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Abstract. Clouds play an important role in balancing the
Earth’s radiation budget. Hence, it is vital that cloud cli-
matologies are produced that quantify cloud macro and mi-
cro physical parameters and the associated uncertainty. In
this paper, we present an algorithm ORAC (Oxford-RAL re-
trieval of Aerosol and Cloud) which is based on fitting a
physically consistent cloud model to satellite observations
simultaneously from the visible to the mid-infrared, thereby
ensuring that the resulting cloud properties provide both a
good representation of the short-wave and long-wave radia-
tive effects of the observed cloud. The advantages of the
optimal estimation method are that it enables rigorous er-
ror propagation and the inclusion of all measurements and
any a priori information and associated errors in a rigorous
mathematical framework. The algorithm provides a measure
of the consistency between retrieval representation of cloud
and satellite radiances. The cloud parameters retrieved are
the cloud top pressure, cloud optical depth, cloud effective
radius, cloud fraction and cloud phase.

The algorithm can be applied to most visible/infrared
satellite instruments. In this paper, we demonstrate the appli-
cability to the Along-Track Scanning Radiometers ATSR-2
and AATSR. Examples of applying the algorithm to ATSR-2
flight data are presented and the sensitivity of the retrievals
assessed, in particular the algorithm is evaluated for a num-
ber of simulated single-layer and multi-layer conditions. The
algorithm was found to perform well for single-layer cloud

except when the cloud was very thin; i.e., less than 1 optical
depths. For the multi-layer cloud, the algorithm was robust
except when the upper ice cloud layer is less than five op-
tical depths. In these cases the retrieved cloud top pressure
and cloud effective radius become a weighted average of the
2 layers. The sum of optical depth of multi-layer cloud is re-
trieved well until the cloud becomes thick, greater than 50
optical depths, where the cloud begins to saturate. The cost
proved a good indicator of multi-layer scenarios. Both the
retrieval cost and the error need to be considered together in
order to evaluate the quality of the retrieval. This algorithm
in the configuration described here has been applied to both
ATSR-2 and AATSR visible and infrared measurements in
the context of the GRAPE (Global Retrieval and cloud Prod-
uct Evaluation) project to produce a 14 yr consistent record
for climate research.

1 Introduction

Clouds have long been recognised as one of the key moder-
ators of the Earth’s atmosphere: low clouds such as stratus
effectively reflect incoming solar radiation, giving an overall
cooling effect, while high clouds may partially transmit solar
radiation, but effectively trap the outgoing thermal radiation,
resulting in an overall warming effect. The balance between
these effects and, in particular, how they might change over
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time, involving processes such as water vapour-feedback and
cloud-aerosol interaction, significantly complicates predic-
tion of future climate, as has been recognised by the Inter-
governmental Panel on Climate Change (IPCC).

In order to test climate models, we require accurate, con-
sistent, long-term, well characterised, global measurements
of clouds and their properties. Ground-based observations
are important, but these observations are often biased to-
wards land and populated centres. Only satellites provide
truly global coverage, which is essential for comparison with
climate models. Various active and passive satellite cloud
climatologies exist; for example, the active Cloud Profiling
Radar (CPR) (Stephens et al., 2008) and Cloud-Aerosol Li-
dar with Orthogonal Polarization (CALIOP) sensors are able
to provide height-resolved information on cloud properties
(Winker et al., 2007), however, coverage is limited to the sub-
satellite track and the time-series are short. Of the passive
satellite instruments the most widely known are the High res-
olution Infrared Sounder (HIRS,Wylie and Menzel, 1999),
Moderate Resolution Imaging Spectroradiometer (MODIS,
Platnick et al., 2003), Advanced Very High Resolution Ra-
diometer (AVHRR,Jacobowitz et al., 2003; Heidinger and
Pavolonis, 2009) and Multi-angle imaging SpectroRadiome-
ter (MISR,Moroney et al., 2002) datasets. The passive sen-
sors cannot represent the complex vertical structure, but have
much better global coverage and longer time series than ac-
tive instruments. Typically information on optical depth is
derived from the visible and near infrared channels (Naka-
jima et al., 1990) while information on the cloud top pres-
sure is derived separately from infrared measurements us-
ing brightness temperatures, the split window technique or
through CO2 slicing algorithms. MISR lacks thermal infrared
channels and instead uses stereoscopic observations from its
multiple viewing directions to derive cloud top height. This
technique is also used to derive cloud top heights from Along
Track Scanning Radiometer (ATSR) measurements (Muller
et al., 2007). The International Satellite Cloud Climatology
Project (ISCCP,Rossow and Schiffer, 1991) comprises a
merging of polar and geostationary satellite data which has
been a fundamental, reference dataset of global cloud proper-
ties for many years, though shortcomings of this dataset have
been identified (Evan et al., 2007).

Progress in understanding the global distribution of cloud
and its evolution with time are expected to come from
systematic inter-comparison of results from different sen-
sors or from different retrieval approaches (e.g., via ac-
tivities of Global Energy and Water cycle EXperiment,
GEWEX), as well as model/measurement intercomparisons
e.g., CFMIP,Bodas et al.(2008). Here, we describe an op-
timal estimation method (OEM) (Rodgers, 2000) to gener-
ate a dataset from the Along-Track Scanning Radiometers
(ATSR-2 and AATSR) which will provide a valuable con-
tribution in this area. Advantages of the dataset stem from
both the retrieval method and from the characteristics of the
ATSR observations:

– The ATSRs provide a long time-series (from 1995–
present) of consistent, well-calibrated observations in
6 channels sensitive to cloud properties, spanning the
visible to infrared spectral range, obtained in two view-
ing directions. This time-series will continue into the
foreseeable future via the Sea and Land Surface Tem-
perature Radiometer (SLSTR) on Sentinel-3.

– The OEM application to similar remote-sensing
cloud retrievals has been described inHeidinger
(2003), Miller et al. (2000), Heidinger and Pavolonis
(2005) and Copper et al.(2003). In these instances
the OEM has been applied to the visible channels/near
infrared to retrieve cloud effective radius and optical
depth or separately to the mid-infrared channels to de-
rive cloud top pressure. The OEM scheme described
here differs to the above applications in that it is based
on fitting a physically consistent model of cloud to ob-
servations spanning ALL the channels, the visible to
mid-infrared, extracting information on the height, opti-
cal depth, particle size simultaneously, while rigorously
treating model and observation errors. This in turn pro-
vides detailed estimation of the errors in the retrieved
quantities, and quantification of the “goodness of fit” of
the observations to the cloud forward model (FM). This
enables the appropriateness of underlying assumptions
in the retrieval to be tested and data interpreted accord-
ingly. Furthermore, where the retrieval obtains a good fit
to observed radiances, one can be assured that the result-
ing cloud properties provide simultaneously a good rep-
resentation of the short-wave and long-wave radiative
effects of the observed cloud.Ham et al.(2009) andSid-
dans et al.(2010) show large discrepancies between ob-
served MODIS radiances and those predicted based on
MODIS cloud retrievals. Such discrepancies are inher-
ently avoided by the retrieval method adopted here.

In this paper, we describe the optimal estimation algorithm,
we assess the sensitivity to the retrieved parameters for a
range of cloud conditions including multi-layer cloud, and
finally show some examples of the retrieval algorithm as it
has been applied to ATSR-2 data.

The algorithm has been applied to ATSR data to produce
the GRAPE dataset of cloud parameters from July 1995 to
June 2003 (from ATSR-2), and has been processed from Au-
gust 2002 to December 2009 (from AATSR). There was a
6 month data outage from January to June 1996 caused by
a temporary scan mirror failure. The cloud parameters pro-
vided are outlined in Table3. Further details, data, docu-
mentation, quality statements and imagery of products can
be found at the British Atmospheric Data Centre (BADC)
website,www.badc.ac.uk.

The retrievals have already been used to study ship tracks
(Campmany et al., 2009; Sayer and Grainger, 2010) and
study cloud-aerosol interactions (Bulgin et al., 2008). It is
noted that, while the authors have applied the algorithm
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Table 1. Definition of reflectance and transmittance terms. Additional transmittance terms can be created by the inclusion of the direct
transmittance (the unattenuated beam) to give total transmittance terms for a layer.

Definition Names

R(λ,2π,ωr) =
1
π

∫ 2π
0 R(λ,ωi ,ωr)cosθi dωi hemispherical-directional reflectance factor

for isotropic illumination

R(λ,ωi ,2π) =
1
π

∫ 2π
0 R(λ,ωi ,ωr)cosθr dωr directional-hemispherical reflectance factor, re-

flection, local albedo, planetary albedo, black
sky albedo

R(λ,2π,2π) =
1
π

∫ 2π
0

1
π

∫ 2π
0 R(λ,ωi ,ωr)cosθi cosθr dωi dωr bi-hemispherical reflectance factor for isotropic

illumination, white sky albedo

T (λ,2π,ωt) =
1
π

∫ 2π
0 T (λ,ωi ,ωt)cosθi dωi hemispherical-directional transmittance factor

for isotropic illumination

T (λ,ωi ,2π) =
1
π

∫ 2π
0 T (λ,ωi ,ωt)cosθt dωt directional-hemispherical transmittance factor

T (λ,2π,2π) =
1
π

∫ 2π
0

1
π

∫ 2π
0 T (λ,ωi ,ωt)cosθi cosθt dωi dωr bi-hemispherical transmittance factor for

isotropic illumination

to the ATSR instrument, the method could in fact be ap-
plied to many different passive visible and infrared remote-
sensing instruments. Indeed, the theoretical basis for the al-
gorithm was established through a EUMETSAT study to de-
rive cloud properties for the Meteosat Second Generation
SEVIRI, (Spinning Enhanced Visible and InfraRed Imager),
instrument (Watts et al., 1998) and used to investigate the op-
tical properties of ice cloud inBaran and Havemann(2004).
A version of the algorithm for SEVIRI is under development
at EUMETSAT (Watts et al., 2011) and ORAC has been ap-
plied to AVHRR and MODIS in the context of the European
Space Agency, ESA, Climate Change Initiative. An analo-
gous technique for retrieving aerosol properties has been de-
scribed inThomas et al.(2009b).

2 The Along Track Scanning Radiometer (ATSR)

The ATSRs are dual-viewing imaging instruments measur-
ing visible and infrared radiances (within narrow band cen-
tred on 0.55, 0.67, 0.87, 1.6, 3.7, 11 and 12 µm) with 1 km
spatial resolution at the sub-satellite point. ATSR-2 (Mut-
low et al., 1999) was successfully launched on board the
ESA satellite ERS-2 in April 1995 and data were routinely
produced from June 1995 to October 2008. A similar in-
strument AATSR (Advanced ATSR,Llewellyn-Jones et al.,
2001) was launched on board ENVISAT in March 2002 and
stopped reporting in April 2012. AATSR is scheduled to be
followed by a new instrument based on ATSR design princi-
ples called the SLSTR on board Sentinel-3, which is sched-
uled for launch in 2013. ATSR-1 (which does not have the
0.55, 0.67 and 0.87 µm visible channels) operated on ERS-1
from 1992–2000.

Table 2. ATSR instrument specifications. Note that for SLSTR the
numbers specified are provisional as the instrument is still in the
design phase. The swath width for SLSTR is the width of the dual
view swath, the single view swath will be wider.

Instrument LTDN1 swath (km) res. start end
(UTC) sea/land (km)

ATSR-2 10.30 300/512 1 06/1995 08/2008
AATSR 10.00 512/512 1 03/2002 04/2012
SLSTR 10.00 1200 0.5–1 2013

The ATSRs are designed to have exceptional long-term
sensitivity and stability of calibration. Thermal channels are
calibrated using two on board black bodies at known tem-
peratures which are observed during each across-track scan
of the instrument. This makes it possible to determine sin-
gle channel equivalent brightness temperatures correct to
±0.05 K (Smith et al., 2001). The instrument also has an on
board visible/near-infrared calibration system enabling the
visible channels to be calibrated to an accuracy of better than
4 % (Smith et al., 2008), which is subsequently improved via
vicarious calibration using scenes of known stable surface
BRDF (certain deserts and ice caps). The specifications of
the different ATSR instruments can be found in Table2. The
excellent calibration and long time series of the ATSR in-
struments, as well as substantial overlap periods to enable
inter-instrument calibration, make ATSR measurements well
suited to generate records suitable for climate science.
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3 Cloud retrieval scheme

The ATSR instruments’ primary scientific mission is to per-
form high-accuracy sea surface retrievals (Mutlow et al.,
1994), which requires accurate detection of cloud-affected
scenes. The instruments are also suitable for the retrieval of
cloud-properties, since the 7 channels are sensitive in dif-
ferent ways to the macro- and microphysical properties of
cloud. For example the infrared channels provide useful ex-
tra information to the visible channels in the case of optically
thin clouds. However, the observations are certainly not sen-
sitive to every aspect of the three-dimensional distribution of
all relevant cloud properties and no single channel sensitive
solely to a specific cloud property. In the ORAC (Oxford-
RAL Aerosol and Cloud) algorithm we approach the problem
of extracting useful information on cloud as an inverse prob-
lem: a forward model is defined which applies a radiative
transfer model (RTM) to simulate satellite radiances based
on a parametrised cloud/atmosphere/surface model and the
defined observing conditions. An inverse or retrieval model
is then used to obtain the cloud parameters which give the
best fit between the model predicted and observed radiances,
taking into account measurement errors and relevant prior
knowledge. This inverse problem is solved using the optimal
estimation method (Rodgers, 2000) (OEM):

the basic principle of the OEM is to maximise the prob-
ability of the retrieved state, conditional on the value of the
measurements and any a priori knowledge. This is achieved
by maximising the probabilityP =P(x|ym, xa) with respect
to the values of the state vectorx. The a priori estimate of the
state is defined byxa, i.e., the most likely state prior to taking
the measurements into account. The state mapped into mea-
surement space is defined byy(x). The measurement vector
is described byym. The assumption is made that errors in the
measurements and a priori parameters (and forward model)
can be described by a Gaussian distribution normally dis-
tributed with zero mean and covariances given bySy andSa,
respectively. The solution state is found by maximisingP or
equivalently minimising the sum of the Guassian exponents
the “cost function”,J :

J (x) = (y(x) − ym) Sy
−1 (y(x) − ym)t

+ (x − xa) Sa
−1 (x − xa)

t . (1)

The cost function can be minimised by estimating its gra-
dient (by linearising the forward model) for an initial esti-
mate of the state. Using this gradient, an estimate of the state
is made which is predicted to have lower cost. The proce-
dure is iterated until convergence (or the attempt to reach
convergence is abandoned). To find the minimum we start
at a first guess statexo which in the absence of other in-
formation is set to be the value of the a priorixa and pro-
ceed to make steps, assuming the value ofJ (x) decreases at
each step then the updatedx vector moves towards the cost
function minimum. In this retrieval, we use the Levenberg-
Marquardt (Marquardt, 1963; Levenberg, 1944) scheme to

perform the minimisation. The rationale of the Levenberg-
Marquardt is to use the weighted combination of the steep-
est descent method and Newtonian descent according to the
characteristics of the cost function, i.e., when the cost is far
from the solution the steepest descent algorithm is preferred
while when the cost function is close to the solution the
Newtonian scheme is used. Convergence is judged to occur
when the cost function changes by less than 1 between iter-
ations. Retrievals which do not converge after 25 iterations
are considered invalid.

If the a priori and measurement errors are well represented
by their respective covariances, then the cost function value
at solution is expected to follow aχ2 distribution with de-
grees of freedom equal to the total number of elements in the
measurement and state vectors. The value of the cost func-
tion, therefore, provides a measure of the likelihood of the
solution-state being consistent with observations and prior
knowledge. A typical value of a cost function with 5 mea-
surements and 5 state variables would be 10, if none of the
measurements deviated by more then their expected noise
and no state variables deviated from their a priori value by
more than the a priori error, otherwise the cost value would
be reduced if any of the state variables are bounded and do
not have any significant a priori. The reasons for high/low
values ofJ can be difficult to estimate, values too low im-
plies an overestimation of error such as the measurement
noise, values too large imply underestimation of noise or
convergence criteria that is too loose.

For retrievals which satisfactorily converge, i.e., converge
to a minimum cost which is consistent with measurement and
prior errors, then the errors on the estimated state parame-
ters are described bySx. The diagonals ofSx provide the ex-
pected variance of each element in the state vector, assuming
that the retrieval is linear within the range of its errors and
the measurement and prior errors are well described by their
respective assumed covariances:

Sx = (KT S−1
y K + S−1

a )−1. (2)

whereK is known as the Jacobian or weighting function ma-
trix, and contains the derivatives of the forward model with
respect to the state parameters at the solution:

Kij =
∂yj

∂xi

. (3)

4 Measurement vector and covariance

The implementation of the ORAC retrieval scheme described
here uses nadir-view observations in the 0.55, 0.67, 1.6, 11
and 12 µm channels of the ATSRs and, hence, can only be
applied to day time observations. The 3.7 µm channel is not
included because it has been found to be difficult to consis-
tently represent both the 1.6 and 3.7 µm channels with the
assumed cloud model as they are sensitive to the vertical gra-
dient of effective radius in the cloud (Baran et al., 2005).
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Similarly forward view radiances are not included as three-
dimensional structure of cloud will often cause differences
between the views which cannot be accommodated by the
current model and there are parallax effects. Note that the
0.55 µm channel is often not present due to the operating
modes of the instrument.

The measurement covariance,Sy, is the sum of two terms:

Sy = Snoise + Sfm. (4)

The random noise on the observations is represented by
Snoise. The matrix is diagonal, i.e., we assume no correlation
in the noise between different channels. In the setup used
in this paper, these values equal to the square of the mea-
surement noise, namely 0.058, 0.009, 0.018 (all units of sun-
normalised radiance as defined in Sect.7.1.2), 0.21 K and
0.23 K respectively, taken from (Smith, 2005).

The forward model errors are represented bySfm, includ-
ing its representation of the atmosphere and the instrument
response. These errors are typically larger than the instru-
mental noise, but are more difficult to quantify and are not
necessarily normally distributed or with zero mean, as for-
mally assumed by the OEM method. Potential contributions
include errors in co-registration between channels, error in
absolute radiometric calibration, errors in the assumed atmo-
spheric and surface temperature profiles, errors in the plane-
parallel assumption (e.g., cloud vertical structure, 3-D ef-
fects), errors in the ice scattering model, impact of aerosol,
error in modelling surface reflectance/emissivity, etc. The
impact of these terms has been investigated in studies such
as Watts et al. (1998) and Siddans et al. (2009). In general,
the errors depend on the context of a particular retrieval (in-
cluding cloud-type, clear-sky atmospheric state etc).

In practice a simplified (but somewhat ad-hoc) approach is
adopted in this scheme applied in this paper and in GRAPE
(Global Retrieval and cloud Product Evaluation):Sfm is de-
fined to be the sum of two terms:

Sfm = Sp + Ss. (5)

For the visible and near-IR channels,Sp describes errors
which are assumed proportional to the signal. These terms
are assumed uncorrelated between the channels and have val-
ues of equal to the square of 2.75 % of the measured radiance
for the 0.55, 0.67 and 0.87 µm channels and 2.5 % of the mea-
sured radiance in the 1.6 µm channel, respectively. These val-
ues are chosen (following work in the studies cited above)
to broadly represent the potential impact of errors in inter-
channel co-location, sub-pixel scene homogeneity, radiomet-
ric gain uncertainty, clear-sky atmospheric transmission, and
the error in fast forward model compared to DISORT (DIS-
crete Ordinate Radiative Transfer). For the 11 and 12 µm
channels, errors of 0.1 K are assumed to cover errors limiting
the accuracy of the forward model for these channels (how-
ever these values are small compared to the assumed noise).

Ss is defined only for the visible and near-IR channels
and is intended to represent errors in the modelled surface
reflectance which limits the FM accuracy when cloud opac-
ity is low. This depends on both the error in the surface re-
flectance and the sensitivity of the observations to the surface
reflectance, which depends upon the cloud properties being
retrieved. For a given cloud state,Ss is given by:

Ss = KT
sfc + Ssfc Ksfc. (6)

whereSsfc is the error covariance of the assumed Lamber-
tian surface reflectanceRSFCappropriate to each channel and
Ksfc contains the derivatives of the modelled radiance in each
channel with respect to the surface reflectance (calculated by
the fast FM).

Diagonal elements ofSsfc are set to (the square of) the
albedo for the corresponding channel multiplied by 0.2. Off-
diagonals are set to give a correlation between the chan-
nels of 0.4, surface albedo values are taken from MODIS
data (Schaaf et al., 2002). Errors arise from the MODIS re-
trievals themselves and the inference from these of values
appropriate to the ATSR scene and spectral response. The
assumed 0.2 fractional error and 0.4 correlation values are
broadly consistent with the accuracy reported in (Liu et al.,
2009). Further consideration of the use of MODIS albedo
data in the ORAC scheme is given in (Sayer et al., 2011b).

Note that the inclusion of the state-dependent termSs
means thatSy varies during the iteration of the retrieval. Sim-
ilar results can be obtained by including surface reflectance
in the retrieval state vector, with prior covariance given bySs
(but this is not the approach adopted in GRAPE).

It is recognised that values placed inSp and, to a lesser ex-
tent Ss, do not perfectly represent the true errors applicable
to a given scene (though they are considered to be reason-
able). This has the consequence that the cost function value
resulting from retrievals cannot be expected to follow the chi-
squared distribution for the expected number of degrees of
freedom and the estimated state-vector errors will not per-
fectly represent all contributions to the actual error covari-
ance. In this paper, we state the assumptions that have been
made in the application of the scheme in the GRAPE project.
The performance of the scheme which makes these assump-
tions is assessed in (Sayer et al., 2011a). This analyses the
relationship between retrieval quality and the value of the
solution cost function.

It should also be noted that errors related to the devia-
tion of the true vertical structure of cloud from the plane-
parallel model assumption made by the retrieval are not ex-
pressed inSy. Clouds which cannot be well represented by
the plane-parallel assumption are, therefore, expected to give
rise to high solution cost. This issue is considered further in
Sect.10.
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5 State vector and a priori constraint

The state vectorx in Eq. (1) used in the retrieval comprises
the following:

– Log10 cloud optical depth

– Cloud effective radius

– Cloud top pressure

– Cloud fraction

– Surface temperature

A priori and first guess values depend on the assumed
phase (phase determination is addressed in Sect.8). For liq-
uid cloud, a priori values are 15, 8 µm, 800 hPa for optical
depth, effective radius, cloud top pressure, respectively, for
ice the equivalent a priori values are 15, 30 µm, 400 hPa.
These values were chosen as they are typical of ice and liq-
uid cloud, the values could be optimised in the future by
using climatological values from recent instruments such as
CALIPSO/CALIOP. The surface temperature a priori value
is taken from European Centre for Medium Range Weather
Forcasting, ECMWF, model fields.

For computational efficiency the observations were pro-
cessed for an average of 3 pixels across track and 4 pix-
els along track, this corresponds to approximately 3× 3 km.
The a priori value for cloud-fraction (within the 3× 4 pixel
analysed scene) is the fraction of full-spatial resolution pix-
els flagged as cloudy. When running at reduced resolution
it is necessary to apply a cloud mask before the retrieval is
applied.

The distinction between the a priori estimate and first
guess is important. The retrieval is constrained against any
a priori information, the degree to which the retrieval is con-
strained depends on the associated a priori error. The a priori
must be independent information, while this is not necessary
for the first guess. In the retrievals performed here all state
variables except surface temperature are effectively uncon-
strained as the a priori error is set to 108. This value gives a
completely flat probability distribution over the whole range
of possible parameter values. The first guess does not con-
strain the retrieval, an appropriate first guess will mean that
the retrieval will start closer to the solution and converge
faster, but will not affect the result. This retrieval assumes
no useful information is available as a priori information ex-
cept on cloud fraction and surface temperature. The cloud
fraction a priori error is set at a relatively small value of 0.1.
This is because the cloud fraction was found in initial exper-
iments to change erroneously to compensate for other inad-
equacies in the retrieval. We do not expect the retrieval to
provide highly accurate information on surface temperature
(except in cloud-free conditions) or fraction. These quantities
are included in the state so that errors on their assumed values
can be considered properly in fitting the other parameters and

their errors propagated into the expected error on the other
parameters. The surface temperature a priori error is 1 K over
sea and 3 K over land. Comparisons we have performed be-
tween buoy and satellite data have shown that the error on
SST (Sea Surface Temperature) is typically very much less
than 1 K. However, in rare cases, such as upwellings close
to land, this could be up to 5 K. The land surface tempera-
ture over most dark vegetated surfaces will be reasonably ac-
curate. The land surface temperature over deserts and other
surfaces with a strong diurnal cycle could indeed have an er-
ror greater than 3 K. This number will be reviewed for future
implementations. The algorithm framework means that use-
ful independent a priori information could be incorporated
in the future. The a priori covariance is assumed to be di-
agonal i.e., the cloud properties are uncorrelated as the only
terms which are significantly constrained by the prior covari-
ance are the surface temperature and the cloud fraction and
there exists no justification for assuming these to be corre-
lated. Other terms are effectively unconstrained by the high
assumed prior error. The initial (first-guess) values for state-
vector parameters are set equal to the a priori values.

6 Cloud/atmosphere/surface model

The forward model simulates the measured ATSR radiances
for a given scene under the assumption that each scene is
composed of a clear-sky fraction and a cloudy fraction. For
the thermal channels the clear-sky atmosphere is defined by
temperature and humidity profiles taken from ECMWF anal-
yses (ECMWF, 2008) and RTTOV (Saunders et al., 1999).
Fixed profiles for 3 latitude bands, tropics mid-latitudes and
poles, have been used to model atmospheric transmission
in the visible channels. The validity of this approach is
discussed in Sect.7.1.3.

The surface is assumed to be a Lambertian reflector. Over
sea the surface algorithm uses the model ofCox and Munk
(1954a) and Cox and Munk(1954b) (using winds from
ECMWF). Over land the MODIS albedo product for the
year 2002 has been used in the processing of ATSR-2 and
for AATSR. Error on the modelled surface albedo (Schaaf
et al., 2002) is addressed via the assumed measurement co-
variances. For the infrared channels the surface is assumed
to have an emissivity of 1. This is a reasonable assump-
tion as the error on the emissivity for the 11 and 12 µm
channels of ATSR will be small over sea≈< 1 %. The er-
ror will be largest over bare soil especially deserts where
errors≈ 2 % will be encountered. Like surface albedo un-
certainties the impact will be largest in fractional cloud and
thin cloud scenarios affecting the accuracy of the retrieval
in these scenarios. For example, the retrieved cloud top tem-
perature might be expected to be erroneously low as the sur-
face radiance contributions will be overestimated. Emissivity
error was not modelled in the version of ORAC applied to
the GRAPE (Global Retrieval and cloud Product Evaluation)
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ATSR climatology. The error will be considered in future ap-
plications. The temperature of the surface is a retrieved pa-
rameter (see Sect.5).

In the current implementation of ORAC to the GRAPE
dataset a cloud mask is required to identify regions of cloudy
sky to process. Over sea the cloud flag used is that ofZa-
vody et al.(2000). Over land the cloud flag used is that de-
scribed inBirks (2004) which uses a NDVI (Normalised Dif-
ference Vegetation Index) technique, no infrared channels are
implemented in the cloud mask over land so sensitivity to
thin cloud will be reduced. Retrievals are only performed for
scenes with a non-zero cloud fraction. Subsequent experi-
ments have shown that by processing all pixels (clear and
cloudy) a good cloud mask can be derived using retrieval in-
formation, but it is not used here. The selection technique
used to determine cloud phase is described in Sect.8.

The forward model simulates radiances for the whole
scheme by linearly weighting simulated radiances for the
clear-sky and cloudy parts of the scene by cloud fraction,f

(also a retrieved parameter). Cloud is assumed to be a single,
plane-parallel, layer of either liquid or ice particles. The layer
is assumed to be geometrically infinitely thin and is placed
within the clear-sky atmospheric model. As the limited num-
ber of IR channels used have similar gaseous and cloud ab-
sorption properties this is probably justified from a radiance
consistency point of view, however, the assumption leads to
retrieved cloud top pressures that are effective values lying
within the upper part of the cloud (this is clearly seen, e.g.,
in comparisons to CALIOP or CloudSat observations (Watts
et al., 2011). It would be more precise to model a geometri-
cally thick layer, but this relatively complex parameterisation
is deferred.

The cloud layer is parametrised in terms of the following
retrieved quantities:

– the cloud phase, i.e., ice or liquid.

– The effective radius,reff of the cloud particle size
distribution.

– The optical depth,τ of the cloud at a fixed wavelength
of 0.55 µm.

– The cloud top pressure,pc.

Particle size distributions for ice and liquid cloud are defined
as a function of onlyreff andτ . The shape of the modelled
size distribution is used to determinereff andτ defines im-
plicitly the total number of particles. For ice clouds, single
scattering properties (extinction coefficient, single scattering
albedo and phase function) are taken fromBaran and Have-
mann(2004). These are based on a mixture of ray tracing and
T-Matrix methods. Size distributions themselves are those of
warm uncinus cirrus cloud (Takano and Liou, 1989) with
scaled distributions to give a range of effective radii. The
definition used is that byFu (1996), where the generalised

effective size is given by

Dge =
2
√

3 IWC

3 ρiAc
(7)

whereAc is the total cross-sectional area of cloud particles
per unit volume,ρi the density of ice and IWC the ice water
content.

Single scattering properties of liquid cloud are derived by
Mie theory assuming a modified gamma size distribution of
particle radiusr, (Hansen and Travis, 1974):

n(r) = 2.373r6 exp

(
−

6 r

rm

)
. (8)

whererm is the mode radius of the distribution. The radia-
tively significant effective radius,reff, is given by:

reff =

∫
∞

0 r π r3 n(r) dr∫
∞

0 π r2 n(r) dr
. (9)

This approach reduces the complexity of cloud to a sim-
ple model with parameters which can be distinguished us-
ing the channels available on the ATSRs: the visible chan-
nel radiances are predominantly determined by the cloud op-
tical depth. Near-IR channels are also sensitive to particle
size and phase due to the dependence on size of the single-
scattering albedo in that spectral range, and the associated
differences between ice and liquid phase particles. Thermal
channels predominantly provide information on cloud-top
pressure (via the dependence of the cloud thermal emission
on the atmospheric temperature profile). It is important to
note that a cloud parameter is determined from all available
measurements and not from a single channel or set of chan-
nels. All channels are sensitive to a greater or lesser extent
dependant on the scene.

We recognised that this simple model cannot represent
all aspects of cloud three-dimensional structure. In the ideal
case, the retrieved parameters will correspond to cloud top
(pc and reff) or column total (τ ) values that are horizontal
(over the scene) averages of the “true” cloudy properties.
However, there may be classes of clouds, particularly those
with strong vertical variations in particle size and phase, for
which the model may or may not be able to produce ra-
diances consistent with observations in all ATSR channels.
When it cannot, the condition can be recognised because the
retrieval will not converge with satisfactory cost and the re-
trieved products considered invalid. When it can, the retrieval
will successfully converge and there is no way to know that
vertical variations existed; the retrieved parameters will then
be radiatively consistent effective values and not necessarily
the physical averages desired.

There will be cases where multiple low cost minima are
present in the cost function. In this case the search algorithm,
Levenberg-Marquadt, will find only one of them. The pres-
ence of multiple low cost minima can become apparent in
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the ensemble behaviour of retrieved parameters. One such
example manifest is boundary layer cloud where cloud top
pressure solutions can appear below and above the inversion
at altitudes of similar temperature. This is a consequence of
an under-determined system and no algorithm based on the
same information could reliably resolve the issue. The so-
lution is to report all the multiple low cost minima, but this
is mostly impractical. Practically the solutions to the mul-
tiple low cost minima problem must involve additional in-
formation (e.g., in the case of the boundary layer cloud top
pressure, to identify inversion conditions in the Numerical
Weather Prediction (NWP) temperature profile and constrain
the cloud top pressure solution into the boundary layer).

One of the advantages of the ORAC OEM approach to use
all data simultaneously is that the chances that the system can
accommodate more than one solution is less than when sub-
sets of information are used; i.e., the system is more likely to
be over-constrained.

In Sect.10 we specifically test the performance of the
scheme under the more extreme case of varied multi-layer
cloud conditions, diagnosing under what conditions the re-
trieval provides a good solution (within estimated errors of
the “true” state) and whether the solution cost can effectively
be used to distinguish conditions in which the model assump-
tions are inappropriate.

7 Radiative transfer model

Distinct RTMs are used for the solar (0.55, 0.67, 0.87
and 1.6 µm) and thermal (11 and 12 µm) channels. Fast
radiative transfer is necessary to enable retrievals to be
performed within practical computational constraints. To
achieve the necessary speed both models have the following
common aspects:

– the effects of multiple-scattering inside the cloud are ac-
counted for using pre-computed look-up-tables, LUTs.
The values stored in the LUTs are described and listed
in Table1. The values are stored at discrete values of
τ , reff, solar zenith angle, satellite zenith angle and az-
imuth angle. LUTs are pre-computed using DISORT
(Stamnes et al., 1988). During retrievals they are lin-
early interpolated to obtain the required values.

– Radiative transfer is performed quasi-
monochromatically, i.e., a single radiative transfer
calculation is performed for each channel, taking as
input channel spectral-response function convolved
optical properties (e.g., clear-sky transmission to cloud
layer, cloud single-scattering properties). Errors from
this approximation are known to be negligibly low for
the AATSR channels, but may become significant for
channels of other instruments with strong variations in
optical properties across the spectral response. Tests
have been carried out for the extreme case of the

Meteosat Second Generation, MSG, SEVIRI 3.9 µm
channel (which is much wider than the AATSR 3.79 µm
channel and encompasses a strong CO2 absorption
features as well as a strong gradient in the Planck
function). This indicates errors generally less than 1 K
(Siddans et al., 2010).

– Derivatives with respect to state-vector elements
(i.e., the elements ofK ) are analytically computed. The
derivatives are required to calculateJ . They are calcu-
lated by (i) differentiating the equations in Sect.7.1.3
to give the derivative of the simulated radiance with re-
spect to the LUT parameters (ii) calculating the deriva-
tives of the interpolated LUT parameters with respect to
the state variables (iii) applying this chain to infer the
radiance derivatives with respect to the state variables.

Details of the solar and thermal RTMs are provided below.

7.1 Visible and near-infrared channels

7.1.1 Radiometric terminology

Consider a spherical coordinate system whose origin is cen-
tred on a small area dA. The spherical coordinates are ori-
entated so thatθ is the angle from the normal of dA andφ

is the angle in the plane of dA. The movement of electro-
magnetic energy can be discussed in terms of radianceL,
which is the rate of energy propagation in a given direction
per unit solid angle per unit area perpendicular to the axis of
the solid angle (ISO, 1992). The distribution of radiance with
wavelength is expressed by the spectral radianceLλ(λ) such
that dL(λ) = Lλ(λ)dλ represents the radiance in the interval
[λ,λ + dλ].

To describe the reflection of radiation by dA we consider
incident radiance dLi from direction (θi,φi) giving rise to
a reflected radiance dLr travelling in direction(θr,φr). For
convenience these direction pairs will be represented as solid
anglesωi and ωr, respectively. By using these definitions
θi and θr are always in the range[0,π/2] and this avoids
their cosine ever being negative. The incident ray subtends
a solid angle dωi = sinθidθidφi at dA while the reflected
ray subtends a solid angle dωr = sinθrdθrdφr. The bidirec-
tional reflectance distribution function (BRDF)f r(λ,ωi,ωr)

is defined as the radiant reflectance per reflected solid angle
in (Schaepman-Strub et al., 2006):

f r(λ,ωi,ωr) =
dLr(λ,ωr)

dLi(λ,ωi)cosθidωi
. (10)

A Lambertian reflector reflects incident energy isotropi-
cally. Its BRDF is, therefore,f r

=R/π which is indepen-
dent of incident or reflection angle and whereR is a constant
in the range[0,1]. An ideal Lambertian reflector redirects all
the energy that is incident on it (i.e.,R= 1) sof r

= 1/π .
It is convenient to use a bidirectional reflectance factor or re-
flection function (Takano and Liou, 1989) which is defined as
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Table 3. ATSR retrieved cloud properties units and range for
GRAPE.

Parameter Units range

Cloud optical depth log10 0–255
Cloud liquid effective radius µm 1–23
Cloud ice effective radius µm 20–50
Cloud top pressure hPa 1000–100
Cloud fraction 0–1
Cloud phase liquid/ice 0/1

the BRDF relative to that from an ideal Lambertian surface.
The bidirectional reflectance factorR(λ,ωi,ωr) is then:

R(λ,ωi,ωr) =
f r(λ,ωi,ωr)

1/π
=

πdLr(λ,ωr)

dLi(λ,ωi)cosθidωi
. (11)

Using this definition, the reflected radiance for diffuse illumi-
nation (incident radiation not confined to a beam, but spread
over the hemisphere) is:

dLr(λ,ωr) =
1

π

2π∫
0

R(λ,ωi,ωr)dLi(λ,ωi)cosθi dωi . (12)

Where the notation for an integral over the hemisphere has
been abbreviated as:

2π∫
0

dω =

2π∫
0

π/2∫
0

sinθ dθ dφ. (13)

If the incident field is isotropic then the integral in Eq. (12)
can be performed with only knowledge of the bidirectional
reflectance factor. This gives the hemispherical-directional
reflectance factor for isotropic illuminationR(λ,2π,ωr)

where the argument2π is used to indicate the use of this term
is limited to the cases where the input radiance is isotropic.
Different integrations give further reflection terms which are
shown in Table1 along with equivalent terms for the dif-
fusely transmitted radiation which are derived from the trans-
mission functionT (λ,ωi,ωt) defined by:

T (λ,ωi,ωt) =
πdLt(λ,ωt)

dLi(λ,ωi)cosθidωi
. (14)

where the transmitted rayLt is travelling from direction
ωt (= θt ,φt ). There is no consistent naming or notation
of reflectance and transmittance terms in the literature so
we have listed names we have encountered and have fol-
lowed (Schaepman-Strub et al., 2006) in adopting a notation
where a diffuse (but not isotropic) energy flow incident, re-
flected or transmitted from a layer is indicated in the argu-
ment of a term by 2π . In this way the redirection of energy
between directional beams and diffuse fields in the expres-
sion for reflection or transmission can be easily interpreted.

7.1.2 An AATSR short wave measurement

The shortwave AATSR signal is a measurement of energy; a
weighted sum of radiance over wavelength and over the in-
strument field-of-view (FOV) for some instrument measure-
ment period. However, in common with most shortwave im-
agers the reported value for a scene is a “Sun-normalised
radiance” which is defined as the ratio of the measured ra-
diance to the radiance that would be observed from a per-
fect Lambertian reflector illuminated by the Sun. The for-
ward model simulation of the measured Sun-normalised ra-
diance starts by establishing a spherical coordinate system
whose origin is the centre of the scene of interest. In this
system the solar direction(θ0,φ0) is abbreviate as the direc-
tion vectorω0. The energy per unit area per unit time illumi-
nating the scene is cosθ0E

0
λ(λ)dλ whereE0

λ(λ) is the top
of atmosphere solar spectral irradiance. The spectral radi-
ance reflected by an ideal Lambertian scene would then be
cosθ0E

0
λ(λ)/π . The variation in reflectance with wavelength

and geometry is expressed as:

R(λ,ω0,ωr) =
πLr

λ(λ,ωr)dλ

cosθ0E
0
λ(λ)dλ

. (15)

whereLr
λ(λ,ωr) denotes the reflected spectral radiance prop-

agating in directionωr = (θr,φr).
For each short wave channeli the ATSR instruments report

a Sun-normalised radiance,Ri that is formed by calibrating
the observed scene signal with the signal from a near-ideal
diffuse reflector illuminated by the Sun (Smith, 2005). If each
channel is defined by a response function,%(λ), whose limits
are [λ1,λ2] then the Sun-normalised radiance for channeli

can be expressed as:

Ri =
π

∫ 2π

0

∫ λ2
λ1

%(λ)ς(ω)Lλ(λ,ω)dλdω

cosθ0
∫ 2π

0

∫ λ2
λ1

%(λ)ς(ω)E0
λ dλdω

. (16)

whereς(ω) denotes the geometric response function of the
instrument. Note that the coordinate system used in this ex-
pression is centred on the instrument (but can be related
to scene centred coordinates through appropriate geometri-
cal transforms). Ifς(ω) is constant across the field-of-view
then the outer integral can be completed and the expression
becomes:

Ri =
π

∫ λ2
λ1

%(λ)Lλ(λ,ωr)dλ

cosθ0
∫ λ2
λ1

%(λ)E0
λ dλ

. (17)

In the limit of a very narrow band, the measured Sun-
normalised radiance is a good approximation to the bidi-
rectional reflectance factorR(λ,ωi,ωr) evaluated at the
response weighted mean wavelength of the channel.
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7.1.3 Visible and near-infrared radiative transfer
model

The visible and near-infrared radiative transfer model as-
sumes the observed scene is composed of a homogeneous
cloud layer, with a fraction coverf , and clear sky. The bidi-
rectional reflectance factor is the weighted sum of the cloudy,
Ri•, and clear,Ri◦, bidirectional reflectance factors:

Ri = f Ri• + (1− f )Ri◦. (18)

The gaseous absorption optical depth of the atmosphere
is calculated by MODTRAN (MODerate resolution atmo-
spheric TRANsmission) (Berk et al., 1989) using fixed US
standard atmospheric profiles for different latitude bands.
This is fine for AATSR which has little sensitivity to water
vapour. However, for instruments that have greater sensitiv-
ity to water vapour and high satellite zenith angle the scheme
has been modified for future application to use ECMWF
and RTTOV for both the thermal and solar channels (Sid-
dans, 2011). The gaseous optical depths are weighted by
the instrument spectral response function to account for the
rapid variation of transmission across a channel. This total
absorption optical depth is then partitioned into the above
cloud optical depthτac and the below cloud optical depthτbc
based on the cloud top pressure relative to the surface pres-
sure. The LUTs includes the Rayleigh scattering produced
by the whole atmosphere assuming a fixed surface pressure,
i.e., typical ocean surface pressure of 1013 hPa. Variations in
surface pressure are not modelled for the AATSR channels,
which leads to errors of up to around 0.002 in sun normalised
radiance, except in locations of high surface elevation. The
scheme could be easily extended to take this into account by
adding a surface pressure dimensions to the LUTs, but would
require additional processing time.

The spectral bidirectional reflectance factor for the non-
cloudy portion of the instruments view is given by the surface
bidirectional reflectance factor,RSFCi (ω0,ωr) attenuated by
the gaseous absorption of the atmospheric column, i.e.:

Ri◦ = e−(τac+τbc)/cosθ0RSFCi (ω0,ωr)e
−(τac+τbc)/cosθr . (19)

For the cloudy fraction of a scene the atmosphere is mod-
elled as having three layers: a below-cloud layer, a cloud
layer and an above-cloud layer. The above and below cloud
layers consist of gaseous absorbers that attenuate radiation
without scattering.

The surface is assumed Lambertian with reflectance
RSFCi (2π,2π). This means that the directionality of the radi-
ance onto the surface can be ignored. The advantage of this
formulation is that the multiple scatters between the cloud
and the surface are contained in diffuse terms. Ignoring the
below cloud absorption the bidirectional reflectance factor

Fig. 1. Figure illustrating the multiple reflections between cloud
and surface.

for channeli at the top of atmosphere is given by:

Ri• = e−τac/cosθ0
[
RCLDi (ω0,ωr) + TCLDi (ω0,2π)

RSFCi (2π,2π)TCLDi (2π,ωr)

+TCLDi (ω0,2π)RSFCi (2π,2π)RCLDi (2π,2π)

R SFC(2π,2π)TCLDi (2π,ωr)

+ . . .] e−τac/cosθr (20)

whereTCLDi (ω0,2π) is the cloud directional-hemispherical
total transmittance factor andTCLDi (2π,ω0) is the
cloud hemispherical-directional total transmittance fac-
tor. The cloud bi-hemispherical reflectance is given by
RCLDi (2π,2π).

The multiple reflections between cloud and surface, shown
stylistically in Fig. 1, give rise to a geometric series which
can be evaluated analytically. To complete this model we pa-
rameterise the transmittance of the layer below the cloud as:

Tbc(2π,2π) ≈ T bc(2π,2π) ≈ e−τbc/cos66◦ . (21)

whereτbc is the optical thickness of the layer. This assumes
the mean angle of below cloud transmittance is 66◦, cho-
sen to give a reasonable approximation to the transmission
appropriate to the diffuse reflection (Watts et al., 1998). In-
cluding the below cloud absorption within the forward model
gives:

Ri• = e−τac/cosθ0
[
RCLDi (ω0,ωr)

+
TCLDi (ω0,2π)RSFCi (2π,2π)TCLDi (2π,ωr)

1− RCLDi (2π,2π)RSFCi (2π,2π)T 2
bc(2π,2π)

]
e−τac/cosθr . (22)

7.2 Thermal-infrared radiative transfer model

The thermal RTM makes extensive use of the RTTOV model
(Saunders et al., 1999). RTTOV directly provides the mod-
elled radiance from the clear-sky fraction of the scene. As
in the solar case the TOA radiances are a linear combination
of overcast and clear atmospheric radiation as per Eq. (18).
The observed radiance for the cloudy part of the scene is
modelled in terms of contributions from four terms: trans-
mission of the radiance upwelling from below cloud level,
emission from the cloud, reflection of radiance downwelling
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Table 4. This table summarises the ensemble of radiances consid-
ered in the comparison between the fast forward model and DIS-
ORT, the visible channel units are reflectance and the infrared chan-
nel units are in Kelvin.

Channel Mean Standard Min. Max.
µm Value Devation Value Value

0.55 0.472 0.327 0.03 1.08
0.67 0.475 0.346 0.0159 1.09
0.87 0.552 0.324 0.00577 1.11
1.6 0.242 0.191 0.000623 0.845
3.7 288 13.2 256 315
11 263 22.2 212 295
12 261 21.7 212 293

from above cloud level and emission of radiance from the
atmosphere above the cloud:

L↑
• (ωr) =

(
L

↑

bc (ωr) TCLD
(
2π, ωr

))
e−(τac)

+ B
(
T (pc) εCLD + L↓

ac RCLD
(
2π, ωr

))
.

e−(τac) + L↑
ac (ωr) (23)

RTTOV directly computes clear sky termsL↑

bc, the upward

radiance at the cloud base,L
↓
ac, the downward radiance at the

cloud top from the atmosphere, andL
↑
ac, the TOA radiance

from the atmosphere above the cloud. The cloud effective
emissivity, defined byεCLD, is the efficiency compared to a
black body at which the cloud emits radiation (it is a function
of view angle only). The emissivity is computed by DISORT
and tabulated in LUTs. The cloud transmission and reflection
properties are calculated and stored in LUTs in exactly the
same way as for the shortwave channels see Sect.7.1.2. The
Planck function for the temperature of the cloud (obtained by
interpolation of the model temperature profile topc) is de-
fined byB(T (pc)). The RTTOV calculations are performed
6 hourly and use ECMWF analyses for input.

7.3 Accuracy of radiative transfer model

The accuracy of the radiative transfer model has been eval-
uated by comparing the fast forward model equations with
calculations performed by DISORT for an ensemble of con-
ditions totalling 6048 cases and comprising:

– 3 solar zenith angles 9, 45 and 72◦

– 2 satellite zenith angles 0 and 50◦

– 2 azimuth angles 36 and 144◦

– 7 cloud optical thicknesses 0.01, 0.10, 0.32, 1.0, 3.2, 10.
and 100.

– 3 cloud top pressures 270, 490 and 750 hPa

– 3 model atmospheres tropical, mid-latitude and polar

Table 5. This table summarises the differences between the Fast
Forward Model and DISORT, the visible channel units are re-
flectance and the infrared channel units are in Kelvin.

Channel Mean Standard Min. Max.
µm difference Devation Difference Difference

0.55 0.000344 0.00385 −0.0228 0.0192
0.67 −0.000465 0.00328 −0.027 0.0115
0.87 −0.000247 0.001 −0.00531 0.00423
1.6 −0.0000714 0.00138 −0.0142 0.00136
3.7 −0.12 0.251 -2.64 0.375
11 −0.0549 0.0789 −0.417 0.0686
12 −0.055 0.0759 −0.401 0.0712

– 4 surfaces types black, trees, deserts and snow

– 2 cloud phases ice and liquid.

The results of the comparison for the different channels are
summarised in Tables4 and5. Table4 summarises the en-
semble of radiances considered in the comparison, while Ta-
ble 5 summarises the differences between the Fast Forward
Model and DISORT (Stamnes et al., 1988), DISORT itself
of course is not perfect, but it serves as a good reference. In
general the differences are small, but in a few cases, not ex-
plicitly shown in this paper, the difference may be large, for
example, where the optical depth is 0.32 and the cloud is at a
high altitude.

8 Phase determination

The only retrieved parameter not directly included in the
state-vector is phase, principally because it is treated as a
binary and not a continuous variable. Phase is retrieved as
follows:

– at the beginning of a retrieval, the phase of the cloud is
assumed to be ice or liquid based on the value of the
calculated overcast brightness temperature of the 11 µm
channel. The threshold between ice and liquid is as-
sumed to be 260 K.

– The phase may be switched during the retrieval iteration
according to the following criteria:

– The phase change from liquid to ice is identified
when the current estimate ofreff exceeds 23 µm
(provided the scheme has not converged to this
value as its final solution). When this threshold
is reached, the retrieval is restarted assuming the
cloud to be ice.

– Similarly if reff for ice cloud becomes lower
than 20 µm the retrieval is re-started assuming liq-
uid.

– Only one change of phase is allowed in the re-
trieval.
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It is recognised that ice clouds do exist withreff < 20 µm, and
the retrieval will not provide reliable results in such situa-
tions. An alternative approach to the selection of cloud phase
which would partly avoid this problem would be to simply
run the retrieval twice, once for each phase, and select the
most probable phase based on solution cost. Mixed phase
clouds are not considered. Mixed phase clouds will either be
retrieved as ice or liquid and with “average” liquid/ice values
or with a high cost. In practice the boundaries on effective
radius make little difference to the result.

9 Cloud ice and liquid path

In addition to the retrieved state parameters a number of
cloud variables are derived and stored in the global level
cloud products. Cloud water path, CWP, is derived using the
method of (Han et al., 1994):

CWP =
4

3
×

τ · reff · ρ

Qext
. (24)

whereQext, the extinction coefficient, is assumed to be 2 for
liquid and 2.1 for ice, for wavelengths much less thanreff.
The density is 1ρ (g m−3) for liquid and 0.91267 (g m−3)
for ice. Depending on phase, CWP is also known as liquid
water path (LWP) or ice water path (IWP).

10 Retrieval scheme performance

In this section, we examine the theoretical performance of the
cloud retrieval algorithm in the configuration used when pro-
cessing ATSR data. Three questions are addressed in terms of
the retrievals sensitivity and our ability to identify situations
when the retrieval does not perform well:

1. at what optical depths and effective radii does the re-
trieval algorithm perform well for single-layer clouds?

2. How does the retrieval perform in the presence of multi-
layer cloud, given the cloud model used is a single layer,
and can we identify when a single cloud layer model is
inappropriate?

3. How sensitive is the retrieval to assuming an incorrect
cloud, i.e., how well does the cloud retrieval perform
when ice LUTs are applied to a liquid cloud and vice
versa?

The questions are addressed by performing linear error sim-
ulations in the first case, and nonlinear retrieval simulations
for the last two questions. In linear simulations, the sensitiv-
ity of observations to cloud parameters and error sources is
computed for a specific set of atmospheric profiles and ob-
serving conditions. Observation sensitivities are then trans-
formed into retrieval sensitivity assuming that the cloud for-
ward model is linear within some suitable range about the

atmospheric/observing state. In nonlinear simulations the so-
lution is found iteratively, in this case Levenberg-Marquardt
technique is used.

10.1 Sensitivity study of single-layer cloud retrievals

In this section, linear simulations are used to evaluate the sen-
sitivity of observations to cloud parameters and error sources.

Simulation setup

In addition to the retrieval setup outlined in Sect.4, the linear
simulations were performed for the following scenarios:

– Solar zenith angle 30◦, relative azimuth 0◦ and satellite
zenith angle 0◦.

– The retrieval uses a standard temperature, humidity, and
trace gas profile for northern mid-latitudes.

– The optical depths simulated were 0.01, 0.5, 1, 3, 5, 7,
10, 12, 15, 20, 25, 30, 50, 100 for liquid and ice clouds.

– The effective radius simulated were 3, 5, 6, 7, 8, 9, 10,
12, 14, 16, 18, 20, 22, 25 µm for liquid clouds, and 3,
5, 8, 10, 12, 15, 20, 25, 30, 35, 40, 50, 60 µm for ice
clouds. (This range of effective radii values is greater
than what was used in GRAPE, however, it is included
to be illustrative of more scenarios).

– The surface is assumed to be sea, with a Lambertian
reflectance of 0.01 for all visible channels.

– Cloud fraction is fixed to 1.

Figure2 shows the simulated retrieval errors, i.e., the square
root of the error covariance,Sx as a percentage of the ex-
pected retrieved parameter for a single layer of ice or liq-
uid cloud with varying optical depth and effective radius.
(Note that the radius ranges are different for the two differ-
ent phases to reflect realistic scenarios). The primary findings
are:

– the percentage uncertainty on the optical depth in-
creases as clouds become optically thick and is high for
optically thin clouds (i.e., clouds with an optical depth
less than 1).

– The percentage uncertainty for the effective radius is
highest for optically thin clouds and very small radii
(i.e., clouds with a radius less than 5 µm).

– The percentage uncertainty on the cloud top pressure is
largest for optically thin clouds.

– The percentage uncertainty for cloud liquid/ice path is
greater for ice clouds and increases with optical depth
and effective radius and is high for optically thin clouds.
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Fig. 2. Simulated retrieval error as a function of varying effective radii and cloud optical depth for cloud optical depth(a) and(b), effective
radius(c) and(d), cloud top pressure(e) and(f) and cloud liquid/ice path(g) and(h). Results for simulated liquid (left) and simulated ice
(right) single layer cloud over sea. The numbers printed in the white boxes indicate values exceeding the scale of the colour bar.
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From this simulation it is clear that with the current number
of measurements used with this model, optically thin clouds,
clouds with a small effective radii are difficult to retrieve with
low retrieval error. When the cloud becomes optically thick
then the cloud optical depth may be significantly underes-
timated. For thin clouds the contribution from the surface
becomes increasing important to model correctly, this will
be more significant over bright surfaces such as deserts. For
thick clouds as the optical depth increases the rate of change
in the visible channels decreases until a “saturation” point
is reach. The retrieved error reflects this scenario. It is inter-
esting to note that the saturation point is reached at a lower
optical depth for ice clouds than for water clouds. The un-
certainty on the ice crystal effective radii increases at higher
values of radii as the rate of change of the 1.6 µm) channel
flattens. This simulation assumes that the optical models of
the liquid and ice cloud are correct, and uncertainty in the
models would add uncertainty to the state. Ice clouds are typ-
ically more difficult to model than liquid clouds due to the
variation in shape, i.e., hexagonal aggregates, rosettes and
the choice of optical model could have a significant effect on
the accuracy of the retrieval (Zhang et al., 2009).

10.2 Simulations of multi-layer cloud

The frequent occurrence of multi-layer cloud is one of the
most difficult problems facing passive satellite remote sen-
sors of cloud (Chang et al., 2005). Incorrectly retrieving
multi-layer cloud with a single layer cloud model could po-
tentially result in incorrect and biased retrievals of the cloud
properties. A typical occurrence of multi-layer cloud is thin
cirrus over stratus cloud and it is this situation that is inves-
tigated here. To evaluate the effect of this category of multi-
layer clouds, we apply the cloud retrieval scheme to a set of
simulated radiances. The effective radius and cloud top pres-
sure are fixed. The radiances are generated by varying the
optical thickness for each layer. The retrievals are performed
separately assuming liquid and ice optical properties. The ef-
fect of using ice cloud optical properties when retrieving a
liquid cloud, and vice-versa, is also discussed.

Simulation setup

The simulation was setup as in Sect.10.1 with the follow-
ing extra conditions. The values of the simulated multi-layer
cloud are:

– 320 hPa and 780 hPa cloud top pressure for the ice and
liquid cloud layer, respectively.

– 50 µm and 12 µm effective radius for the ice and liquid
cloud, respectively.

– The optical depth of each layer analysed are combina-
tions of optical depths studied in Sect.10.1.

It is necessary for the purposes of evaluation to define “true”
values against which to evaluate the retrieval. The “true”

value for effective radius, cloud top pressure and cloud water
path has been defined by the phase selected by the retrieval,
liquid or ice, which is the phase with the lowest cost. In the
scenarios considered here the phase is nearly always ice ex-
cept where the upper cloud layer is optically thin (less than
1 optical depths) and the lower cloud layer is more opaque.
The “true” optical depth is the sum of the optical depths of
each layer. The multi layer scenario of 0.01 optical depth up-
per layer cloud is representative of a single layer liquid cloud
while a 0.01 optical depth lower layer is effectively a single
layer high cloud.

Figure 3 shows a false colour image of the simulated
multi-layer cloud for different layer thickness. The false
colour image is created using the 0.67, 0.87 and 1.6 µm chan-
nels. Ice crystals are absorbing in the 1.6 µm channel, result-
ing in the pale blue colour which increases in intensity as the
overlapping cloud increases in thickness. Thick liquid clouds
also absorb strongly in the 1.6 µm channel.

Figure 4 shows the results of performing nonlinear re-
trievals of single and multi-layer cloud assuming a single
layer cloud model. The plots show the retrieved values of the
cloud parameters and the corresponding cost, or goodness of
fit. Figure 5 shows the percentage differences between the
“true” and retrieved cloud parameters. These retrieved val-
ues are then compared with the retrieval error for the cloud
parameter, the following points are noted:

– all retrievals converged regardless of if the retrieval was
accurate or not.

– Multi-layered clouds where the upper ice layer had an
optical depth≤1 generally fit the liquid LUTs best. In
these cases the retrieved properties were closer to the
“true” liquid cloud and the cloud phase selected on the
basis of cost is liquid.

– The most poorly retrieved cases were thin ice clouds
over thick liquid cloud. In these cases the effective ra-
dius of the ice cloud was underestimated, the clouds
placed too low in the atmosphere and the retrieved opti-
cal depth underestimated. These scenarios did not al-
ways exhibit the highest retrieval error, however, the
cost is nearly always greater than 1 in these cases.

– The ice cloud parameters are retrieved with higher accu-
racy and low cost when the lower layer of liquid cloud
is thin compared to the upper layer.

– The optical depth is underestimated when the underly-
ing liquid cloud is very thick. Optical depth is rarely
overestimated except for thin clouds.

– The optical depth retrieval tends to “saturate” at very
high optical depths and the percentage difference be-
tween the retrieved and “true” cloud optical depth
increases.
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Fig. 3. False colour image of the simulated multi-layered cloud cases (left) and the simulated total optical
depth (right). The optical depths simulated were 0.01, 0.5,1, 3, 5, 7, 10, 12, 15, 20, 25, 30, 50, 100 for
each layer.
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Fig. 3. False colour image of the simulated multi-layered cloud cases (left) and the simulated total optical depth (right). The optical depths
simulated were 0.01, 0.5, 1, 3, 5, 7, 10, 12, 15, 20, 25, 30, 50, 100 for each layer.

– The cloud top pressure retrieved when the upper layer
is thin is generally the intermediate or the “effective”
cloud top pressure of both layers. A high cost is usually
observed in these cases.

– When the cost is low, the retrieval error on the multi-
layer clouds approaches that of a single-layer cloud re-
trieval.

In summary, the retrieval is performing well for single-layer
clouds. For multi-layer clouds the optical depth and effective
radius are generally retrieved with reasonable accuracy when
the upper ice layer is thick and the lower liquid layer has an
optical depth smaller than the ice layer. When the retrieval
with the lowest cost is selected the phase is that of upper layer
of the cloud when the scene is multi-layered. Optical depth
will be underestimated for very thick liquid clouds. Interest-
ingly, using the ice LUTs results in generally lower values of
optical depth which arise because of the different scattering
phase function of ice, which tend to be more forward scat-
tering. Cloud top pressure will be overestimated (i.e., clouds
will have a lower altitude) in most multi-layered cloud sce-
narios. In this sense the retrieved pressure represents some
radiative average of the cloud layers. The cloud retrieval here
uses only the 1.6 µm channel which is sensitive to cloud lay-
ers deeper into the cloud than the 3.7 µm channel (Platnick,
2000). Hence, the upper cloud layer needs to be thick to dom-
inate the signal, i.e., greater than approximately five optical
depths, or the effective radius retrieved will be a mixture of
liquid and ice cloud. The cost can be seen to be a useful pa-
rameter for identifying multi-layer clouds, i.e., high cost is

an indicator of poorly retrieved multi-layered cloud parame-
ters. If the cost is low, as in the case of thin cloud scenarios,
the retrieval errors will nearly always reflect the error on the
retrieval. However, the authors realise that these results are
simulations and in real cases other sources of high cost may
somewhat obscure the multi-layer detection.

Liquid and ice water path are derived from the retrieved
optical depth and effective radius. For lack of other informa-
tion the cloud is assumed to be a single phase, ice or liquid
in the calculation of retrieved IWP/LWP. For reference the
“true” LWP/IWP is calculated for each layer using the cor-
rect phase by applying Eq. (24). In general the retrieval of
IWP and LWP has a smaller percentage error than the optical
depth and effective radius individually as the optical depth
and effective radius tend to compensate for each other to
achieve a more accurate IWP or LWP. When the cloud is very
thick, i.e., optical depth> 50, then the IWP/LWP are under-
estimated. For scenes with thick ice cloud over liquid cloud
the IWP/LWP are often overestimated. In difficult (i.e., re-
trievals with high cost) multi-layer scenarios the retrieved
cloud ice/liquid water path is underestimated. The global
bias caused by this will depend on the type and frequency
of multi-layered clouds.

11 Example retrieval

In this section, we show an example retrieval of cloud us-
ing ATSR-2 data from the 10 November 1999 over Europe.
Figure6 shows the false colour image and the cost of the re-
trieval. The pale blue colouring denotes the likely presence of
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Fig. 4. Nonlinear retrievals of single and multi-layer cloud performed using a single-layer cloud model using the LUT (cloud or ice) that
produced the lowest cost. The scenario where the upper cloud layer is 0.01 optical depths is equivalent to retrieving a single layer cloud.
Plots(a), (b), (c), (d) show the retrieved optical depth, effective radius and cloud top pressure and cloud liquid/ice path, respectively. The
phase of the best retrieval is indicated on plot(a) the “X” indicates the best retrieval was a liquid cloud. Plot(e)shows the cost.

ice cloud due to absorption in the 1.6 µm channel. The scene
comprises a variety of cloud types over land and sea. Di-
rectly over Switzerland is some thick ice cloud, towards the
Italian coast the cloud is thin liquid cloud. The value of the
cost is high where the cloud is thin or the scene is clear (i.e.,
the scene has been falsely masked cloud). Elevated costs are
also apparent over thicker cloud banks, perhaps indicating
the presence of multi-layered cloud. The white spaces within
the ATSR swath images show where no cloud has been de-

tected using the cloud mask (see Sect.5 for details on cloud
mask used).

Figures6–8 show the retrieved cloud parameters, the as-
sociated error in the retrieval and the selected cloud phase.
From these figures the following observations are made:

– cloud top pressure appears to be realistic. The error on
the cloud top pressure retrieval is highest where the
cloud is thin and the surface contribution to the TOA
radiances becomes significant.
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Fig. 5. Plots showing the percentage differences between the “true” and retrieved cloud parameter, left column, compared to the retrieval
error for the cloud parameter, right column. From top to bottom the results are shown for optical depth, effective radius, cloud top pressure
and cloud liquid/ice path. The ‘truth’ is defined by the phase selected. The “X” in plot(g) denotes when a liquid phase was selected as the
retrieval with the lowest cost as per Fig.4.
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Fig. 6. False colour image of clouds over Europe from ATSR-2 on the 10 November 1999. The pale blue colour results form absorption in
the 1.6 µm channel and is an indicator of ice phase or very thick clouds (top left), cost of the retrieval (top right). Cloud top pressure (bottom
left) and error on cloud top pressure (bottom right), The white area within the swath shows where the region has been designated cloud free
using the cloud mask.

– The uncertainty in the optical depth retrievals is propor-
tional to the thickness of the cloud, i.e., thick clouds
have the highest error in optical depth.

– Ice clouds are retrieved with a higher effective radius
than liquid clouds. The uncertainty is highest when the
clouds are thin.

– Low cloud fractions are typically retrieved at the edges
of larger cloud fields.

– The cost is highest when the cloud is thin or where there
is no cloud visible to the eye in the false colour im-
age. Enhanced cost values are visible around the edge
of identified cloud fields, possibly due to 3-D radiative
transfer effects such as shadowing or horizontal pho-
ton transport and error in the surface albedo as the edge
clouds are likely to be thin.

– Ice cloud phase is collocated with clouds identified as
being high or with large effective radii, as would be ex-
pected.

– There is a clear discontinuity in the cost as it goes from
sea to land. The cost should be higher over land than
over the sea due to the difficulty of modelling the sur-
face over land. However, due to the excessively large
albedo-related error assignment described in Sect.10.1
the cost values over land are too small compared with
those over sea. More well characterised assignment of
surface forward model error would produce more real-
istic cost estimates.

– It is clear that the cloud mask used in the retrieval is
not always accurate and uncertainty in the cloud mask
propagates into the retrieval. The cloud mask used here,
which is typical of many cloud masks generally under-
estimate the amount of cloud. In the future it maybe
more appropriate to process individual pixels assuming
each pixel is fully cloudy and identifying likely clear
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Fig. 7. Cloud optical depth and error on cloud optical depth Cloud effective radius and error on cloud effective radius for the image of Fig.6,
10 November 1999.

Fig. 8.Cloud phase and Cloud fraction for the image of Fig.6, 10 November 1999.
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pixels that way. Eventually one would also deal with
partly cloudy pixels, however, this action is deffered.

The retrievals from the ATSR-2 scene over Europe appear
consistent with the simulated retrievals described previously.
A more complete validation of the cloud properties can be
found in (Sayer et al., 2011a).

12 Conclusions

A method of optimally retrieving cloud parameters from pas-
sive visible through infrared satellite data has been described.
The algorithm is capable of using the instrument noise char-
acteristics and a priori information with associated retrieval
errors to provide cloud macro and microphysical properties
(cloud optical depth, effective radius, cloud top pressure and
cloud fraction). The algorithm is based around a forward
model which uses look up tables for computational speed.
The LUTs for liquid cloud droplets are based on Mie scat-
tering while the ice LUTs are calculated using optical prop-
erties from ice crystals. A key advantage of this technique is
that it uses all channels, and derives all parameters, simul-
taneously, meaning the resulting cloud parameters are radia-
tively consistent with the measurements. It also means that
the observing system is likely to be more constrained then if
subsets of channels were used. In addition the retrieval pro-
vides two quality control measures, the cost and the expected
errors. The cost assesses the quality of fit to the model used
and where the fit is good then the accuracy of the retrieval
is based on the expected error. By basing the selection of
phase on the lowest cost retrieval correct cloud phase could
be deduced in most cloud scenarios. The cost and error infor-
mation provided will enable effective use of the products for
comparison with climate models or for exploitation via data
assimilation.

Using linear simulations the retrieval is found to be accu-
rate for single layer clouds except when the cloud is very
thin< 1 optical depths or approaching very high optical
depths, i.e., typically> 50. Nonlinear retrieval simulations
have been performed to assess the sensitivity of the retrievals
to assuming a single layer cloud and to the choice of incor-
rect phase used to retrieve cloud properties. For many multi-
layer cloud scenarios, e.g., when the layers are of compara-
ble thickness or the lower layer is thin and the upper layer
is greater than five optical depths, the retrieval is relatively
robust. However, retrievals of multi-layer cloud when the up-
per ice cloud layer is less than five optical depths will gen-
erally retrieve cloud top pressure and cloud effective radius
which are an average of the two-layers. The retrievals of op-
tical depth are relatively robust, but are underestimated when
the two-layer cloud is very thick.

In addition to the state parameters retrieved directly by
the algorithm, cloud liquid or ice water path are derived.
These are underestimated in multi-layer situations, except
when the lower layer is very thick compared to the upper

layer. As thin ice cloud over liquid cloud scenario is rela-
tively frequent, users of the data should consider the cost and
retrieval error when using the data. The cost and retrieval
errors have been identified as useful quality indicators to as-
sess when the model used is appropriate and retrieval is ac-
curate. The algorithm is globally applicable, however, the
performance will have a dependence on the uncertainty as-
sociated with the location and the type of cloud. In the case
of regions with high surface reflectance such as deserts and
poles the retrieval will have a higher uncertainty, particu-
larly for thin clouds. The technique has been demonstrated
using satellite data from ATSR-2 for the compilation of the
GRAPE dataset. The ATSR-2/AATSR dataset can be down-
loaded atwww.badc.co.uk. The algorithm is applicable to
most passive visible, near infrared and infrared sensors such
as ATSR, MODIS, AVHRR and SEVIRI. Many of these sen-
sors have additional channels. The addition of more measure-
ments and, hence, more information is likely to increase the
sensitivity to thin and cloud and the vertical profile enabling
more accurate retrievals.
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