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Abstract. A new instrument for the on-line determination
of ammonia was developed. Since ammonia is a rather sticky
compound, sampling losses were minimised with a new sam-
pling device where the ammonia was transferred to the liq-
uid phase only 5 mm after the inlet tip. The liquid phase was
then analyzed by long pathlength absorption spectrophotom-
etry using the Berthelot reaction with phenol and hypochlo-
rite as reagents. The measurements were made during the
CLOUD3 campaign at CERN where the influence of ammo-
nia on the nucleation rate was studied. At stable conditions
the detection limit reached with this instrument was 35 pptv
(air flow rate of 2 l min−1, liquid flow rate of 0.3 ml min−1),
although occasionally the instrument was affected by back-
ground problems. The range of mixing ratios during this
campaign was varied from the background contamination
(< 35 pptv) up to around 2 ppbv. The measured ammonia
concentration was correlated with the rate of ammonia in-
jected into the chamber, but with a response time of several
hours due to the high tendency of ammonia to adsorb to or
to desorb from surfaces. Since it was found that ammonia
strongly increases the nucleation rate already at the lowest
measured concentration, future work will focus on further
decreasing the detection limit of the instrument.

1 Introduction

Ammonia is a ubiquitous compound in the atmosphere and
it plays an important role in atmospheric chemistry due to
the fact that it is the most abundant base in the atmosphere’s
gas phase. It rapidly reacts with acids and in this way con-
tributes to aerosol mass, e.g. by forming ammonium sulfate

with sulphuric acid or ammonium nitrate with nitric acid.
Moreover, it is well known that ammonia enhances the nu-
cleation of new particles through ternary homogeneous nu-
cleation (THN) of H2SO4-NH3-H2O (Coffman and Hegg,
1995; Ball et al., 1999; Korhonen et al., 1999; Benson et al.,
2011; Kirkby et al., 2011). Therefore, ammonia is expected
to enhance the nucleation rate already at very low concen-
trations. However, there are conflicting results on the actual
magnitude of this enhancement. For example, Korhonen et
al. (1999) presented model results predicting an increase of
the nucleation rate by several orders of magnitude for mixing
ratios exceeding 1 pptv of NH3. Ball et al. (1999) reported
laboratory studies where several tens of pptv of added am-
monia increased the nucleation rate by orders of magnitude.
On the other hand, Benson et al. (2011) found only a small
enhancement factor (< 10) in the nucleation rate after ammo-
nia addition. In their experiment the ammonia concentration
was between 0.08 and 20 ppbv and the sulphuric acid con-
centration was 106–107 cm−3. Therefore, more studies on the
influence of NH3 on the nucleation rate at ambient concentra-
tions of sulphuric acid are needed, especially where ammonia
mixing ratios are in the low pptv range.

Due to the importance of this compound, its concentration
has been measured at many places in the field and several
instrument intercomparisons have been reported. Fehsen-
feld et al. (2002) performed an intercomparison of ammonia
measurement techniques between chemical ionisation mass
spectrometry (CIMS), citric acid denuder technique and a
molybdenum-oxide converter-difference (MoOx-CD) tech-
nique in the field. Quite good agreement was found, espe-
cially between CIMS and the citric acid denuder. Schwab et
al. (2007) performed a laboratory intercomparison of seven
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real-time instruments for gaseous ammonia measurement
using six different methods. Two out of these used aque-
ous scrubbing of ammonia which is detected after chemi-
cal conversion by either long pathlength absorption photom-
etry or fluorescence spectroscopy. The other methods mea-
sured ammonia directly by either tunable diode laser absorp-
tion spectroscopy, laser photoacoustic spectroscopy, ion mo-
bility spectrometry or after catalytic conversion by chemi-
luminescence. Detection limits from 25–200 pptv were re-
ported in their study of the different instruments, which gen-
erally agreed to within about 25 % (Schwab et al., 2007).
Emmenegger et al. (2004) made an intercomparison in a tun-
nel with seven different instruments at relatively high con-
centrations. Von Bobrutzki et al. (2010) compared eleven in-
struments based on eight different methods in the field. Three
instruments were wet-chemistry systems while the other
techniques used optical, photo-acoustic and mass spectro-
metric techniques. A high correlation was found (R2 > 0.84)
for the average of all the instruments at higher concentra-
tions but more variability was found at concentrations be-
low 12 ppbv. Recently, CIMS has increasingly been used for
the determination of ammonia in the atmosphere. The ad-
vantage of such an instrument is the high time resolution and
the fast response, but the high variability in the background
does not allow yet for low detection limits (Normann et al.,
2009; Nowak et al., 2007, 2010; Benson et al., 2010; von Bo-
brutzki et al., 2010; Hanson et al., 2011). Despite all efforts,
the determination of ammonia at low concentrations remains
difficult.

Besides the low detection limits required, the determina-
tion of ammonia is difficult for several additional reasons.
First, ammonia partitions between the gas and aerosol phase.
Gaseous ammonia must therefore be separated from the par-
ticulate ammonium. Second, ammonia adsorbs on any kind
of surfaces (Yokelson et al., 2003). This phenomenon is the
result of the strong hydrogen bond formed between water
and ammonia. For this reason it is catalogued as a “sticky”
compound. Third, ammonia has a relatively high diffusion
coefficient: 0.1978 cm2 s−1 at 273.15 K (Massman, 1998).
The combination of the last two properties can cause huge
losses and a slow response time in the inlet line. Conse-
quently, special care needs to be taken regarding design and
choice of material to minimise these difficulties in the sam-
pling (Fehsenfeld et al., 2002; Bae et al., 2007; Benson et al.,
2010; von Bobrutzki et al., 2010).

In this paper we describe a method for ammonia measure-
ments at mixing ratios in the low pptv range that was devel-
oped in the context of the CLOUD experiments at CERN.
Within this project the nucleation of new particles caused
by sulphuric acid, ammonia and other vapors is investigated
under well controlled conditions (Kirkby et al., 2011). The
CLOUD3 experiments performed in October 2010 aimed
at investigating the influence of ammonia at pptv levels on
the nucleation rate of gaseous sulphuric acid/water mix-
tures. In these experiments no preexisting aerosol with a
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Fig. 1. Scheme of the instrument: R1 and R2 denote the phe-
nol + nitroprusside and hypochlorite respectively. LWCC: Liquid
Waveguide Capillary Cell. The instrumental background is taken
by measuring clean water, by-passing the sampling line. The valve
K is where the standard solutions were injected.

corresponding ammonium concentration was present, such
that no separation between gaseous ammonia and particulate
ammonium was required. To minimise the sampling losses, a
new design of a sampling line was developed where ammo-
nia was transferred to an aqueous solution at an early stage
of the sampling. In this way we were able to determine gas
phase ammonia mixing ratios at low pptv levels with a good
time resolution using long pathlength absorption photometry.

2 Experimental

2.1 Measurement principle

The technique used here is based on a colorimetric reac-
tion called Berthelot reaction where ammonia reacts with
sodium hypochlorite and phenol to yield indophenol; in al-
kaline solution, this compound is blue and absorbs light at
640 nm (Patton and Crouch, 1977). This highly specific and
extremely sensitive reaction occurs in two steps. First, am-
monia reacts with hypochlorite to form mono-chloramines.
Second, the phenol reacts with chloramines to give indophe-
nol. To increase the reaction rate, a catalyst is added; in
our case this catalyst is sodium nitroprusside dehydrate.
To increase the sensitivity we used long pathlength absorp-
tion photometry based on the liquid-waveguide capillary cell
(LWCC) technology (Heland et al., 2001; Dallas and Das-
gupta, 2004; Li et al., 2005; Schwab et al., 2007; Toda and
Dasgupta, 2008). This method is increasingly used for trace
gas analysis.

2.2 Apparatus

A simplified scheme of the apparatus is shown in Fig. 1.
Ultrapure water (MilliQ SUPER – QTM PLUS, resistivity
of 18.3 M� cm) is further cleaned with an ion exchange
(I.E.) column (IONPAC CTC-1 cation trap column from
Dionex) before being fed into the sampling line. There, am-
monia is stripped from the gas phase into the water flow
rate, which then enters the instrument. The reagents (phe-
nol + nitroprusside as well as hypochlorite) are then added at
positions R1 and R2, respectively. The reaction between the
reagents and ammonia takes place in a reaction coil (Teflon
tubing) of 6 m length (residence/reaction time of 540 s). This
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length is a good compromise between sensitivity, time de-
lay of signal appearance and reproducibility. The blue in-
dophenol solution is then pumped into a liquid-waveguide
capillary cell (World Precision Instrument) with an optical
length of 5 m. The inner surface is coated with fused silica.
The LWCC is coupled with a red light-emitting diode (LED,
with the mode at 638 nm) through an optical fiber. The light
transmitted through the LWCC is detected by a spectrome-
ter (USB 2000 from Ocean Optics). Due to the reaction time
the appearance of the signal is delayed by 540 s. The time
response of the instrument is mainly influenced by the mix-
ing in the reaction coil and the length of the LWCC. The
instrumental time response defined as the rise time of a step
concentration change (from 10 % to 90 % of its final value)
was measured to be 10 min.

Reagents 1 and 2 were prepared with water from the same
MilliQ system. Reagent 1 was prepared dissolving 20 g of
phenol (puriss. 99.5 %, Sigma-Aldrich) and 0.9 g of sodium
nitroprusside dehydrate (99 %, Sigma Aldrich) in one liter
of a 0.5 mol l−1 sodium hydroxide solution. Reagent 2 was
prepared with 30 ml of sodium hypochlorite (Sigma Aldrich)
and 30 ml of sodium hydroxide 1 mol l−1 (Fluka) in a 1-
l solution. During first tests we noted that particles were
formed, presumably from degradation of the catalyst in the
basic solution. These particles produced light scattering in
the LWCC, inducing a baseline drift in the instrument signal.
This problem was minimised by introducing an in-line parti-
cle filter with a pore size of 2 µm just before the LWCC. The
reagents were stored in compressible plastic bags in a dark
box to avoid the introduction of ambient air and therefore to
minimise contamination and aging of the reagents, since they
are sensitive to both air and light. In addition, the solutions
were changed daily.

Calibration was performed with different concentrations
of NH4Cl. Standard solutions with concentrations of 0, 50,
100, 200, and 400 nmol l−1 were produced by diluting a pure
NH+

4 standard solution (Fluka, 0.010 nmol l−1).

2.3 Ammonia sampling

Ammonia is a rather sticky compound and is quite diffi-
cult to sample, as discussed above. In addition, the stan-
dard sampling lines at the CLOUD chamber are 130 cm long
and half-inch (12.7 mm) diameter stainless steel tubes. Tak-
ing for example a high flow rate of 10 l min−1 would trans-
late into a penetration efficiency of only 11 % using the
Gormley-Kennedy equation (Willeke and Baron, 1993), and
a diffusion coefficient of 0.2234 cm2 s−1 at 273 K (Massman,
1998). To minimise these losses and to improve the collection
efficiency, a special sampling system was developed (Fig. 2).
The design is based on the fact that ammonia is easily taken
up by water (Toda and Dasgupta, 2008).

A stainless steel tube of 34 mm outer diameter penetrates
50 cm into the CLOUD chamber and is closed at the front
end. From a small opening (2 mm diameter) on top close to

H2O
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Air + H2O

X 10 loops
2 mm
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Fig. 2. Sketch of the sampling line not scaled. The thick bars indi-
cate the CLOUD chamber wall. Red color gives the dimensions of
the sampling line.

the front end, air is aspirated to the scrubbing tube (stainless
steel, 2 mm inner diameter) inside this large tube. Water is
fed through this tube to the sampling port and the air/water
mixture is then transported out via 10 coils to enhance the
residence time to a debubbler where the gas and liquid phase
are separated. The liquid flow rate is 0.3 ml min−1 and the gas
flow rate 2 l min−1, resulting in an ammonia residence time
lower than one second between sampling and debubbler.

Due to the geometry of the sampling line, this instrument
measures both gas and particle phase. However, since we ob-
serve only the nucleation period of tiny particles, the contri-
bution of ammonia from the particle phase can be considered
negligible.

2.4 Measurements

From Lambert-Beer’s law we know that the concentration of
the indophenol, and therefore of ammonia, is proportional to
the absorbance of the solution. Due to the baseline drift prob-
lem, we do not report data from continuous measurements of
ammonia in the chamber even though we were using the on-
line instrument that provided data every 2 s (acquisition time
of the UV-Vis spectrometer). Rather, the reported ammonia
concentrations are the difference between the measurement
of the CLOUD chamber concentration and the instrument
background which was taken regularly. The latter is the mea-
surement of the ultrapure water bypassing the sampling line
and entering directly the instrument.

2.5 CLOUD chamber

As mentioned before, this instrument was applied during the
CLOUD experiment at CERN (Kirkby et al., 2011; Kupc et
al., 2011; Voigtl̈ander et al., 2012). This chamber is a 3-m
diameter electropolished stainless-steel cylinder of 26.1 m3.
To stimulate photolytic reactions the contents of the chamber
are irradiated by ultra violet (UV) light in the range 250–
400 nm. The chamber temperature is controlled by precisely
regulating the temperature of the air circulating in the space
between the chamber and its surrounding thermal housing;
the temperature stability of the chamber is around± 0.01 K,
with no observable change when the UV lights are turned
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Fig. 3. Calibration of the instrument using solutions with different
ammonia concentrations. The error bars represent one standard de-
viation. The fit is forced through the origin.

on at full power. In addition, the chamber can be raised to
373 K for cleaning. The nominal operating pressure is one
atmosphere. Pure air, free of condensable vapors, is obtained
from the evaporation of cryogenic liquid N2 and liquid O2,
mixed in the ratio 79 : 21, respectively. Trace gases such
as SO2 or NH3 are obtained from gas cylinders containing
100 ppmv and 1 % concentrations, respectively, in pressur-
ized N2. Each trace gas is diluted with air to the required
concentration before entering the chamber, and has an indi-
vidual circuit, with an isolation valve at the chamber, to avoid
cross-contamination or reactions with other gases outside the
chamber. To avoid contamination from plastic materials, all
gas piping is made from stainless steel, and all gas and cham-
ber seals are metal (gold-coated to render them chemically
inert).

Two stainless steel fans are mounted inside the chamber,
and coupled magnetically to flexible drives connected to mo-
tors located outside the thermal housing. The fans produce a
counter-flow inside the chamber in order to rapidly mix the
fresh gases.

3 Results

3.1 Calibration and detection limit

Figure 3 shows a calibration performed with NH4Cl solu-
tions that were added at valveK. The instrument’s response
is linear at least up to 400 nmol l−1 and yields the following
equation:

ABS =

(
0.0013± 2.4 × 10−5

) [
NH+

4

]
, (1)

where ABS stands for absorbance. The detection limit, cal-
culated as 3 times the standard deviation of the noise of the
blank signal averaged over ten minutes, is about 10 nmol l−1

for a liquid solution. With an air sample flow rate of 2 l min−1

and a liquid flow rate of 0.3 ml min−1, this translates into a
mixing ratio of about 35 pptv for the gas phase. The detec-
tion limit was sometimes increased due to instabilities in the
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Fig. 4. Stripping efficiency versus liquid flow rate in the sampling
line. Error bars represent 3 times the standard deviation of the mea-
surements taken for each setting.

baseline associated with particle formation from the catalyst
degradation.

The stripping efficiency of the sampling line, i.e. the frac-
tion of gas phase ammonia collected per unit air sampled,
was checked as follows: when the CLOUD chamber reached
a constant concentration of ammonia, we varied the water
flow rate keeping the air flow rate constant. The result is
shown in Fig. 4. It is seen that, at a water flow rate greater
than 0.3 ml min−1, the ammonia signal did not increase fur-
ther, indicating that the stripping of ammonia is complete at
this water flow rate.

3.2 Ammonia mixing ratio in the CLOUD experiments

With optimal cleaning and without intentional ammonia ad-
dition, the ammonia mixing ratio in the CLOUD chamber
was below the detection limit of 35 pptv. Still, there was
evidence that an ammonia contamination was present, as
e.g. shown by the fact that the Atmospheric Pressure inter-
face Time-of-Flight (APi-TOF) mass spectrometer showed
the presence of ammonia in the nucleating clusters (Kirkby
et al., 2011). This clearly shows the need for further improve-
ment of the detection limits in measuring ammonia and other
potential contaminants.

In the second part of the experiment, ammonia was added
intentionally. Figure 5 gives an overview of the concentra-
tions in these experiments. Data are averaged over 30 min.
The concentration drop at the end of the first day can be ex-
plained by the fact that the cylinder containing ammonia was
changed. Thereafter a re-equilibration of the injection line
was needed.

The mass flow controller (MFC) setting of the ammonia
addition is also shown in Fig. 5. There is a clear relation-
ship between the MFC setting and the ammonia concentra-
tion. However, it is also seen that the response of the am-
monia concentration to an increase in the MFC setting was
quite slow. This was true during the whole campaign, but
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Fig. 5. Mass flow controller (MFC) settings of the ammonia inlet
and the ammonia mixing ratio during the campaign.

especially pronounced on the first day of ammonia addi-
tion when no constant concentration was reached even af-
ter 24 h of a constant MFC setting. After a decrease of the
MFC setting, the new steady state value was reached a bit
faster (within about 3–6 h) than after an increase. However,
after stopping the ammonia addition completely later in the
experiment, the initial background level of ammonia was
not reached anymore even after 24 h. Nevertheless, for those
measurements where we can assume equilibrium, the esti-
mated steady state concentration of ammonia in the chamber
calculated from the injection flow and a wall loss lifetime of
15 min was in fairly good agreement with the measurement.

This behaviour can be partially explained by the properties
of ammonia. This compound is sticky and has a high diffu-
sion coefficient, which leads to fast losses to any walls. At the
same time, ammonia is also evaporating back from the walls
of the chamber and the inlet lines. Therefore, long times are
needed to condition the inlet line, and it is difficult to reach
the steady state quickly. Furthermore, every time the MFC
was changed the whole injection line had to re-equilibrate
again; when the MFC was set to a low level, the evaporation
from the chamber wall continued for a long time until a new
equilibrium was reached. These characteristics of ammonia
underline once again the importance of the sampling directly
into a liquid with a minimum transport time in the gas phase.

3.3 Determination of the nucleation rate at different
ammonia concentrations

The results of this experiment are shown in Kirkby et
al. (2011). Here, we just report an example of the dependence
of the nucleation rate on the ammonia concentration. Nucle-
ation rates (J , cm−3 s−1) were measured under neutral (us-
ing an internal electric clearing field), galactic cosmic rays
and charged pion beam conditions, corresponding to ion-pair
concentrations of about 0, 400 and 3000 cm−3, respectively.
Figure 6 shows the measured nucleation rate for a varying
ammonia concentration at a fixed sulphuric acid concentra-
tion. The nucleation rates are seen to be highly sensitive to
small additions of ammonia. When increasing the ammonia
concentration from contamination level (< 35 pptv) to about
100 pptv, both the neutral and ion-induced nucleation rates
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Fig. 6. Nucleation rates as a function of ammonia concentration at
292 K and [H2SO4] = 1.2× 108 cm−3 (adapted from Kirkby et al.,
2011). The curves are drawn to guide the eye. Experiments were
performed under neutral, galactic cosmic rays and charged pion
beam conditions, corresponding to ion-pair concentrations of about
0, 400 and 3000 cm−3, respectively.

increased by about a factor of 100. Above about 200 pptv the
nucleation rates reached saturation. These observations pro-
vide direct experimental evidence that the nucleation rates
are strongly limited by NH3 when its mixing ratio is below
about 100 pptv.

These findings are quite different from previous studies.
Benson et al. (2011) claimed that ammonia increased the nu-
cleation rate by less than a factor of 10. In their study the
ratio between ammonia and sulphuric acid was much higher
than in our study and in Kirkby et al. (2011). According to
our findings, this indicates that their experiments were in a
regime where the effect of NH3 on the nucleation rate was al-
ready partly saturated, and the response to a further increase
of ammonia was strongly damped.

Note that the numbers in Fig. 6 relate to a sulphuric acid
concentration of 1.2× 108 cm−3. Based on the stepwise ac-
cretion of NH3 molecules shown in the charged cluster com-
position by the APi-TOF (Kirkby et al., 2011), it is to be ex-
pected that at a lower sulphuric acid concentration saturation
is reached at an even lower NH3 mixing ratio. These results
clearly call for reliable ammonia measurements well below
35 pptv.

4 Conclusions

We presented an on-line method to detect ammonia in the
CLOUD chamber experiment at CERN. The method uses the
Berthelot reaction to convert ammonia to indophenol which
is detected through a spectrophotometric technique. A new
sampling system using water was also developed to min-
imise sampling losses, which can be quite high for this com-
pound. Under stable conditions a detection limit of 35 pptv
was reached.

In the CLOUD experiment, ammonia was injected to in-
vestigate the influence of this compound on the nucleation
rate, with mixing ratios ranging from background levels up

www.atmos-meas-tech.net/5/1719/2012/ Atmos. Meas. Tech., 5, 1719–1725, 2012



1724 F. Bianchi et al.: On-line determination of ammonia at low pptv mixing ratios in the CLOUD chamber

to 2 ppbv. The ammonia measurement and the setting of the
mass flow controller governing the NH3 addition were well
correlated, but after a change in the settings, several hours
were needed to reach again a constant value. Due to the
“stickiness” of ammonia it is quite difficult to accurately con-
trol the concentration of this gas.

Mixing ratios well below 100 pptv showed a strong depen-
dence on the nucleation rate, calling for even more sensitive
methods for ammonia measurements in future studies.
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