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3Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Bristol, UK

Correspondence to:C. Hueglin (christoph.hueglin@empa.ch)

Received: 13 October 2010 – Published in Atmos. Meas. Tech. Discuss.: 7 December 2010
Revised: 24 September 2012 – Accepted: 2 October 2012 – Published: 2 November 2012

Abstract. The identification of atmospheric trace species
measurements that are representative of well-mixed back-
ground air masses is required for monitoring atmospheric
composition change at background sites. We present a sta-
tistical method based on robust local regression that is well
suited for the selection of background measurements and the
estimation of associated baseline curves. The bootstrap tech-
nique is applied to calculate the uncertainty in the result-
ing baseline curve. The non-parametric nature of the pro-
posed approach makes it a very flexible data filtering method.
Application to carbon monoxide (CO) measured from 1996
to 2009 at the high-alpine site Jungfraujoch (Switzerland,
3580 m a.s.l.), and to measurements of 1,1-difluoroethane
(HFC-152a) from Jungfraujoch (2000 to 2009) and Mace
Head (Ireland, 1995 to 2009) demonstrates the feasibility and
usefulness of the proposed approach.

The determined average annual change of CO at Jungfrau-
joch for the 1996 to 2009 period as estimated from filtered
annual mean CO concentrations is−2.2± 1.1 ppb yr−1. For
comparison, the linear trend of unfiltered CO measurements
at Jungfraujoch for this time period is−2.9± 1.3 ppb yr−1.

1 Introduction

Background monitoring sites are the locations for observing
the composition of the clean and remote atmosphere and for
detection of long-term changes and trends in important at-
mospheric trace species. However, many background moni-

toring sites are frequently affected by air masses that are in-
fluenced by local or regional emissions or air masses that are
representing certain atmospheric layers. Air samples taken
at these locations are temporarily not representative of well-
mixed background air. Hence, data filtering is often an essen-
tial part of the analysis of data from those sites. For exam-
ple, data filtering was applied for trend estimations (Thoning
et al., 1989; Novelli et al., 1998; Schuepbach et al., 2001;
Novelli et al., 2003; Zellweger et al., 2009), for evaluation of
source regions and corresponding emission estimates (Prinn
et al., 2001; Cox et al., 2005; Reimann et al., 2005; Greally
et al., 2007), as well as for modeling of long-range transport
of trace gases (Ryall et al., 1998; Balzani L̈oöv et al., 2008).

Methods for identification of background measurements
are often based on chemical parameters (trace gas concen-
trations or ratio of trace gases; e.g.Carpenter et al., 2000;
Zanis et al., 2007) or take advantage of the knowledge on
the transport processes of polluted air masses to the back-
ground site (meteorological filters). Meteorological filters
have been applied in a number of studies utilizing data from
the Swiss high-alpine site Jungfraujoch (JFJ), 3580 m a.s.l.
(Forrer et al., 2000; Zellweger et al., 2003; Henne et al.,
2005) for discrimination between disturbed and undisturbed
free tropospheric air. InZellweger et al.(2003), measure-
ments that were identified as being influenced by föhn events
(dry down-slope winds in the lee of the Alps), synoptical lift-
ing, or thermally induced vertical transport were excluded
from further analysis. Another meteorological data filtering
approach is by evaluation of the air mass origin by analysis of
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back trajectories (Derwent et al., 1998; Balzani L̈oöv et al.,
2008), or by utilization of Lagrangian particle dispersion
models (Ryall et al., 2001; Hirdman et al., 2010).

Statistical methods are an alternative to the application of
chemical parameters and meteorological filters. In contrast
to these approaches, statistical methods do not have to be
adapted to the conditions at individual measurement sites
and can therefore be applied generally making background
data of various stations easier to compare. Common statisti-
cal methods rely on the identification of measurements that
deviate from a smooth curve fit to the data (Novelli et al.,
1998; O’Doherty et al., 2001). For example,Novelli et al.
(1998) fitted a second-order polynomial plus the sum of four
harmonics to daily carbon monoxide (CO) data from the
NOAA/CMDL network and applied two low-pass filters to
the model residuals. Measurements with large distance to the
smoothed curve (defined as the sum of the parametric model
fit and the smoothed residuals) were considered as outliers
and flagged. The routine was then iteratively applied without
the flagged measurements until no additional outliers were
identified. In a subsequent study, a modified version of this
method was applied (Novelli et al., 2003). In contrast to the
earlier method, the model residuals were converted to the fre-
quency domain with a Fourier transform algorithm and fil-
tered by a low-pass and a high-pass filter. The filtered resid-
uals were then transformed back into the time domain and
added to the fitted function resulting in the desired smooth
curve.

Another statistical method for identification of back-
ground measurements was used in several studies from the
Global Atmospheric Gases Experiment/Advanced Global
Atmospheric Gases Experiment (GAGE/AGAGE) (see e.g.
Simmonds et al.(2001)). This approach is based on a three-
step procedure and is described in detail byO’Doherty et al.
(2001). In brief, the pollution events on a selected day are
first identified by applying a second-order polynomial to the
daily minima over the time period from 60 days before and
60 days after the selected day. The polynomial fit is then sub-
tracted from the data, and the variabilityσ of the residuals is
estimated using only the data that are smaller than the median
of the residual distribution. All measurements in the middle
day of the 121-day period with residuals exceeding 3σ are
flagged as being “polluted”. In a next step, the complete cy-
cle of flagging data is repeated except that all data points that
were marked in the previous cycle are excluded. At the end
of this step, measurements between 2σ and 3σ above the me-
dian of the residuals are marked as “possibly polluted”. In a
final third step, all data points that are marked as “possibly
polluted” are also labeled “polluted” if they are immediately
adjacent to a polluted data point.

At sites where non-background conditions regularly
and often prevail during certain meteorological conditions,
purely statistical methods should be used with caution, e.g.
when pollution advection from a known nearby source or
from the polluted boundary layer can be determined by wind

direction and/or time of the day. At such sites statistical
methods might tend to wrongly classify measurements dur-
ing polluted conditions as background observations leading
to a bias in the corresponding baseline estimation. Whenever
possible, a meteorological filtering of the data should be ap-
plied prior to the application of statistical methods. Exam-
ples of subsequent use of meteorological and statistical filter-
ing are the publications byThoning et al.(1989) andHenne
et al. (2008). Thoning et al.(1989) applied and compared
different selection methods based on daytime and short-term
variability of carbon dioxide (CO2) at Mauna Loa, Hawaii,
to identify data that are influenced by local phenomena and
not representative of well-mixed background air. Then, addi-
tional statistical filtering similar to the method used byNov-
elli et al. (2003) was done for removal of remaining short-
term variability in the data.

In this study, a novel statistical approach for extracting
background concentrations from measurements is presented.
It is based on robust local regression (Cleveland, 1979) and
is called REBS (robust extraction of baseline signal). It is a
modified version of a technique that was called RBE and de-
veloped for baseline removal from chemical analytical spec-
tra (Ruckstuhl et al., 2001). A difference to the RBE tech-
nique is the estimation procedure for the scale parameterσ

of the measurement error. Here we either use only the nega-
tive residuals, which is similar to the method byO’Doherty
et al.(2001), or preferably only the residuals below the mode
of the residual distribution. The precision of the measuring
instrument can be considered as a lower bound for the esti-
mate of the scale parameter.

In the next section, the REBS method will be introduced
in detail. The proposed method can easily be applied at any
background site to time series of trace species without sig-
nificant surface sinks and latitudinal concentration gradients
as discussed in Sect.5. This is demonstrated by applica-
tions to the long-term CO measurements from Jungfraujoch
and to measurements of 1,1-difluoroethane (HFC-152a) from
Jungfraujoch, Switzerland, and Mace Head, Ireland. The re-
sults are compared with those from the data filtering and
baseline fitting technique applied byNovelli et al.(2003) and
the GAGE/AGAGE approach for flagging background mea-
surements (O’Doherty et al., 2001). The REBS algorithm is
implemented in the function rfbaseline of the IDPmisc pack-
age (Ruckstuhl et al., 2009) of the statistical software envi-
ronment R (R Development Core Team, 2009) and can be
downloaded from a CRAN server or received from the au-
thors. Note that the current version of the REBS function in
IDPmisc does not include the uncertainty estimation using
the bootstrap method as described below.
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2 Robust extraction of baseline signal

2.1 The REBS technique

In this section, we introduce a statistical approach for ex-
tracting background concentrations from trace gas measure-
ments. The presented approach is a modified version of the
robust baseline estimation (RBE) technique that was devel-
oped for baseline removal from chemical analytical spectra
(Ruckstuhl et al., 2001).

We can consider the observed concentrationsY (ti) to be
defined by

Y (ti) = g(ti) + m(ti) + Ei, (1)

where g(ti) is the background concentration andm(ti) is
the contribution of regionally polluted air masses at timesti
(called regional signal henceforth). The measurement errors
Ei are assumed to be independent and Gaussian-distributed
with mean 0 and varianceσ 2. If the regional signalm(ti) is
zero in a time period aroundt◦, the baseline signalg(t◦) can
be estimated even when the form of the curveg is unknown.
If we can assume thatg is smooth, then a method for es-
timating the curveg is to apply linear regression modeling
locally. Hence the curveg(ti) can be approximated as linear
in a sufficiently small neighborhood around any given time
point t◦. One can simply apply the least-squares technique
to a fraction of the data aroundt◦, or, alternatively, one can
incorporate a weight scheme into the least squares problem
that decreases the influence of data points in proportion to
their distance fromt◦. Such estimators are described, e.g. in
Cleveland(1979), in Simonoff (1996) or in Fan and Gijbels
(1996).

Separating the three components in Eq. (1) is an ill-posed
problem without additional information. We argue here for
assuming that the baseline signalg must vary very slowly
relative to any contributions of regional signal and that this
regional signalm is zero at many time pointsti . Then the ba-
sic idea of the “robust extraction of baseline signal (REBS)”
technique is to regard measurement pointsY (ti) as outliers if
m(ti) � σ which is satisfied at time pointsti that show clear
contributions of regionally polluted air masses. Since the re-
gional signal must be non-negative, that ism(ti) ≥ 0, all of
the outliers point in the same direction and thus we have an
asymmetric contamination of the baseline signal. In such a
case,Ruckstuhl et al.(2001) suggest estimating the baseline
signal by applying their robust baseline estimation technique.
That is, solve

θ̂(t◦) = argminθ
∑n

i=1wr(ti)K
(

ti−t◦
h

)
× [yi − {θ0 + θ1 (ti − t◦)}]2 . (2)

Note that the resulting estimated parametersθ̂ = (θ̂0, θ̂1)
T

depend ont◦. Thus,θ̂0(t◦) is an estimate ofg(t) at t◦ and is
better named̂g(t◦). To obtain an estimate of the whole base-
line signalg, we solve Eq. (2) for a set of time grid points

t◦ = t̃k, k = 1, . . . ,K and interpolate them linearly (the orig-
inal time pointsti may also be selected as time grid points
t̃k).

As kernel weight functionK[(ti − t◦)/h], the tricube ker-
nel

K

(
ti − t◦

h

)
=

[
max

{
1−

∣∣∣∣ ti − t◦

h

∣∣∣∣3 ,0

}]3

(3)

is used which descends smoothly to zero and is zero outside
the neighborhoodt◦ ± h. To down-weight the outlying re-
gional signalm(ti), an asymmetric robustness weightwr(ti)

is introduced:

wr(xi) =

{
1 if ri < 0[
max

{
1− (ri/b)2,0

}]2
otherwise,

(4)

whereri = [yi − ĝ(xi)]/σ . The standard choice for the tun-
ing constantb is 3.5; however, any value forb within 3 and
4 seems appropriate (seeMaronna et al.(2006) for a dis-
cussion of the choice for b in a general context). On one
hand, outliers might receive too much weight whenb is larger
than 4. On the other hand, the smaller the tuning constant
is, the higher the systematic error in time series with no or a
very small number of polluted measurements. It should, how-
ever, be noted that the use of asymmetric robustness weights
also helps to ensure that the fit converges to an acceptable
solution.

A critical issue for the REBS technique is how wide
the local neighborhood should be (i.e. what value of so-
called bandwidthh). A number of suggestions have been
advanced for automatically determining an appropriate band-
width from the data (Simonoff, 1996; Fan and Gijbels, 1996).
However, these approaches would lead to reasonable band-
widthsh for estimating the “total” signalg(ti)+m(ti), which
is not our goal. A more problem-specific consideration is the
following: if, in a local neighborhood oft◦ consisting ofd
data points, at leastd/2 of them are seriously affected by the
regional signalm, then the robust local regression estimator
is more likely to estimate(g(t◦)+m(t◦)) thang(t◦). To avoid
such a failure, we can require thatd must be large enough
such that, at very least, less than half of the points in the lo-
cal neighborhood for anyt◦ have significant regional signal
m. The smallest possible value ofd we refer to asd◦; in ex-
traction of baseline signals,d◦ would be roughly twice the
length of the longest regional signal (measured in numbers
of measurements). The difficulty we face with this approach
is to clearly separate the baseline signal from the regional
signal. As earlier discussed, this is generally an ill-defined
problem and can be solved only with additional assumptions
on the baseline signal. Considering this difficulty, we prefer
to separate baseline signals from regional signals by defining
the baseline signal as the estimated smooth curve obtained
from the REBS technique using a sufficiently wide band-
width (e.g. 90 days). Such an approach seems reasonable
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Fig. 1. Histogram of the residuals derived from application of the
REBS technique to hourly CO measurements at Jungfraujoch. The
estimated scale parameterσ is 15.6 ppb. The thick vertical dashed
line indicates the estimated mode of the residual distribution; the
two thin vertical dashed lines denote the±3σ range. The blue line
is a Gaussian distribution fitted to the left side (residuals below the
mode) of the residual distribution. The residual distribution can be
used for judgement of the applicability of the REBS technique. The
REBS should only be applied when the residuals below the mode
follow approximately a Gaussian distribution (see Sect.5).

when assuming a regional signal of length shorter than one
month and assuming a baseline signal which varies slowly
relative to the regional signal. On the other hand, the band-
width is short enough to account for possible seasonal ef-
fects. The selection of the bandwidth should, however, be
done carefully. Selection of a too wide bandwidth can eas-
ily be identified from a seasonal variation that prevails in the
time series of the residuals.

Finally, in order to implement the REBS technique, the
scale parameterσ (i.e. the measurement noise) needs to
be specified. In certain cases,σ can be estimated a priori,
e.g. based on the precision of the measurement device. Note
that this, however, would neglect the fraction ofσ that is
due to variability in the baseline signal. When no a priori
information is available,σ must be estimated from the mea-
surements themselves. Since there may be many time points,
where the regional signalm is close to 0, the right side of
the residual distribution (the positive residuals) may be long-
tailed due to measurements of locally or regionally polluted
air masses. Consequently, the scale parameterσ is calculated
from the standard deviation of the negative residuals only:

σ̂asd=

√
1

#{i : ri ≤ 0}

∑
i:ri≤0

r2
i . (5)

In an ordinary (local) least-squares fit or in many REBS
applications, the mode of the residuals is at 0. In some ap-

plications the mode is below 0 and estimation of the scale
parameter using Eq. (5) results in a too large estimate forσ .
In these cases all residuals below the mode, instead of all
negative residuals, are used for estimation ofσ :

σ̂masd=

√
1

#{i : ri ≤ µ̂}

∑
i:ri≤µ̂

(ri − µ̂)2 , (6)

whereµ̂ is the estimated mode of residual distribution. Un-
fortunately, the estimation of the mode of an empirical distri-
bution is challenging. We use either a nonparametric density
estimator as they are described e.g. inSimonoff (1996) and
in Fan and Gijbels(1996) or we simply use a histogram with
many classes.

In both approaches, the precision of the measuring instru-
ment (e.g. the standard deviation of working standard mea-
surements) can be considered as a lower bound for the esti-
mate of the scale parameter.

To summarize, the REBS technique proceeds as follows:

1. For each observationY (ti), compute ĝ(ti) by using
the local regression estimator of Eq. (2) with the ker-
nel weights defined by Eq. (3) and robustness weights
wr(ti) = 1.

2. Use Eq. (5) or Eq. (6) to estimate the scale parameterσ

and calculate the robustness weightswr(xi) by applying
Eq. (4).

3. For each observationY (ti), compute a new fitted value
ĝ(ti) by using the robust local regression estimator of
Eq. (2) with kernel weights defined by Eq. (3).

4. Repeat steps 2 and 3 until convergence, which gener-
ally requires about 5–10 iterations. The final fitted val-
ues yield the estimated curvêg(ti).

5. All observationsY (ti) with Y (ti) ≤ ĝ(ti)+ 3σ are clas-
sified as “background” measurements; all other obser-
vations are classified as “polluted”.

2.2 The uncertainty in the resulting curve

Confidence bands are the common notions to formalize the
uncertainty of fitted curves. Classically, they are based on
analytical deviations from the asymptotic distribution of the
fitted values. In our case, such an approach is very tedious
since we use asymmetric robustness weights. Thus we pro-
pose to use the bootstrap approach (Efron and Tibshirani,
1993) which is a general-purpose technique for obtaining
information such as confidence bands by simulation. The
basic idea is to repeatedly simulate from the residuals new
sample sets of residuals and hence compute sets of pseudo-
responses. With each set of pseudo-responses, a new baseline
signal is extracted. This is repeatedB times. To take into ac-
count the temporal spread of the regional signal, we resam-
ple from blocks of consecutive residuals. In our setting, the
blocks do overlap.

Atmos. Meas. Tech., 5, 2613–2624, 2012 www.atmos-meas-tech.net/5/2613/2012/
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Fig. 2. Measured CO during impact of regionally polluted air masses (black points) and background CO concentrations at Jungfraujoch for
the 1996–2009 period as identified by the REBS technique and the smooth curve fit. The black crosses indicate the difference of annual
background concentrations obtained by the two data filtering methods.

When robust estimates are bootstrapped, two problems
arise: numerical instability and computational cost. The first
problem is due to very poor estimates resulting from the
bootstrap pseudo-responses, which may contain a higher pro-
portion of regional signal than the original data. The latter
problem is due to the complex estimation procedure, which
must be used in order to calculate robust estimates.

To overcome these problems,Salibian-Barrera and Zamar
(2002) propose the so-called robust bootstrap which is fast
and can resist large proportion of outliers in the bootstrap
pseudo-responses. Their idea is to bootstrap the pair residuals
ri and robustness weightswr(xi) simultaneously and use the
corresponding robustness weights for the pseudo-responses
in a one-step iteration of the REBS technique. This idea does,
however, not take into account the uncertainty caused by
estimating the robustness weights. Hence confidence inter-
vals based on this modified bootstrap idea must be corrected
as suggested inSalibian-Barrera and Zamar(2002). As the
REBS technique implies to calculate the corrections at each
point t0, the computation of these corrections is (too) time-
consuming. Thus we simplify the correction by taking the
experience into account that the uncorrected confidence in-
tervals are about 10 to 20 % too small. So we end up enlarg-
ing the uncorrected confidence intervals by the factor 1.2. By
this modification, we should still get a fair idea of the uncer-
tainty in the curve estimated by the REBS technique. Note
that the resulting bootstrap confidence intervals are generally

asymmetric due to the asymmetric robustness weights as de-
fined in Eq. (4).

3 Experimental

3.1 Measurement sites

The proposed approach for determination of baseline con-
centrations is applied to measurements from two sites: the
high-alpine site Jungfraujoch and the coastal site Mace
Head. Jungfraujoch (JFJ, 3580 m a.s.l.) is located on the
main crest of the Bernese Alps, Switzerland, and belongs
to the Swiss National Air Pollution Monitoring Network
(NABEL). The Mace Head station (MHD) is situated on the
west coast of Ireland; Mace Head is, like Jungfraujoch, part
of AGAGE and the Global Atmosphere Watch (GAW) pro-
gramme of WMO.

3.2 CO measurements at Jungfraujoch

Carbon monoxide is a trace gas that mainly results from com-
bustion emissions (fossil fuel combustion and biomass burn-
ing) and oxidation of methane and other hydrocarbons (Ja-
cob, 1999) in the atmosphere. CO is removed from the at-
mosphere predominantly by reaction with the OH radical.
CO at Jungfraujoch has been continuously monitored since
1996 using commercially available NDIR monitors (APMA-
360 and APMA-370, Horiba). Modification of the instrument
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included drying of the air by a Nafion dryer in split flow
mode (Perma Pure PD-50T-24′′). The CO instrument is cal-
ibrated approximately in monthly intervals using a commer-
cial CO calibration gas referenced against NIST (National
Institute of Standards and Technology), SRM (Standard Ref-
erence Material), and NMI (Netherlands Measurement Insti-
tute), PRM (Primary Reference Material) all being consis-
tent with the WMO-2000 scale. Automatic instrument zero
checks were performed every 49 h using zero air. The de-
tection limit for individual 1 min values is 20 ppb; the over-
all measurement uncertainty was estimated to be±5 % (1σ )
(Zellweger et al., 2000). In Zellweger et al.(2009) different
CO measurement techniques were compared during a field
campaign at JFJ. It was confirmed that the NDIR method is
suitable for CO measurements at this site.

3.3 Measurement of HFC-152a at Jungfraujoch and
Mace Head

HFC-152a (1,1-difluoroethane, CH3CHF2) is a replacement
compound for chlorofluorocarbons (CFCs) and hydrochlo-
rofluorocarbons (HCFCs) and is mainly used in foam blow-
ing applications. The observation of atmospheric concen-
trations of HFC-152a is of importance, because HFC-152a
shows (like other HFCs) strong absorption of infrared radi-
ation and is a greenhouse gas included in the Kyoto Proto-
col. HFC-152a has been measured at Jungfraujoch and Mace
Head within the AGAGE program since 2000 (JFJ) and 1994
(MHD) using preconcentration systems in combination with
gas-chromatograph mass spectrometers (GC-MS). The tem-
poral resolution of the measurements was 4 h until Decem-
ber 2004 at Mace Head and until April 2008 at Jungfraujoch.
Since then, air samples are analysed every 2 h. The details
of the applied experimental methods are given inSimmonds
et al.(1995) andMiller et al. (2008).

3.4 Baseline determination by the smooth curve fit

The proposed REBS technique is compared with a method
similar to that developed byThoning et al.(1989) and further
refined and applied byNovelli et al.(1998) andNovelli et al.
(2003). This data filtering and baseline determination tech-
nique is denoted here as the smooth curve fit (see Sect.1).
For the smooth curve fit, the measured data are fitted by the
parametric function

f (ti) = a1 + a2ti + a3t
2
i +

4∑
j=1

[a(2j+2) sin(2πjti) + a(2j+3) cos(2πjti)] (7)

where ti is the time of observationi. The polynomial in
Eq. (7) represents the trend; the sum of harmonics is an ap-
proximation of the average seasonal cycle. The residuals of
the fit of Eq. (7) were converted into the frequency domain by
a Fourier transform algorithm and filtered using first a low-

pass filter (50 % transmission at 80 days) and second a high-
pass filter (50 % transmission at 667 days). Since Fourier
transform requires data with regular sampling intervals, the
measurements were matched to fixed intervals that approxi-
mately correspond to the data frequency. The filtered resid-
uals were then transformed back into the time domain and
added to the fitted function providing the smooth curve fit.
Measurements with deviation outside the±3σ range around
the smooth curve fit were identified as outliers (or non-
background measurements) and removed from the data. The
above-described procedure was run iteratively until no more
outliers were found. Note that in, contrast to the REBS tech-
nique, low outliers (concentration below the fitted baseline
– 3σ ) are also removed and classified as non-background
measurements.

3.5 Background measurement identification by the
AGAGE method

The measurements at AGAGE sites are routinely flagged as
polluted or background observations using a statistical fil-
tering procedure briefly outlined in Sect.1 and described in
detail byO’Doherty et al.(2001). The results of the AGAGE
method applied to HFC-152a at Mace Head and Jungfraujoch
are compared in Sect.4 with background identification using
the REBS and the smooth curve fit. Note that, unlike REBS
and the smooth curve fit, the AGAGE method does not pro-
vide baseline curves. The AGAGE method is a procedure for
identification for background and polluted observations. It is
not easily available and applicable for users. Therefore, the
background and pollution flags for HFC-152a at Jungfrau-
joch and Mace Head were taken from the AGAGE database.

4 Results and discussion

4.1 Identification of CO background measurements at
Jungfraujoch

Background concentrations might be understood as “the con-
centration of a given species in a pristine air mass in which
anthropogenic impurities of relatively short lifetime are not
present” (Calvert, 1990). Consequently, background mea-
surements should be normally distributed with a mode repre-
senting the mean background concentration. Therefore, the
left side of the distribution of the residuals from a baseline
fitting technique (the residuals below the mode of the distri-
bution) should approximately follow a Gaussian distribution
as well. As indicated byBalzani L̈oöv et al.(2008), the above
definition of background conditions is only valid for long-
lived compounds. For compounds with short or medium life-
time, a generally applicable definition of background does
not exist.

Figure 1 shows the histogram of the residuals for the
REBS technique applied to hourly CO measurements at
Jungfraujoch for the period from 1996 to 2009. CO has an
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Table 1. Contingency table of the classification of the hourly CO
values measured at Jungfraujoch from 1996 to 2009 (n = 111 656)
derived from the REBS technique and the smooth curve fit.

smooth curve fit

background polluted

REBS
background

102 446 231
(91.8 %) (0.2 %)

polluted
5041 3938

(4.5 %) (3.5 %)

average lifetime of about two months that strongly varies
from tens of days to up to one year depending on season
and location and is therefore not well-mixed in the tropo-
sphere (Jacob, 1999; Holloway et al., 2000). Nevertheless,
the left side of the residual distribution follows approxi-
mately a Gaussian distribution; the estimate for the scale pa-
rameterσ is 15.6 ppb. As mentioned in Sect.1, the scale
parameterσ is an upper limit for the precision of the in-
strument. However, the obtained value forσ is considerably
larger than the random uncertainty of the NDIR instrument
(4.2 ppb), which was determined from the standard deviation
of repeated zero air measurements (Zellweger et al., 2009).
The larger scale parameterσ might be a consequence of the
deviations from the concept of background conditions men-
tioned above: the relatively short lifetime of CO mainly due
to oxidation by OH leads to a latitudinal gradient for CO, and
therefore to a dependence of the background concentration at
Jungfraujoch on the air mass origin.

Classification of background measurementsY (ti) by
Y (ti) ≤ ĝ(ti)+3σ (Sect.2) leads to an overestimation of the
number of background measurements and to a small bias
in estimated baseline curves. This can be seen from Fig.1,
where the frequencies of the residuals that are larger than the
mode of the residual distribution are higher than expected
from the fitted Gaussian distribution (bars in Fig.1 exceed-
ing the blue line). A possible way to adjust for this small bias
could be to randomly select an appropriate number of residu-
als in the range between the mode of the residual distribution
and the mode +3σ and to consider them as “polluted” mea-
surements, so that the shape of the histogram of the remain-
ing residuals of background measurements would follow the
Gaussian distribution (blue line in Fig.1). Such a correction
has not been done within this work.

The time series of polluted and background CO measure-
ments at Jungfraujoch as classified by the REBS technique
and the smooth curve fit are shown in Fig.2. In Table1, the
number of hourly CO measurements at Jungfraujoch from
1996 to 2009 that are classified as “background” and as “pol-
luted” by the REBS and the smooth curve fit is listed. The
classification by the two methods is very similar, although
the REBS classifies about 4.5 % of the observations as “pol-
luted” that are considered as representative for background
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Fig. 3. Baseline curves for CO at Jungfraujoch (1996 to 2009) ob-
tained with the REBS technique (including the bootstrapped 95 %
confidence band) and the smooth curve fit. The average width of the
confidence band (bootstrap uncertainty) is (−3.5 ppb, +3.8 ppb).

conditions by the smooth curve fit. This difference in clas-
sification is probably due to the different iterative procedure
for identification of background observations: As described
in Sect.2, the accepted deviation of background measure-
ments from the baseline fit is calculated by the REBS tech-
nique only from the residuals that are smaller than the mode
of the residual distribution. In the smooth curve fit, the stan-
dard deviationσ is calculated from all residuals, and mea-
surements within the±3σ range around the fitted baseline
curve are considered as representative for background con-
ditions (Sect.3.4). In contrast to the REBS, some of the
lowest measured concentrations are identified as outliers by
the smooth curve fit. Consequently, a small fraction of mea-
sured CO concentrations (0.2 %) that are classified by the
REBS as “background” are classified as non-background by
the smooth curve fit (in Table1 denoted as “polluted”).

The differences in the classification of background mea-
surements lead to small differences in annual average back-
ground CO concentrations but to clear differences during the
cold season. Annual background CO concentrations for the
1996 to 2009 period obtained with the REBS technique are
on average 3.2 ppb lower (range 1.0 to 7.1 ppb) than those
obtained from the smooth curve fit.

It should be noted that the enhancements in annual back-
ground CO at Jungfraujoch in 1998 as well as in 2002 and
2003 (Fig.2) are probably due to the impact of emissions
from widespread boreal forest fires reported byNovelli et al.
(2003) andYurganov et al.(2005).

4.2 Estimation of the CO baseline at Jungfraujoch

Figure3 shows the estimated baseline curve for the REBS
technique including the 95 % bootstrap confidence band. As
indicated in Sect.2.2, the bootstrap confidence interval is
asymmetric around the estimated baseline; the average width
of the confidence band ranges from−3.5 ppb to 3.8 ppb. As
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Fig. 4. Measurements and baseline curves for HFC-152a at Jungfraujoch (2000 to 2009, top panel) and Mace Head (1995 to 2009, middle
panel) estimated with the REBS technique and the smooth curve fit. The time series of monthly mean background concentration of HFC-152a
calculated with the AGAGE method (see text) are also included. The lower panel gives the difference of monthly background concentrations
at Jungfraujoch and Mace Head (in ppt) as determined with the REBS, the smooth curve fit, and the AGAGE method.

the bootstrap confidence band indicates, some of the wiggles
in the estimated baseline signal may not be statistically sig-
nificant. This may also mean that the true baseline signal is
somewhat smoother than estimated by the REBS. Hence one
might be tempted to increase the bandwidthh. However, a
large bandwidthh has the disadvantage of over-smoothing
true temporal variability.

For comparison, the baseline curve obtained from the
smooth curve fit is also included in Fig.3. The baseline
curve derived from the REBS technique is generally some-
what lower than the baseline curve from the smooth curve fit.
There is good agreement between the two approaches during
the warmer season when background CO concentrations are
lowest due to oxidation by OH, and considerable disagree-
ment during the cold period when background CO concentra-
tions are highest. These differences would be of importance
when emission estimates are performed using techniques as
described e.g. byReimann et al.(2005), Simmonds et al.

(2001) andGreally et al.(2007) that are based on concen-
tration above background estimates.

The linear trend of the CO background concentration
was determined from regression of the annual means
of the identified CO background concentrations against
time. The average annual change for the 1996 to 2009
period as determined from the REBS filtered data is
−2.2± 1.1 ppb yr−1; data filtering using the smooth curve
fit results in−2.5± 1.1 ppb yr−1, a slightly larger, although
not statistically significant, decrease of background CO (see
also the study byZellweger et al.(2009) for a discussion of
the trend of CO at Jungfraujoch for the 1996 to 2007 pe-
riod). Note that the linear negative trend of unfiltered hourly
CO measurements for this time period is considerably larger
(−2.9± 1.3 ppb yr−1) due to more severe and more frequent
pollution events during the first years of the considered time
period (see Fig.2). It has been shown byZellweger et al.
(2009) that the negative trend of CO at Jungfraujoch is
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Table 2.Contingency table of the classification of HFC-152a mea-
surements at Jungfraujoch from 2000 to 2009 (n = 15 815) with
the REBS technique, the smooth curve fit, and the AGAGE method
(b = background; p = polluted).

smooth AGAGE
REBS curve fit method Frequency (%)

b b b 12241 77.4
p b b 84 0.5
b p b 12 0.1
p p b 0 0.0
b b p 1898 12.0
p b p 946 6.0
b p p 0 0
p p p 634 4.0

mainly the result of the reduction of European emissions
since the early 1990s.

4.3 Baseline of HFC-152a at Jungfraujoch and Mace
Head

As a second application of the REBS technique, baselines
of HFC-152a measured at Jungfraujoch and Mace Head are
estimated. The bandwidth of the REBS was again chosen
to be 90 days. Figure4 shows the measurements of HFC-
152a at Jungfraujoch and Mace Head, the baselines deter-
mined with the REBS and the smooth curve fit, as well as
the monthly mean concentration of the background obser-
vations as identified by the AGAGE method. Similar to CO
at Jungfraujoch, the baseline of HFC-152a determined with
the REBS approach is at Jungfraujoch and Mace Head some-
what lower than the baseline curve resulting from the smooth
curve fit. The differences between the two methods are more
pronounced at Jungfraujoch probably due to more frequent
and larger pollution events than at Mace Head. On the other
hand, there is a good agreement between the baseline deter-
mined with the REBS and the monthly mean background
concentrations derived with the AGAGE method, although
there are some obvious differences for the measurements at
Jungfraujoch after about 2006.

The atmospheric lifetime of HFC-152a is about 1.4 yr;
degradation of this compound is dominated by reaction with
OH (Greally et al., 2007, and references therein). Conse-
quently, it can be expected that HFC-152a is well mixed
in the northern hemispheric troposphere and the baselines
at Mace Head and Jungfraujoch should be comparable.
The lower panel of Fig.4 shows the differences of the
monthly mean concentrations of the background observa-
tions at Jungfraujoch and Mace Head as derived with the
three applied methods. From 2000 to about 2002, when back-
ground concentrations of HFC-152a were still quite low,
Jungfraujoch and Mace Head had very similar background
concentrations. With increasing pollution events after 2002,

Table 3.Contingency table of the classification of HFC-152a mea-
surements at Mace Head from 1995 to 2009 (n = 28 694) with the
REBS technique, the smooth curve fit, and the AGAGE method
(b = background; p = polluted).

smooth AGAGE
REBS curve fit method Frequency (%)

b b b 21177 73.8
p b b 426 1.5
b p b 229 0.8
p p b 15 0.1
b b p 3236 11.3
p b p 1331 4.6
b p p 23 0.1
p p p 2257 7.9

the HFC-152a background at Jungfraujoch was higher than
at Mace Head, most likely because of the closer proximity
of the Jungfraujoch to major source regions (Greally et al.,
2007; Reimann et al., 2008). Since about 2008, the HFC-
152a background concentration at Jungfraujoch has been de-
clining (probably due to stabilizing emissions) and again
very close to the background concentration at Mace Head.
All three applied methods for identification of background
observations (REBS, smooth curve fit and AGAGE method)
result in very similar differences of monthly background con-
centrations at Jungfraujoch and Mace Head.

The Tables2 and 3 provide the number and percentage
of HFC-152a measurements at Jungfraujoch and Mace Head
that are classified as “background” and as “polluted” by
the REBS technique, the smooth curve fit, and the AGAGE
method. The classification agrees at both sites for 81–82 % of
the observations. However, about 5 % of the measurements
are classified as “polluted” by the REBS and the AGAGE
method but identified as “background” by the smooth curve
fit. The remaining 12.0 % and 11.3 method, but classified as
being representative for background conditions by the two
other approaches. Hence, identification of background ob-
servations shows systematic differences between the applied
methods: the AGAGE method leads to the lowest number
of background concentrations, followed by the REBS tech-
nique. The smooth curve fit, on the other hand, seems to ig-
nore some pollution events, very likely due to the different
procedures for identification of background observations as
described in Sect.4.

5 Applicability of the REBS

As discussed in Sect.4.1, trace gases (e.g. CO) can show
latitudinal gradients due to the dependence of emissions and
sinks on latitude. If strong latitudinal transport events reach
a sampling location, observations might therefore not be rep-
resentative of the latitudinal background concentration at the
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considered sampling site. In addition, terrestrial sinks can
also lead to “depletion events”. Statistical filtering methods
including the REBS and most meteorological filters cannot
correctly cope with the effect of latitudinal gradients and ter-
restrial sinks. For the REBS, it is suggested that the resid-
ual distribution (as shown for CO at Jungfraujoch in Fig.1)
is used for judgment of the applicability of the REBS for
the time series of interest. The left-hand site of the residual
distribution should approximately follow a Gaussian distri-
bution. Obvious deviations from this requirement indicate a
significant impact of latitudinal transport, terrestrial sinks or
other processes leading to observations that are well below
the background concentration at the sampling site. Observa-
tions well below the background concentration receive too
high weights (see Eq.4) and consequently lead to a baseline
estimation that is biased downwards.

The REBS approach was recently extended by including
the latitude of air mass origin taken from back-trajectories
as a second dimension in the local regression. This extended
version has already been applied for estimation of baseline
concentrations of H2 at Jungfraujoch (Bond et al., 2011) and
denoted as 2D-REBS. The details of this approach will be
subject of a forthcoming publication.

A final issue to consider is missing data. The impact of
data gaps on the resulting baseline curve was investigated us-
ing the hourly CO measurements from Jungfraujoch. Thus,
continuous data gaps of different lengths (1, 10, 30, 45, 60,
90, and 180 days) have artificially been inserted. For each
data gap length, 100 baseline estimations at randomly cho-
sen gap positions have been performed. The maximum devi-
ation of the estimated baseline curves with data gap from the
original measurements without artificial data gap has been
determined up to 90 days (i.e. the selected bandwidth) before
the beginning and 90 days after the end of the inserted data
gap. The maximum deviation of estimated baselines with
data gaps up to 30 days is within the uncertainty of the base-
line curve (see Fig.3). For data gaps wider than the selected
bandwidth, the maximum deviation goes up to about 9 ppb.
We conclude that the REBS technique can handle data gaps
with satisfactory accuracy and do not recommended to fill
missing values.

6 Conclusions

A statistical method based on robust local regression is intro-
duced. The presented REBS technique was applied for iden-
tification of background CO measurements at the high-alpine
background site at Jungfraujoch, and for determination of
background observations of HFC-152a at Jungfraujoch and
Mace Head. The results were compared to those from more
common approaches denoted here as the smooth curve fit and
the AGAGE method.

The different methods applied resulted in similar selec-
tion of background measurements, although systematic dif-
ferences have been observed. For HFC-152a at Jungfraujoch
and Mace Head, the AGAGE method identifies a lower num-
ber of observations as being representative for background
conditions than from the REBS technique and the smooth
curve fit. However, the differences in average background
concentrations between AGAGE method and REBS tech-
nique are very small; the differences in average background
concentrations between REBS and the smooth curve fit are
larger. Although it seems that, in the applications performed
within this study, the smooth curve fit missed some pol-
luted observations, it is not possible to state which of the
three methods performed best. For some applications, the ob-
served differences are negligible. For others, the selection of
the method for identification of background concentrations
might have a non-negligible effect on the result. Neverthe-
less, an important advantage of the REBS technique over the
AGAGE method and the smooth curve fit is that the software
code is freely available, and that it therefore is more easily
applicable for interested users.
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Balzani L̈oöv, J. M., Henne, S., Legreid, G., Staehelin, J., Reimann,
S., Prevot, A. S. H., Steinbacher, M., and Vollmer, M. K.: Esti-
mation of background concentrations of trace gases at the Swiss
Alpine site Jungfraujoch (3580 m asl), J. Geophys. Res., 113,
DD22305,doi:10.1029/2007JD009751, 2008.

Bond, S. W., Vollmer, M. K., Steinbacher, M., Henne, S., and
Reimann, S.: Atmospheric molecular hydrogen(H2): observa-
tions at the high-altitude site Jungfraujoch, Switzerland, Tellus
B, 63, 64–76,doi:10.1111/j.1600-0889.2010.00509.x, 2011.

Calvert, J. G.: Glossary of Atmospheric Chemistry Terms –
(Recommondations 1990), Pure Appl. Chem., 62, 2167–2219,
1990.

Carpenter, L., Green, T., Mills, G., Bauguitte, S., Penkett, S., Zanis,
P., Schuepbach, E., Schmidbauer, N., Monks, P., and Zellweger,
C.: Oxidized nitrogen and ozone production efficiencies in the
springtime free troposphere over the Alps, J. Geophys. Res., 105,
14547–14559, 2000.

Cleveland, W. S.: Robust Locally Weighted Regression and
Smoothing Scatterplots, J. Am. Stat. Assoc., 74, 829–836, 1979.

Atmos. Meas. Tech., 5, 2613–2624, 2012 www.atmos-meas-tech.net/5/2613/2012/

http://dx.doi.org/10.1029/2007JD009751
http://dx.doi.org/10.1111/j.1600-0889.2010.00509.x


A. F. Ruckstuhl et al.: Extraction of background concentrations 2623

Cox, M. L., Sturrock, G. A., Fraser, P. J., Siems, S. T., and Krum-
mel, P. B.: Identification of Regional Sources of Methyl Iodide
from AGAGE Observations at Cape Grim, Tasmania, J. Atmos.
Chem., 50, 59–77, 2005.

Derwent, R., Simmonds, P., O’Doherty, S., Ciais, P., and Ryall,
D.: European source strengths and northern hemisphere baseline
concentrations of radiatively active trace gases at Mace Head,
Ireland, Atmos. Environ., 32, 3703–3715, 1998.

Efron, B. and Tibshirani, R. J.: An introduction to the bootstrap,
Chapman & Hall New York, 1993.

Fan, J. and Gijbels, I.: Local Polynomial Modelling and Its Appli-
cations, vol. 66 of Monographs on Statistics and Applied Proba-
bility, Chapman & Hall New York, 1996.

Forrer, J., R̈uttimann, R., Schneiter, D., Fischer, A., Buchmann, B.,
and Hofer, P.: Variability of trace gases at the high-Alpine site
Jungfraujoch caused by meteorological transport processes, J.
Geophys. Res., 105, 12241–12251, 2000.

Greally, B. R., Manning, A. J., Reimann, S., McCulloch, A., Huang,
J., Dunse, B. L., Simmonds, P. G., Prinn, R. G., Fraser, P. J., Cun-
nold, D. M., O’Doherty, S., Porter, L. W., Stemmler, K., Vollmer,
M. K., Lunder, C. R., Schmidbauer, N., Hermansen, O., Arduini,
J., Salameh, P. K., Krummel, P. B., Wang, R. H. J., Folini, D.,
Weiss, R. F., Maione, M., Nickless, G., Stordal, F., and Der-
went, R. G.: Observations of 1,1-difluoroethane (HFC-152a) at
AGAGE and SOGE monitoring stations in 1994–2004 and de-
rived global and regional emission estimates, J. Geophys. Res.,
112, D06308,doi:10.1029/2006JD007527, 2007.

Henne, S., Furger, M., and Prevot, A.: Climatology of mountain
venting-induced elevated moisture layers in the lee of the Alps,
J. Appl. Meteorology, 44, 620–633, 2005.

Henne, S., Klausen, J., Junkermann, W., Kariuki, J. M., Aseyo,
J. O., and Buchmann, B.: Representativeness and climatology
of carbon monoxide and ozone at the global GAW station Mt.
Kenya in equatorial Africa, Atmos. Chem. Phys., 8, 3119–3139,
doi:10.5194/acp-8-3119-2008, 2008.

Hirdman, D., Sodemann, H., Eckhardt, S., Burkhart, J. F., Jeffer-
son, A., Mefford, T., Quinn, P. K., Sharma, S., Ström, J., and
Stohl, A.: Source identification of short-lived air pollutants in
the Arctic using statistical analysis of measurement data and par-
ticle dispersion model output, Atmos. Chem. Phys., 10, 669–693,
doi:10.5194/acp-10-669-2010, 2010.

Holloway, T., Levy, H., and Kasibhatla, P.: Global distribution of
carbon monoxide, J. Geophys. Res., 105, 12123–12147, 2000.

Jacob, D. J.: Introduction to Atmospheric Chemistry, Princeton Uni-
versity Press, Princeton New Jersey, 1999.

Maronna, A., Martin, R., and Yohai, V.: Robust Statistics: Theory
and Methods, Wiley Series in Probability and Statistics, John Wi-
ley and Sons Ltd., Chichester, UK, 2006.

Miller, B. R., Weiss, R. F., Salameh, P. K., Tanhua, T., Greally, B. R.,
Mühle, J., and Simmonds, P. G.: Medusa: A sample preconcen-
tration and GC/MS detector system for in situ measurements of
atmospheric trace halocarbons, hydrocarbons, and sulfur com-
pounds, Anal. Chem., 80, 1536–1545,doi:10.1021/ac702084k,
2008.

Novelli, P., Masarie, K., and Lang, P.: Distributions and recent
changes of carbon monoxide in the lower troposphere, J. Geo-
phys. Res., 103, 19015–19033, 1998.

Novelli, P., Masarie, K., Lang, P., Hall, B., Myers, R., and
Elkins, J.: Reanalysis of tropospheric CO trends: Effect

of the 1997–1998 wildfires, J. Geophys. Res., 108, 4464,
doi:10.1029/2002JD003031,031, 2003.

O’Doherty, S., Simmonds, P., Cunnold, D., Wang, H., Sturrock, G.,
Fraser, P., Ryall, D., Derwent, R., Weiss, R., Salameh, P., Miller,
B., and Prinn, R.: In situ chloroform measurements at Advanced
Global Atmospheric Gases Experiment atmospheric research sta-
tions from 1994 to 1998, J. Geophys. Res., 106, 20429–20444,
2001.

Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser,
P. J., Simmonds, P. G., McCulloch, A., Harth, C., Salameh, P.,
O’Doherty, S., Wang, R. H. J., Porter, L., and Miller, B. R.: Evi-
dence for substantial variations of atmospheric hydroxyl radicals
in the past two decades, Science, 292, 1882–1888, 2001.

R Development Core Team: R: A language and environment for
statistical computing, R Foundation for Statistical Computing,
Vienna, Austria, available at:http://www.R-project.org(last ac-
cess: 13 July 2012), ISBN 3-900051-07-0, 2009.

Reimann, S., Manning, A. J., Simmonds, P. G., Cunnold, D. M.,
Wang, R. H. J., Li, J., McCulloch, A., Prinn, R. G., Huang, J.,
Weiss, R. F., Fraser, P. J., O’Doherty, S., Greally, B. R., Stemm-
ler, K., Hill, M., and Folini, D.: Low European methyl chloro-
form emissions inferred from long-term atmospheric measure-
ments, Nature, 433, 506–508, 2005.

Reimann, S., Vollmer, M. K., Folini, D., Steinbacher, M., Hill,
M., Buchmann, B., Zander, R., and Mahieu, E.: Observa-
tions of long-lived anthropogenic halocarbons at the high-
Alpine site of Jungfraujoch (Switzerland) for assessment of
trends and European sources, Sci. Total Environ., 391, 224–231,
doi:10.1016/j.scitotenv.2007.10.022, 2008.

Ruckstuhl, A. F., Jacobson, M. P., Field, R. W., and Dodd, J. A.:
Baseline Subtraction Using Robust Local Regression Estimation,
J. Quant. Spectrosc. Ra., 68, 179–193, 2001.

Ruckstuhl, A. F., Unternaehrer, T., and Locher, R.: IDPmisc: Util-
ities of Institute of Data Analyses and Process Design (www.
idp.zhaw.ch), available at:http://CRAN.R-project.org/package=
IDPmisc(last access: 13 July 2012), R package version 1.1.06,
2009.

Ryall, D. B., Maryon, R. H., Derwent, R. G., and Simmonds, P. G.:
Modelling long-range transport of CFCs to Hace Head, Ireland,
Q. J. Roy. Meteorol. Soc., 124, 417–446, 1998.

Ryall, D. B., Derwent, R., Manning, A., Simmonds, P., and
O’Doherty, S.: Estimating source regions of European emissions
of trace gases from observations at Mace Head, Atmos. Environ.,
35, 2507–2523,doi:10.1016/S1352-2310(00)00433-7, 2001.

Salibian-Barrera, M. and Zamar, R. H.: Bootstrapping Robust Es-
timates of Regression, The Annals of Statistics, 30, 556–582,
2002.

Schuepbach, E., Friedli, T., Zanis, P., Monks, P., and Penkett, S.:
State space analysis of changing seasonal ozone cycles (1988–
1997) at Jungfraujoch (3580 m above sea level) in Switzerland,
J. Geophys. Res., 106, 20413–20427, 2001.

Simmonds, P. G., O’Doherty, S., Nickless, G., Sturrock, G. A.,
Swaby, R., Knight, P., Ricketts, J., Woffendin, G., and Smith,
R.: Automated Gas Chromatograph Mass Spectrometer For Rou-
tine Atmospheric Field Measurements of the CFC Replacement
Compounds, the hydrofluorocarbons and hydrochlorofluorocar-
bons, Anal. Chem., 67, 717–723, 1995.

Simmonds, P. G., Manning, A., Cunnold, D., McCulloch, A.,
O’Doherty, S., Derwent, R., Krummel, P., Fraser, P., Dunse, B.,

www.atmos-meas-tech.net/5/2613/2012/ Atmos. Meas. Tech., 5, 2613–2624, 2012

http://dx.doi.org/10.1029/2006JD007527
http://dx.doi.org/10.5194/acp-8-3119-2008
http://dx.doi.org/10.5194/acp-10-669-2010
http://dx.doi.org/10.1021/ac702084k
http://dx.doi.org/10.1029/2002JD003031
http://www.R-project.org
http://dx.doi.org/10.1016/j.scitotenv.2007.10.022
www.idp.zhaw.ch
www.idp.zhaw.ch
http://CRAN.R-project.org/package=IDPmisc
http://CRAN.R-project.org/package=IDPmisc
http://dx.doi.org/10.1016/S1352-2310(00)00433-7


2624 A. F. Ruckstuhl et al.: Extraction of background concentrations

Porter, L., Wang, R., Greally, B., Miller, B., Salameh, P., Weiss,
R., and Prinn, R.: Global trends, seasonal cycles, and European
emissions of dichloromethane, trichloroethene from the AGAGE
observations at Mace Head, Ireland, and Cape Grim, Tasmania, J.
Geophys. Res., 111, D18304,doi:10.1029/2006JD007082, 2001.

Simonoff, J. S.: Smoothing Methods in Statistics, Springer Series in
Statistics, Springer-Verlag New York, 1996.

Thoning, K., Tans, P., and Komhyr, W.: Atmospheric Carbon Diox-
ide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC
Data, 1974–1985, J. Geophys. Res., 94, 8549–8565, 1989.

Yurganov, L. N., Duchatelet, P., Dzhola, A. V., Edwards, D. P., Hase,
F., Kramer, I., Mahieu, E., Mellqvist, J., Notholt, J., Novelli,
P. C., Rockmann, A., Scheel, H. E., Schneider, M., Schulz, A.,
Strandberg, A., Sussmann, R., Tanimoto, H., Velazco, V., Drum-
mond, J. R., and Gille, J. C.: Increased Northern Hemispheric
carbon monoxide burden in the troposphere in 2002 and 2003
detected from the ground and from space, Atmos. Chem. Phys.,
5, 563–573,doi:10.5194/acp-5-563-2005, 2005.

Zanis, P., Ganser, A., Zellweger, C., Henne, S., Steinbacher, M.,
and Staehelin, J.: Seasonal variability of measured ozone produc-
tion efficiencies in the lower free troposphere of Central Europe,
Atmos. Chem. Phys., 7, 223–236,doi:10.5194/acp-7-223-2007,
2007.

Zellweger, C., Ammann, M., Buchmann, B., Hofer, P., Lugauer, M.,
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