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Abstract. Two dimensional gas chromatography (GC× GC)
with detection by time-of-flight mass spectrometry (TOFMS)
was applied in the rapid analysis of air samples contain-
ing highly complex mixtures of volatilizable biogenic or-
ganic compounds (VBOCs). VBOC analytical method-
ologies are briefly reviewed, and optimal conditions are
discussed for sampling with both adsorption/thermal des-
orption (ATD) cartridges and solid-phase microextraction
(SPME) fibers. Air samples containing VBOC emissions
from leaves of two tree species (Cedrus atlanticaandCaly-
colpus moritzianus) were obtained by both ATD and SPME.
The optimized gas chromatographic conditions utilized a
45 m, 0.25 mm I.D. low-polarity primary column (DB-VRX,
1.4 µm film) and a 1.5 m, 0.25 mm I.D. polar secondary col-
umn (StabilwaxTM , 0.25 µm film). Excellent separation was
achieved in a 36 min temperature programmed GC× GC
chromatogram. Thousands of VBOC peaks were present in
the sample chromatograms; hundreds of tentative identifica-
tions by NIST mass spectral matching are provided. Very few
of the tentatively identified compounds are currently avail-
able as authentic standards. Minimum detection limit val-
ues for a 5 l ATD sample were 3.5 pptv (10 ng m−3) for iso-
prene, methyl vinyl ketone, and methacrolein, and∼1.5 pptv
(∼10 ng m−3) for monoterpenes and sesquiterpenes. Kovats-
type chromatographic retention index values on the primary
column and relative retention time values on the secondary

column are provided for 21 standard compounds and for 417
tentatively identified VBOCs. 19 of the 21 authentic stan-
dard compounds were found in one of theCedrus atlantica
SPME samples. In addition, easily quantifiable levels of at
least 13 sesquiterpenes were found in an ATD sample ob-
tained from a branch enclosure ofCalycolpus moritzianus.
Overall, the results obtained via GC× GC-TOFMS highlight
an extreme, and largely uncharacterized diversity of VBOCs,
consistent with the hypothesis that sesquiterpenes and other
compounds beyond the current list of typically determined
VBOC analytes may well be important contributors to global
atmospheric levels of organic particulate matter.

1 Introduction

Organic compounds volatilize to the atmosphere from both
anthropogenic and biogenic sources. Anthropogenic emis-
sions of non-methane volatile organic compounds (VOCs)
have been estimated at 110 to 150 TgC yr−1 (Muller, 1992;
Piccot et al., 1992). In contrast, the global input to the atmo-
sphere of non-methane biogenic volatile organic compounds
(BVOCs) has been estimated at∼1100 TgC yr−1 (Guenther
et al., 1995), much of that amount being plant related. The
non-methane BVOCs are: (1) important in the geochemi-
cal cycling of carbon (Guenther, 2002); (2) have significant
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effects on tropospheric ozone levels (Williams et al., 1997;
Starn et al., 1998); (3) affect hydroxyl radical concentrations
(Tan et al., 2001; Lelieveld et al., 2008) and thus the life-
times of ozone-depleting and greenhouse gases (Kaplan et
al., 2006); and (4) oxidized in the atmosphere to products
that can condense (Haagen-Smit, 1952) and thereby form at-
mospheric organic particulate matter (OPM) that can affect
the radiative and cloud nucleation properties of atmospheric
particles (Goldstein et al., 2009; Pöschl et al., 2010).

European Union Directive 1999/13/EC defines a VOC as
any organic compound having a vapor pressure of≥10−2 kPa
(10−4 atm) at 293.15 K. Isoprene as a pure liquid at this tem-
perature has a vapor pressure ofpo

L = 70 kPa (0.7 atm). A
semivolatile organic compound (SVOC) has been defined as
a compound with apo

L value in the range from 10−2 kPa
(10−4 atm) down to 10−9 kPa (10−11 atm) (Bidleman, 1988).
By definition, an SVOC has significant affinity for con-
densed phases, yet is sufficiently volatile that it can parti-
tion significantly to the atmosphere, particularly when other
mechanisms (e.g., oxidation) continually remove the com-
pound from the gas phase and thus maintain the driving
force for volatilization. De Gouw et al. (2011) have re-
ported observations that suggest that SVOCs can evaporate
from spilled crude oil, be oxidized in the atmosphere to
lower vapor pressure compounds, and thereby lead to forma-
tion of atmospheric OPM. Atpo

L ≈ 10−3 kPa (10−5 atm) at
293 K, sesquiterpenes (e.g., farnesene) are relatively volatile
SVOCs, and are of significant interest here for their contribu-
tion to both gas- and particle-phase processes. Therefore, in
place of the term BVOCs, we use the termvolatilizable bio-
genic organic compounds(VBOCs) to refer to the full span
of biogenic compounds of interest here. (The VBOC group
is not intended here to include methane.)

Plants release VBOCs simply because in plant tissues
these compounds tend to be lost to the surrounding envi-
ronment by diffusive transport mechanisms; accelerated loss
can occur because of mechanical/herbivore wounding (e.g.,
Heiden et al., 2003). Of particular interest is the fact that
increased emissions of certain VBOCs are associated with
plants experiencing environmental stress (e.g., Heiden et al.,
2003). Stress indicator compounds include ocimene, farne-
sene, methyl salicylate, salicylic acid, jasmonic acid, and a
group of C6 aldehydes, alcohols, and esters referred to as
“green-leaf volatiles” (Heil and Ton, 2008; Kännaste et al.,
2008; Staudt and Bertin; 1998).

Overall, VBOCs are highly diverse and include: (1) nu-
merous terpenes including isoprene (C5H8) which is
a hemiterpene, monoterpenes (C10H16), sesquiterpenes
(C15H24), and diterpenes (C20H32); (2) terpenes that are
functionalized (e.g, oxidized) in numerous ways and at a va-
riety of positions; (3) alkanes and alkenes; (4) alkyl alde-
hydes and ketones; (5) alkyl alcohols, ethers, acids, and es-
ters; and 6) chiral variants such as (±)-α-pinene, (±)-β-
pinene, and (±)-limonene (Williams et al., 2007; Yassaa et

al., 2010). The complexity of the VBOC group is therefore
due both to the variety of chemical sub-classes represented,
and to the substantial numbers of compounds in many of
the sub-classes. Another complicating factor is that the re-
activities of individual VBOCs vary widely. With regard to
functionalized compounds, the term VBOC, as used here, ex-
plicitly includes early oxidation products of plant-produced
compounds (caryophyllene oxide is an example of such an
oxidation product).

The chemical variety, numbers, and reactivities of VBOCs
have posed considerable challenges in efforts designed to
develop quantitative understandings of important processes
governing the VBOCs. First, large uncertainties remain re-
garding simply the overall magnitude of the total annual mass
emissions of VBOCs and whether unidentified or undetected
compounds contribute significantly to those emissions (e.g.,
Goldstein and Galbally, 2007). Even when the list of VBOCs
considered is relatively “comprehensive” (e.g., isoprene,α-
/β-pinene,α-phellandrene, camphene,13-carene, limonene,
myrcene,α-/γ -terpinene, terpinolene, linalool, nopinone,
methyl-chavicol, α-bergamotene,β-caryophyllene, α-/β-
farnesene, longifolene), the measured fluxes and atmospheric
concentrations do not appear to account for total VBOC mass
emissions. For example, measured fluxes have not always
been consistent with observed levels of OH reactivity (Di
Carlo et al., 2004), observed O3 fluxes (Goldstein et al.,
2004), or emissions data from co-located enclosure sam-
ples (Goldstein et al., 2004; Bouvier-Brown et al., 2009a).
Moreover, observations of higher than expected secondary
organic aerosol levels have been cited as evidence of “miss-
ing” VBOCs (e.g., Goldstein and Gallbally, 2007). There
are numerous difficulties that complicate the acquisition of
accurate VBOC emission estimates. First, mass emission es-
timates are difficult for reactive terpenoids, even in locations
where the emission rates are relatively high (Bouvier-Brown
et al., 2009a,b; Ortega et al., 2007). Second, large uncertain-
ties remain regarding the variabilities in VBOC emissions by
plant species, geographic location, and season (e.g., Helmig
et al., 2007). For example, annual emissions in the US of
isoprene and a number of monoterpenes may be changing
by amounts and for reasons that are not adequately under-
stood (Purves et al., 2004), and the responses of VBOC emis-
sions to changing climate parameters remain highly uncer-
tain (Rosenstiel et al., 2003; Guenther et al., 2006; Chen et
al., 2009; Penuelas and Staudt, 2010). Third, almost nothing
is known concerning either the relative importance of chiral
variants (e.g. (+)- vs. (−)-α-pinene, (+)- vs. (−)-β-pinene,
etc.), or how much important biogeochemical information is
held within chiral patterns of VBOC emissions (Williams et
al., 2007; Yassaa et al., 2010). Overall, despite the fact that
many BVOC emission studies currently appear each year in
the scientific literature, most have targeted only a few com-
pounds as analytes. In contrast, investigators making the ef-
fort to look for other compounds (e.g., Jardine et al., 2010)
have found a wide range of VBOCs.
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Given the significant impact of VBOC emissions on
biosphere-atmosphere interactions and air chemistry, there is
a great need for development and application of new ana-
lytical methodologies capable of characterizing the complex
nature of VBOC emissions. Development of new method-
ologies can be obtained by: (1) application of suitable sam-
ple collection methods; (2) application of high-separation
gas chromatography (GC) methods that can adequately ad-
dress VBOC complexity; and (3) accumulation of GC re-
tention index information based on as many authentic stan-
dard compounds as possible (many VBOCs of interest are
not easily obtained in pure form). Here we describe the col-
lection, tentative identification and determination, and chro-
matographic characterization of VBOCs in highly complex
samples using two-dimensional gas chromatography/time-
of-flight mass spectrometry (GC× GC/TOFMS), the latter
being the most powerful separation+detection methodology
currently available for VBOCs. We preface the description of
the laboratory measurements with a brief review of available
methods for sampling and analysis.

2 Available sampling and analysis methods

2.1 Determination with field-deployed instrumentation

Analytical instruments have often been deployed to the field
in studies of plant-derived VBOCs in ambient air and as em-
anating from plants within experimental enclosures. Though
often costly and logistically difficult, field deployment of in-
struments is advantageous when plant emissions and ambient
concentrations are subject to short time variations: VBOCs
that are moderately-to-highly reactive are of particular inter-
est in this regard. Field-deployed analytical approaches are
discussed in a recent review (Ortega and Helmig, 2008) and
include: (1) chemiluminescence for detection of isoprene
(Guenther et al., 1996; Singsaas and Sharkey, 2000); (2) pro-
ton transfer reaction mass spectrometry (PTR-MS) for the
direct simultaneous detection of multiple compounds (Karl
et al., 2001; Bamberger et al., 2010; Mielke et al., 2010);
(3) solid phase microextraction (SPME) fiber collection of
analytes followed by thermal desorption to a field GC instru-
ment; and (4) adsorption/thermal desorption (ATD) cartridge
sampling of a known air volume (e.g., 1–10 l) followed by
thermal desorption of the analytes to a field GC instrument.
PTR-MS has been employed when VBOC concentrations are
subject to high temporal variability (e.g., minutes) as in stud-
ies of forest air (e.g., Mielke et al., 2010), fluxes by eddy co-
variance measurements (e.g., Karl et al., 2001; Bamberger
et al., 2010), and emission processes in dynamic enclosure
studies (e.g., Grabmer et al., 2006; Bouvier-Brown et al.,
2007). Good agreement has been obtained for total sesquiter-
penes in field-deployed PTR-MS vs. SPME (Bouvier-Brown
et al., 2007). (PTR-MS cannot distinguish different struc-
tural isomers because it only measures molecular masses,

e.g., cannot distinguish individual monterpenes, individual
sesquiterpenes, etc.)

2.2 Determination in the laboratory

ATD cartridges are easily transported to and from the field,
and provide a simple, sensitive, and quantitative approach
for determining a wide range of VOCs at ambient atmo-
spheric levels (Pankow et al., 1998, 2003). Laboratory-based
ATD determinations of VBOCs in field samples have uti-
lized GC/FID, GC/MS, and GC× GC-TOFMS (Saxton et
al., 2007). (FID = flame ionization detector.) Several con-
siderations are important in the implementation of ATD with
VBOCs. First, losses of reactive VBOCs may need to be
prevented by removal of oxidants, particularly ozone, prior
to passage of the sample air through the cartridge (Cao and
Hewitt, 1994; Calogirou et al., 1996). Numerous different
ozone removal methods have been used (Helmig, 1997; Fick
et al., 2001; Pollmann et al., 2005). These have involved
sodium thiosulfate on filters (Helmig et al., 1998), potassium
iodide on glass wool or filters (Helmig and Greenberg, 1994),
manganese dioxide on porous nets or copper screens (Hoff-
mann, 1995; Calogirou et al., 1996), and titration of ozone
with nitrogen monoxide (Komenda et al., 2003). Second, be-
cause atmospheric concentrations decrease strongly with de-
creasing VBOC volatility (viz., vapor pressure), if the goal
is the simultaneous quantitation of a wide range of com-
pounds, it may be necessary to use a large sample volume.
That choice usually leads to the need for multiple sorbents
in the bed: weaker sorbent first, then the stronger sorbent.
The lowpo

L compounds are retained on the weaker sorbent,
and the higherpo

L compounds pass onto and are retained by
the stronger sorbent. After sampling, the thermal desorption
flow occurs in a backflush direction so that the lowerpo

L com-
pounds are not exposed to the stronger sorbent. Given the
large dynamic range in concentration usually accompanying
such samples, currently it can be helpful to employ a unit
such as the TurboMatrix 650 ATD (PerkinElmer, Waltham,
MA) for the thermal desorption. With the ATD, the desorp-
tion flow can be divided so that part (e.g., 30 %) goes to the
GC and the remainder goes to a pre-cleaned cartridge to be
held for a possible second GC run. For the first GC run, the
injector split ratio might be 10:1. If the injector split ratio
in the second GC run is lower (e.g., 5:1), then the method
sensitivity in the second run can be higher than in the first
run (e.g. (70/30)(0.2/0.1)≈ 4×). This can allow less abun-
dant compounds to become quantifiable, though some of the
early-eluting compounds may then be overloaded.

Common ATD adsorbents for VBOCs include the porous
organic polymer TenaxTM TA and several more strongly
sorbing carbon-based materials (Table 1). Attractive char-
acteristics of these adsorbents are their good abilities to re-
versibly sorb analytes, low water affinities (i.e., low break-
through volume (BV) values for water), and complementary
sorption strengths (Dettmer and Engewald, 2002; Arnts et
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Table 1. Properties of adsorbent materials used in collection and analysis of volatilizable biogenic organic compounds (VBOCs) using
adsorption/thermal desorption (ATD).

Sorbent Surface area Maximum Type Class Range Water Breakthrough volume (BV) at 20◦C (l g−1)

(m2 g−1) temp. (◦C) capacity water pentane benzene limonene
(mg g−1)a

TenaxTM TA 35 350 porous polymer weak C6-C30 <3.3b 0.039c 5d 70d 12000d

0.065d

TenaxTM GR 24 350 porous polymer + weak C6-C30 <2.0b 0.092c 1.7e 9e

graphitized carbon

CarbotrapTM B 100 >400 graphitized carbon medium/weak C5-C12 <1.2b 5.9f 11.7f

CarbopackTM B 100 >400 graphitized carbon medium/weak C5-C12

Carbograph 1TDTM 100 >400 graphitized carbon medium/weak C5-C12

CarbotrapTM X 240 >400 graphitized carbon medium/strong C3-C9

CarbopackTM X 240 >400 graphitized carbon medium/strong C3-C9

Carbograph 5TDTM 560 >400 graphitized carbon medium/strong C3-C7 24g

CarboxenTM 569 485 >400 carbon mol. sieve strong C2-C5 403b 0.257c 200h 85h 16 000h

CarboxenTM 1000 1200 >400 carbon mol. sieve very strong C2-C5 445g 0.418c

CarbosieveTM SIII 975 >400 carbon mol. sieve very strong C2-C5 395b 0.378c 600i

a Water sorption capacities at 20◦C and relative humidity = 95–100 %.
b Helmig, D. and Vierling, L.: Water adsorption capacity of the solid adsorbents Tenax TA, Tenax GR, Carbotrap, Carbotrap C, Carbosieve SIII, and Carboxen 569 and water

management techniques for the atmospheric sampling of volatile organic trace gases, Anal. Chem., 67, 4380–4386, 1995.
c Dettmer, K. and Engewald, W.: Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds, Anal. Bioanal.

Chem., 373, 490–500, 2002.
d http://www.sisweb.com/index/referenc/tenaxta.htm, last access: 6 March 2011.
e http://www.sisweb.com/index/referenc/tenaxgr.htm, last access: 6 March 2011.
f http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Bulletin/4501.Par.0001.File.tmp/4501.pdf, last access: 6 March 2011.
g Fastyn, P., Kornacki, W., Gierczak, T., Gawłowski, J., and Niedzielski, J.: Adsorption of water vapour from humid air by selected carbon adsorbents, J. Chromatogr. A, 1078,

7–12, 2005.
h http://www.sisweb.com/index/referenc/carbo569.htm, last access: 6 March 2011.
i http://www.sisweb.com/index/referenc/carbs111.htm, last access: 6 March 2011.

al., 2010). BV values for monoterpenes on TenaxTM TA are
high (Table 1) so that for sample volumes of a few liters and
∼100 mg of TenaxTM TA, monoterpenes are quantitatively
retained. That is not the case for isoprene and other volatile
compounds, retention of which requires the additional pres-
ence of a carbon-based sorbent. Many current ATD appli-
cations utilize 0.25 inch O.D.× 3.5 inch cartridges packed
with ∼100 mg of TenaxTM TA followed by ∼100 mg of ei-
ther CarbotrapTM B or CarbographTM 1TD (Komenda et al.,
2001; Sartin et al., 2001; Hakola et al., 2006; Helmig et
al., 2007; Ortega and Helmig, 2008; Haapanala et al., 2009;
Geron and Arnts, 2010). The TenaxTM TA prevents com-
pounds like the monoterpenes from substantively reaching
the carbon-based sorbent whereon they would not only be
strongly retained but also possibly chemically altered. Sig-
nificant interconversion of several monoterpenes has been re-
ported on CarbotrapTM 200 and CarbotrapTM 300 (Green-
berg et al., 1999a). Similar results have been reported by
Cao and Hewitt (1993).

Super-Q and HayeSep-Q adsorbent cartridges (Papiez et
al., 2009; Ormeno et al., 2010; Heuskin et al., 2012) and
SPME fibers (Bouvier-Brown et al., 2009b) provide alterna-
tives to ATD cartridges. SPME, however, can be consider-
ably less sensitive than ATD (as with highly volatile ana-
lytes that are weakly sorbed and/or with low volatility com-
pounds at low concentrations), does not provide as much
overall sample stability (Bouvier-Brown et al., 2007; Baker
and Sinnott, 2009), and is labor intensive to calibrate in quan-
titative applications. Nevertheless, SPME becomes exceed-
ingly attractive for its convenience when the analyte con-
centrations are high, the work is proceeding in/near a lab-
oratory, and/or the desired determinations are only qualita-
tive or semi-quantitative in nature. SPME has been used in
laboratory-based measurements with GC-FID to determine
isoprene emission rates from enclosed tree seedling branches
(Tsui et al., 2009), and with GC/FID, GC/MS and 100 l
Tedlar bags to measure sesquiterpene emissions from whole
trees (Pinus sabinianaandPinus ponderosa) (Baker and Sin-
nott, 2009). Super-Q and HayeSep-Q are most appropriate
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for lower-volatility VBOCs (e.g., mono- and sesquiterpenes);
samples typically are solvent extracted an analyzed using
GC/MS (Papiez et al., 2009; Ormeno et al., 2010; Heuskin et
al., 2012).

“Whole-air” sampling with canisters or bags provides an
alternative to ATD cartridges and SPME fibers as a means to
collect and transport sample analytes to a conventional lab-
oratory for analysis. Whole air in a canister or bag can be
aliquotted with a sample loop, cryofocused (e.g., at−150◦C
on a trap containing 60/80 mesh glass beads as in method
TO-14; US EPA, 1999a), sampled using ATD (Pressley et
al., 2004) or SPME (Bouvier-Brown et al., 2007), or cry-
ofocussed directly on the GC column (Pankow, 1986). For
canisters, inert internal surfaces are important, and both
Summa-polishedTM stainless steel and SilcosteelTM canisters
are used (US EPA, 1999a,b). However, canisters are still sub-
ject to losses at high humidity (Batterman et al., 1998), and
are costly and complicated to clean. Teflon bags suffer from
blank problems, frequently leak, and are difficult to clean af-
ter use (Greenberg et al., 1999a); Tedlar bags are subject to
similar problems. Available data indicate that many analytes
are more stable when stored on ATD cartridges than in bags,
especially when oxidant species are present in the sample air.
Evidence of losses in Teflon bags for methacrolein, methyl
vinyl ketone, andα-pinene have been reported (Greenberg et
al., 1999a). A summary of minimum detection limit (MDL)
values for VBOCs by various methodologies is provided in
Table 2.

2.3 GC× GC-TOFMS

Applications of GC× GC usually utilize a primary column
with either a non-polar or low-polarity stationary phase. Co-
elution of some peaks from the primary column is inevitable
with highly complex samples. With GC× GC (aka 2D GC),
periodic slices of effluent from the primary column are in-
dividually: (1) cryofocused at the end of the column; then
(2) thermally desorbed to a secondary column with a more
polar stationary phase. Separation of compounds that co-
exist in a given slice can be accomplished on the secondary
column if the compounds differ in polarities and/or polariz-
abilities. GC× GC-TOFMS has been applied with success
in the analysis of diesel fuel (Arey et al., 2005), weathered
petroleum (Frysinger et al., 2003), urban aerosol particulate
matter (Hamilton et al., 2004), tobacco smoke particulate
matter (Cochran, 2008), and tissue extracts (Welthagen et
al., 2005). GC× GC chromatographic retention index data
have been tabulated for diesel fuel hydrocarbons (Arey et al.,
2005), but not for VBOCs.

The varying polarizabilty/polarity characteristics of the
VBOCs are imparted by varying numbers of rings, double
bonds, and polar functionalizations. GC× GC with a less-
polar primary column and a more-polar secondary column
is well suited for separating VBOC mixtures. GC× GC-
TOFMS has been used to determine VBOCs in ATD samples

of forest canopy air and air from branch and leaf enclo-
sures (Saxton et al., 2007). Quantitative measurements were
reported for isoprene,α-pinene,β-pinene, camphene and
limonene, as were relative peak intensities for 11 tentatively
identified compounds (Saxton et al., 2007).

3 Experimental

3.1 Chemicals and standard mixtures

21 VBOC chemicals (≥95 % pure) were obtained from
Sigma-Aldrich (St. Louis, MO) (isoprene,α-pinene, cam-
phene, myrcene,β-pinene, α-phellandrene,13-carene,
limonene, terpinolene,p-cymene, nopinone, linalool, 4-
terpinenol, terpineol, eucalyptol, camphor, estragole (methyl
chavicol), α-cedrene, caryophyllene, aromadendrene, and
α-humulene). Optimally, the list of standard compounds
would have included many tens of C10-and-higher VBOCs.
Unfortunately, authentic standard materials are not read-
ily available for the vast majority of such compounds, and
even just having doubled the number of standard compounds
would have required use of multi-component “essential oils”,
with concomitant prior quantitation of the VBOC compo-
nents of interest. Such efforts are underway in our lab-
oratories, but were not applied in this study. Standard
mixes of the 21 VBOCs in methanol were prepared at per-
component concentrations from 0.5 ng µl−1 to 20 ng µl−1.
A gas standard containing four internal standard (IS) com-
pounds (fluorobenzene, toluene-d8, 4-bromofluorobenzene,
and 1,2-dichlorobenzene-d4) at 80 ng ml−1 per component
was prepared in a stainless steel canister as described else-
where (Pankow et al., 1998). The IS compounds were used:
(1) to monitor the overall effectiveness of the thermal trans-
fer from each sampling cartridge to the primary GC column;
(2) as clearly identifiable (e.g., non-biogenic) retention time
markers; and (3) a source of constant reference signals during
the determination of the MDL values reported here, as based
on analyses carried out at varying on-cartridge levels of iso-
prene and the other target analytes. Isotopically-labelled sur-
rogate standard compounds were not necessary in this study.

3.2 ATD cartridges – NCAR preparation and
procedures for field sampling

Field samples discussed here were collected by the
Biosphere-Atmosphere Interactions Group of the National
Center for Atmospheric Research (NCAR). Details regarding
sample collection are available (Greenberg et al., 1999a,b,
2004). Briefly, samples were obtained using stainless
steel, 0.25 inch O.D.× 3.5 inch, dual sorbent cartridges
(TenaxTM TA plus CarbotrapTM B, or TenaxTM GR plus
CarbographTM). Prior to sampling, cartridges were cleaned
by heating for 8 h at 275◦C with a 50 ml s−1 flow of ultra-
high purity N2 gas. Clean cartridges were capped and stored
at 10◦C until used. The apparatus consisted of an O3 trap
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(KI impregnated filter), the sample cartridge, and a flow-
controlled pump. Samples were collected at a flow rate of
200 cm3 min−1 for 30 min. After sampling, cartridges were
sealed, shipped at ambient temperatures back to the labora-
tory (maximum 1 week shipping time), then maintained at
10◦C until analyzed. After four weeks at ambient tempera-
tures, losses were<10 % for C3 to C6 compounds of interest
(Greenberg et al., 1999a).

3.3 ATD cartridges and SPME fibers – PSU
preparation and procedures for samples
obtained in the laboratory

In laboratory ATD sampling of air from vials holding plant
materials, each glass cartridge contained 100 mg of TenaxTM

TA plus 120 mg of CarbotrapTM B. (Prior to packing, 5 g of
TenaxTM TA was placed in a glass column and cleaned with
a 250 ml flow of 50/50 (v/v) acetone/hexane.) After pack-
ing, each cartridge was conditioned for 1 h at 300◦C with
100 ml min−1 of He gas (precleaned using a U-shaped hy-
drocarbon trap in liquid N2). Each conditioned cartridge
was sealed with brass Swagelok endcaps that had been pre-
cleaned by rinsing in 50:50 acetone/hexane followed by bak-
ing (90 min, 150◦C). The endcaps were fitted with Teflon
ferrules precleaned with methanol and water. Each sealed
cartridge was stored in a clean glass culture tube. Other
cartridge handling procedures were as described elsewhere
(Pankow et al., 1998). The SPME assembly was obtained
from Sigma-Aldrich (St. Louis, MO) and utilized with fibers
coated with polydimethylsiloxane/divinylbenzene (coating
thickness 65 µm). Prior to sampling, the fibers were cleaned
for 30 min at 250◦C in a GC injector through which pre-
cleaned He was flowing at 50 ml min−1.

Plant material samples (needles) were collected from a
mature (>20 m)Cedrus atlanticatree located on the Portland
State University (PSU) campus. Three samples of 0.5 to 1.0 g
each were collected in October–December (2010) at∼2 m
above ground level from tips of branches with full-sun ex-
posure. Each sample was placed in an individual precleaned
40 ml clear glass vial fitted with a Teflon-lined septum. Af-
ter 60 min of exposure at∼20◦C to a cool light source (air-
ported halogen lamp, 300 watt, 1000 µmol photons m−2 s−1),
sampling by SPME or ATD occurred as air was passing
through the vials (Fig. 1). The air was either cleaned lab-
oratory air (CLA) or uncleaned laboratory air (ULA). Clean-
ing of the air was accomplished using a Perkin-Elmer hy-
drocarbon trap. Use of the uncleaned laboratory air greatly
increased the complexity of the samples and thereby fa-
cilitated a more rigorous test of the ability of GC× GC-
TOFMS to adequately separate and detect VBOCs in the
presence of myriad other VOCs. ATD air sampling occurred
at 60 ml min−1 for 60 min (3.6 l). ATD cartridges were ei-
ther analyzed immediately or within three weeks after stor-
age at−15◦C; standard cartridges analyzed after three weeks
at −15◦C showed no evidence of analyte loss. Each SPME

Fig. 1. Diagram of system used to obtain SPME and ATD samples
of VBOCs in the laboratory with samples ofCedrus atlantica.

sampling event was carried out for a specific time period
(10 to 60 min) under “dynamic” conditions (= continuous air
flow – 50 ml min−1 – through the vial during fiber exposure).
SPME samples were analyzed immediately.

3.4 GC× GC-TOFMS measurements

All ATD and SPME samples were analyzed using a Leco Pe-
gasus 4D GC× GC-TOFMS (Leco, St. Joseph, Michigan).
Unlike the efforts using ATD, with SPME no calibration
standard runs were made: the primary purpose of the SPME
runs was to provide samples that could easily indicate the
level of sample complexity that is to be encountered in anal-
yses of VBOCs, and easily provide needed retention time
data. For all ATD cartridges (standard or sample or blank,
NCAR or PSU), prior to analysis each cartridge was loaded
with the IS compounds by injecting 0.2 ml of the IS gas stan-
dard into a 50 ml min−1, 5 min flow of precleaned N2 leading
to the sample inlet end of the cartridge. For a standard car-
tridge, the 21 target analyte compounds were then added by
injecting 4 µl of one of the methanolic standard mix solu-
tions into the inlet of the cartridge; most of the methanol was
then removed and the analytes were moved further onto the
cartridge by a 50 ml min−1, 5 min flow of precleaned N2.

The ATD 400 (Perkin-Elmer, Waltham, MA) thermal des-
orption apparatus was connected to the GC injector by a
fused silica transfer line (220◦C). Each ATD cartridge was
thermally desorbed (270◦C, 10 min) at 40 ml min−1 with
zero split to a focusing trap (45 mg of TenaxTM TA, 10◦C)
in the ATD 400. The focusing trap was desorbed (290◦C,
3 min) with zero split (splitless) to the fused silica transfer
line and thus the GC injector. Flow from the GC injec-
tor to the primary GC column occurred with a 15:1 split.
(Increased method sensitivity could have been achieved by
reducing the split to as low as 5:1 without reduction of
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Table 3. Summary of GC× GC-TOFMS conditions used in VBOC determinations.

initial improved

GC injector 250◦C; split 20:1 for ATD 225◦C; split 15:1 for ATD, splitless for SPME

column flow 1.2 ml min−1 (mass flow controller) 1.0 ml min−1 (mass flow controller)

primary column non-polar: Rxi-5ms, 30 m, 0.25 mm I.D., low polarity: DB-VRX, 45 m, 0.25 mm I.D.,
0.25 µm film (Restek, Bellefonte, PA) 1.4 µm film (Agilent, Santa Clara, CA)

GC× GC modulation 4 s period, 0.8 s hot pulse 4 s period, 0.9 s hot pulse

GC× GC modulator trap with cold gas from LN2, then hot pulse at 20◦ above primary oven for release to secondary column

secondary column polar: BPX-50, 1.25 m, 0.10 mm I.D., polar: StabilwaxTM , 1.5 m, 0.25 mm I.D.,
0.10 µm film (SGE, Austin, TX) 0.25 µm film (Restek, Bellefonte, PA).

GC program 40◦C for 5 min, 15◦C min−1 to 300◦C, then 45◦C for 5 min, 10◦C min−1 to 175◦C, hold
(primary oven) hold at 300◦C for 5 min at 175◦C for 2 min, 4◦C min−1 to 240◦C,

then hold at 240◦C for 10 min

MS source 200◦C, electron impact (70 eV)

MS detector 1550 V

MS data acquisition 150 spectra s−1; 35 to 500 amu

chromatographic performance.) SPME fibers were desorbed
splitless for 3 min in the GC injector (225◦C) which con-
tained an SPME liner (Restek, Bellefonte, PA). Thereafter,
an injector purge flow of 100 ml min−1 was kept open for
4 min. Each GC× GC run was initiated immediately upon
beginning of the heating of the focusing trap (ATD), or after
the SPME fiber was inserted into the injector (SPME). In ev-
ery case, TOFMS data collection was delayed 180s. An ini-
tial set and an improved set of GC columns/conditions were
used (Table 3).

4 Results and discussion

4.1 Detection limits

The particular MDL values for the 21 target compounds
investigated here are provided in Table 4. For isoprene,
the MDL was 3.5 pptv (10 ng m−3). For the monoter-
penes, the MDL values were in the range 0.7–2.1 pptv (4 to
12 ng m−3). For the sesquiterpenes, the MDL values were
∼1 pptv (∼10 ng m−3). No blank problems were expe-
rienced for any of the target compounds. As such, all
MDL values were assessed by varying the on-cartridge mass
amounts of the target analytes, and determining which val-
ues yielded an instrument signal to noise ratio of 10:1. MDL
values were then calculated as equaling the mass amounts at
10:1 signal-to-noise divided by the sample volume of 5 l.

4.2 Chromatograms

Figures 2–6 show chromatograms for samples run using the
improved set of chromatographic conditions (Table 3) unless

stated otherwise. Figure 2a and b are GC× GC-TOFMS
chromatograms obtained by ATD for the 21-compound stan-
dard mix. Good separation was achieved for all of the com-
pounds except forα-cedrene and caryophyllene. The latter
two compounds possess sufficiently different EI mass spec-
tra that they are differentiable even when not fully resolved
chromatographically.

In sample runs, thepeak selection criteria(PSC) used
to decide upon which chromatographic peaks would receive
further consideration were applied on the Leco data system
as follows: signal to noise ratio>200, peak area>100 000,
and match similarity of>780 with an entry in the NIST
mass spectral library. For each sample, some of those peaks
corresponded to target compounds, and eluted at the proper
retention times, and so were positively identified. Other
peaks passing the PSC but not corresponding to the target
compounds were considered only tentatively identified. Ta-
ble S1 (Supplement) summarizes the information acquired
for 438 chromatographic peaks (including 21 standard com-
pounds) that met the PSC in the various chromatograms pre-
sented here.

– Calycolpus, ATD, ambient air:
Figure 3 is a chromatogram for an ATD sample ob-
tained during an NCAR enclosure experiment using the
lower branch of a tree (Calycolpus moritzianus) grow-
ing in a tropical forest in South America (Columbia,
11.0704◦ N, 74.0411◦ W). For this sample, the initial
set of chromatographic conditions was used (Table 3).
The peaks for 15 of the 21 standard compounds met
the PSC and were positively identified based on their
chromatographic retention times and mass spectra (Ta-
ble S2, Supplement); four of these (α-pinene, limonene,
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Fig. 2. (a) GC× GC-TOFMS chromatogram of a standard containing 21 VBOCs at∼1 ng per component on-column; internal standard
compounds are fluorobenzene (FB), toluene-d8, bromofluorobenzene (BFB), and 1,2-DCB-d4 (1,2-dichlorobenzene-d4); obtained using the
improved chromatographic conditions (Table 3).(b) Enlarged region of GC× GC-TOFMS chromatogram showing 20 VBOCs at∼1 ng per
component on-column.

α-terpineol, and caryophyllene) are known constituents
of C. moritzianusessential oils (Vald́es et al., 2006;
Diaz et al., 2008). Peaks for another two standard com-
pounds were positively identified based on their mass
spectral and retention time data, though were too small
to meet the PSC. The number of tentatively identified
peaks meeting the PSC in Fig. 3 totaled 127 (Table S2,

Supplement) and included four monoterpenes and 10
sesquiterpenes. In addition, at levels two to five times
larger than blank levels, three of the 127 peaks were
identified as salicylates (methyl salicylate, 2-ethylhexyl
salicylate, and homomenthyl salicylate). Two of the
127 peaks matched well as isomers of cumene and two
matched well as isomers of aromadendrene. Overall, at
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Fig. 3. GC× GC-TOFMS chromatogram of VBOCs fromCalycolpus moritzianusby ATD using a branch enclosure in the field; obtained
using the “initial” chromatographic conditions (Table 3).
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Fig. 4. GC× GC-TOFMS chromatogram of VBOCs fromCedrus atlanticaby SPME and using cleaned laboratory air (CLA); obtained
using the “improved” chromatographic conditions (Table 3).

least 13 sesquiterpene compounds were present at eas-
ily detectable concentrations. For these and the tentative
identifications discussed below for Figs. 4–6, confirmed
identifications will await acquisition of suitable authen-
tic standards.

– Cedrus, SPME, laboratory air (cleaned):
Figure 4 is a chromatogram for VBOCs emitted from
Cedrus atlanticaneedles sampled in Portland (Decem-
ber 2010). Sampling took place with SPME using the
cleaned laboratory air (CLA) using dynamic sampling
conditions as described above. The peaks for 10 of the
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Fig. 5. GC× GC-TOFMS chromatogram of VBOCs fromCedrus atlanticaby SPME using uncleaned laboratory air (ULA); obtained using
the “improved” chromatographic conditions (Table 3).
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Fig. 6. GC× GC-TOFMS chromatogram of VBOCs fromCedrus atlanticaby ATD using cleaned laboratory air (CLA); obtained using the
“improved” chromatographic conditions (Table 3).

21 standard compounds met the PSC and were posi-
tively identified based on their chromatographic reten-
tion times and mass spectra (Table S3, Supplement);
peaks for another five standard compounds were pos-
itively identified based on their mass spectral and re-
tention time data, though were too small to meet the

PSC. The number of tentatively identified peaks meet-
ing the PSC totaled 92; these included tentative identifi-
cations for methacrolein, methyl vinyl ketone, hexenal,
two monoterpenes, four oxygenated monoterpenes, four
sesquiterpenes, and one oxygenated sesquiterpene (Ta-
ble S3, Supplement).
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Table 4. Minimum detection limit values (MDL) at 10:1 signal
to noise for determination by adsorption/thermal desorption (ATD)
with a sample volume of 5 l followed by GC× GC-TOFMS.

Compound Molecular CAS MDLb

formula numbera ng m−3 pptvc

hemiterpenes

isoprene C5H8 78-79-5 10 3.5

monoterpenes and related compounds

α-pinene C10H16 80-56-8 8 1.4
camphene C10H16 79-92-5 8 1.4
α-myrcene C10H16 123-35-3 8 1.4
β-pinene C10H16 127-91-3 8 1.4
α-phellandrene C10H16 99-83-2 12 2.1
13-carene C10H16 13 466-78-9 8 1.4
limonene C10H16 138-86-3 12 2.1
p-cymene C10H14 527-84-4 4 0.7
eucalyptol C10H18O 470-82-6 8 1.2
terpinolene C10H16 586-62-9 6 1.1
linalool C10H18O 78-70-6 12 1.9
nopinone C9H14O 38651-65-9 12 2.1
camphor C10H16O 76-22-2 8 1.3
4-terpinenol C10H18O 562-74-3 10 1.6
terpineol C10H18O 98-55-5 12 1.9
estragole C10H12O 140-67-0 10 1.6

sesquiterpenes

α-cedrene C15H24 469-61-4 12 1.4
caryophyllene C15H24 87-44-5 12 1.4
aromadendrene C15H24 489-39-4 8 0.9
humulene C15H24 6753-98-6 8 0.9

a CAS numbers are for the forms of the compounds as purchased (Sigma-Aldrich,

St. Louis, MO) for use as standard materials.
b No blank contamination problems were encountered for any of the compounds; zero

split during desorption from sample cartridge to secondary focusing trap within ATD

unit; 1 in 15 split between secondary focusing cartridge and the primary column; total

fraction of sample mass transferred to column = 6.7 %. Other GCxGC and TOFMS

conditions as given in text.
c pptv = parts per trillion by volume. Conversion between ng m−3 and pptv by the ideal

gas law and assuming temperatureT = 293 K and total pressureP = 1 atm.

– Cedrus, SPME, laboratory air (uncleaned):
Figure 5 is a chromatogram for VBOCs emitted from
Cedrus atlanticaneedles sampled in Portland (Octo-
ber 2010). Sampling took place with SPME using ULA
and dynamic sampling conditions. The considerably
greater complexity in Fig. 5 compared to Fig. 4 is the
consequence of: (a) the many VOCs present in the am-
bient laboratory air (i.e., in the ULA); (b) the greater ox-
idation potential (i.e., higher ozone level) in the ULA;
and (c) the presumed higher level of biological activity
for the Fig. 5 sample (collected in October) as compared
to that for the Fig. 4 sample (collected in December).

The peaks for 18 of the 21 standard compounds met
the PSC and were positively identified based on their
chromatographic retention times and mass spectra (Ta-
ble S4, Supplement); the peak for one additional stan-
dard compound was positively identified based on its
mass spectral and retention time data, though was too
small to meet the PSC. The 18 compounds included all
10 of the PSC-satisfying standard compounds found in
the Fig. 4 chromatogram. In Fig. 5, the number of ten-
tatively identified peaks meeting the PSC totaled 312
(Table S4, Supplement). Compared to the Fig. 4
chromatogram, the Fig. 5 chromatogram evidenced the
presence of the following numbers of additional com-
pounds: six monoterpenes; 30 oxygenated monoter-
penes; 26 sesquiterpenes; 10 oxygenated sesquiter-
penes. As compelling evidence of the complexity of
the VBOC group, among the 312 tentative identifica-
tions, there are nine examples of multiple peaks match-
ing well as the same compound: (1) four peaks as
E,E-2,6-dimethyl-1,3,5,7-octatetraene; (2) two peaks
as 3-methyl-undecane; (3) two peaks asγ -terpinene;
(4) three peaks as d-verbenol; (5) two peaks astrans-
1-methyl-4-(1-methylethly)-2-cyclohexen-1-ol; (6) two
peaks asβ-cubebene; (7) two peaks as germacrene D;
(8) two peaks as longipinocarvone; and (9) four peaks
as caryophyllene oxide.

– Cedrus, ATD, laboratory air (cleaned):
Figure 6 is a chromatogram for the VBOCs emitted
from needles ofCedrus atlanticaobtained using ATD
and the CLA. Compared to Fig. 4 (SPME with CLA),
Fig. 6 is considerably more complex for low primary
retention times (t1 < 950 s). This is due to the greater
ability of ATD to collect highly volatile compounds:
the gas-to-fiber partition coefficients for SPME for such
compounds are low. The peaks for 15 of the 21 stan-
dard compounds met the PSC and were positively iden-
tified based on their chromatographic retention times
and mass spectra (Table S5, Supplement); peaks for an-
other three standard compounds were positively iden-
tified based on their mass spectral and retention time
data, though were too small to meet the PSC. In Fig. 6,
the number of tentatively identified peaks meeting the
PSC totaled 127 (Table S5, Supplement).

4.3 Chromatographic retention information

4.3.1 First dimension retention index

For the primary column, thet1 retention time data were trans-
formed into Kovats retention index valuesI1 so as to obtain
generally useful measures of retention that are much more
system-independent than simplet1 values. On the primary
column, for compoundi eluting at retention timet1,i and
between straight-chain alkanes with carbon numbersj and
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j + 1, the non-isothermal retention index values were calcu-
lated as (Guiochon, 1964)

I1,i = 100

[
j +

t1,i − t1,j

t1,j+1 − t1,j

]
= 100nC,i . (1)

The t1,j andt1,j+1 values were available because of the nat-
ural presence in the samples of 15 straight-chain alkanes (C5
to C19). nC,i is the carbon number for thehypotheticalequiv-
alent straight-chain alkane that elutes in the first dimension
at t1,i . For mosti, nC,i will not be an integer. Table S1 (in
the Supplement) providesI1 values for the 21 target analyte
BVOCs in the standard mix utilized here and for 417 tenta-
tively identified compounds found in the four different sam-
ple chromatograms discussed above. Of the 417 tentative
identifications in Table S1 (Supplement), six resulted from
search similarity values in the range 680–699, while 56 re-
sulted from values in the range 700–799, and 355 resulted
from values in the range 800–990.

4.3.2 Second dimension retention ratio

Because of the shortness of the secondary column, the maxi-
mum retention time in the second dimension is only a few
seconds and thus too short to allow elution of bracketing
compounds before and after every compound appearing in
any given secondary chromatogram. Thus, a retention index
analogous to that defined by Eq.(1) is difficult to achieve for
the second dimension, and a simple retention time ratioR2,i

is more practical. The secondary retention timet2 of the hy-
pothetical straight-chain alkane with carbon numbernC,i is a
logical choice for use as the normalizingt2 value according
to

R2,i =
t2,i

t2,nC,i

. (2)

The needed values oft2,nC,i
were obtained as follows. The

value of the secondary retention timet2 was determined
for each actual straight-chain alkane with integer value of
nC. Data pairs (t2,nC, nC) were thus available from the
15 straight-chain alkanes (C5 to C19) naturally present in the
samples. Those data were fit to obtaint2,nC expressed as a
6th order polynomial innC. The polynomial was used to cal-
culate the neededt2,nC,i

values. Table S1 (in the Supplement)
providesR2 values for the 21 target analyte VBOCs in the
standard mix utilized here and for the 417 tentatively iden-
tified compounds found in the four different sample chro-
matograms. TheI1 andR2 values in Table S1 (in the Sup-
plement) will be generally useful in subsequent studies that
seek to identify and quantify individual compounds in com-
plex VBOCs samples.

5 Conclusions

The results from this and other studies illustrate the enor-
mous complexity of the VBOC group. Any serious effort
to comprehensively examine this complexity will need to in-
volve GC× GC. As shown here even a small number of dif-
ferent types of samples can be expected to reveal the presence
of many hundreds (if not thousands) of compounds of inter-
est for atmospheric chemistry. For example, even though the
annual global mass emissions of individual sesquiterpenes
may be very low, the aggregate emission of all sesquiterpenes
may well be a significant source for the carbon present in
global atmospheric organic particulate matter. For VBOC
sample collection, while SPME is a valuable method, for
quantitative measurements ATD is significantly more robust
and more easily applied.

Although the analytical methodologies required for com-
prehensive characterization of VBOCs in all sample types
of interest are in place (i.e., either ATD or SPME interfaced
with GC× GC-TOFMS), progress in this field will be much
accelerated when substantially more VBOCs can be obtained
as authentic, high purity standard materials. In the mean-
time, advances can be made by resorting to impure mixtures,
as with essential oils known to contain particular VBOCs of
interest. Much additional GC× GC retention time data for
authentic standard compounds of the type collected here are
needed.

Supplementary material related to this
article is available online at:
http://www.atmos-meas-tech.net/5/345/2012/
amt-5-345-2012-supplement.pdf.
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