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Abstract. Decreasing trends of elemental carbon (EC) have
been reported at US Interagency Monitoring of PROtected
Visual Environments (IMPROVE) network from 1990 to
2004, consistent with the phase-in of cleaner engines, res-
idential biomass burning technologies, and prescribed burn-
ing practices. EC trends for the past decade are examined due
to an upgrade of IMPROVE carbon instruments and the ther-
mal/optical analysis protocol since 2005. Filter reflectance
(τR) values measured as part of the carbon analysis were
retrieved from archived data and compared with EC for 65
sites with more complete records within 2000–2009. EC–τR

relationships suggest minor changes of EC quantified by the
original and upgraded instruments for most IMPROVE sam-
ples. EC andτR show universal decreasing trends across the
US. The EC andτR trends are correlated, with national aver-
age downward rates (relative to the 2000–2004 baseline me-
dians) of 4.5 % yr−1 for EC and 4.1 % yr−1 for τR. The con-
sistency between independent EC andτR measurements adds
to the weight of evidence that EC reductions are real rather
than an artifact of changes to the measurement process.

1 Introduction

Elemental carbon (EC), a light-absorbing carbon (LAC)
component as determined by thermal/optical methods, is the
dominant aerosol fraction that absorbs visible radiation in the
troposphere (Andreae and Gelencsér, 2006). This fraction is
often termed “black carbon” (BC) if quantified by optical

or photoacoustic methods (Moosmüller et al., 2009). EC
aerosols from incomplete fuel combustion are non-spherical
and internally mixed with organic carbon (OC) (Chakrabarty
et al., 2006a, b; Chen et al., 2010). Jacobson (2009) estimates
the 100-yr global-warming potential (GWP) of EC + OC
from fossil- and bio-fuel combustion to be 800–1300 rela-
tive to carbon dioxide (CO2). Reducing EC emissions could
be a short-term and cost-effective method for slowing global
warming (Jacobson, 2002; Bond and Sun, 2005), as well as
providing co-benefits for public health, visibility, and mate-
rial damage (Chow and Watson, 2011).

Long-term monitoring of aerosol chemical composition in
the US Interagency Monitoring of PROtected Visual Envi-
ronments (IMPROVE) network (Watson, 2002) reveals a de-
creasing trend in average EC concentrations by over 25 %
from 1990 to 2004 for the entire country (Murphy et al.,
2011) as well as decreases in EC of 40–60 % for urban and
non-urban California sites from 1988 to 2007 (Bahadur et
al., 2011a, b; Schichtel et al., 2011). These trends are consis-
tent with emission reduction measures implemented to attain
PM2.5 and PM10 National Ambient Air Quality Standards
for engine exhaust (Lloyd and Cackette, 2001), residen-
tial wood combustion (Hough and Kowalczyk, 1983; Butler,
1988; Hough et al., 1988), and prescribed burning (Riebau
and Fox, 2001; Tian et al., 2008). Even though IMPROVE
data are available through 2009, Murphy et al. (2011) chose
to exclude data from 2005 onward owing to potential biases
that might have been caused by an upgrade in IMPROVE
carbon instruments beginning in 2005. Chow et al. (2007)
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Fig. 1. Annual average elemental carbon (EC), organic carbon
(OC), and the ratio of EC to total carbon (TC = OC + EC) for:(a)
all IMPROVE data,(b) downtown Washington DC (U1), and(c)
Bryce Canyon National Park (CP1) between 1989 and 2009. Data
were acquired from the Visibility Information Exchange Web Sys-
tem (VIEWS) website (http://views.cira.colostate.edu/). An EC in-
crease from 2004 to 2005 corresponds with the carbon instrument
upgrade for(a) and (b), but this is not observed at every site, as
shown in(c).

demonstrated equivalence between measurements made with
the original (Chow et al., 1993) and upgraded (Chow et al.,
2007, 2011) instruments for hundreds of samples from a va-
riety of environments. However, average EC concentrations
and EC/total carbon (TC) ratios increased at some (but not
all) IMPROVE sites from 2004 to 2005, as illustrated in
Fig. 1. The objective of this study is to investigate the recent
(2000–2009) trends in IMPROVE EC along with those of fil-
ter reflectance, which serves as an independent surrogate for
EC.

The IMPROVE thermal/optical reflectance (TOR) anal-
ysis protocol separates EC from OC on filter samples by
temperature-dependent volatilization and oxidation. EC is
defined as carbon that does not evolve at∼ 580◦C in an inert
helium (He) atmosphere and is subsequently oxidized to CO2
with the introduction of oxygen (2 %) at higher temperatures,
up to 840◦C. A fraction of OC chars in the inert atmosphere,
as evidenced by decreases in light (632.8 nm He-neon (Ne)
laser) reflected from the aerosol deposit on the filter surface
during the analysis (Fig. 2). Pyrolyzed OC (POC) is defined
as the carbon evolved after oxygen is introduced and before
the reflected light intensity returns to its original value (i.e.,
the reflectance crossover). POC is subtracted from apparent
EC measurement to yield “native” EC concentration in the
sampled air. When all of the carbon has evolved, the remain-
ing filter is usually white, similar to the appearance of a blank
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Fig. 2.Schematics of optical monitoring system in the original (left)
and upgraded (right) carbon instrument. The laser beam is directed
to the sample through a coaxial optical fiber and a quartz light pipe
(perpendicular and∼ 2 mm to the filter sample) by which the re-
flected light is acquired. The sample holder is redesigned in the up-
graded instrument to allow collection and detection of the transmit-
ted light. The dashed boxes illustrate the heating zone for thermal
analysis.

filter. Non-white filters are occasionally found during dust
events, and these are flagged as part of the IMPROVE proto-
col.

The 2005 carbon instrument upgrade led to a transition
from the IMPROVE to IMPROVEA thermal/optical anal-
ysis protocol (Chow et al., 1993, 2007). The new protocol
did not change the temperatures plateaus but rather reflected
“actual” analysis temperatures that had been implemented
since the inception of the IMPROVE network (Chow et al.,
2005). With improved electronics and sealing, the upgraded
instrument allows for more precise temperature control, flex-
ible data acquisition, a higher intensity laser light beam, and
lower trace oxygen levels in the inert He atmosphere than did
the original instrument (Chow et al., 2011). It also enables
simultaneous monitoring of filter reflectance and transmit-
tance without changing the reflectance measurement config-
uration (Fig. 2). Since 2005, reflectance as well as transmit-
tance crossover has been used for charring correction. Ther-
mal/optical transmittance (TOT) often reports higher POC
and lower EC than TOR. Chen et al. (2004) and Chow et
al. (2004) attributed this to charring of organic vapors ad-
sorbed within the filter (Watson et al., 2009; Chow et al.,
2010) which attenuate transmittance substantially but have
a minor effect on reflectance from the surface deposit. EC
hereafter refers to TOR EC.

Optical measurements designed for charring correction
provide alternatives for quantifying EC or BC abundances on
filters. Filter attenuation using reflected light (τR) or trans-
mitted light (τT ) is defined as

τR = − ln(R/R0) (1)

τT = − ln(T /T0), (2)

whereR0 andT0 are reflectance and transmittance, i.e., the
reflected and transmitted light intensity, of blank filters, re-
spectively, whileR andT are reflected and transmitted light

Atmos. Meas. Tech., 5, 2329–2338, 2012 www.atmos-meas-tech.net/5/2329/2012/
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Fig. 3.Sixty-five IMPROVE sites in 25 regions (see Table 1 for def-
initions). Color codes indicate the changes of EC-τR regression co-
efficients across the instrumental upgrade in 2005. Red: significant
change in slope (p < 0.05); solid edge: significant change in inter-
cept (p < 0.05); green: all other sites without significant changes.
See text for details.

intensities of particle-laden filters (prior to carbon analysis),
respectively.τR or τT can be a practically linear function
of the light absorption coefficient (babs) for filter samples
(Lindberg et al., 1999; Quincey, 2007). The widely deployed
aethalometer (Hansen et al., 1984) and particle-soot absorp-
tion photometer (PSAP; Bond et al., 1999) estimatebabsfrom
τT that is then converted to BC loading using assumed mass
absorption efficiencies derived from simultaneous EC mea-
surements (Watson et al., 2005 and references therein).babs
and BC based onτR are also reported (e.g., Edwards et al.,
1983; Janssen et al., 2011).τR could be more variable in
estimatingbabs thanτT since the angular distribution of re-
flectance is more sensitive to the chemical composition of
particle deposits (Kopp et al., 1999; Petzold and Schönlinner,
2004). Nonlinearity amongbabs(or BC),τR, andτT increases
with higher sample loading (Arnott et al., 2005) though it was
shown in Chen et al. (2004) that the linear relationship be-
tween reflectance and transmittance holds up to an EC load-
ing equivalent to∼ 20 µg cm−2 on a filter or∼ 2 µg m−3 in
ambient air for IMPROVE network samples (32.7 m3 of air
sampled through a 3.53 cm2 filter area).

SinceτR, a measurement of the darkness of the filter de-
posit, was recorded for every IMPROVE sample before, dur-
ing, and after the instrument upgrade and is independent of
the evolved carbon quantification, it can be used as an inde-
pendent indicator of EC. Investigating the EC andτR rela-
tionship before and after the instrument upgrade is essential.
This relationship could be site-, and possibly season-specific,
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Fig. 4. Changes in EC-τR robust regression intercept (1c)/slope
(1b) relative to median EC (EC−med)/regression slope (b−) prior
to 2005. Red: significant change in slope (p < 0.05); solid edge:
significant change in intercept (p < 0.05); green: all other sites
without significant changes. Group I consists of 36 sites with1b not
significantly different from zero. Group II consists of 17 sites with
negative1b that are significantly different from zero, and Group III
consists of 12 sites with positive1b that are significantly different
from zero.

considering the diverse environments represented by IM-
PROVE samples. DeterminingτR trends provides additional
weight of evidence for observed EC trends.

2 Methodology

Digital thermograms (which record one second values for
temperature, reflectance, and carbon content) for> 83 000
IMPROVE samples acquired by 24-h sampling on every third
day from CY2000 through CY2009 were reprocessed to ob-
tain the initial (dark aerosol deposit) and final (white filter)
reflectance values. Data recovery varied by site; typically ex-
ceeding 92 % for 2005–2009, but≤ 80 % for 2000–2004 due
to deteriorating storage media (floppy disks and CD-ROMs;
it was not practical to recover data from the paper documen-
tation). The 65 sites with the longest records and highest data
recovery rates are listed in Table 1 and used for subsequent
analysis. Each of these sites contains 80–120 samples per
year (20–30 samples per season). They represent 25 US geo-
graphic regions as described in Table 1 (see Fig. 3 for the site
locations).τR was calculated per Eq. (1) from a ten-second
average of the initial and final reflectance for each sample.
The final reflectance represents effectiveR0 as all EC has
been removed from the filter.

www.atmos-meas-tech.net/5/2329/2012/ Atmos. Meas. Tech., 5, 2329–2338, 2012
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Table 1.Region, location, and data completeness (2000–2009) of EC andτR for 65 IMPROVE sites selected for this study.

Location Data completeness∗

Regions Code Name Class I Area Latitude Longitude MSL (m) 2000–2004 2005–2009

Northeast NE1 MOOS1 Moosehorn NWR 45.1259−67.2661 77 73 % 97 %
NE2 ACAD1 Acadia NP 44.3771 −68.261 157 78 % 99 %

East Coast E1 BRIG1 Brigantine NWR 39.465−74.4492 5 80 % 95 %

Urban U1 WASH1 Washington D.C. 38.8762−77.0344 15 71 % 93 %

Appalachia A1 JARI1 James River Face Wilderness 37.6266−79.5125 289 72 % 99 %
A2 SIPS1 Sipsy Wilderness 34.3433−87.3388 286 72 % 92 %
A3 GRSM1 Great Smoky Mountains NP 35.6334−83.9416 810 73 % 98 %
A4 LIGO1 Linville Gorge 35.9723 −81.9331 968 72 % 93 %
A5 SHEN1 Shenandoah NP 38.5229−78.4348 1079 73 % 97 %
A6 DOSO1 Dolly Sods Wilderness 39.1053−79.4261 1182 74 % 100 %

Southeast SE1 CHAS1 Chassahowitzka NWR 28.7484−82.5549 4 77 % 95 %
SE2 OKEF1 Okefenokee NWR 30.7405−82.1283 48 80 % 98 %
SE3 ROMA1 Cape Romain NWR 32.941 −79.6572 4 77 % 97 %

Boundary Waters B1 SENE1 Seney 46.2889−85.9503 214 75 % 97 %
B2 ISLE1 Isle Royale NP 47.4596 −88.1491 182 78 % 96 %
B3 VOYA1 Voyageurs NP #1 48.4132 −92.8303 425 71 % 92 %

Ohio River Valley O1 MACA1 Mammoth Cave NP 37.1318−86.1479 235 75 % 99 %

Mid South MS1 UPBU1 Upper Buffalo Wilderness 35.8258 −93.203 722 70 % 95 %
MS2 CACR1 Caney Creek 34.4544 −94.1429 683 72 % 93 %

Northern Great Plains NP1 WICA1 Wind Cave 43.5576−103.484 1296 71 % 93 %
NP2 THRO1 Theodore Roosevelt 46.8948−103.378 852 70 % 97 %
NP3 LOST1 Lostwood 48.6419 −102.402 696 76 % 91 %
NP4 MELA1 Medicine Lake 48.4871 −104.476 606 70 % 96 %
NP5 BADL1 Badlands NP 43.7435 −101.941 736 74 % 99 %
NP6 ULBE1 UL Bend 47.5823 −108.72 891 75 % 95 %

West Texas W1 BIBE1 Big Bend NP 29.3027−103.178 1066 70 % 94 %
W2 GUMO1 Guadalupe Mountains NP 31.833−104.809 1672 78 % 96 %

Central Rockies CR1 ROMO2 Rocky Mountain NP 40.2783−105.546 2760 74 % 98 %
CR2 GRSA1 Great Sand Dunes NM 37.7249−105.519 2498 76 % 93 %
CR3 WHRI1 White River NF 39.1536 −106.821 3413 76 % 96 %

Colorado Plateau CP1 BRCA1 Bryce Canyon NP 37.6184−112.174 2481 74 % 95 %
CP2 BAND1 Bandelier NM 35.7797 −106.266 1988 76 % 94 %
CP3 HANC1 Hance Camp at Grand Canyon NP 35.9731−111.984 2267 75 % 96 %
CP4 WEMI1 Weminuche Wilderness 37.6594 −107.8 2750 75 % 99 %
CP5 MEVE1 Mesa Verde NP 37.1984 −108.491 2172 72 % 96 %
CP6 CANY1 Canyonlands NP 38.4587−109.821 1798 71 % 93 %

Southern Arizona SA1 CHIR1 Chiricahua NM 32.0094−109.389 1554 70 % 95 %

Mogollon Plateau MP1 SYCA1 Sycamore Canyon 35.1406−111.969 2046 70 % 94 %
MP2 IKBA1 Ike’s Backbone 34.3405 −111.683 1297 74 % 97 %
MP3 BALD1 Mount Baldy 34.0584 −109.441 2508 70 % 96 %

Northern Rockies NR1 GLAC1 Glacier NP 48.5105−113.997 975 74 % 94 %
NR2 MONT1 Monture 47.1222 −113.154 1282 70 % 96 %
NR3 CABI1 Cabinet Mountains 47.9549 −115.671 1441 71 % 95 %
NR4 BRID1 Bridger Wilderness 42.9749 −109.758 2626 78 % 94 %

Great Basin G1 GRBA1 Great Basin NP 39.0052−114.216 2065 70 % 96 %

Southern California SC1 SAGO1 San Gorgonio Wilderness 34.1939−116.913 1726 71 % 98 %
SC2 JOSH1 Joshua Tree NP 34.0695−116.389 1235 74 % 95 %

Death Valley D1 DEVA1 Death Valley NP 36.5089 −116.848 130 70 % 96 %

Hell’s Canyon H1 STAR1 Starkey 45.2249 −118.513 1259 74 % 98 %

Sierra Nevada SN1 SEQU1 Sequoia NP 36.4894−118.829 519 72 % 96 %
SN2 YOSE1 Yosemite NP 37.7133 −119.706 1603 75 % 94 %
SN3 BLIS1 Bliss SP (TRPA) 38.9761 −120.103 2130 71 % 93 %

Columbia River Gorge CG1 CORI1 Columbia River Gorge 45.6644−121.001 178 76 % 96 %

California Coast CC1 PINN1 Pinnacles NM 36.4833−121.157 302 72 % 97 %

Northwest NW1 MORA1 Mount Rainier NP 46.7583 −122.124 439 75 % 93 %
NW2 SNPA1 Snoqualmie Pass 47.422−121.426 1049 73 % 97 %
NW3 NOCA1 North Cascades 48.7316−121.065 568 70 % 94 %
NW4 WHPA1 White Pass 46.6243 −121.388 1827 75 % 95 %

Oregon and Northern ON1 KALM1 Kalmiopsis 42.552−124.059 80 80 % 98 %
California ON2 CRLA1 Crater Lake NP 42.8958−122.136 1996 70 % 94 %

ON3 LABE1 Lava Beds NM 41.7117 −121.507 1459 70 % 95 %
ON4 THSI1 Three Sisters Wilderness 44.291−122.043 885 74 % 98 %
ON5 MOHO1 Mount Hood 45.2888 −121.784 1531 78 % 97 %
ON6 REDW1 Redwood NP 41.5608 −124.084 243 70 % 94 %

Alaska AK1 DENA1 Denali NP 63.7233 −148.968 658 75 % 96 %

∗ Complete EC-τR pairs, where EC = elemental carbon andτR = − ln(R/R0) as filter attenuation with respect to reflectance.

Atmos. Meas. Tech., 5, 2329–2338, 2012 www.atmos-meas-tech.net/5/2329/2012/
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Figure 5. 

1  
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Fig. 5. EC-τR scatter for:(a) Wemianche Wilderness (CP4),(b) Brigantine NWR (E1), and(c) Hance Camp at Grand Canyon NP (CP3) as
an example of Group I, II, and III sites, respectively. Pre- and post-instrument upgrade periods (i.e., 2000–2004 and 2005–2009, respectively)
are separated for robust regression analysis. Left panels: linear scale; right panels: log scale.

Pre- and post-upgradeτR at a particular IMPROVE site
are related to EC through a linear model:

EC− = c− + b− × τR− (3)

EC+ = c+ + b+ × τR+, (4)

where bold italics indicate column vectors of EC orτR in-
cluding all pre (−)/post (+) upgrade (on 1 January 2005)
data, andc andb are regression coefficients (c: intercept;b:
slope).c andb are expected to differ (i.e.,c+ 6= c− and/or
b+ 6= b−) only if the instrument upgrade introduced a bias in
EC that is larger than typical measurement uncertainties. To

examine the changes inc andb, Eqs. (3) and (4) are nested
into(

EC−

EC+

)
= c−

(
I

I

)
+ 1c

(
O

I

)
+ b−

(
τR−

τR+

)
+ 1b

(
O

τR+

)
, (5)

whereI andO are unit and zero column vectors and1c and
1b representsc+ − c− andb+ − b−, respectively. Meaning-
ful changes inc andb would lead to1c and1b that differ
from zero at a statistically significant level (Gujarati, 1970a,
b). A robust least-squares regression method that lowers the
influence of outliers was applied to determine the coefficients
and respective standard errors and p-values in Eq. (5). This
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Fig. 6. EC+ (after instrument upgrade) vs. EC− (before upgrade)
relationships derived from robust regression analysis. Relationships
of EC+ and EC− with τR are determined separately, and then EC+

is related to EC− by eliminatingτR in simultaneous equations. Each
solid line represents one of the 65 sites stretching from 10th to 90th
percentile of EC−. Dashed lines indicate±10 % or±20 % devia-
tions.

is achieved by Matlab® robustfit function with the Huber it-
erative reweighting algorithm (Dutter and Huber, 1981).

Statistical consistency ofc andb pre- and post-2005 (i.e.,
non-significant1c and1b) result from relatively small1c

and1b or large standard errors. The latter suggests an insuf-
ficient correlation between EC andτR for τR to be a good
predictor for EC. Therefore, it is important to examine the
regression’s correlation coefficient as well as the fractional
changes inb andc, e.g.,1b/b− and1c/EC−med (EC−med:
medianEC− concentration).1c/EC−med is a better evalua-
tion of changes in1c than1c/c− sincec− is usually small to
near zero. Lower and Thompson (1988) show thatEC+ can
be related toEC− by solving Eqs. (3) and (4) afterc andb

are determined. This relationship would be the best estimate
for the relationship betweenEC+ and EC−, given that a
direct regression is not possible.

EC and τR trends were further assessed using a non-
parametric Mann-Kendall (M-K) test (Kendall, 1975; Yue et
al., 2002), which examines the sign of slopes for all pos-
sible data pairs and determines trend significance from the
difference in positive and negative signs. All data acquired
in the same year are considered as concurrent measurements
(ties) in the test to minimize influence of intra-annual trends
such as seasonal variations (Salas, 1993). M-K statistics yield
Sen’s slope (Sen, 1968; Burn and Hag Elnur, 2002), which is
the median slope across all possible data pairs, and its p-value
and confidence intervals. Sen’s slope provides a more quan-
titative estimate of the trends. M-K statistics were calculated
with Matlab® code provided by Burkey (2009).

3 Results and discussion

The majority of correlation coefficients (r) of EC versusτR

from Eq. (5) exceed 0.8 (Table S1 in the Supplement). Lower
r is found for Urban, Appalachia, and Ohio River Valley sites
with high EC concentrations, especially Washington D.C.
(U1 in Fig. 3; r = 0.59) and James River Face Wilderness,
Appalachia (A1,r = 0.67). Thirty-six of the 65 sites show
no changes in regression slope prior to and after 2005 at the
5 % significance level (i.e.,p(1b) > 0.05). Thirty-four of the
36 sites, including all Appalachian sites, show no significant
changes in regression intercept prior to and after 2005 (i.e.,
p(1c) > 0.05). p(1c) are< 0.05 but> 0.01 (1 % signifi-
cance level) for the remaining two sites (Cape Romain NWR
(Southeast, SE3) and Canyonlands NP (Colorado Plateau,
CP6), see Table 1 and Fig. 3). The absolute values of1b

and1c for these 36 sites are small, generally within 10 %
of b− and EC−med, respectively (Group I in Fig. 4). There is
no evidence that the instrument upgrade had an effect on EC
measurements for samples taken at these sites.

The other 29 sites are separated into two groups according
to Fig. 4. Group II (17 sites) exhibits negative1b along with
positive1c. Six Group II sites have both1b and1c that are
significantly different from zero (p < 0.05), including Brig-
antine NWR (E1), Washington DC (U1), Lostwood (NP3),
UL Bend (NP6), Glacier NP (NR1), and Denali NP (AK1).
These sites are located in eastern (E1, U1), northern, and
northwestern states (NP3, NP6, NR1, AK1). Group III (12
sites) exhibits positive1b and mostly negative1c. Eight out
of 12 Group III sites contain both1b and1c significantly
different from zero (p < 0.05), including White Pass (NW4),
Three Sisters Wilderness (ON4), Mount Hood (ON5), Bliss
SP (SN3), Death Valley (D1), Great Basin (G1), Hance Camp
at Grand Canyon NP (CP3), and Bridger Wilderness (NR4),
all of which are located in the Western Cordillera area of the
continental US (Fig. 3). Figure 5 shows examples of EC-τR

scatter from these three groups.
The POC fraction generally increased for samples ana-

lyzed since the beginning of 2005 due to higher purity of the
inert He atmosphere and more rigorous quality control of He
purity (Chow et al., 2007, 2011). Even with the reflectance
correction, some POC can be misclassified as EC, thereby in-
creasing the EC fraction. This is more evident when EC/POC
ratios are low and would likely move the EC-τR regression
towards a higher intercept and lower-to-unchanged slope.
Figure 4 is not consistent with this effect being dominant,
except possibly at a few Group II sites including the Brigan-
tine NWR site (E1; exemplified in Fig. 5b).

For Group III samples, low EC values tend to be even
lower beginning in 2005 for the sameτR (e.g., Fig. 5c). The
reason for this is unclear, though it might be related to differ-
ent sensitivities of reflectance splits between the original and
upgraded instruments for low EC levels. With an improved
signal-to-noise ratio of the reflectance measurement, the up-
graded instruments possibly trigger the split (crossover) later
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Fig. 7. Median (hollow bar) and trend (solid bar) of:(a) EC by thermal/optical reflectance (TOR) and(b) τR at 65 IMPROVE sites. See
Table 1 for site details.A andV are nominal filter area (3.53 cm2) and sample volume (32.7 m3), respectively. Medians are those of 2000–
2004 baseline period. Trends are based on Sen’s slope (2000–2009). The blue bar indicates the 95 % confidence interval of the trend.

than the original instruments, leading to lower EC fractions.
τR quantification is little influenced by the noise, as bothR

andR0 are averaged over 15 s before and after the thermal
analysis. The opposite effects apparent for Groups II and III
could occur simultaneously and offset each other to some ex-
tent.

The regression analysis was also carried out by season.
However, such seasonal segregation does not reduce scatter
around the best-fit lines (Fig. S1 in the Supplement). This
suggests daily variability (due to changes in chemical com-
position and/or measurement uncertainty) comparable to sea-
sonal variability in the EC-τR relationship and that year-
round regression analyses are reasonably representative of
all cases. To test whether extreme EC values due to special

events such as wildfires can bias the robust regression, re-
gressions were also calculated excluding EC> 15 µg cm−2.
This test resulted in only minor changes in regression inter-
cepts and slopes and did not influence the grouping of the 65
sites.

Since the regression slopes increase or decrease while in-
tercepts decrease or increase (i.e., change in opposite direc-
tion), EC+ may shift higher or lower compared to EC− de-
pending on site and EC loading. Figure 6 shows, by site,
the characteristic EC+ vs. EC− relationships between the
10th and 90th EC− concentration percentiles, which contains
80 % of the samples. The linear relationships were derived
from Eqs. (3) and (4) by eliminating the common variable
τR, as suggested by Lower and Thompson (1988). EC+ is

www.atmos-meas-tech.net/5/2329/2012/ Atmos. Meas. Tech., 5, 2329–2338, 2012



2336 L.-W. A. Chen et al.: Consistency of long-term elemental carbon trends

y = 10.05x + 0.01
R² = 0.90

‐0.30

‐0.25

‐0.20

‐0.15

‐0.10

‐0.05

0.00

‐0.030 ‐0.025 ‐0.020 ‐0.015 ‐0.010 ‐0.005 0.000

τ
R  ×

A
 / V

 Trend (M
m

‐1 yr ‐1)

EC Trend (µg m‐3 yr‐1)

Washington, DC

 1 
2 
3 

Figure 8.  
 

1 
 

Fig. 8. A comparison of EC andτR trends for 65 IMPROVE sites
during 2000–2009.A andV are nominal filter area (3.53 cm2) and
sample volume (32.7 m3), respectively. Trends are based on Sen’s
slope and the error bars represent the 95 % confidence intervals.

shown to be within±10 % of EC−, for the most part. Larger
deviations, e.g., 10–20 % or−10 to −20 %, are seen for
EC− ≤ 3 µg cm−2. Two extreme outliers are the Washing-
ton, DC (U1) and Denali NP (AK1) sites, which experience
the highest and lowest EC concentrations, respectively. There
seems to be more variability in the EC responses between the
original and upgraded instruments for the high and low ex-
tremes.

The robust M-K test confirms decreasing trends of EC
from 2000 through 2009 (Fig. 7), with the largest and small-
est changes observed at one Appalachian (Sipsy Wilderness;
A2: −0.021 µg m−3 yr−1) and one Central Rockies (Great
Sand Dunes, New Mexico; CR2:−0.003 µg m−3 yr−1) site,
respectively. The trends are statistically significant for all 65
sites at the 5 % significance level. This implies 1.3–8.3 %
reduction of ambient EC concentrations each year (scaled
to EC−med as 2000–2004 represents the IMPROVE network
baseline period). The national average trend, calculated from
the percentage trends weighted by EC−med at each site,
would be −4.5 % per year. With an unweighted ordinary
linear regression, Fig. S2 (Supplement) shows median EC
decreasing at 3–5 % per year from 2000–2009. Murphy et
al. (2011) reported a lower value,∼ −2.2 % EC per year, for
March 1990–February 2004 for average, rather than median,
EC concentrations.

Figure 7 also shows significant decreasing trends (p <

0.05) for τR at all except one site in the Northwest
(White Pass, Washington; NW4) where the p-value is
0.051 for the negativeτR trend (−0.099 Mm−1 yr−1). The
EC and τR trends are highly correlated, atr2

= 0.9 and
slope = 10 m2 g−1 (Fig. 8). Washington, DC (U1 site), the
only urban site in this dataset, is an outlier where EC+ seems

much higher than EC− based on reflectance (Fig. 6), leading
to a smaller EC trend than expected from theτR trend. The
EC trend at the U1 site contains a large uncertainty, and this
may also be the case for other urban sites. The national aver-
ageτR trend, as scaled toτR−med is −4.1 % each year, also
consistent with the national EC trend.

Although subtle changes are found in EC–τR relation-
ships between the pre- and post-2005 periods, the consis-
tency between recent EC andτR trends for the majority of
IMPROVE sites do not support that such changes have in-
troduced a major or common bias for the EC trends. Envi-
ronmental changes, probably due to changing EC emissions
and year-to-year meteorological variability, are of larger in-
fluence than measurement uncertainties. EC concentrations
appear to continue decreasing beyond the 1990–2004 period
examined by Murphy et al. (2011) at an average rate of 4.1–
4.5 % per year. The Regional Haze Rule (US EPA, 1999) has
set the goal of returning visibility to natural conditions by
2064. For EC, the natural concentrations are estimated to be
∼ 10 % of the 2000–2004 baseline period. At the current rate
of progress, this goal should be met by the 2064 deadline.

Supplementary material related to this article is
available online at:http://www.atmos-meas-tech.net/5/
2329/2012/amt-5-2329-2012-supplement.pdf.
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