervalsrmin, rmax and dif-
ferent complex refractive indices. The average of solutions
in the vicinity of the minimum of discrepancy (Eq.26) is
considered as most probable estimate of particle parameters.

3 Estimation of retrieval uncertainties

Numerical simulation is used here to test the algorithm and
to estimate the retrieval uncertainties. In these simulations
we used synthetic input optical data assuming a log-normal
aerosol distributiondV (r)

dlnr
with r0 = 0.2, and 2 µm, which

are typical values for the fine and the coarse mode particles
(e.g. see Dubovik et al., 2002), and the variance in all cases
is 0.4. As discussed in the previous section, one of the prin-
cipal questions in the application of the LE technique is the
estimation of the residualv⊥ in Eq. (3). This residual will de-
pend on the PSD and the refractive index. The computations
performed demonstrate that for all values ofm considered
here, the residualv⊥ is below 4 % and 15 % forr0 = 0.2, and

www.atmos-meas-tech.net/5/1135/2012/ Atmos. Meas. Tech., 5, 1135–1145, 2012
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Fig. 2. Cumulative probability of uncertaintyεV of volume density
retrieval from 3β + 2α data with input errorsε = 10 %, 20 %, 30 %.
Simulation was performed forr0 = 0.2 µm using volume kernels.

2 µm respectively. So the existence of a null-space does not
present a serious limitation to the LE technique for typical
atmospheric aerosols.

To evaluate the effect of input uncertainties, the random er-
rors in the range of [0,±ε] were added to the data and from
these distorted optical data, the particle parameters were re-
trieved. We assume that the uncertainties in all measurement
channels are equivalent so that all the diagonal elements of

the error covariance matrixCg =

〈
1g1T

g

〉
are the same. The

procedure was repeated 1000 times allowing robust statistics
to be gathered. The retrieval uncertainties are presented in
the form of probability distributions such as shown in Fig. 2
where a typical cumulative probability of volume density un-
certaintyεV is shown. For every value ofεV the plot gives the
probability that the retrieval uncertainty is below this value.
For example, from the plots in Fig. 2 we can conclude that
in 90 % of the cases the spread in the values of the volume
estimation is belowεV ≈ 20 %, 35 %, 50 % for input errors
ε = 10 %, 20 %, 30 % respectively. We take these values to
represent the uncertainty in the retrieval. Thus the uncer-
tainty rises approximately linearly withε and the method can
provide reasonable estimations even for 30 % input errors.

The results shown in Fig. 2 were obtained using volume
kernels (VK) of Eq. (1), but Eq. (1) can be written also us-
ing other types of kernels corresponding to the numberdN

dr
,

surfacedS
dr

or volume density size distributiondV
dlnr

in log-
arithmic space. All these kernels (henceforth referred to as
NK, SK and VLK ) can also be used in retrievals. Donovan
and Carswell (1997), reported that in their approach for the
retrieval of surface density the surface kernels were prefer-
able, while for volume retrieval the volume kernels were
better suited. In our study, we also tested different types of
kernels. We did not notice a significant difference between
these kernels for small particles, but for particles in the coarse

Table 1.Uncertainties of particle parameters estimation. Results are
obtained for PSDsdV

dlnr
with modal radii 0.2 µm and 2 µm for input

errorsε = 0, 10 %, 20 %.

r0, µm 0.2 2

Input random
uncertainties 0 10 % 20 % 0 10 % 20 %

εV , % 5 20 35 15 30 45
εS , % 5 20 45 2 10 30
εReff , % 5 25 40 15 25 35
εN , % 10 40 60 25 75 110
εmR 0.01 0.05 0.07 0.015 0.025 0.04

mode the volume kernels provided slightly better estimations
of all parameters. The difference with the results of (Dono-
van and Carswell, 1997) may be due to the optimization of
inversion intervals in our algorithm. All retrievals presented
below were obtained with the volume kernels.

The simulation results are summarized in Table 1 showing
the uncertainty of volume (εV ), surface (εS), number (εN )

density, effective radius (εReff), and real part of refractive in-
dex (εmR) retrieval (taken at 90 % probability level) for input
random uncertainties ofε = 0, 10 %, 20 %. The effective ra-
dius was estimated from the ratio of volume and surface den-
sity: reff = 3V

S
. The results are given forr0 = 0.2 µm and 2 µm

to separately characterize uncertainties for small and big par-
ticles. In the absence of input errors, the uncertainties of the
retrieval are due to the null-space and the unknown value of
the refractive index as follows from Eq. (22). Minimization
of discrepancy (Eq.26) keeps the uncertainty of the volume
estimation below 5 % for small particle sizes characteristic of
the fine mode and below 15 % for particles with sizes more
consistent with the coarse mode particles.

From the results shown in Table 1, several conclusions can
be made. First of all, the retrieval is stable for both small and
big particles and an uncertainty of volume estimation below
45 % can be obtained even for 20 % input errors. For small
particles the uncertainties of surface, volume and effective
radius estimation are close, while for big particles the sur-
face density is the most stable parameter in retrieval where
the corresponding uncertainty ofεS is less than 30 % even
for 20 % input errors. The most unstable parameter in the
retrieval is the number density where the corresponding un-
certainty for particles withr0 = 2 µm is above 100 % for 20 %
input errors. The real part of particle refractive index can be
retrieved more accurately for big particles, where the cor-
responding uncertainty of the real part is below±0.04 for
ε = 20 %, while for small particles this uncertainty increases
to ±0.07.

In our retrievals we considered the full data set 3β + 2α
and the reduced one 3β + 1α, where extinction at 532 nm
was removed. The important finding is that the uncertain-
ties in the estimates of particle parameters from 3β + 1α
data in most cases did not exceed the corresponding values
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for 3β + 2α, thus it seems apparent that the number of in-
put data can be decreased when only particle bulk proper-
ties are desired. Evaluation of retrieval uncertainties for dif-
ferent combinations of the optical data and different parti-
cles characteristics is in our plans but beyond the scope of
present paper.

The imaginary part of the refractive index is one of the
most difficult parameters to estimate from multi-wavelength
lidar as the kernels are not very sensitive to changes in the
value ofmI . As already mentioned, the inverse problem (1) is
strongly underdetermined, so the solution depends on the
constraints used, in particular on the range of refractive index
values considered during the minimization of the discrepancy
(Eq.26). To evaluate the influence of the range ofmI consid-
ered on the retrievals, we performed simulations for three in-
tervals: 0< mI < 0.01, 0< mI < 0.02 and 0< mI < 0.03 as-
suming 10 % errors in input data and model valuem = 1.5–
i0.005. Computations performed for particles withr0 = 2 µm
show that the uncertainties in the estimate ofmI for these
intervals are 50 %, 100 % and 140 % respectively. Hence,
for reasonable estimation of the imaginary part of the re-
fractive index it is very desirable to have a priori informa-
tion about the aerosol type to constrain the range ofmI that
is considered.

To illustrate the influence ofmI on the estimation of other
parameters, Fig. 3 shows the cumulative probability plots for
the volume retrieval of particles withr0 = 0.2 µm and 2 µm
using the three ranges ofmI mentioned above. For particles
in the coarse mode the uncertainty inεV increases from 25 %
to 35 % when maximal value ofmI rises from 0.01 to 0.03.
For particles in the fine mode the retrieval is essentially in-
sensitive to the range ofmI considered. Thus, in spite of the
ambiguity in the retrieval of the imaginary part, the uncer-
tainty inmI has little influence on the estimation of the other
parameters.

4 Comparison with regularization retrievals

To validate the approach described in Sect. 2, the linear es-
timation (LE) and regularization (Veselovskii et al., 2002)
algorithms were applied to the same experimental data ob-
tained by multiwavelength Raman lidar at NASA/GSFC in
Greenbelt, MD during August–September 2006 (Veselovskii
et al., 2009). The lidar is based on a tripled Nd:YAG laser
and provided three particle backscattering and two extinction
coefficients. The retrieval of particle microphysical parame-
ters from these 3β + 2α data using inversion with regular-
ization was discussed in our earlier publication, where good
agreement between AERONET and lidar observations was
reported (Veselovskii et al., 2009).

Figure 4 shows the vertical profiles of aerosol backscat-
tering and extinction coefficients measured at 355, 532 and
1064 nm wavelengths on 15 August 2006. The backscatter-
ing shows a maximum at 1250 m and a secondary maximum

Fig. 3. Uncertainty of particle volume estimation for different
ranges of consideredmI : [0, 0.01], [0, 0.02], [0, 0.03]. Simula-
tion was performed for distributiondV

dlnr
with (a) r0 = 0.2 µm and

(b) r0 = 2 µm. Input errors areε = 10 % and model refractive index
m = 1.45–i0.005.

at 1900 m. The particle size distribution for this day was rep-
resented mainly by the fine mode and the uncertainties of
the optical data measurements were estimated to be below
10 % (Veselovskii et al., 2009). The vertical profiles of vol-
ume density, effective radius and real part of refractive in-
dex obtained with the regularization and LE approaches are
shown in Fig. 5 where the results obtained with both tech-
niques are similar. The volume density profile has a sim-
ilar shape as the particle backscattering, meaning that the
particle radius and refractive index do not change signifi-
cantly with height. The retrieved effective radius, as shown
in Fig. 5b, is about 0.22± 0.055 µm for all heights, the uncer-
tainty of retrieval is estimated from the results of numerical
simulations summarized in Table 1. It should be noted that
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Fig. 4. Vertical profiles of aerosol backscattering (solid lines) and
extinction (dashed lines) coefficients measured at 355, 532 and 1064
nm wavelengths on 15 August 2006.

the vertical profile of the effective radius obtained with LE
oscillates less than the profile obtained with regularization,
suggesting a more stable inversion. The refractive indices re-
trieved with both techniques agree reasonably well. The real
part of the refractive index slightly rises with height from
1.37± 0.05 to 1.43± 0.05, the imaginary partmI is below
0.005 for all heights.

As discussed in the previous section, the number of in-
put optical data can be reduced when only bulk particle
properties are desired. To test this claim, we also performed
the inversion using the reduced set of optical data given by
3β + 1α, where extinction at 532 nm is removed. The cor-
responding results are also shown in Fig. 5. The inversion
using either the full (3β + 2α) or reduced (3β + 1α) data
sets leads to similar results, supporting the conclusions made
from the numerical simulations. This comparison of the reg-
ularization and LE approaches illustrates that the LE tech-
nique can provide trustworthy estimations of particle param-
eters. At the same time, the high speed of the retrieval us-
ing linear estimates makes the method preferable for gen-
erating bulk aerosol information from long-term series of
lidar observations.

5 Inversion of long-term series of multiwavelength lidar
observations

To test the retrieval of time-sequences of particle parame-
ters we used data from the multiwavelength Raman lidar at
TUBITAK Research Center located in the vicinity of Istan-
bul, Turkey. The lidar is based on a frequency-tripled Quan-
tel Brilliant B Nd:YAG laser with 10 Hz repetition rate. The
pulse energies atλ = 355, 532 and 1064 nm are 200, 250 and

Fig. 5. Vertical profiles of(a) particle volume density,(b) effective
radius,(c) real part of refractive index retrieved with LE approach
from 3β + 2α and 3β + 1α data and with regularization approach
from 3β + 2α data.

300 mJ, respectively. The backscattered light is collected by
a 40-cm aperture Newtonian telescope inclined so that the
elevation angle is 40 degrees to the horizontal. The outputs
of the detectors are recorded at 7.5 m range resolution using
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Fig. 6.Particle(a) depolarization ratio and(b) extinction at 355 nm
measured near Istanbul on 20 May 2010. Vertical resolution is 30 m
for depolarization and 150 m for extinction.

a Licel data acquisition system that incorporates both analog
and photon-counting electronics. The system is able to moni-
tor backscattering at 355, 532, 1064 nm, Raman nitrogen sig-
nals at 387, 608 nm and Raman water vapor signal at 408 nm.
A polarizing beamsplitter cube in the 355 nm channel allows
simultaneous monitoring of co- and cross-polarized compo-
nents of backscattered radiation. The particle depolarization
ratio was calculated from the ratio of co- and cross polarized
components of the particle backscattering coefficients. For
the calibration of depolarization measurements the molecu-
lar depolarization ratio in an aerosol-free region was used.
In each file 3000 laser pulses were accumulated, thus the
temporal resolution of the measurements is 5 min.

The measurements were performed during May 2010
when weak ash layers from the Eyjafjallajökull volcanic
eruption periodically reached Turkey. The temporal evolu-
tion of the particle depolarization ratioδp at 355 nm during
the night of 20–21 May is shown in Fig. 6. The highly depo-
larizing volcanic layer with maximum particle depolarization
ratio of approximatelyδp = 20± 5 % appears at 22:00 UTC
and is observed for about a period of approximately four
hours at 2–3 km heights. During the same time but for al-
titudes below 2 km, the particle depolarization ratio did not
exceed 5 %. The depolarization ratio in the ash layer is lower
than the values ofδp ∼ 40 % that were observed over North-
ern Europe (Ansmann et al., 2010), implying that the ash may
have been mixed with more locally produced aerosols. The

Fig. 7. Time-series of(a) particle volume density;(b) effective ra-
dius; (c) real part of refractive index retrieved from measurements
on 20 May 2010.

analysis of the meteorological situation for this day and the
optical properties of ash particles is given in Papayannis et
al. (2011). The same figure shows the temporal variation of
the aerosol extinction at 355 nm. The extinction is calculated
from the Raman nitrogen signal (Ansmann et al., 1992). To
decrease the uncertainty we reduced the height resolution up
to 200 m and introduced a 3 point sliding average in the tem-
poral domain. We estimate the uncertainty of the particle ex-
tinction and backscatteringα355, β355, β532, β1064calculation
at the heights of interest (below 2.5 km) to be less than 10 %.
Comparing Fig. 6a and b we conclude that the optical depth
of the ash layer is quite low (below 0.05). TheÅngstr̈om ex-
ponent calculated from the extinction coefficients at 355 and
532 nm was about 1.8 in 0.8–2 km height range, meaning that
the particles were relatively small.
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To retrieve the time-sequences of particle parameters, we
used the 3β + 1α data set, because the uncertainty of extinc-
tion at 532 nm was too high for the chosen temporal resolu-
tion. It also allowed us to test the ability of a reduced dataset
to provide useful time series results. Figure 7a shows the
time-height distribution of the particle volume density, which
is similar to the time-height extinction distribution in Fig. 6b.
The region of enhanced volume density is contoured and
shown also in Fig. 6a in order to illustrate that it coincides
well with the region of enhanced particle extinction. This im-
plies that the particle size and refractive index did not vary
significantly in this region. In the color maps in Fig. 7b, c
showing effective radius and the real part of refractive index,
the regions where the particle extinction is low are removed,
because no reliable retrieval could be performed there. The
particle effective radius is about 0.22 µm in 0.8–2 km height
range and it does not vary significantly over the night. Some
increase of effective radius is observed near the ash plume.
The retrievals inside the ash layer should be taken with care
because ash particles are of irregular shape and the retrieval
is based on Mie kernels, assuming a spherical particle shape,
that introduces significant uncertainties. In particular the real
part of refractive index is significantly underestimated with
this approach (Veselovskii et al., 2010). For the treatment
of non-spherical particles, the kernels corresponding to ran-
domly oriented spheroids (Dubovik et al., 2006) can be im-
plemented as previously shown (Veselovskii et al., 2010), but
that effort goes beyond the scope of present paper.

The real part of refractive index shown in Fig. 7c varies in
the range of 1.39–1.45. The marked region is characterized
by a valuemR ≈ 1.4, indicating that the aerosol contains a
significant amount of water. At low altitudes after midnight
some enhancement ofmR up to 1.45 is observed. As men-
tioned, above 2 km the real part of the refractive index can
be underestimated due to particle non-sphericity. The imagi-
nary part of refractive index was estimated as 0.006± 0.003.
The enhancement ofmI up to 0.01 was observed inside the
ash layer, but again, for accurate quantification ofmI in this
layer the spheroidal model should be used. Thus obtained
results look reasonable and demonstrate that the use of lin-
ear estimates makes possible the fast retrieval of time-height
distributions of particle parameters from extended lidar ob-
servations. The inversion of optical data to the aerosol pa-
rameters shown in Fig. 7 took approximately 5 min using a
standard laptop computer illustrating the potential of the LE
technique for processing large volumes of the MW lidar data.

6 Conclusions

An algorithm for the linear estimation of aerosol bulk prop-
erties such as particle volume and complex refractive in-
dex from multiwavelength lidar measurements is presented.
The particle concentration is estimated from a linear combi-
nation of aerosol backscattering and extinction coefficients

measured by multi-wavelength lidar while avoiding the re-
trieval of the particle size distribution. This approach is
shown to both increase the speed and stability of the inver-
sion. The definition of the coefficients required for the lin-
ear estimates is based on an expansion of the particle size
distribution in terms of the measurement kernels. Once the
coefficients for the linear estimates are established, the ap-
proach allows very fast retrieval of aerosol bulk properties.
In addition, the straightforward estimation of bulk proper-
ties stabilizes the inversion making it more resistant to noise
in the optical data: the retrieval does not fail even for input
random uncertainties as large as 30 %. The uncertainties of
the retrieval derived from numerical simulations are close to
the values reported previously for the full inversion scheme
that was used to derive the entire family of solutions using
the regularization procedure (Veselovskii et al., 2002, 2004).
The application of both techniques to the same lidar mea-
surements did not reveal significant differences in the results
of the two retrieval approaches.

An important finding of this study is that it is feasible to
reduce the number of input optical characteristics and still
retrieve useful bulk aerosol properties. A comparison of in-
versions using 3β + 2α and 3β + 1α data demonstrates that
excluding particle extinction at 532 nm does not significantly
degrade the retrieval. At the same time, removing extinction
at 355 nm enhances uncertainties of retrieval

The high speed of the retrieval using linear estimates
makes the method preferable for generating aerosol in-
formation from long-term series of lidar observations. To
demonstrate the efficiency of the method long-term series
of aerosol physical properties derived from lidar observa-
tions performed in Turkey in May 2010 were processed. As
a result, the multi-wavelength lidar data, for the first time,
were inverted into time-height distributions of particle pa-
rameters. We should mention though that the algorithm stud-
ied here should not be considered as a replacement for the
full inversion (regularization) approach, because in many ap-
plications 3β + 2α data exist and the retrieval of PSD is crit-
ical. However, if the data set is reduced, the current work
demonstrates clearly that useful physical information may
still be retrievable.
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